
HAL Id: hal-04601882
https://hal.science/hal-04601882v1

Preprint submitted on 5 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compiling Morphisms of Algebraic Data Types
Thaïs Baudon, Gabriel Radanne, Laure Gonnord

To cite this version:
Thaïs Baudon, Gabriel Radanne, Laure Gonnord. Compiling Morphisms of Algebraic Data Types.
2024. �hal-04601882�

https://hal.science/hal-04601882v1
https://hal.archives-ouvertes.fr

Compiling Morphisms of Algebraic Data Types

THAÏS BAUDON, EnsL, UCBL, CNRS, Inria, LIP, France
GABRIEL RADANNE, Inria, EnsL, UCBL, CNRS, LIP, France
LAURE GONNORD, UGA, Grenoble INP, France, LCIS, France, and LIP, France

Now integrated in mainstream languages, Algebraic Data Types (ADTs) have established themselves as a nice
way to reason about data structures and their manipulation using pattern matching. However, their use in
low-level programming remains limited despite efforts, notably from the Rust community.Recently, Baudon
et al. [2023] propose to let programmers express the precise memory layout of a given Algebraic Data Type,
while still enjoying high-level programming constructs. Their compilation procedure covers efficient pattern
matching, but leaves out constructors and struggles with arbitrarily mangled memory layouts.

So far, the literature on ADT compilation rarely mentions constructors, which are indeed a non-issue on
simple memory layouts. However, when data pieces are broken and scattered in memory, this task becomes
particularly challenging. Even simple accessors might require constructing new values. This is the case
for many low-level representations such as network packets, instruction sets, database data-structures, or
aggressively packed representations.

In this article, we go one step further, by enabling optimized compilation of any morphisms between ADTs
for arbitrary mangled memory representations. We also provide full synthesis of bijections between memory
representations of the same type. We subsume existing compilation algorithms, and extend them to emit
CFG-style programs with explicit memory allocation and full support for recursive types.
Additional Key Words and Phrases: Algebraic Data Types, Pattern Matching, Compilation, Data Layouts

1 INTRODUCTION
Algebraic Data Types (ADTs) have proven themselves to be an essential tool for high-level program-
ming: they allow to concisely model data thanks to sums, which indicate potential alternatives,
and products, which group different pieces of data together. Thanks to their declarative nature,
they let programmers manipulate data unbothered by the nitty-gritty details of its actual memory
representation. That declarative nature allows compilers to verify and optimise code manipulating
algebraic data, notably through pattern matching [Augustsson 1985; Maranget 2008, 2007]. This
versatility and simplicity has allowed them to gain popularity, from their original grounds in
functional programming languages [Burstall et al. 1980] like OCaml and Haskell, to mainstream
languages such as Typescript, Python, and most recently Java.
Unfortunately, low-level programmers have so far not reaped the benefits of ADTs: they must

often fall back to manual handling of memory layout to implement their data manipulation code,
even in languages such as Rust which offer both ADTs and low-level programming. One main
reason is that memory layouts for low-level data structures are indisputably weird: Red-Black Trees
in the Linux kernel leverage low bits in aligned pointers to store information using the now classic
bit-stealing technique [Torvalds 2023]; high-performance code regularly uses AoS (array of structs),
SoA or AoSoA representations to mangle data collections for better locality [AoS and SoA 2023];
binary representations of data such as instruction sets and network packets regularly cut data into
tiny pieces to minimise overall memory size. The general mold of Algebraic Data Types does not
provide enough control over memory layout to model such mangled representations. As one might
Authors’ addresses: Thaïs Baudon, EnsL, UCBL, CNRS, Inria, LIP, Lyon, France, thais.baudon@ens-lyon.fr; Gabriel Radanne,
Inria, EnsL, UCBL, CNRS, LIP, Lyon, France, gabriel.radanne@inria.fr; Laure Gonnord, UGA, Grenoble INP, Grenoble,
France and LCIS, Valence, France and LIP, Lyon, France, laure.gonnord@grenoble-inp.fr.

2024. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in , https://doi.org/10.1145/nnnnnnn.nnnnnnn.

, Vol. 1, No. 1, Article . Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0002-9368-651X
HTTPS://ORCID.ORG/0000-0002-2107-7678
HTTPS://ORCID.ORG/0000-0002-8013-1611
https://orcid.org/0000-0002-9368-651X
https://orcid.org/0000-0002-2107-7678
https://orcid.org/0000-0002-8013-1611
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

imagine, the code required to manipulate such memory layouts is complex, error-prone, and hard
to automatically verify and optimise.
Our goal is to provide high-level data-modelling constructs via ADTs, specify their precise

memory layout, and obtain low-level efficient code conforming to that layout. Some works have
attempted to bridge this gap. Dargent [Chen et al. 2023] lets programmers give high-level layout
descriptions and generates certified C accessors and constructors. It however doesn’t provide full
language constructs like pattern matching. LoCal [Vollmer et al. 2019] and Gibbon [Koparkar et al.
2021] provide efficient compilation specialised for code operating on serialised and dense data
representations. More generally, many programming languages such as Rust or Haskell provide
both low-level vector types and high-level ADTs in separate manners, forcing programmers to
resort to low-level code when they want to fine-tune their memory layout.
More recently, Ribbit [Baudon et al. 2023] proposes a dual-view compilation approach: a high-

level type is paired with a low-level memory layout. A compilation algorithm then takes high-level
pattern matching to low-level code respecting the layout. Their layout specification is expressive,
allowing to specify many of the examples we just highlighted and scaling to fairly complex real-
world examples. Their compilation algorithm, however, suffers from one crucial drawback: it can
only access and deconstruct values. More formally, it only handles surjective morphisms between
ADT representations. This not only limits the kind of code that can be compiled, but in fact also
limits the choice of representations themselves, as highly mangled layouts might need data to
be deconstructed, reshaped, and rebuilt differently. This is the case for aggressive struct packing,
flattening or AoS/SoA transformations. To better understand this limitation, let us study two
real-world examples of ADTs with complex layouts: the RISC-V instruction set with its binary
representation, and optimised arithmetic expressions.

2 MOTIVATION
To demonstrate the complexity of real-world memory layouts for ADTs, we first consider a

restricted version of the 32-bit RISC-V assembly language consisting of four instructions (add,
addi, sw, and jal) in Fig. 1. We will use Ribbit’s DSL to specify as a memory layout the encoding
described in the instruction set (ISA) documentation [Waterman et al. 2019]. A RISC-V machine
has 32 registers, x0 to x31 (encoded on 5 bits). As shown in Fig. 1a, RISC-V 32-bit instructions have
different formats based on their addressing mode. Further characteristics of our four instructions
are in Fig. 1b.

Already, we see complications: in general, instruction characteristics (type, instruction name, in-
volved registers, . . .) are spread over opcode, funct3 and funct7, which are stored non-consecutively.
Moreover, the latter two are sometimes not present in the 32-bit instruction value. Immediates
are particularly mangled, and cannot be readily extracted from the binary representation. For our
particular (simple) subset : (i) the four instructions are distinguishable from their opcode only,
stored in bits 0 to 7 inclusive; (ii) the destination registers of add and addi are at the same location,
bits 7 to 11; (iii) the immediate value (imm) for the sw instruction is split and stored in two bit ranges:
bits 7 to 11 and 25 to 31; (iv) the 20-bit immediate value for the jal instruction can be recovered
from bits 12 to 31 but we need to rebuild this immediate from four separate bit ranges.

We demonstrate the modelling of RISC-V registers and instructions with ADTs in Figs. 1c and 1d,
using Ribbit [Baudon et al. 2023] syntax. Additionally, all examples in this article can be tried
interactively at https://ribbit.gitlabpages.inria.fr/ribbit/. In addition to ADTs, Ribbit lets us define
their memory layouts, which describe how concrete values are encoded in memory. Registers are
encoded on 5 bits, similar to a C enum (e.g., x2 is the 5-bit integer “3”). Instructions (Op32 type) are
encoded on 32 bits (w32). The split construct, on Line 3, allows to distinguish between the four
possible cases using the 7 lowest bits (opcode). We only showcase the Sw and Addi branches of this

, Vol. 1, No. 1, Article . Publication date: June 2024.

https://ribbit.gitlabpages.inria.fr/ribbit/

Compiling Morphisms of Algebraic Data Types

split. For sw, Line 13 specifies that the opcode value is 0x23 (see Fig. 1b). The immediate operand
is broken down into two parts, which are encoded on bits 7 to 11 inclusive (Line 15) and 25 to 31
(Line 20) within the 32-bit word representing the full instruction.

2.1 Compilation of Constructors and Destructors
Now that types and layouts have been defined, high-level data manipulation constructs can be
compiled to code which directly manipulates memory. For instance, Fig. 2 represents sw(x1, x2,
imm) in memory. From a high-level perspective, this is a simple constructor: a typical representation
for such a value would simply allocate an adequate amount of memory, and encode x1, x2 and
imm as integers at their assigned positions. Our representation, however, is not so straightforward:
since imm is stored non-consecutively, we need to break it down into two pieces. In essence, we
need to synthesize code manifesting the isomorphism between the previous representation of imm
(here, a straight i12) and the representation embedded in Op32 (two pieces at positions [25 : 7]
and [7 : 5]). Such implicit recombination of subterms is common in the context of embedded
and low-level memory representations. A simple struct flattening and reordering already exhibits
a similar behavior. Baudon et al. [2023]’s algorithm is unable to synthesize code that properly
manipulates such representations.
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 rs1 funct3 rd opcode R-type

imm[0 : 12] rs1 funct3 rd opcode I-type
imm[5 : 7] rs2 rs1 funct3 imm[0 : 5] opcode S-type
imm[20] imm[1 : 10] imm[11] imm[12 : 7] rd opcode J-type

(a) RISCV Core instruction format, excerpt. “rs1,2” are source

registers, “rd” a destination register. “imm[n]” denotes the 𝑛-th bit of imm.

“imm[𝑜 : ℓ]” means “ℓ bits starting from 𝑜 in the binary representation of imm”.

Inst Name Ty
pe

Op
co
de

fu
nc
t3

fu
nc
t7

Description (in C)
add Add R 0x33 0 0 rd = rs1 + rs2
addi Add Immediate I 0x13 0 — rd = rs1 + imm
sw Store Word S 0x23 2 — *(rs1+imm) = rs2
jal Jump And Link J 0x6F — — rd = PC+4; PC += imm

(b) Instruction semantics and encoding, excerpt.

1 enum Reg { X0, X1, X2, X3, ... } // cut

2 represented by C

3

4 enum Op32 {

5 Add(Reg, Reg, Reg), // add rd, rs1, rs2

6 Addi(Reg, Reg, i12), // addi rd, rs1, imm12

7 Jal(Reg, i20), // jal rd, imm20

8 Sw(Reg, Reg, i12), // sw rs1, rs2, imm12

9 }

(c) Algebraic Data Types for 32-bit RISC-V instructions. iN types

are predefined as “integers on N bits”.

