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Singularly perturbed k-contractive linear systems
Pietro Lorenzetti†, Mattia Giaccagli†, Irinel-Constantin Morarescu†, and Romain Postoyan†

Abstract—A dynamical system is said to be k-contractive when
its trajectories contract k-dimensional volumes. For k = 1,
this property coincides with the classical notion of contraction.
However, for k > 1, it allows to characterize a much richer
asymptotic behavior. The property of k-contraction has been
introduced only recently, thus many analysis tools that are key
in relevant applications are currently lacking for k-contractive
systems. Motivated by this, we study k-contraction for singu-
larly perturbed systems (SPSs), which naturally arise in many
engineering applications. In particular, we focus on singularly
perturbed linear time-invariant (LTI) systems. First we show that,
for a “sufficiently large” time-scale separation, the k-contraction
properties of a SPS can be derived from those of the associated
boundary-layer (fast) system, and from the dimension of the
reduced order (slow) model. Then, we focus on the case in
which the reduced order (slow) model is k-contractive and the
boundary-layer (fast) system is 1-contractive. In this setting, we
provide a stronger result by showing that the overall system is
k-contractive when the time-scale separation is “large”.

Index Terms—k-contraction, singular perturbations, linear
systems

I. INTRODUCTION

CONTRACTION theory [1], [2] is a great tool for the
analysis and design of nonlinear control systems. A

system is said to be contractive if the distance between any
two trajectories exponentially converges to zero. Contractive
systems exhibit many remarkable properties. For instance,
under mild assumptions, they possess a unique steady-state
bounded solution, which is attractive [2]. Moreover, they are
structurally robust to external perturbations [3]. These (and
other) properties have been exploited in control problems, such
as observer design [4], [5], output regulation [6], [7], and
multi-agent synchronization [8], [9], [10], [11]. Thus, given
the effectiveness of contraction-based tools, it became natural
to search for suitable generalizations of this property, e.g.,
[12], [13], [14], [15], which could encompass a larger class of
dynamical systems.

In this context, we are interested in the notion of k-
contraction, introduced in the seminal work [16], and recently
used for control purposes in, e.g., [14], [17]. While the trajec-
tories of a contractive system converge to each other, and, thus,
contract distances, those of a k-contractive system contract k-
dimensional volumes. That is, 1-contraction corresponds to the
contraction of lengths (i.e., contraction in the classical sense),
2-contraction corresponds to the contraction of surfaces, 3-
contraction to the contraction of volumes, and so on. The
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interest in this generalization is that k-contractive systems,
with k > 1, present a much richer asymptotic behavior than
contractive ones. For instance, the bounded trajectories of 2-
contractive time-invariant systems converge to a (possibly non-
unique) equilibrium point, while those of some particular 3-
contractive systems to a simple attractor, i.e., a fixed point, a
set of fixed points/connecting arcs, or a limit cycle [18].

The notion of k-contraction is promising, and it has been
shown to naturally generalize known results for, e.g., Lur’e
systems [17], series interconnection [19], and Lyapunov meth-
ods [18]. However, being the theory recent, many analysis
tools are currently lacking. For instance, analysis tools for
singularly perturbed contractive systems have been proposed
in [20], [21], where their relevance is shown for applications in
biomolecular systems [20], feedback optimization, and game
theory [21]. To the best of our knowledge, no generalizations
of these tools exist for k-contractive systems. In this work, we
address this gap by studying singularly perturbed k-contractive
linear time-invariant (LTI) systems, as a first, important step
towards a more general theory applicable to nonlinear systems.

Many engineering systems exhibit phenomena happening at
different time-scales, which can be captured using the frame-
work of singularly perturbed systems (SPSs) [22]. The idea is
then to exploit the time-scale separation by decomposing the
original model in two subsystems: a boundary-layer system,
which describes the fast dynamics, and a reduced order model,
representing the slow ones. Under suitable assumptions, it
is usually shown that if the boundary-layer system and the
reduced order model have certain stability properties, then the
overall (singularly perturbed) system inherits these properties
when the time-scale separation is “sufficiently large” [22].