1 Op32 represented as

2 // discriminant in the 7 lowest bits

3 split .[0:7] {

4 | 0x13 from Addi =>

5 w32

6 with .[0:7] = 0x13 // opcode

7 with .[7:5] : (_.Addi.0 as Reg32)

8 with .[12:3] = 0

9 with .[15:5] : (_.Addi.1 as Reg32)

10 with .[20:12] : (_.Addi.2 as w12)

11 | 0x23 from Sw =>

12 w32

13 with .[0:7] = 0x23 // opcode

14 // 5 lowest bits from imm

15 with .[7:5]:(_.Sw.2.[0:5] as w5)

16 with .[12:3] = 2 // funct3

17 with .[15:5]:(_.Sw.0 as Reg32) // rs1

18 with .[20:5]:(_.Sw.1 as Reg32) // rs2

19 // 7 highest bits from imm

20 with .[25:7]:(_.Sw.2.[5:7] as w7)

21 | // other cases cut for readability

(d) Ribbit modelling for RISC-V instructions.

wN types are predefined as “words on N bits”. Bit ranges

consist of a left bound and a size.

Fig. 1. 32-bit RISC-V instructions – Specification, Type and Memory Layout in Ribbit
1 let out o = alloc(32);

2 o.[12:+3] := 2; o.[0:+5] := 0x23; // funct3, opcode

3 o.[15:+5] := 1; o.[20:+5] := 2; // rs1 = X1, rs2 = X2

4 o.[25:+7] := imm.[5:+7]; o.[7:+5] := imm.[0:+5]; // imm

Fig. 2. Code building the memory representation of Sw(X1, X2, imm) in the root memory location 𝑜 .

, Vol. 1, No. 1, Article . Publication date: June 2024.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

1 fn is_compressible(o : Op32) -> Bool {

2 match o {

3 Jal(X1, off) => off < 4096,

4 Add(rd, rs1, rs2) => rd == rs1 && rs1 != X0 && !(rs2 == X0),

5 Addi(rd, rs, imm) => rd == rs && rs != X0 && imm < 64,

6 Sw(rbase, roff, imm) =>

7 X8 <= rbase && rbase <= X15 && X8 <= roff && roff <= X15 && (imm & 0b110000011111) == 0,

8 _ => False,

9 }}

Fig. 3. Function determining whether a given 32-bit instruction can be compressed into a 16-bit one, in

simplified Ribbit syntax. Full interactive example available at https://ribbit.gitlabpages.inria.fr/ribbit/#riscv.rbt
Conditions taken from [Waterman et al. 2019, chapter RISCV-C].

/* case Jal(X1, imm) */
/* Bindings */
letₒ dimm = alloc(20)
dimm.[11:+7] := s.[12:+7]
dimm.[10:+1] := s.[20:+1]
dimm.[0:+10] := s.[21:+10]
dimm.[19:+1] := s.[31:+1]
Freeze dimm to simm
d := simm < 4096

success

/* match o */
letᵢ opcode = s.[0:+7]

Switch opcode

0x13 0x33 0x6F 0x23

/* case Addi(rd, rs, imm) */
/* Bindings */
letᵢ rd = s.[7:+5]
letᵢ rs = s.[15:+5]
letᵢ imm = s.[20:+12]
/* Simplified Computation */
let db0 = rd == rs
let b1 = rs != 0
let db2 = imm <= 64
let res = b0 && b1 && b2
/* Final Write */
d := res

success

letᵢ rd = s.[7:+5]

Switch rd

1 0, 2-31

/* case Add(rd, rs1, rs2) */
/* Bindings */
letᵢ rd = s.[7:+5]
letᵢ rs1 = s.[15:+5]
letᵢ rs2 = s.[20:+5]
/* Simplified computation */
let b0 = rd == srs1
let b1 = rs1 != 0
let b2 = rs2 != 0
let res = b0 && b1 && b2
/* Final Write */
d := res

success

/* case Sw(rbase, roff, imm) */
/* Bindings */
letᵢ rbase = s.[15:+5]
letᵢ roff = s.[20:+5]
/* Operand imm */
letₒ dimm = alloc(12)
dimm.[0:+5] := s.[7:+5]
dimm.[5:+7] := s.[25:+7]
Freeze dimm to simm
/* Simplified computation */
let b1 = 8 <= rbase <= 15
let b2 = 8 <= roff <= 15
let b3 = simm & 3103 == 0
let res = b1 && b2 && b3 */
/* Final Write */
d := res

success

/* case _ */
d := 0

success

Let rec is_compressible = λ o:s d.

Fig. 4. Simplified CFG for is_compressible. From the input i, it identifies the head constructor using the 7 lowest bits, then

extracts subterms such as destination and source registers for Add or the 12-bit imm for Sw (in bold), and finally stores the result in dest.

Such transformations can also be necessary when destroying values. Figure 3 defines a function
that determines whether a given 32-bit RISC-V instruction can be compressed into a 16-bit RISC-V
instruction. However, again, we can not immediately bind the imm value during pattern matching
compilation and need to first find all needed pieces and combine them together. Baudon et al.
[2023]’s algorithm is thus not capable of compiling the is_compressible function.

, Vol. 1, No. 1, Article . Publication date: June 2024.

https://ribbit.gitlabpages.inria.fr/ribbit/#riscv.rbt

Compiling Morphisms of Algebraic Data Types

Our compilation procedure is capable of emitting the control flow graph depicted in Fig. 4, which:
• inspects the internal representation of an input Op32 value to determine its head constructor
(Add, Addi, Jal or Sw), as well as the nested register constructor in Jal;
• extracts from this representation all subterms that are bound to variables in the matched pattern.
For instance, in the Sw case , the parts of the immediate imm are combined in simm in order to
reconstruct a value that can be used in a mask;
• allocates and initialises memory to represent the appropriate values. For instance, the imm value

just mentioned is first allocated as dimm, filled, then promoted to a read-only value simm before
being used.

2.2 Morphisms of Complex Types
So far, the type we had to transform, while having an intricate representation, consisted of fairly
flat simple structures. Let us consider a richer example with simple arithmetic expressions over
32-bit integers in Fig. 5. As described by the Exp type, arithmetic expressions consist of variable
names, 32-bit integer constants and operations with two arguments (for simplicity of the example,
we only have additions here). The host machine is assumed to be a 64-bit architecture. A naive
representation of operands would be a pointer to a 3-word structure: a first word containing a
few bits (here, 32) representing the operation, followed by two 64-bit-wide aligned pointers to the
operands. However, in cases such as Plus(𝐼 (12), . . .), this is wasteful: we could simply pack the
32-bit operator with the left operand, and use one less memory word. In Fig. 5a, we define this
optimized memory layout. Integer terms are boxed in a 64-bit word when isolated (Line 13), but
are inlined (i.e., directly represented as their 32-bit integer value) when they appear as operands
of a binary operation (Line 7). While this reduces memory usage and indirections compared to
a naive, uniform layout, it pervasively impacts the compilation process. Since the very structure
(pointers/indirections, struct shapes) of the memory representation of an integer expression is
different depending on the context in which it appears, some seemingly simple constructs – pattern
matching and value construction – require complex code to properly manipulate data. For all
these reasons, such optimizations are only done by programmers when absolutely necessary (such
as extremely performance-sensitive code). As we will see, our approach can compile any valid
program given its layout, making such complex layouts completely transparent to client code.

The eval function (shown in Fig. 5b), reduces all arithmetic expressions which can be evaluated.
When both operands are integers, it reduces further (Fig. 5b, Line 5). Figure 5c shows the normalized
program representation we use in the rest of this article, and Fig. 5d shows the final compiled
version, using a Control Flow Graph in Destination Passing Style [Shaikhha et al. 2017] with
segregated input (read-only) and output (write only) memory locations, allowing fine control over
memory. Corresponding elements of eval in normalized source and final target code are colorized
accordingly.

Consider the code which extracts both operands of Plus (on Line 4). Given the complex layout,
this is not a straight-up pointer dereference: we need to reconstruct values fitting the type Exp
to be used as arguments to eval. In other words, we need to synthesize an isomorphism between
the stored memory representation of .𝑃𝑙𝑢𝑠.0 (inlined integer), and the desired representation (a
standard Exp). The generated code creates two destinations to receive contents, inspects the inner
tag (tag2, stored in 𝑥 . ∗ .0) to determine which operands, if any, are inlined integers, and emits
code to fill them. As we can see, a simple accessor at the source level might require us to emit code
that rebuild values.
Consider now the final code returning Plus(𝑒1′, 𝑒2′) (on Line 13). It is naturally split in three

cases: depending onwhether 𝑒1′ and 𝑒2′ are 𝐼 constructors or not. Note that this decision is factorized

, Vol. 1, No. 1, Article . Publication date: June 2024.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

1 enum Exp { V(String), I(i32), Plus(Exp, Exp) }

2 represented as

3 split .[0, 2] {

4 | 0 from Plus =>

5 &<64, 2>(split .0 {

6 | 0 from Plus(I, _) =>

7 {{w32, _.Plus.0.I as w32, _.Plus.1 as Exp}}

8 | 1 from Plus(Plus|V, I) =>

9 {{w32, _.Plus.1.I as w32, _.Plus.0 as Exp}}

10 | 2 from (Plus(Plus|V,Plus|V)) =>

11 {{w32, _32, _.Plus.0 as Exp, _.Plus.1 as Exp}}

12 })

13 | 1 from I => w64 with .[32, 32] : (_.I as w32)

14 | 2 from V => &<64, 2>(_.V as String)

15 }
(a) Arithmetic expressions and their representation. On the

first layer, this representation stores the tag distinguishing between 𝑉 ,

𝐼 , and Plus in the two lowest bits. This potentially leverages bit-stealing

in pointer alignment bits. For Plus constructors, we use a struct whose

first field indicates the more precise layout. Some space could be used to

store an operator (MULT, . . .) as well. Fields are arranged to keep pointers

in aligned positions.

1 fn eval(x:Exp) -> Exp {

2 match x {

3 I(_) | V(_) => x,

4 Plus(e1,e2) => match eval(e1), eval(e2) {

5 I(x1), I(x2) => I(x1+x2),

6 e1', e2' => Plus(e1', e2')

7 }}}
(b) User implementation of eval.