In this paper, we present analysis tools for singularly
perturbed k-contractive LTI systems. We provide two main
results. First, we show that, when the boundary-layer system
is k-contractive, then the overall system is (k+nx)-contractive
where nx is the dimension of the reduced order model,
for a “sufficiently large” time-scale separation. A natural
question then is whether having the boundary-layer system
k1-contractive and the reduced order model k2-contractive
ensures that the overall model is (k1 + k2)-contractive, for
a “sufficiently large” time-scale separation. We show that, in
general, the answer to this question is no when k1 > 1, via
a counter-example. Finally, we focus on the special, relevant
case where the boundary-layer system is 1-contractive and the
reduced order model k-contractive. Under these assumptions,
we show that the overall system is k-contractive when the
time-scale separation is “sufficiently large”.

Notation. We denote by N, R, and C, respectively, the sets
of natural (with 0 ∈ N), real, and complex numbers. Given
a ∈ C, we denote by ℜ(a) its real part and by ℑ(a) its



imaginary part. The symbol In indicates the identity matrix
of dimension n × n. Given a matrix P ∈ Rn×m, we denote
by rank(P ) its rank and by Img(P ) its image. If P is square
(m = n), det(P ) stands for its determinant. Let σ(P ) denote
the spectrum of P and let σ−(P ), σ0(P ), σ+(P ) indicate
the number of eigenvalues of P with negative, zero, and
positive real part, respectively (counting multiplicity). When
P is symmetric, i.e., P = P⊤, we define its inertia as the
triple of integers I(P ) := (σ−(P ), σ0(P ), σ+(P )). We write
P > 0 if P = P⊤ and x⊤Px > 0 for all x ∈ Rn \ {0};
equivalently, I(P ) = (0, 0, n). Similarly, we write P < 0
if −P > 0. Given p matrices A1, . . . , Ap with dimension
Ai ∈ Rni×ni , the symbol blkdiag(A1, . . . , Ap) indicates the∑p

i=1 ni ×
∑p

i=1 ni block diagonal matrix defined by the
blocks Ai and 0 everywhere else. The symbol |·| indicates the
(matrix) Euclidean norm. Let ϱ ∈ N \ {0} and Q : R → Rp×q

be a matrix function of a scalar variable ε ∈ R, we write
that Q(ε) = O(εϱ) if limε→0

1
εϱ |Q(ε)| < ∞. Given two

Euclidean spaces U and V , we denote by C1(U ;V ) the class
of continuously differentiable functions mapping U to V .

II. PRELIMINARIES ON k-CONTRACTION

Consider a system described by

ẋ = f(x), (1)

with x ∈ Rnx , nx ∈ N \ {0}, and f ∈ C1(Rnx ;Rnx). We
denote by x(x0, t) the solution of (1) evaluated at time t ≥
0, starting from initial condition x0 ∈ Rnx . We assume that
system (1) is forward complete, i.e., its trajectories exist for
all t ≥ 0 and all initial conditions.

Given k ∈ {1, . . . , nx}, let Φk be the set of continuously
differentiable immersions from [0, 1]k to Rnx , i.e.,

Φk :=

{
φ ∈ C1([0, 1]k;Rnx) | rank

(
∂φ
∂s (s)

)
= k ∀s ∈ [0, 1]k

}
.

Let P = P⊤ > 0. We define the k-volume determined by
φ ∈ Φk in the metric associated with P as

V k(φ(s)) :=

∫
[0,1]k

√
det

(
∂φ
∂s

⊤
(s)P ∂φ

∂s (s)
)

ds . (2)

Note that, when k = 1, V 1(φ(s)) is the length of the curve
defined by φ, see, e.g., [23, Section 2.1.2].

Definition 1 (k-contraction): Let k ∈ {1, . . . , nx}. System
(1) is k-contractive on a forward invariant set S ⊆ Rnx if
there exist λ, γ > 0 such that

V k(x(φ(s), t)) ≤ γV k(φ(s)) exp(−λt) , (3)

for all t ≥ 0 and all φ ∈ Φk such that Img(φ) ⊆ S. □

Property (3) means that k-dimensional volumes contract ex-
ponentially along the trajectories of system (1), independently
of the choice of φ, and, thus, of the k-volume considered.

In this work, we focus on LTI systems, described by

ẋ = Ax, (4)

with A ∈ Rnx×nx . For LTI systems, 1-contraction is equiv-
alent to global exponential stability of the origin, i.e., to
A Hurwitz. Similarly, for k > 1, the following equivalent

conditions on the eigenvalues of A can be derived. We refer
the reader to [14, Remark 1] or [18, Lemma 5] for a proof.

Theorem 1: Consider system (4). Let σ(A) = {λ1, . . . , λnx}
be ordered such that ℜ(λ1) ≥ · · · ≥ ℜ(λnx). The system is
k-contractive on Rnx , with k ∈ {1, . . . , nx}, if and only if∑k

i=1 ℜ(λi) < 0 . □
An equivalent linear matrix inequality (LMI) characteriza-

tion for k-contraction is provided in [18, Theorem 2], and
reported below. The interested reader can refer to [18, Sect. III-
A] for further insights. We exploit this result in Section III.

Theorem 2: Given k ∈ {1, . . . , nx}, system (4) is k-
contractive on Rnx if and only if there exist:

• a positive integer ℓ ∈ {1, . . . , k};
• ℓ real numbers µi ∈ R, with i ∈ {0, . . . , ℓ− 1};
• ℓ positive integers di ∈ N, i ∈ {1, . . . , ℓ− 1}, satisfying

0 = d0 < d1 < · · · < dℓ−1 = k − 1;

• ℓ symmetric matrices Pi = P⊤
i ∈ Rnx×nx , i ∈

{0, . . . , ℓ− 1}, with inertia I(Pi) = (di, 0, nx − di);
such that

PiA+A⊤Pi < 2µiPi ∀ i ∈ {0, . . . , ℓ− 1} , (5a)

with
ℓ−1∑
i=0

hiµi ≤ 0, (5b)

where h0 ≥ 1 and hi = di+1 − di for all i = {0, . . . , ℓ− 1},
with dℓ ∈ N satisfying dℓ−1 + 1 ≤ dℓ ≤ k. □

Remark 1: Condition
∑k

i=1 ℜ(λi) < 0 implies that there
exists k− ∈ {1, . . . , k} such that ℜ(λk−) < 0. Besides, due
to the ordering of σ(A) in Theorem 1, ℜ(λj) < 0 for all
j ∈ {k−, . . . , nx}. Therefore, if (4) is k-contractive for some
k ∈ {1, . . . , nx}, then it is also (k + η)-contractive for any
η ∈ {1, . . . , nx − k}. □

III. MAIN RESULTS

A. Class of systems

Consider a singularly perturbed LTI system given by

ẋ = A11x+A12z , (6a)
εż = A21x+A22z , (6b)

where (x, z) ∈ Rnx ×Rnz is the state, with nx, nz ∈ N \ {0},
A11, A12, A21, A22 are real matrices of suitable dimensions,
and ε > 0 is the small parameter inducing the time-scale
separation between the dynamics of x and the dynamics of z,
i.e., (6) exhibits dynamics evolving on two time-scales. The
fast dynamics are described by the boundary-layer system

εẋf = A22xf , (7)

where xf ∈ Rnz is the “fast” variable. Assuming that A22 is
an invertible matrix, the slow dynamics are described by the
reduced order model, given by

ẋs = Asxs , (8a)

with
As := A11 −A12A

−1
22 A21, (8b)

where xs ∈ Rnx is the “slow” variable.



We are interested in inferring the k-contraction properties of
the SPS (6) from the contractive properties of the boundary-
layer system (7) and of the reduced order model (8), when
ε > 0 is “sufficiently small”.

B. Boundary-layer system k-contractive

We start by assuming that only the boundary-layer system
is k-contractive, which yields the following result for (6).

Theorem 3: Consider system (6), and suppose that the
following holds.

(A1) The matrix A22 is non-singular.
(A2) The boundary-layer system (7) is k-contractive on Rnz

for some k ∈ {1, . . . , nz}.