1 fn eval(x: Exp) : Exp {

2 match x {

3 Plus(_, _) =>

4 let e1:Exp = x.Plus.0; let e2:Exp = x.Plus.1;

5 let e1':Exp = eval(e1); let e2':Exp = eval(e2);

6 match e1', e2' {

7 I(_), I(_) =>

8 let x1 : i32 = e1'.I;

9 let x2 : i32 = e2'.I;

10 let i : i32 = ADD(x1, x2);

11 I(i),

12 _, _ =>

13 Plus(e1', e2'),

14 },

15 _ => x,

16 }}

(c) Normalized representation of eval. Explicitly typed A-

Normal Form version of the code, where patterns have no variables, and

accesses are made through paths instead. For instance 𝑥.Plus.0 is the first
operand under a Plus constructor in 𝑥 . Such accesses are only valid under

the right pre-conditions.

de1 := s.*.2

Freeze de1 to se1
/* let e1' = eval(x: e1) */
letₒ de1' = alloc(64)

call eval x:se1 de1'

Switch se1'.[0:+2]

1 0,2

/* case I(_), I(_) */
/* let x1 = e1'.I */
letᵢ sx1 = se1'.[32:+32]
/* let x2 = e2'.I */
letᵢ sx2 = se2'.[32:+32]
/* let i = ADD(x1, x2) */
letₒ di = alloc(32)
di = ADD sx1 sx2
Freeze di to si
d.[0:+2] := 1
d.[32:+32] := si

success

/* case _, _ */
d := &alloc(128)
d.[0:+2] := 0
d.*.0 := 1
d.*.1 := se2'.[32:+32]
d.*.2 := se1'

success

de2 := s.*.2
de1.[0:+2] := 1
de1.[32:+32] := s.*.1

/* case Plus(_, _) */
/* let e1 = x.Plus.0 */
/* let e2 = x.Plus.1 */
letₒ de1 = alloc(64)
letₒ de2 = alloc(64)
letᵢ tag2 = s.*.0

Switch tag2

0 1 2

de2.[0:+2] := 1
de2.[32:+32] := s.*.1

de2 := s.*.3

/* case _, _ */

Switch se1'.[0:+2]

1 0, 2

d := &alloc(192)
d.[0:+2] := 0
d.*.0 := 2
d.*.1 := 0
d.*.2 := se1'
d.*.3 := se2'

success

d := &alloc(128)
d.[0:+2] := 0
d.*.0 := 0
d.*.1 := se1'.[32:+32]
d.*.2 := se2'

success

/* case _ */
d := s

success

/* match x */
letᵢ tag = s.[0:+2]

Switch tag

0 1,2

Freeze de2 to se2
/* let e2' = eval(x: e2) */
letₒ de2' = alloc(64)

call eval x:se2 de2'

Freeze de1' to se1'
Freeze de2' to se2'
/* match e1', e2' */

Switch se2'.[0:+2]

0,2 1

Let rec eval = λ x:s d.

(d) Simplified CFG of eval. For pedagogic and readabil-

ity purposes, code has been simplified (block sinking, variable

renaming, simple constant propagation).

Fig. 5. Arithmetic expressions, their representation, and the eval function in Ribbit. Full interactive example

available at https://ribbit.gitlabpages.inria.fr/ribbit/#arith_expr_icfp.rbt.

, Vol. 1, No. 1, Article . Publication date: June 2024.

https://ribbit.gitlabpages.inria.fr/ribbit/#arith_expr_icfp.rbt

Compiling Morphisms of Algebraic Data Types

with the pattern matching above. Again, in all cases, the emitted code allocates and places every
bit in memory. Again, we had to synthesize a morphism between the memory representation of
the present pieces (𝑒1′ and 𝑒2′) and the one contained inside a Plus constructor.
Naturally, to reap the full power of our tweaked representation, one would need to unroll the

eval function, allowing to completely skip some intermediary products. We consider such transfor-
mations orthogonal to our contribution, and focus on emitting straightforward code that is easily
optimized by existing state-of-the-art transformations (here, unrolling and constant propagation).
As shown here, in order to properly compile programs manipulating complex representations,

Ribbit can generate morphisms: code converting between different memory representations of the
same source type. In fact, programmers themselves can also leverage that feature! For instance,
given a naive AST-style representation of arithmetic expressions ExpAST and our optimised version
Exp, both sharing the same source definition, we can readily write the following function:

1 fn convert(x:ExpAST) -> Exp {x}

Our approach will readily generate the full (recursive!) code that manifests the isomorphism
between these two structures.
All these behaviors, and all examples developed in this article, can be experimented upon

interactively on https://ribbit.gitlabpages.inria.fr/ribbit/. Our prototype online implementation
can verify validity of types, memory layouts and programs; compile programs to our intermediate
representation, show the obtained programs, and run them. In addition, it will verify correction of
the obtained compiled code against a reference source interpreter.

2.3 Contribution and Outline
In this article, we define a general procedure which compiles (potentially nested) accessors, con-
structors, pattern matching, and both together, without introducing superfluous work.
Our approach works for rich and custom memory representations in the style of Baudon et al.

[2023], and is able to compile any well-typed high-level ADT-manipulating program, including in
the presence of recursive types and recursive code emission. For this purpose, our approach can
synthesise, when necessary, the code manifesting any isomorphism between memory representa-
tions of compatible types. We emit low-level code with precise memory manipulation thanks to
the use of a destination passing intermediary representation [Shaikhha et al. 2017]. We also state
the correctness of our algorithms against a source-level semantics. Finally, we implemented our
algorithm (an online version can be found at https://ribbit.gitlabpages.inria.fr/ribbit/), evaluated it
on numerous examples, and tested the correctness of our compilation procedure against a reference
interpreter.
Section 3 describes our input language based on types and memory layouts from Baudon

et al. [2023]. Section 4 presents our target intermediate representation. Our approach relies on
existing pattern matching compilation techniques, which we detail in Section 5. From a first partial
algorithm, in Section 6, working on simple (not “intricate”) representations, we then derive our main
contribution, detailed in Section 7: a complete compilation algorithm for expressions constructing
ADT values according to custom memory layouts. Finally, we sketch the metatheoretic properties
of our algorithms in Section 8.

3 ALGEBRAIC DATA TYPES AND THEIR LAYOUTS
We first present our input language. From the type perspective, as highlighted in Section 2, we use
a two-tiered view: algebraic data types used for programming and memory layouts detailing how to
represent them in memory. The formal presentation of these types and layouts extends Baudon
et al. [2023] with most of its limitations lifted. In addition, we introduce a complete expression
language to both destruct and construct values of such types.

, Vol. 1, No. 1, Article . Publication date: June 2024.

https://ribbit.gitlabpages.inria.fr/ribbit/
https://ribbit.gitlabpages.inria.fr/ribbit/

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

𝜏 ∈ Types ::= 𝑡 ∈ TyVars (variables)
| 𝐼ℓ (ℓ-bit wide integers)
| ⟨𝜏0, . . . , 𝜏𝑛−1⟩ (tuples)
| 𝐾1 (𝜏1)‘|‘ . . . ‘|‘𝐾𝑛 (𝜏𝑛) (sums)

𝑣 ∈ Values ::= 𝑐 | ⟨𝑣0, . . . , 𝑣𝑛−1⟩ | 𝐾 (𝑣) (values)

𝑝 ∈ 𝑃 ⊆ Provs ::= _ | ⟨𝑝0, . . . , 𝑝𝑛−1⟩ | 𝐾 (𝑝)
(provenances and their sets)

𝜋 ∈ Paths ::= 𝜖 (empty path)
| 𝜋.[𝑜 : ℓ] (ℓ bits at offset 𝑜)
| 𝜋.𝑖 (field access)
| 𝜋.𝐾 (constructor access)

Fig. 6. Algebraic Data Types and other high-level objects

As general meta-syntactic conventions:
• Syntactic categories are in italics (TyVars, Exprs, . . .).
• Each syntactic category has a dedicated meta-syntactic letter (𝑒 for elements of Exprs, . . .) and a
capital for sets (𝐸 for sets of Exprs elements, . . .)
• Lists, sets and maps are indicated either in-extenso (𝜏0, . . . , 𝜏𝑛−1), with a Python-like notation
({𝑒𝑖 | 0 ≤ 𝑖 < 𝑛}), or with a sequence-like notation ((𝑥𝑖)1≤𝑖≤𝑛).

3.1 Algebraic Data Types
The grammar for Algebraic Data Types is presented in Fig. 6. We denote types using 𝜏 and type
variables with 𝑡 ∈ TyVars. Primitive types consist of fixed-width signed integers, denoted 𝐼ℓ . We
denote all tuples with angle brackets, for instance ⟨𝐼32, 𝐼32⟩ for pairs of 32-bit integers. Constructors
of sums are marked with a capital letter and separated from each other with vertical bars, for
instance “None | Some(𝑡)” is an option type. In examples, we use 𝐾 as shortcut for 𝐾 (⟨⟩) and
𝐾 (𝜏1, . . . , 𝜏𝑛) for𝐾 (⟨𝜏1, . . . , 𝜏𝑛⟩). Values of Algebraic Data Types, dubbed “high-level values”, consist
of integer constants denoted 𝑐 , tuples and constructors.

We now define two related constructs: provenances and paths. Provenances give partial informa-
tion on what a value looks like: a tuple, a head constructor with nested provenances, or anything
(wildcard: _). Paths precisely indicate the position of a subterm in a given type, value or provenance,
using position accesses .𝑖 to deconstruct tuples, head constructors .𝐾 for constructor values and bit
ranges .[𝑜 : ℓ] consisting of an offset 𝑜 and a width ℓ for integers.

Focusing and specialisation. We also define two accompanying operations, which will be demon-
strated on examples below. The focusing operation, denoted focus (𝜋, 𝜃) where 𝜃 ∈ Types∪Values∪
Provs ∪ Paths is a high-level object (type, value, provenance or path), accesses the subterm of 𝜃
located at 𝜋 . It follows the syntax to extract the subterm at position 𝜋 . The specialisation operation
on ADTs, denoted 𝜏

/
𝑝 , restricts a type 𝜏 to values that match a given provenance 𝑝 . It syntactically

filters irrelevant constructors. The full definitions for both can be found in Appendix A.

Example 3.1 (High-level types and values). Our high-level type for RISC-V 32-bit instructions is a
sum type with four constructors:

𝜏RISC-V = Add(𝜏reg, 𝜏reg, 𝜏reg) | Addi(𝜏reg, 𝜏reg, 𝐼12) | Jal(𝜏reg, 𝐼20) | Sw(𝜏reg, 𝜏reg, 𝐼12)

where 𝜏reg is a simple sum type enumerating the 32 available RISC-V registers: 𝜏reg = 𝑋0 | · · · | 𝑋31.
Given this definition, the high-level value Addi(𝑋2, 𝑋2, 3) of type 𝜏RISC-V represents the instruction

addi x2, x2, 3. The path .Addi.0 designates the first argument of any addi instruction, namely
its destination register. We can focus on “the part that is relevant to .Addi.0” in the type 𝜏RISC-V:

focus (.Addi.0, 𝜏RISC-V) = focus
(
.Addi.0,Addi(𝜏reg, 𝜏reg, 𝐼12)

)
= 𝜏reg

, Vol. 1, No. 1, Article . Publication date: June 2024.