Then, there exists ε⋆ > 0 such that (6) is (nx+k)-contractive
on Rnx × Rnz for all ε ∈ (0, ε⋆). □

Proof. For any ε > 0, we denote the state matrix associated
to (6) by

Ã(ε) :=

(
A11 A12
1
εA21

1
εA22

)
, (9)

and its eigenvalues by

{λ1(ε), . . . , λnx+nz
(ε)} = σ(Ã(ε)).

We further denote by {Ω1, . . . ,Ωnx} = σ(As), ordered as

ℜ(Ω1) ≥ · · · ≥ ℜ(Ωnx
), (10)

and by {Λ1, . . . ,Λnz
} = σ(A22), ordered as

ℜ(Λ1) ≥ · · · ≥ ℜ(Λnz ). (11)

From (A2) and Theorem 1, it follows that

γ :=

k∑
j=1

ℜ(Λj) < 0 . (12)

Since A22 is non-singular by (A1), it follows from [22,
Theorem 3.1 (Section 2.3)] that, as ε → 0,

{λ1(ε), . . . , λnx
(ε)} → {Ω1, . . . ,Ωnx

},

while {λnx+1(ε), . . . , λnx+nz
(ε)} tend to infinity, with rate

1
ε , along asymptotes defined by Λ1, . . . ,Λnz

, i.e.,

lim
ε→0

|λnx+i(ε)− 1
εΛi| → 0 ∀ i ∈ {1, . . . , nz}.

Let (η−, η0, η+) = (σ−(A22), σ0(A22), σ+(A22)) and, sim-
ilarly, (ρ−, ρ0, ρ+) = (σ−(As), σ0(As), σ+(As)). It follows
from the orderings (10) and (11) that there exists ε1 > 0 such
that, for all ε ∈ (0, ε1), we have

1
εℜ(Λ1) ≥ · · · ≥ 1

εℜ(Λη+) > ℜ(Ω1) ≥ · · · ≥ ℜ(Ωρ+)

> 1
εℜ(Λη++1) = · · · = 1

εℜ(Λη++η0) = 0

= ℜ(Ωρ++1) = · · · = ℜ(Ωρ++ρ0)

> ℜ(Ωρ++ρ0+1) ≥ · · · ≥ ℜ(Ωnx)

> 1
εℜ(Λη++η0+1) ≥ · · · ≥ 1

εℜ(Λnz
).

(13)

Clearly, it follows from (12) that k > η+ + η0. We denote
by ηk := k − (η+ + η0). In light of (13), when summing the
nx + k largest eigenvalues of Ã(ε) for ε → 0, we have

lim
ε→0

nx+k∑
i=1

ℜ(λi(ε))

= lim
ε→0

(
1
ε

η+∑
i=1

ℜ(Λi) +

ρ+∑
j=1

ℜ(Ωj) +
1
ε

η0∑
i=1

ℜ(Λη++i)

+

ρ0∑
j=1

ℜ(Ωρ++j) +

ρ−∑
j=1

ℜ(Ωρ++ρ0+j) +
1
ε

ηk∑
i=1

ℜ(Λη++η0+i)

)

=

nx∑
j=1

ℜ(Ωj) + lim
ε→0

1
ε

k∑
i=1

ℜ(Λi) =

nx∑
j=1

ℜ(Ωj) + lim
ε→0

γ
ε .

As γ < 0 by (12), there exists ε⋆ ∈ (0, ε1) such that

nx+k∑
i=1

ℜ(λi(ε)) < 0 ∀ ε ∈ (0, ε⋆).

The proof concludes using the converse part of Theorem 1. ■

C. Boundary-layer system k1-contractive, reduced order
model k2-contractive

Given the result of Theorem 3, it is natural to ask the
following question: If the boundary-layer system (7) is k1-
contractive and the reduced order model (8) is k2-contractive,
does there always exist ε⋆ > 0 such that the SPS (6) is
(k1 + k2)-contractive? In general, the answer to this question
is no as shown by the example below.

Example. Consider (6) with A11 = blkdiag(−4.5,−4.5, 4),
A12 = A21 = I3, and A22 = blkdiag(−2,−2, 1), which leads
to As = blkdiag(−4,−4, 3) in (8). By Theorem 1, both the
boundary-layer system and the reduced order model are 2-
contractive. Recall the notation Ã(ε) from (9). For ε → 0, by
[22, Theorem 3.1 (Section 2.3)], it follows that

σ(Ã(ε)) → {− 2
ε ,−

2
ε ,

1
ε} ∪ {−4,−4, 3}.

Clearly, there exists ε1 > 0 such that
1
ε − 4− 4 + 3 > 0 ∀ ε ∈ (0, ε1).

Therefore, it follows from Theorem 1 that the overall system
cannot be 4-contractive for any ε > 0 “sufficiently small”.
Instead, the best we achieve is for the overall system to be 5-
contractive for any ε > 0 “sufficiently small”, which coincides
with the statement of Theorem 3. □

D. Boundary-layer system 1-contractive, reduced order model
k-contractive

Despite the negative answer to the question of Section III.C,
there is a relevant, special case for which stronger guarantees
can be concluded: when the boundary-layer system is 1-
contractive and the reduced order model is k-contractive.

Theorem 4: Consider system (6) and suppose that the
following holds.
(A3) The boundary-layer system (7) is 1-contractive on Rnz .



(A4) The reduced order model (8) is k-contractive on Rnx ,
for some k ∈ {1, . . . , nx}.

Then there exists ε⋆ > 0 such that system (6) is k-contractive
on Rnx × Rnz for all ε ∈ (0, ε⋆). □

Proof. We start by introducing a change of coordinates1 for
system (6), which simplifies the stability analysis. Let(

xs

xf

)
:= T (ε)

(
x
z

)
, (14)

where T (ε) :=

(
Inx

− εH(ε)L(ε) −εH(ε)
L(ε) Inz

)
. The ma-

trix A22 is non-singular, being Hurwitz by Assumption (A3).
Therefore, by applying Lemma 1 from the Appendix, we
transform system (6) into the system(
ẋs

ẋf

)
=

(
A11 −A12L(ε) 0

0 1
εA22 + L(ε)A12

)(
xs

xf

)
, (15)

for all ε ∈ (0, ε1), with ε1 as in Lemma 1. We define

F (ε) := −εA12A
−2
22 A21As −A12M(ε) ,

G(ε) := L(ε)A12 ,
(16)

where M(ε) := L(ε) − A−1
22 A21 + εA−2

22 A21As. From (34)
one has

M(ε) = 2εA−2
22 A21As +O(ε2), (17)

G(ε) =
(
A−1

22 A21 + εA−2
22 A21As +O(ε2)

)
A12. (18)

As a consequence, it follows that M(ε) ∈ O(ε). With the
above notation, we can rewrite system (15) as(

ẋs

ẋf

)
= A(ε)

(
xs

xf

)
, (19a)

with

A(ε) :=

(
As + F (ε) 0

0 1
εA22 +G(ε)

)
, (19b)

where, by (16) and by (18),

lim
ε→0

|F (ε)| = 0 and lim
ε→0

|G(ε)| =
∣∣A−1

22 A21A12

∣∣ . (20)

By (A3), A22 is Hurwitz. Thus, there exist a symmetric
matrix Pf ∈ Rnz×nz , with Pf > 0, and µf < 0 such that

PfA22 +A⊤
22Pf < 2µfPf . (21)

On the other hand, by (A4), it follows from the converse part of
Theorem 2 that there exist: a positive integer ℓ ∈ {1, . . . , k};
µi ∈ R with i ∈ {1, . . . , ℓ−1}; di ∈ R with i ∈ {1, . . . , ℓ−1}
satisfying 0 = d1 < · · · < dℓ−1 = k − 1; and symmetric
matrices P s

i ∈ Rnx×nx with inertia I(P s
i ) = (di, 0, nx − di),

i ∈ {1, . . . , ℓ− 1}; such that

P s
i As +A⊤

s P
s
i < 2µiP

s
i ∀ i ∈ {0, . . . , ℓ− 1} ,

with
ℓ−1∑
i=0

hiµi ≤ 0,
(22)

where h0 ≥ 1 and hi = di+1 − di and dℓ−1 + 1 ≤ dℓ ≤ k.

1See the Appendix for the definition of the change of coordinates.