Compiling Morphisms of Algebraic Data Types

𝜏 ∈ �Types ::= 𝑡 ∈ TyVars (type variable)
| 𝐼ℓ (ℓ-bit wide integers)
| (𝑐)ℓ (ℓ-bit wide constant)
| _ℓ (ℓ-bit wide opaque word)
| &ℓ (𝜏) (ℓ-bit wide pointer to a 𝜏 value)
| 𝜏 ⋉

0≤𝑖<𝑛
[𝑜𝑖 : ℓ𝑖] : 𝜏𝑖 (𝜏 value with 𝑛 extra values stored in unused bit ranges)

| {{𝜏0, . . . , 𝜏𝑛−1}} (𝑛-field struct)
| (𝜋 as 𝜏) (fragment representing the subterm at position 𝜋 as 𝜏)
| split (𝜋)

{
𝑐𝑖 from 𝑃𝑖⇒ 𝜏𝑖

�� 1 ≤ 𝑖 ≤ 𝑛} (𝑛-branch split with discriminant 𝜋)

𝜋 ∈ �Paths ::= 𝜖 (empty memory path)
| .[𝑜 : ℓ] .𝜋 (extract ℓ bits from offset 𝑜 from a word)
| .𝑏0 . . . 𝑏ℓ−1.𝜋 𝑏𝑖 ∈ {0, 1} (bitwise “and”)
| . ∗ .𝜋 (pointer dereference)
| .𝑖 .𝜋 (struct field access)

Fig. 7. Memory layouts and paths

and similarly, in our high-level value: focus (.Addi.0,Addi(𝑋2, 𝑋2, 3)) = 𝑋2. The provenance
Sw(𝑋2, _, _) matches sw instructions whose destination register is x2. The specialisation of 𝜏RISC-V
for this provenance is the following type: 𝜏RISC-V

/
Sw(𝑋2, _, _) = Sw(𝑋2, 𝜏reg, 𝐼12) △

3.2 Memory Layouts
EachADT is associatedwith amemory layout which specifies how its values should be represented in
memory. As a general convention, memory elements are distinguished with a hat. Memory layouts,
denoted 𝜏 and defined in Fig. 7, feature two types of constructs: some describe concrete memory
structures, others refer back to the represented high-level type. Concrete memory structures
consist of opaque words _ℓ representing ℓ unused contiguous bits, fixed-width integer constants
and pointers, or structs aggregating several fields together. Finally, composite words, denoted
𝜏⋉0≤𝑖<𝑛 [𝑜𝑖 : ℓ𝑖] : 𝜏𝑖 , specify the contents of 𝑛 unused bit ranges within a word type 𝜏 . Unused
bits include all parts of opaque words and architecture/implementation-dependent locations such
as address alignment bits in pointers. In any case, the 𝑛 bit ranges must not overlap. Constructs
that refer back to the represented high-level type consist of fixed-width encodings 𝐼ℓ for values of
integer types (the precise encoding used is implementation-dependent), and of two more complex
constructs: fragments and splits.
Fragments refer to subterms within the high-level type and indicate their layout: the fragment
(𝜋 as 𝜏) stands for the representation according to the layout 𝜏 of the subterm located at 𝜋 within
the high-level value being represented. Fragments may refer to arbitrarily nested subterms.

Splits create disjunctions between different possible layouts by designating a position in memory
as a discriminant: split (𝜋)

{
𝑐𝑖 from 𝑃𝑖⇒ 𝜏𝑖

�� 1 ≤ 𝑖 ≤ 𝑛} indicates that if the contents of memory at
position 𝜋 are equal to 𝑐𝑖 , then the memory value under scrutiny follows the layout 𝜏𝑖 and represents
a high-level value whose provenance belongs to the set 𝑃𝑖 . The validity of a split construct depends
on each 𝜏𝑖 actually containing the value 𝑐𝑖 (specified as a constant (𝑐𝑖)ℓ) at position 𝜋 : it ensures

, Vol. 1, No. 1, Article . Publication date: June 2024.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

that it is possible to retrieve the provenance of any value from its representation only, by inspecting
its contents at 𝜋 .

Example 3.2 (Memory layout for RISC-V). Here are the layouts of the types from Example 3.1:

𝜏reg = split (𝜖)

0 from𝑋0 ⇒ (0)5

...

31 from𝑋31⇒ (31)5

 𝜏RISC-V = split (.[0 : 7])

0x33 from Add(_, _, _) ⇒ 𝜏Add
0x13 from Addi(_, _, _) ⇒ 𝜏Addi
0x6F from Jal(_, _) ⇒ 𝜏Jal
0x23 from Sw(_, _, _) ⇒ 𝜏Sw

The split describes how to distinguish between instructions, by inspecting the 7 lowest bits (0xXX
are fixed constants). Layouts for individual instructions (e.g., Sw) are built from an opaque 32-bit
word _32 whose contents are specified by constraints on subranges of bits:

𝜏Sw = _32 ⋉ [0 : 7] : (0x23)7 ⋉ [12 : 3] : (2)3 (opcode and funct3 const)
⋉ [15 : 5] : (.Sw.0 as 𝜏reg) ⋉ [20 : 5] : (.Sw.1 as 𝜏reg) (registers rs1 and rs2)
⋉ [7 : 5] : (.Sw.2.[0 : 5] as 𝐼5) ⋉ [25 : 7] : (.Sw.2.[5 : 7] as 𝐼7) (imm in split ranges)

For instance, the fragment (.Sw.0 as 𝜏reg) expresses that bits 15 to 19 inclusive contain the repre-
sentation of the first argument of Sw (base register, rs1) according to the 𝜏reg layout. △

Example 3.3 (Memory layout for lists). Consider lists of 32-bit integers 𝜏 = Nil | Cons(𝐼32, 𝜏), and
a packed layout with up to two elements per level of indirection, with three branches: empty or a
singleton list – both immediately encoded – or a pointer to a block of two integers and a list:

𝜏𝑝 = split (.[0 : 2]) {
0 from Nil ⇒ _64
1 from Cons(_,Nil) ⇒ _64 ⋉ [2 : 32] : (.Cons.0 as 𝐼32)
2 from Cons(_,Cons(_, _)) ⇒
&64

({{
(.Cons.0 as 𝐼32), (.Cons.1.Cons.0 as 𝐼32), (.Cons.1.Cons.1 as 𝜏𝑝)

}})
}

△

Memory Paths and Focusing. Similarly to high-level types, we define paths, provenances and
focusing for memory layouts. Memory paths, denoted 𝜋 (see Fig. 7), indicate positions in layouts.
Memory path operations consist of struct field accesses, pointer dereference, and two operations
that deconstruct composite words: bit range extraction to focus on the contents of a specific bit
range and bitwise “and” to discard ranges that lie outside of a bit mask. Similarly to high-level
paths, we define the memory focus operation �focus (𝜋, 𝜏) that extracts the subterm at position 𝜋
within 𝜏 (it is undefined on fragments and splits; the full definition is in Appendix A).

Example 3.4 (Paths and Focusing for 𝜏RISC-V). The memory path .[15 : 5] denotes the 5 bits
starting from offset 15 (included) within a word. Focusing on this path in 𝜏Sw yields the fragment
corresponding to the base register of a sw instruction: �focus (.[15 : 5], 𝜏Sw) = (.Sw.0 as 𝜏reg). △

3.3 Input Programs
We can now define high-level programs that manipulate ADT values according to a given memory
layout specification. Our general goal is to compile such programs to low-level programs that
operate on memory directly, with respect to the specified memory layout. Our input language
consists of expressions, denoted 𝑒 and defined in Fig. 8. For presentation purposes, we consider an
explicitly-typed, already simplified input language, corresponding to the internal representation

, Vol. 1, No. 1, Article . Publication date: June 2024.

Compiling Morphisms of Algebraic Data Types

𝑢 ∈ ValuExprs ::= 𝑥 .𝜋 (variable accessor)
| 𝑐 (integer constant)
| ⟨𝑢0, . . . , 𝑢𝑛−1⟩ (tuple)
| 𝐾 (𝑢) (constructor)

𝑒 ∈ Exprs ::= 𝑢 (value building)
| let 𝑥 : 𝜏 as 𝜏 = 𝑒 in 𝑒′

(let-binding)
| match(𝑥){𝑝1 → 𝑒1 | · · · | 𝑝𝑛 → 𝑒𝑛}

(pattern matching)
Fig. 8. Program syntax.

𝑎 ∈ Addrs 𝜍 : Addrs→�Values (addresses and stores)

�̂� ∈�Values ::= _ℓ | (𝑐)ℓ | &ℓ (𝑎) | �̂� ⋉
0≤𝑖<𝑛

[𝑜𝑖 : ℓ𝑖] : �̂�𝑖 | {{�̂�0, . . . , �̂�𝑛−1}} (memory values)

𝑝 ∈ �Provs ::= _ℓ | (𝑐)ℓ | &ℓ

(
𝑝
)
| 𝑝 ⋉

0≤𝑖<𝑛
[𝑜𝑖 : ℓ𝑖] : 𝑝𝑖 |

{{
𝑝0, . . . , 𝑝𝑛−1

}}
(memory shapes)

Fig. 9. Memory contents and shapes.

from Fig. 5c. Expressions are in A-normal form: every value is let-bound to a variable. Programs
manipulate ADT values through pattern matching to destruct values, and value-building expressions
to construct values according to a given memory layout.
A pattern-matching expression contains a list of cases of the form 𝑝 → 𝑒 , each consisting of a

provenance on the left-hand side and an expression on the right-hand side. Note that provenances
contain no variables. In some of our examples, we will use or-patterns such as 𝑝1 | 𝑝2 → 𝑒 .

Valuexpressions, denoted 𝑢, allow to define values with reference to other already-bound values,
using accessors of the form 𝑥 .𝜋 . Such accessors designate subterms at position 𝜋 within an existing
value bound to 𝑥 .

Example 3.5 (Valuexpression). The valuexpression 𝑢 = Jal(𝑥 .Jal.0, 42) builds a jal instruc-
tion using the same destination register as another jal instruction bound to 𝑥 , and the con-
stant immediate 42. Note that focusing on a valuexpr does not evaluate accessors: we have
focus (.Jal.0, 𝑢) = 𝑥 .Jal.0. △

Example 3.6 (RISC-V destination register binding). The following program extracts the destination
register of a RISC-V instruction if it exists, and returns 𝑋0 otherwise:

get_dest(𝑥 : 𝜏RISC-V as 𝜏RISC-V) : 𝜏reg as 𝜏reg = match(𝑥)

Add(_, _, _) → 𝑥 .Add.0
Addi(_, _, _) → 𝑥 .Addi.0
Jal(_, _) → 𝑥 .Jal.0
Sw(_, _, _) →𝑋0

 △

3.4 Memory Model
We model memory contents with values and stores, defined in Fig. 7. Memory values, denoted
�̂� , follow roughly the same syntax as layouts, excluding constructs that do not relate to concrete
memory contents (integer encodings, fragments and splits). The main difference is that pointers do
not directly contain the pointee memory value, but refer to it with an address 𝑎. Interpretation of
memory values therefore relies on a store, denoted 𝜍 , which maps addresses to memory values.