Let Pi := blkdiag(P s
i , Pf ) for all i ∈ {1, . . . , ℓ − 1}. For

any ε > 0, we define

Ji(ε) := PiA(ε)+A(ε)⊤Pi−2µiPi =

(
J i(ε) 0
0 J i(ε)

)
, (23)

with i ∈ {1, . . . , ℓ− 1}, where A(ε) is as in (19b) and

J i(ε) := P s
i (As + F (ε)) + (As + F (ε))⊤P s

i − 2µiP
s
i ,

J i(ε) := Pf (
1
εA22 +G(ε)) + ( 1εA22 +G(ε))⊤Pf − 2µiPf .

We need to establish that both J i(ε) and J i(ε) are negative
definite for ε ∈ (0, ε⋆), for some ε⋆ > 0 sufficiently small.
This is the purpose of the next two claims.

Claim 1. There exists ε3 > 0 sufficiently small such that, for
all ε ∈ (0, ε3), we have J i(ε) < 0 for all i ∈ {1, . . . , ℓ− 1}.

Proof of Claim 1. The LMIs (22) imply that there exist
δi > 0 sufficiently small, for all i ∈ {1, . . . , ℓ− 1}, such that

P s
i As +A⊤

s P
s
i − 2µiP

s
i < −δiInx

∀ i ∈ {0, . . . , ℓ− 1} .
(24)

Therefore, by definition of J i(ε), for any ε > 0 we have

J i(ε) < −δiInx
+P s

i F (ε)+F (ε)⊤P s
i ∀ i ∈ {0, . . . , ℓ−1} .

Equivalently, for all ε > 0 and all x ∈ Rnx \ {0}, we have

x⊤J i(ε)x < −δix
⊤x+ 2x⊤P s

i F (ε)x ∀ i ∈ {0, . . . , ℓ− 1} .

Let x ∈ Rnx \ {0} and ε > 0. Using Young’s inequality2,

x⊤J i(ε)x < −δix
⊤x+ εx⊤(P s

i )
2x+ 1

εx
⊤F (ε)⊤F (ε)x

for all i ∈ {0, . . . , ℓ−1}. From (16) and (17) there exist α > 0
(independent of ε) and ε2 ∈ (0, ε1) such that∣∣F (ε)⊤F (ε)

∣∣ ≤ αε2 ∀ ε ∈ (0, ε2). (25)

Using (25), for any ε ∈ (0, ε2) we have

x⊤J i(ε)x < −δix
⊤x+ εx⊤(P s

i )
2x+ αεx⊤x

≤ x⊤(−δi + ε(λi + α))x ∀ i ∈ {0, . . . , ℓ− 1} ,

where λi := max(σ(P s
i ))

2 > 0. Let ε3 ∈ (0, ε2) such that

ε3 <
δi

λi + α
∀ i ∈ {0, . . . , ℓ− 1} . (26)

It follows that J i(ε) < 0, for any i ∈ {0, . . . , ℓ− 1} and any
ε ∈ (0, ε3). This concludes the proof of Claim 1. ■

Claim 2. There exists ε4 > 0 sufficiently small such that, for
all ε ∈ (0, ε4), we have J i(ε) < 0 for all i ∈ {1, . . . , ℓ− 1}.

Proof of Claim 2. Using (21), for all i ∈ {0, . . . , ℓ−1} and
ε > 0, we have that

J i(ε) < 2(
µf

ε − µi)Pf + PfG(ε) +G(ε)⊤Pf .

Again, for all z ∈ Rnz \ {0}, the above is equivalent to

z⊤J i(ε)z < 2(
µf

ε − µi)z
⊤Pfz + 2z⊤PfG(ε)z .

2Young’s inequality : 2a⊤b ≤ ca⊤a+ b⊤b
c

for any a, b ∈ Rn and c > 0.
We choose a = x⊤P s

i , b = F (ε)x, and c = ε.