Example 3.7 (RISC-V memory values). Consider the high-level value 𝑣 = Sw(𝑋2, 𝑋2, 3), of type
𝜏RISC-V. The memory value representing 𝑋2 according to 𝜏reg is (2)5. We can similarly follow the
layout 𝜏RISC-V to represent 𝑣 , by instantiating each split, fragment and non-constant integer with 𝑣
contents, and get the following memory value (which corresponds to the “assembled” version of

, Vol. 1, No. 1, Article . Publication date: June 2024.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

shape_ofΔ{
𝑡 −→ shape_ofΔ (Δ(𝑡))
𝐼ℓ | _ℓ −→ _ℓ
(𝑐)ℓ −→ (𝑐)ℓ
&ℓ (𝜏) −→ &ℓ

(
shape_ofΔ (𝜏)

)
𝜏 ⋉
0≤𝑖<𝑛

[𝑜𝑖 : ℓ𝑖] : 𝜏𝑖 −→ shape_ofΔ (𝜏) ⋉
0≤𝑖<𝑛

[𝑜𝑖 : ℓ𝑖] : shape_ofΔ (𝜏𝑖)

{{𝜏0, . . . , 𝜏𝑛−1}} −→
{{
shape_ofΔ (𝜏0), . . . , shape_ofΔ (𝜏𝑛−1)

}}
(𝜋 as 𝜏) −→ shape_ofΔ (𝜏)
split (𝜋)

{
𝑐𝑖 from 𝑃𝑖⇒ 𝜏𝑖

�� 1 ≤ 𝑖 ≤ 𝑛} −→ _ℓ where ℓ = max
1≤𝑖≤𝑛

|𝜏𝑖 |

}
Fig. 10. Translation from layouts to shapes in type environment Δ : TyVars→ �Types

the instruction):

�̂� = _32 ⋉ [0 : 7] : (0x23)7 ⋉ [7 : 5] : (3)5 ⋉ [12 : 3] : (2)3 ⋉ [15 : 5] : (2)5
⋉ [20 : 5] : (2)5 ⋉ [25 : 7] : (0)7 △

Memory shapes. Finally, we formalize the notion of a memory value “fitting” a given layout with
memory shapes, denoted 𝑝 and defined in Fig. 9. A shape exactly describes the “concrete” part of
a memory type. The function shape_of in Fig. 10 is a conservative, best-effort translation from
memory layouts to shapes used to gather static knowledge about memory layout. It uses a notion of
size, which is defined in Appendix A. Here, the shape of a split is an opaque word large enough to
contain any of its branches. However, a more precise definition is also possible, and even desirable,
as we will see later.

Example 3.8 (Shapes for RISC-V). The shape of the layout used for RISC-V instructions in our
running example (Example 3.2), considered in an empty type environment, depends on the size
of each split branch. The layout in each of these branches is a composite word based on a 32-bit
opaque word, hence |𝜏Add | = |𝜏Addi | =

��̂𝜏Jal�� = |𝜏Sw | and shape_of(𝜏RISC-V) = _32. Similarly, we have
shape_of(𝜏reg) = _5. The shape of the layout used for sw instructions follows its composite word
structure and includes all of its fixed immediates:

shape_of(𝜏Sw) = _32 ⋉ [0 : 7] : (0x23)7 ⋉ [7 : 5] : _5 ⋉ [12 : 3] : (2)3 ⋉ [15 : 5] : _5
⋉ [20 : 5] : _5 ⋉ [25 : 7] : _7 △

4 TARGET IN DESTINATION PASSING STYLE
Before formally defining our target intermediate representation, let us illustrate it on a first example.

Example 4.1 (Target IR for RISC-V destination register binding). The program from Example 3.6
reads from an input location 𝑥in representing a high-level value of type 𝜏RISC-V using the layout
𝜏RISC-V, and writes its result of type 𝜏reg to an output location 𝑥out using the layout 𝜏reg. Its compiled

, Vol. 1, No. 1, Article . Publication date: June 2024.

Compiling Morphisms of Algebraic Data Types

E ::= success | fail (return statements)
| switch (𝑥in) {𝑐1 → E1 | · · · | 𝑐𝑛 → E𝑛 | _→ E} (switch with 𝑛 non-default branches)
| I; E (Instruction Sequence)

I ::= call 𝑓 ((𝑥in,1, . . . , 𝑥in,𝑛), 𝑥out) (function call)
| letin 𝑥 ′in = freeze(𝑥out) (freezing location)
| letin 𝑥 ′in = 𝑥in.𝜋 (input sub-location)
| letout 𝑥out = alloc(ℓ) (new ℓ-bit output location)
| letout 𝑥 ′out = 𝑥out .𝜋 (output sub-location)
| 𝑥out := rhs (write to output location)
| cast 𝑥out to 𝑝 (refine the shape of a location)

rhs ::= 𝑐 (constant)
| 𝑥in (input contents)
| &alloc(ℓ) (Allocation)

P ::= let 𝑓 (𝑋in, 𝑥out) = E; P
(function declaration)

| E (Main)

Fig. 11. Target IR — Programs P, Expressions E and Instructions I.

version, in our IR, will be:

aux(𝑥in : 𝜏RISC-V, 𝑥out : 𝜏reg) = letin 𝑥 = 𝑥in.[7 : 5]; 𝑥out := 𝑥 ; success

get_dest(𝑥in : 𝜏RISC-V, 𝑥out : 𝜏reg) =

letin 𝑥 = 𝑥in.[0 : 7];

switch (𝑥)

0x33→ call aux(𝑥in, 𝑥out); success
0x13→ call aux(𝑥in, 𝑥out); success
0x6F→ call aux(𝑥in, 𝑥out); success
0x23→ 𝑥out := 0; success

The compiled function get_dest considers its input 𝑥in as a 32-bit word and focuses on its 7 lowest
bits with a new location 𝑥0. Depending on 𝑥0’s value, it either directly writes 0 to the destination
𝑥out (it has recognised sw), or calls the auxiliary function aux, which outputs to destination 𝑥out 5
bits corresponding to the destination register of instructions add/addi/jal (Fig. 1a, register rd is
always located at the same place in the memory format). △

Our program representation thus makes the following tasks explicit:
• reading from locations in memory and switching on their values;
• writing results to their appropriate memory locations;
• allocating and initializing memory following the shape of the intended output value.
To this end, we depart from [Baudon et al. 2023] and define a new IR, described in Fig. 11, in
Destination Passing Style [Shaikhha et al. 2017]. The essence of destination passing style is that
each function takes a destination argument which indicates where it should write its result.
Similarly, in our IR, memory locations, usually denoted 𝑥 , are identifiers for unaligned pointers.

We distinguish between read-only input locations, (“𝑥in”) and write-only output locations, (“𝑥out”).
This distinction allows us to formally segregate “analysis” code (i.e., pattern matching) from
“building” code (i.e., constructors). Destination passing style is thus immediately visible in function
declarations and calls: the last argument of call 𝑓 ((𝑥1, . . . , 𝑥𝑛), 𝑦) is an output memory location
that should be filled with the result computed by 𝑓 . Input and output sub-locations are obtained by
focusing an existing location with a memory path, for instance with the instruction letout 𝑥

′ = 𝑥 .𝜋 .
Additionally, an output location can be frozen to get an input location with letin 𝑥in = freeze(𝑥out).
Constructing values requires memory to write into: either by focusing an existing output location
with amemory path (letout 𝑥 ′ = 𝑥 .𝜋), or by claiming a given amount of unusedmemory (letout 𝑥 =

, Vol. 1, No. 1, Article . Publication date: June 2024.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

Data: 𝑥1, . . . , 𝑥𝑛 the input locations
Data: 𝜏1, . . . , 𝜏𝑛 ∈ �Types the input memory layouts
Data:𝑚 = {𝑝𝑖,1, . . . , 𝑝𝑖,𝑛 → E𝑖 | 1 ≤ 𝑖 ≤ 𝑁 } a matching problem whose branches map

provenances to target expressions
Result: Target code corresponding to the decision DAG computed by Baudon et al. [2023]

1 function Destruct ((𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛),𝑚) : E
Algorithm 1: Destruct interface.

alloc(ℓ)). This memory is then filled using write instructions, with several kinds of contents:
constants denoted 𝑐 , the contents of an input location, or the address of newly allocated memory
of a given size denoted &alloc(ℓ).

Traditional control flow relies on the switch construct with a default branch marked by “_”, along
with success and fail return statements which do not return any value.

Finally, in the context of Ribbit, switching on a location reveals information about values, notably
details about their concrete shapes. To materialize this in the IR, we introduce cast instructions
which refine the shape of a given output location to a more precise shape.

In the rest of this article, target expressions will be displayed with a plain frame around them.
Let us finally point out that sharing is not explicit in the IR, even though we use a control-flow-graph
style representation underneath.

Example 4.2 (Target IR on a program with lists). Using the memory type defined in Example 3.3,
the following function captures and returns the first element of a list, 0 if empty.

get_value(𝑥 : 𝜏 as 𝜏𝑝) : 𝐼32 = match(𝑥)
{
Nil → 0(32)
Cons(_, _) → 𝑥 .𝐶𝑜𝑛𝑠.0

}
will be compiled as:

get_value(𝑥in : 𝜏𝑝 , 𝑥out : 𝐼32) =

letin 𝑥 = 𝑥in.[0 : 2];

switch (𝑥)

0→ 𝑥out := 0; success
1→ letin 𝑥

′ = 𝑥in.[2 : 32]; 𝑥out := 𝑥 ′; success
2→ letin 𝑥

′ = 𝑥in. ∗ .0; 𝑥out := 𝑥 ′; success

 △
5 COMPILATION OF DESTRUCTORS: A PRIMER
Looking at the compilation of our expression language described in Section 3.3, one important task
is to compile pattern matching. This is a well-studied topic [Maranget 2008; Sestoft 1996] with
several general procedures which take as input a list of patterns – usually with no variables nor
right-hand-side expressions – and produce a nest of “switch” nodes, either following an automaton
or a DAG. In the context of customizable memory layouts like the ones we consider, Baudon et al.
[2023] provides a layout-aware compilation procedure emitting decision DAGs. As our goal is to
consider such a compilation procedure in a full language, we will reuse their compilation algorithm,
which already accommodates nested provenances.