Let z ∈ Rnz \ {0}. Using, again, Young’s inequality3 we get

z⊤J i(ε)z < 2(
µf

ε − µi)z
⊤Pfz + z⊤P 2

f z + z⊤G(ε)⊤G(ε)z

for all i ∈ {0, . . . , ℓ − 1}. We denote by λf := maxσ(Pf )
and by λG(ε) := maxσ(G(ε)⊤G(ε)). Since µf < 0 and (20)
holds, there exists ε4 ∈ (0, ε3) such that, for all ε ∈ (0, ε4),

2(
µf

ε − µi) + λf + λG(ε)

λf
< 0 ∀ i ∈ {0, . . . , ℓ− 1}

With the above choice, J i(ε) < 0 for any i ∈ {0, . . . , ℓ − 1}
and any ε ∈ (0, ε4). This concludes the proof of Claim 2. ■

From Claims 1 and 2, it follows that ∀ε ∈ (0, ε4), Ji(ε) <
0, for any i ∈ {0, . . . , ℓ− 1}. From (23), this is equivalent to

PiA(ε) +A(ε)⊤Pi < 2µiPi ∀ ε ∈ (0, ε4) , (27)

for any i ∈ {0, . . . , ℓ− 1}, where, by construction,

I(Pi) = (di, 0, nx + nz − di) ∀ i ∈ {0, . . . , ℓ− 1}.

Therefore, by Theorem 1 system (19a) is k-contractive for any
ε ∈ (0, ε4). Indeed, (27) corresponds to condition (5a), and the
second inequality in (22) corresponds to condition (5b).

It remains to show that also (6) in the original coordinates
is k-contractive. Since the change of coordinates (14) is linear,
it follows from [18, Lemma 1] that system (6) is k-contractive
for all ε ∈ (0, ε4), i.e., we can choose ε⋆ = ε4. ■

Note that the result of Theorem 4 does not contradict
Theorem 3. In fact, as discussed in Remark 1, if a system
is k-contractive, then it is also k0-contractive for any k0 > k.

Remark 2: System (6) inherits the contraction rates µi, i ∈
{0, . . . , ℓ− 1}, of the reduced order (slow) model (8). This is
a consequence of two facts: (a) the LMIs in (5a) being strict;
(b) the contraction rate µf of the boundary-layer (fast) system
(7) becoming larger and larger (negatively) for ε → 0. □

Remark 3: It follows from [18, Lemma 1] that the SPS (6)
satisfies Theorem 2 with the same µi, i ∈ {0, . . . , ℓ − 1},
of (19a), and with inertia matrices P̃i := T (ε)−⊤PiT (ε)

−1,
i ∈ {0, . . . , ℓ − 1}, where Pi are the inertia matrices defined
after (22) and T (ε) is defined as in (14). The derivation of
P̃i follows arguments similar to, e.g., [24, Lemma 2] or [25,
Proposition 4.6]. Indeed, since Pi are symmetric and, thus,
diagonalizable, I(Pi) = I(P̃i), i.e., the inertia is preserved
under (well-defined) linear change of coordinates. □

Remark 4: Results in the spirit of Theorem 4 can be found
in [26] for p-dominant systems [27]. Although p-dominance
and k-contraction are related, they express different system’s
properties, as discussed thoroughly in [18, Section V.A]. □

IV. APPLICATION TO INTEGRAL CONTROL

Consider the singularly perturbed plant P described by

P :


ė1 = e2,

εė2 = e1 + u,

y = e2,

(28)

where y ∈ R is the measured output, u ∈ R is the control
input, and ε > 0 is a “small” parameter. The control objective
is to design an output feedback controller such that y(t) → 0

3With a = z⊤Pf , b = G(ε)z, and c = 1.

as t → ∞ for any initial condition, while guaranteeing bound-
edness of the closed-loop trajectories. This control problem
cannot be solved via a static output feedback design u = κe2
with gain κ ∈ R, since the resulting closed-loop characteristic
polynomial would be p(λ) := λ2 − κ

ελ − 1
ε , which exhibits

one root with positive real part for any κ ∈ R. Therefore, we
choose instead a proportional-integral controller C of the form

C :

{
η̇ = y,

u = −2η − y.
(29)

The resulting closed-loop system CL is given by

CL :


ė1 = e2,

ε̇e2 = e1 − 2η − e2,

η̇ = e2.

(30)

System (30) can be written in the form (6), with x = (e1, η),
z = e2, A11 = 0, A12 = (1, 1)⊤, A21 = (1,−2), A22 = −1.
Then, the corresponding boundary-layer (7) is given by

εẋf = −xf , (31)

and the corresponding reduced order model (8) is given by

ẋs = Asxs , As =

(
1 −2
1 −2

)
. (32)

Clearly, the boundary-layer (31) is 1-contractive. Similarly,
since σ(As) = {0,−1}, the reduced order model (32) is 2-
contractive. Therefore, by Theorem 4, the closed-loop system
(30) is 2-contractive for ε > 0 sufficiently small.

The eigenvalues of the state matrix Ã(ε) associated to (30),
defined as in (9), are illustrated in Figure 1 for ε ∈ (0, 1]. It can
be seen (and trivially computed) that Ã(ε) has one eigenvalue
at zero and two eigenvalues with real part negative for all
ε > 0. Thus, the closed-loop system (30) is stable, in the
sense of boundedness, for any ε ∈ (0, 1). The equilibrium
points of (30) are all (e⋆1, e

⋆
2, η

⋆) ∈ R3 such that e⋆2 = 0
and e⋆1 = 2η⋆, which correspond to y = 0. Since the closed-
loop system (30) is 2-contractive and has bounded trajectories,
it follows that every trajectory converges to an equilibrium
point for any ε ∈ (0, 1), see [28], and the control objective is
fulfilled. As a final comment, note that the double integrator
in (30) causes the solution (Π,Ψ) of the Sylvester equations
0 = AΠ + BΨ and 0 = CΠ (with A,B,C defined by the
right-hand-side of (28), (29)) to be non-unique even if the
system has the same number of inputs and outputs. Hence,
the proposed control design does not fit into “classical” output
stabilization frameworks, see, e.g., [29, Lemma 4.1].

V. CONCLUSIONS

We have presented k-contraction results for singularly per-
turbed LTI systems. Future works will aim at extending these
results to singularly perturbed nonlinear systems. This exten-
sion is currently hindered by the lack of tractable conditions
for k-contraction of nonlinear systems allowing for a non-
constant matrix P . Indeed, we believe that a similar proof
strategy as the one used in the proof of Theorem 4 could
be employed for nonlinear systems. For this, a nonlinear
version of the change of coordinates (14) can be found in [30,



Fig. 1: The eigenvalues of the state matrix Ã(ε) associated to
(30), defined as in (9), for ε ∈ (0, 1] with a sampling of 10−3.
In the legend, we denote λi(Ã(ε)) ∈ σ(Ã(ε)), i ∈ {1, 2, 3}.

Chapter 11]. However, this would require a nonlinear version
of Theorem 2 allowing for a non-constant matrix P , which is
not the case in [18, Theorem 4] (i.e., the nonlinear version of
Theorem 2 that is currently available). As suggested by the
application in Section V, we believe that the combination of
singular perturbation tools with k-contraction properties could
provide novel methodologies for stabilization and set-point
tracking problems for systems that do not fit into classical
output regulation theory framework, such as systems with
multiple equilibrium points as those studied in [31], [32], [33].
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APPENDIX

A. Technical lemma for singularly perturbed linear systems

We report below a technical result, adapted from [22,
Sections 2.2 and 2.4], which is used in the proof of Theorem 4.

Lemma 1: Consider system (6) and assume that A22 is non-
singular. Then for any ε ∈ [0, ε1], where

ε1 := 1

|A−1
22 |(|As|+|A12||A−1

22 A21|+2(|As||A12||A−1
22 |A21)1/2)

> 0 ,

(33)
there exist L(ε) ∈ Rm×n and H(ε) ∈ Rn×m such that

A21 −A22L(ε) + εL(ε)A11 − εL(ε)A12L(ε) = 0 ,

ε(A11 −A12L(ε))H(ε)−H(ε)(A22 + εL(ε)A12) +A12 = 0 .

Moreover, with As as in (8), L(ε) and H(ε) satisfy

L(ε) = A−1
22 A21 + εA−2

22 A21As +O(ε2),

H(ε) = A12A
−1
22 +O(ε).

(34)

□