The Destruct algorithm, whose interface is described in Algorithm 1, takes as argument an
input location to inspect, its memory type, and a matching problem. It emits code that inspects the
memory representation of the value at the given memory location, to determine which provenance
in the list, if any, matches the original high-level value. As a side effect, it also copies the right-hand
side expressions of the pattern matching problem.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Compiling Morphisms of Algebraic Data Types

Example 5.1 (Matching Compilation for lists). We consider the “matching part” of the function
defined in Example 4.2, on which we apply Destruct:

Destruct((𝑥 : 𝜏𝑝),
{
Nil ⇒E1
Cons(_, _) ⇒ E2

}
= letin 𝑥

′ = 𝑥 .[0 : 2]; switch (𝑥 ′)

0→E1
1→E2
2→E2

 △

Some remarks about our adaptation. We adapt the original algorithm in the following ways. The
original algorithm emits decision trees, whose translation to our target IR is straightforward (it is
sufficient to bind intermediate input locations for switches). Destruct takes a list of provenances
with their target expressions E, which are placed at the leaves of the decision tree. The original
algorithm by Baudon et al. [2023] attempts to handle binders in patterns, albeit in an incomplete
way. We ignore this aspect, and will instead handle memory accesses in a more general way.

6 COMPILATION OF PATHS: A FIRST ATTEMPT
Considering compilation of our input language, another thorny construction remains: valuex-
pressions, which combine constructors, variables, and path-based accessors. We now make a first
(unsuccessful, as we will see) attempt at a simple compilation procedure for path-based accessors,
and take this opportunity to introduce some tooling required for the full compilation procedure.

6.1 Exploring Layouts with Focus and Specialise
To compile high-level expressions in a way that fits a given memory layout, we need a way to
explore both a type and its layout conjointly. Indeed, the full inner structure is only revealed
when considering both the type, which defines nested terms and subterms, and the layout, which
describes the exact operations required to access those subterms, represented as fragments. Let us
consider a simple example demonstrating this idea.
Example 6.1 (Branch-dependent layout on the list example). Following our list example from

Example 3.3, consider the following pattern matching branch: Cons(_, _) → . . . 𝑥 .Cons.0
How to compile the accessor 𝑥 .Cons.0 to a memory access? This requires locating the associated

fragment in the memory layout 𝜏𝑝 . However, the location of this fragment depends on other values
in memory because of a split in 𝜏𝑝 . We thus need to explore several possibilities, indexed by various
provenances of 𝑥 . For instance, if 𝑥 matches Cons(_,Nil), it will be at position 𝑥 .[2 : 32] in memory.
If 𝑥 matches Cons(_,Cons(_, _)) however, it will be at position 𝑥 . ∗ .0 in memory. This distinction
between provenances will appear in our generated code, as shown in Example 4.2. △
The Explore function defined in this section takes as input an already-known provenance 𝑝 , a

type 𝜏 and a layout 𝜏 , and returns the list of branches, i.e. possible versions of 𝜏 represented as 𝜏
which are “compatible” with 𝑝 . Semantically, a branch characterises the parts of 𝜏 that match the
provenance 𝑝 . A branch is thus defined as quadruplet (𝑝𝑖 , 𝜏𝑖 , 𝜏𝑖 , frags𝑖) consisting of the provenance,
type and layout refined for that specific branch, and of a list of fragments contained therein.

Example 6.2 (Explore the list type (Example 3.3)). We can explore𝜏𝑝 with the provenance Cons(_, _):

Explore(Cons(_, _), 𝜏list, 𝜏𝑝) =
{
(Cons(_,Nil) , Cons(𝐼32,Nil) , 𝜏𝐶1 , 𝐹1)
(Cons(_,Cons(_, _)) , Cons(𝐼32,Cons(𝐼32, 𝜏𝑙𝑖𝑠𝑡)) , 𝜏𝐶2 , 𝐹2)

}
where 𝐹1 =

[
.[2 : 32] ↦→ (.Cons.0 as 𝐼32)

]
and 𝐹2 =

. ∗ .0 ↦→ (.Cons.0 as 𝐼32)
. ∗ .1 ↦→ (.Cons.1.Cons.0 as 𝐼32)
. ∗ .2 ↦→ (.Cons.1.Cons.1 as 𝜏𝑝)

 .
Note that the types and layouts of branches are refined according to their provenance. △
To precisely define Explore, we need a new operation to refine layouts: specialisation.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

1 function Explore(𝑝0 ∈ Provs, 𝜏0 ∈ Types, 𝜏0 ∈ �Types):
2 for (𝑝, 𝜏) ∈ 𝜏0

/
𝑝0 do

3 𝜏 ← 𝜏0
/
𝑝

4 frags←
{
(𝜋 ↦→ 𝜋 as 𝜏 ′)

��� �focus (𝜋, 𝜏) = (𝜋 as 𝜏 ′)
}

5 yield (𝑝, 𝜏, 𝜏, frags)
Algorithm 2: Explore.

Layout Specialisation. Similar to type specialisation, layout specialisation, denoted 𝜏
/
𝑝 , filters a

layout 𝜏 to exclude parts which are incompatible with a given provenance 𝑝 . It removes all splits
from 𝜏 (up to fragments) by filtering out branches whose provenance set excludes 𝑝 . It returns a list
of pairs of the form (𝑝′, 𝜏 ′), where 𝑝′ is a refined version of 𝑝 and 𝜏 ′ is the restriction of 𝜏 to values
that match 𝑝′. We demonstrate it on an example, the full definition is in Appendix A, Fig. 14.

Example 6.3 (Layout specialisation). For instance:

𝜏𝑝
/
Cons(_, _) =

{ Cons(_,Nil), _64 ⋉ [0 : 2] = 1 ⋉ [2 : 32] : (.Cons.0 as 𝐼32)
(Cons(_,Cons(_, _)), &64 (. . .) ⋉ [0 : 2] = 2

}
△

Explore. We are now ready to properly define Explore, in Algorithm 2. Given an initial prove-
nance 𝑝0, type 𝜏0 and layout 𝜏0, it returns the list of all branches of 𝜏0 that represent 𝜏0 values
matching 𝑝0. Explore, and many of the algorithms described in this article, uses Python-style
generators using the “yield” keyword, and “for-each” style loops.

Using the specialisation 𝜏0
/
𝑝0, we gather all refinements pairs of 𝜏0 compatible with 𝑝0. Each pair

consists of a more precise provenance 𝑝 and a specialised layout 𝜏 . We then derive all information
relevant to this case from 𝑝 and 𝜏 : the refined type 𝜏0

/
𝑝 , and a list of the form (𝜋 ′ ↦→ 𝜋 ′ as 𝜏 ′)

containing every position 𝜋 ′ such that 𝜏 contains a fragment at 𝜋 ′. From these results, we construct
a branch.

6.2 A Naive Compilation Algorithm for Accessors
An intuitive idea to compile accessors would be to find “the right memory path” corresponding to
a given high-level path. It would proceed as follows: given a variable 𝑥 , its type 𝜏 , layout 𝜏 , and a
path-based accessor 𝑥 .𝜋 , we can explore all branches of 𝜏 and for each possible layout, return the
memory path that leads to a fragment corresponding to the high-level path 𝜋 .
The Extract procedure, defined in Algorithm 3, implements this idea. It takes a description
(𝑥, 𝜏, 𝜏, 𝑝 ⊳ 𝑓 : as o) the input value, an output location 𝑦 and a path 𝜋 . It emits code to store in 𝑦
the representation of the subterm located at 𝜋 within the input value. Here, we are looking for “the
right memory path”, as such, there should exist a fragment within 𝜏 that exactly corresponds to the
(high-level) subterm 𝜋 . All we have to do now is to find where.
• In the base case (Line 2), if 𝜋 = 𝜖 , then we simply copy input contents into the output location.
• As we have seen, the location of the fragment might depend on other parts of the layout, hence
the need for Explore. For this purpose, we gather all branches (Line 5) and generate code that
dynamically determines the appropriate branch by inspecting the input value. We can readily
reuse the pattern matching compilation algorithm Destruct for this purpose (Line 12).
• For each branch of the input layout, we round up all fragments that appear in its layout and
their positions, then focus into the one that represents a parent of the target subterm (𝜋𝑓 ⪯ 𝜋)
(Line 8) to recursively look for 𝜋 (Line 9).
• If no such fragment exists, we fail.

Example 6.4 (Extract on the list example– Algorithm 3). Let us consider again the first integer ele-
ment of a (non empty) list, at position .Cons.0. Let 𝑥out a fresh output location and 𝑥 an input location

, Vol. 1, No. 1, Article . Publication date: June 2024.

Compiling Morphisms of Algebraic Data Types

Data: (𝑥 ⊳ 𝑝 : 𝜏 as 𝜏) the input description
Data: 𝑦 the output location
Data: 𝜋 the path in the input to the desired value
Result: Code binding 𝑦 to the representation of the subterm at position 𝜋 in the input

1 function Extract((𝑥 ⊳ 𝑝 : 𝜏 as 𝜏), 𝑦, 𝜋):
2 if 𝜋 = 𝜖 then
3 return 𝑦 := 𝑥 ; success
4 else
5 𝐵 ← for 𝑝𝑏, 𝜏𝑏, 𝜏𝑏, frags𝑏 ∈ Explore(𝑝, 𝜏, 𝜏) do
6 if ∃(𝜋𝑓 ↦→ 𝜋𝑓 as 𝜏𝑓) ∈ frags𝑏, ∃𝜋 ′, 𝜋 = 𝜋𝑓 .𝜋

′ then
7 𝑥 ′ ← fresh symbol
8 𝜏 ′, 𝑝′ ← focus

(
𝜋𝑓 , 𝜏𝑏

)
, focus

(
𝜋𝑓 , 𝑝𝑏

)
9 E ← letin 𝑥

′ = 𝑥 .𝜋𝑓 ; Extract((𝑥 ′ ⊳ 𝑝′ : 𝜏 ′ as 𝜏𝑓), 𝑦, 𝜋 ′)
10 else E ← fail

11 yield (𝑝𝑏, E)

12 return Destruct (𝑥, 𝜏, 𝐵)
Algorithm 3: Extract: Naive Path compilation algorithm.

assumed to contain the representation of a Cons. Extract
(
(𝑥 ⊳ Cons(_, _) : 𝜏list as 𝜏𝑝), 𝑥out, .Cons.0

)
starts by exploring 𝜏𝑝 . Following Example 6.2, we have two branches:

• The first branch is (Cons(_,Nil), 𝜏𝐶1, 𝜏𝐶1, 𝐹1) where 𝐹1 =
[
.[2 : 32] ↦→ (.Cons.0 as 𝐼32)

]
. The

fragment at .[2 : 32] covers .Cons.0.We can now focus on it and proceed to the (first) recursive call.
Let 𝑥 ′ a fresh symbol. By focusing, we obtain the recursive arguments 𝜏 ′ = focus (.Cons.0, 𝜏𝐶1) =
𝐼32, 𝑝′ = _ and 𝜋 ′ = 𝜖 , leading to Extract ((𝑥 ′ ⊳ 𝑝′ : 𝜏 ′ as 𝐼32), 𝑥out, 𝜋 ′) = 𝑥out := 𝑥 ′; success .
We finally obtain E1 = letin 𝑥

′ = 𝑥 .[2 : 32]; 𝑦 := 𝑥 ′; success and yield (Cons(_,Nil), E1).
• The second branch is (Cons(_,Cons(_, _)), 𝜏𝐶2, 𝜏𝐶2, 𝐹2) with (. ∗ .0 ↦→ .Cons.0 as 𝐼32) ∈ 𝐹2.
We proceed similarly, with a recursive call to get a target expression E2, yielding the pair
(Cons(_,Cons(_, _)), E2).
We finally emit the following code, which is coherent with Example 4.2:

Destruct((𝑥0 : 𝜏list), {(Cons(_,Nil) ↦→ E1), (Cons(_,Cons(_, _)) ↦→ E2)}) =

letin 𝑥 = 𝑥in.[0 : 2]; switch (𝑥)

0→ 𝑥out := 0; success
1→ letin 𝑥

′ = 𝑥in.[2 : 32]; 𝑥out := 𝑥 ′; success
2→ letin 𝑥

′ = 𝑥in. ∗ .0; 𝑥out := 𝑥 ′; success

 △

To implement Extract, we assumed that, once we have narrowed down the layout to a single
branch, any given source path can be translated to a single memory path. While this is true for
“simple” layouts, it is not the case in general. For instance, the immediate at .Sw.2 in the RISC-V
layout (Fig. 1d and Example 3.2) is broken into two pieces, which need to be assembled to get a whole
integer. Similarly, the arithmetic expression (Fig. 5a) at position .Plus.1 in the case Plus(_, 𝐼 (_))
doesn’t even exist in memory anymore as only the inner integer is stored: we need to rebox it to
get an expression. Finally, in our list example (Example 3.3), if we had to implement tail, we would
have to reconstruct a new list from Cons.1, which does not exist either: Nil is implicit in the case
Cons(_,Nil) and the tail list is broken up in the pointed struct in the case Cons(_,Cons(_, _).

, Vol. 1, No. 1, Article . Publication date: June 2024.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

Nevertheless, the Extract procedure demonstrates how focusing, specialisation and Explore
can be combined to design fairly complex compilation procedures. In fact, Extract already sub-
sumes the subset of binders handled by Baudon et al. [2023], in only 12 lines of code. We can now
use these tools to develop a full compilation procedure for our language.

7 FULL COMPILATION
We are, at last, ready to present our main contribution: a general procedure, implemented into
Ribbit, which can compile both pattern matching and value-building expressions in a unified
manner for arbitrary memory layouts. As we have seen, in the presence of complex layouts, it is
necessary to destruct and reconstruct values, making it necessary to treat compilation of accessors
and constructors conjointly. Before going any further, let us look at the toplevel compilation process
for full expressions.

7.1 Compilation of Expressions
Our main compilation algorithm is presented in Algorithm 4. It takes as input a collection of
binders Γ, an output triplet (𝑥out : 𝜏out as 𝜏out), and an expression 𝑒 . Γ contains binders of the
form (𝑥 ⊳ 𝑝 : 𝜏 as 𝜏) indicating that 𝑥 is an available input memory location which represents a
value of type 𝜏 with the layout 𝜏 and which is known to match the provenance 𝑝 . In each case,
Compile delegates emission of code for given tasks to several sub-procedures. First off, compilation
of pattern matching is immediately delegated to Destruct, as previously described in Section 5.
The other procedures are described in the upcoming subsections, and comprise the following tasks:

• Seek (Section 7.2) a path 𝜋 within the memory representation of its parent input value 𝑥 to
produce a piece of data corresponding to the accessor 𝑥 .𝜋 . Seek extends Extract to handle
arbitrary memory layout combinations, including those where the desired subterm is broken
into multiple pieces scattered over the parent representation.
• Assemble these pieces to Rebuild (Section 7.3) the representation of the valuexpression 𝑢.
• Refine (Section 7.4) the contents of a memory location to allocate all necessary pieces and set
constants.
• Finally, Section 7.6 describes how to ensure termination of our algorithm and emit recursive

code when necessary.

7.2 Seek a path
Seek, in Algorithm 5, compiles an accessor 𝑥 .𝜋 to target code. We consider the memory repre-
sentation of the value bound to 𝑥 (which is already built and read-only at execution time) as the
input value and identify it with the quadruple (𝑥in ⊳ 𝑝in : 𝜏in as 𝜏in), composed of its input location,
type, layout and provenance respectively. That is, at execution time, 𝑥in is expected to contain
the memory representation according to 𝜏in of some value of type 𝜏in matching the provenance
𝑝in. Similarly, we refer to the memory representation of the desired subterm (which is the piece
of data currently being built) as the output value and identify it with the triple (𝑥out : 𝜏out as 𝜏out)
composed of its output location, type and layout respectively. Our goal is to emit code that, given
an input location 𝑥in containing the memory representation of 𝑣 following the layout 𝜏in and an
output location 𝑥out, stores in 𝑥out the representation of focus (𝜋, 𝑣) following the layout 𝜏out.
Seek is similar to the Extract procedure presented in Section 6.2. The differences are highlighted

in orange . As we have seen, there are some cases where there is no single fragment that covers
the desired path. Alternatively, we might reach 𝜋 = 𝜖 , but 𝜏in ≠ 𝜏out, indicating that we should
exhibit an isomorphism between 𝜏in and 𝜏out to get the desired value. In both cases, we need to

, Vol. 1, No. 1, Article . Publication date: June 2024.

Compiling Morphisms of Algebraic Data Types

Data: Γ = (𝑥𝑖 ⊳ 𝑝𝑖 : 𝜏𝑖 as 𝜏𝑖)0≤𝑖<𝑛 a set of input descriptions
Data: 𝑒 the input expression
Data: (𝑥out : 𝜏out as 𝜏out) the output description
Result: Code computing the value of the expression 𝑒
function Compile(Γ, (𝑥out : 𝜏out as 𝜏out), 𝑒) = case(𝑒){

match(𝑦) {
𝑝𝑖 → 𝑒𝑖 | (0 ≤ 𝑖 < 𝑛)
}

−→

��������
// Delegate pattern matching compilation to Destruct (Section 5)
(𝑦 ⊳ 𝑝 : 𝜏 as 𝜏) ∈ Γ
∀𝑖 .E𝑖 ← Compile(Γ, (𝑥out : 𝜏out as 𝜏out), 𝑒𝑖)
Destruct ((𝑦 : 𝜏), {𝑝𝑖 → E𝑖 | 1 ≤ 𝑖 ≤ 𝑛})

𝑦.𝜋 −→
���Seek (Γ(𝑦), (𝑥out : 𝜏out as 𝜏out), 𝜋) // Seek the path 𝜋 in 𝑦 (Section 7.2)

𝑢 −→
���Rebuild (Γ, (𝑥out : 𝜏out as 𝜏out), 𝑢) // Rebuild constructor 𝑢 (Section 7.3)

let 𝑦 : 𝜏 as 𝜏 = 𝑒1 in 𝑒2 −→

�������������

𝑦out fresh.
// Allocate new memory location for 𝑒1 with Refine (Section 7.4)
letout 𝑦out = alloc(|𝜏 |);Refine(𝑦out, _ |𝜏 | , shape_of(𝜏));
Compile(Γ, (𝑦out : 𝜏 as 𝜏), 𝑒1) // Emit 𝑒1
letin 𝑦 = freeze(𝑦out);
Compile(Γ ∪ (𝑦 ⊳ _ : 𝜏 as 𝜏), (𝑥out : 𝜏out as 𝜏out), 𝑒2) // Emit 𝑒2

}
Algorithm 4: Compile – Compile the expression 𝑒 given the environment Γ.

break up the value even more in order to reconstruct it differently. This task is precisely done on
Line 11 via our next procedure: Rebuild.

7.3 Rebuild constructors
Rebuild (Algorithm 6) compiles an arbitrary valuexpression 𝑢 to target code that constructs it.
Whereas Seek retrieves a (possibly mangled) relevant fragment from a single input value, Rebuild
inspects the shape of the output value to assemble its constituent pieces, which include constant
parts of the memory layout as well as fragments extracted from multiple input values. It reuses
the general structure of Seek (and Extract), but considers 𝑛 input values described by quadruples
(𝑥𝑖 ⊳ 𝑝𝑖 : 𝜏𝑖 as 𝜏𝑖) with 1 ≤ 𝑖 ≤ 𝑛.
Firstly, when 𝑢 is a constant integer and the output layout is a fixed-width integer encoding, we

simply write this constant to the output location (Line 3). In other cases, we operate in a similar
manner as in other procedures: we Explore the various branches (Line 6), whose code we will
eventually combine with Destruct (Line 18).
A first subtlety appears: both algorithms need to maintain a precise description of the current

case under scrutiny, and to distinguish between all possible subcases. Indeed, after a few recursive
calls, we might be exploring deep into input and output layouts. This is done by maintaining the
already determined provenances 𝑝in through recursive calls. This is essential to emit code that
respects invariants stemming from previous branch choices. For the output, however, we do not
have a ready-made provenance. We obtain one in Line 5 via the prov_of function, which is a simple
syntactic translation from expressions to provenances. We can then use the obtained provenance
𝑝out in Explore to only obtain branches that are relevant to 𝑢.

Conversely, while exploring a branch characterised by 𝑝𝑏 , we must perform a similar maneuver
in the opposite direction. Indeed, at execution time, the only way to determine the right branch
of 𝜏out is to examine input values. By definition, the only variable parts of 𝑝out are those at the

, Vol. 1, No. 1, Article . Publication date: June 2024.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

Data: (𝑥in ⊳ 𝑝in : 𝜏in as 𝜏in) the input description
Data: (𝑥out : 𝜏out as 𝜏out) the output description
Data: 𝜋 the path in the input to the desired subterm
Result: Code binding the memory value at position 𝜋 in the input

1 function Seek((𝑥in ⊳ 𝑝in : 𝜏in as 𝜏in), (𝑥out : 𝜏out as 𝜏out), 𝜋):
// Invariant: 𝜋 and 𝑝in are compatible

2 if 𝜋 = 𝜖 ∧ 𝜏in = 𝜏out then // Input and output representations are the same, we return.

3 return 𝑥out := 𝑥in; success
4 else // Otherwise, Explore all cases.
5 𝐵 ← for 𝑝𝑏, 𝜏𝑏, 𝜏𝑏, frags𝑏 ∈ Explore(𝑝in, 𝜏in, 𝜏in) do

// Seek a fragment containing the piece of data at 𝜋 .
6 if ∃(𝜋𝑓 ↦→ 𝜋𝑓 as 𝜏𝑓) ∈ frags𝑏, ∃𝜋 ′, 𝜋 = 𝜋𝑓 .𝜋

′ then // Found one. Focus and search inside.
7 𝑥 ′ ← fresh symbol
8 𝜏 ′, 𝑝′ ← focus

(
𝜋𝑓 , 𝜏𝑏

)
, focus

(
𝜋𝑓 , 𝑝𝑏

)
9 E ← letin 𝑥

′ = 𝑥 .𝜋𝑓 ; Seek
(
(𝑥 ′ ⊳ 𝑝′ : 𝜏 ′ as 𝜏𝑓), (𝑥out : 𝜏out as 𝜏out), 𝜋 ′

)
10 else // If none exists, Rebuild from smaller pieces.

11 E ← Rebuild((𝑥in ⊳ 𝑝in : 𝜏in as 𝜏in), (𝑥out : 𝜏out as 𝜏out), 𝑥in.𝜋)

12 yield (𝑝𝑏, E)

13 return Destruct ((𝑥in : 𝜏in), 𝐵) // Assemble the code of these branches via a decision tree.

Algorithm 5: Seek – Seek the memory location representing 𝜋 in 𝑥in.

positions of accessors in 𝑢: there is a bijection between the possible cases of 𝑝out and the possible
combinations of 𝑝𝑖 subcases. At Line 8, we derive a new provenance 𝑝′𝑖 for each input, which is at
least as precise as 𝑝𝑖 and also integrates information from the considered output subcase 𝑝𝑏 . We
use these refined input provenances to emit code that inspects the 𝑛 input values to determine the
right branch of 𝜏out, at Line 18.
For each branch, we need two categories of code: how to define the constant part of the value,

and how to fill variable parts depending on input arguments. Let us first focus on variable parts.
Each variable part exactly corresponds to a fragment. On Line 12, we look for a fragment (𝜋𝑓 as 𝜏𝑓)
available in the current branch. If there is an accessor 𝑥 .𝜋 linked to an input readily available at a
corresponding position in 𝑢, it is sufficient to Seek our desired piece in 𝑥 (Line 13). If the fragment
corresponds to no existing input argument, we need to break it down further, by calling Rebuild
again (Line 16). While we have found all variable pieces, we have not yet allocated the surrounding
memory in which to assemble them! This is done Line 7 via the Refine procedure.

7.4 Refine memory locations
So far, we implicitely assumed that the code emitted by a Seek or Rebuild call would always be
executed in a context where the output location 𝑥out contains a memory value of the same shape as
𝜏out. This section focuses on the task of emitting allocation and cast instructions to maintain this
invariant. We must ensure that whenever the output shape becomes more precise – by replacing
a split or fragment in 𝜏out with a concrete layout – the shape of 𝑥out is refined accordingly by
allocating, casting and initializing memory at this position to match the new shape.

The intuition behind our shape refinement procedure is as follows: for both Seek and Rebuild,
we know that the contents of the output location 𝑥out conform to the shape shape_of(𝜏out). This
shape might be opaque (of the form _ℓ), for instance if 𝜏out is a split. In Rebuild, we Explore the

, Vol. 1, No. 1, Article . Publication date: June 2024.

Compiling Morphisms of Algebraic Data Types

Data: (𝑥𝑖 ⊳ 𝑝𝑖 : 𝜏𝑖 as 𝜏𝑖)1≤𝑖≤𝑛 the 𝑛 input descriptions
Data: (𝑥out : 𝜏out as 𝜏out) the output description
Data: 𝑢 the desired valuexpr
Result: Code constructing the memory value corresponding to expression 𝑢

1 function Rebuild((𝑥𝑖 ⊳ 𝑝𝑖 : 𝜏𝑖 as 𝜏𝑖)1≤𝑖≤𝑛, (𝑥out : 𝜏out as 𝜏out), 𝑢):
2 if 𝑢 = 𝑐 ∧ 𝜏out = 𝐼ℓ then // Target value is a constant encoded in an immediate type.

3 return 𝑥out := 𝑐; success
4 else // Otherwise, Explore all cases.
5 𝑝out ← prov_of(𝜏out, 𝑢)
6 𝐵 ← for 𝑝𝑏, 𝜏𝑏, 𝜏𝑏, frags𝑏 ∈ Explore(𝑝out, 𝜏out, 𝜏out) do

// Allocate memory, cast and fill in constant parts of the target memory layout to fit its shape.

7 Econsts ← Refine (𝑥out, shape_of(𝜏out), shape_of(𝜏𝑏))
// Rebuild target fragments from input values, which we specialize for the current branch.

8 ∀𝑖 .𝑝′𝑖 ← 𝑝𝑖 [_ at 𝜋in.𝜋 ← focus (𝜋out .𝜋, 𝑝𝑏) | focus (𝜋out, 𝑢) = 𝑥𝑖 .𝜋in]
9 Efrags ← for (𝜋𝑓 ↦→ 𝜋𝑓 as 𝜏𝑓) ∈ frags𝑏 do
10 𝑥 ′out ← fresh symbol
11 𝜏𝑓 ← focus

(
𝜋𝑓 , 𝜏𝑏

)
// Look at the subterm containing 𝜋𝑓 in 𝑢

12 if ∃𝑖, 𝜋, 𝜋in, 𝜋out.focus (𝜋out, 𝑢) = 𝑥𝑖 .𝜋in ∧𝜋out.𝜋 = 𝜋𝑓 then // Found an input path 𝑥𝑖 .𝜋in .𝜋

13 yield letout 𝑥
′
out = 𝑥out.𝜋𝑓 ; Seek

(
(𝑥𝑖 ⊳ 𝑝′𝑖 : 𝜏𝑖 as 𝜏𝑖), (𝑥 ′out : 𝜏𝑓 as 𝜏𝑓), 𝜋in.𝜋

)
14 else // Otherwise, break it down further.
15 𝑢′ ← focus

(
𝜋𝑓 , 𝑢

)
16 yield letout 𝑥

′
out = 𝑥out.𝜋𝑓 ; Rebuild

(
(𝑥𝑖 ⊳ 𝑝′𝑖 : 𝜏𝑖 as 𝜏𝑖)1≤𝑖≤𝑛, (𝑥 ′out : 𝜏𝑓 as 𝜏𝑓), 𝑢′

)
17 yield

(
(𝑥𝑖 ⊳ 𝑝′𝑖)1≤𝑖≤𝑛, Econsts; Efrags

)
18 return Destruct ((𝑥𝑖 : 𝜏𝑖)1≤𝑖≤𝑛, 𝐵) // Assemble these branches into a decision tree.

Algorithm 6: Rebuild – Rebuild the value in memory representing 𝑢 from the 𝑥𝑖s.

output type and layout, yielding a more precise layout 𝜏𝑏 . This is precisely the time at which we
might need to allocate: if we discover that 𝜏𝑏 contains a pointer to new structures, we should allocate
them for future use. Refine creates a skeleton that will be filled later on. This can happens either
while rebuilding values, on Line 7 in Algorithm 6, or while compiling let-bindings, in Algorithm 4.

This leads us to define Refine (Algorithm 7), which takes an output location 𝑥 , an imprecise
shape 𝑝old and a more precise shape 𝑝new, and emits a piece of code that allocates memory and
initializes constants everywhere 𝑝new is more precise than 𝑝old. For instance, when discovering a
new pointer, we allocate a new address to fill 𝑥 . Furthermore, we explore recursively the shapes
to fill out all the pieces, for instance in the case of structs. Note that refining composite words
𝑝⋉0≤𝑖<𝑛 [𝑜𝑖 : ℓ𝑖] : 𝑝′𝑖 takes peculiar care: indeed, 𝑝 could yield a new pointer, which should be
masked appropriately to not overwrite values obtained by the right hand sides. For this purpose,
we craft a new mask using themaskℓ functions to generate ℓ-bit masks that precisely focus on the
leftmost/base layout of a composite word.

Note that our refinement procedure is directly linked to the precision of the shape_of function
(Fig. 10): a more precise shape analysis, for instance that inspects inside pointers, would yield
earlier, easily factorised, memory allocations.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

Data: 𝑥 an input location
Data: 𝑝old the input provenance and 𝑝new the refined provenance
Result: Code to allocate and initialise the skeleton of 𝑥
function Refine(𝑥, 𝑝old, 𝑝new) = case(𝑝old, 𝑝new) {
𝑝 , 𝑝 → success

_ℓ , (𝑐)ℓ → 𝑥 := 𝑐; success

_ℓ , &ℓ

(
𝑝
)

→ 𝑥 := &alloc(|𝑝 |); Refine(𝑥,&ℓ

(
_ |𝑝 |

)
,&ℓ

(
𝑝
)
)

_ |𝑝 | , 𝑝 ⋉
0≤𝑖<𝑛

[𝑜𝑖 : ℓ𝑖] : 𝑝𝑖 →
cast 𝑥 to _ |𝑝 | ⋉

0≤𝑖<𝑛
[𝑜𝑖 : ℓ𝑖] : _ℓ𝑖 ;

Refine
(
𝑥, _ |𝑝 | ⋉

0≤𝑖<𝑛
[𝑜𝑖 : ℓ𝑖] : _ℓ𝑖 , 𝑝 ⋉

0≤𝑖<𝑛
[𝑜𝑖 : ℓ𝑖] : 𝑝𝑖

)
_ |𝑝0 |+·· ·+|𝑝𝑛−1 | ,

{{
𝑝0, . . . , 𝑝𝑛−1

}}
→

cast 𝑥 to
{{
_ |𝑝0 | , . . . , _ |𝑝𝑛−1 |

}}
;

Refine
(
𝑥,
{{
_ |𝑝0 | , . . . , _ |𝑝𝑛−1 |

}}
,
{{
𝑝0, . . . , 𝑝𝑛−1

}})
&ℓ

(
𝑝
)

, &ℓ

(
𝑝′
)

→ letout 𝑥
′ = 𝑥 .∗; Refine(𝑥 ′, 𝑝, 𝑝′)

𝑝 ⋉
0≤𝑖<𝑛

[𝑜𝑖 : ℓ𝑖] : 𝑝𝑖 , 𝑝′ ⋉
0≤𝑖<𝑛

[𝑜𝑖 : ℓ𝑖] : 𝑝′𝑖 →

letout 𝑥
′ = 𝑥 .mask |𝑝 | ([𝑜0 : ℓ0], . . . , [𝑜𝑛−1 : ℓ𝑛−1]);

Refine(𝑥 ′, 𝑝, 𝑝′);
letout 𝑥0 = 𝑥 .[𝑜0 : ℓ0]; Refine(𝑥0, 𝑝0, 𝑝′0); . . .
letout 𝑥𝑛−1 = 𝑥 .[𝑜𝑛−1 : ℓ𝑛−1]; Refine(𝑥𝑛−1, 𝑝𝑛−1, 𝑝′𝑛−1){{

𝑝0, . . . , 𝑝𝑛−1
}}

,
{{
𝑝′0, . . . , 𝑝

′
𝑛−1

}}
→ letout 𝑥0 = 𝑥 .0; Refine(𝑥0, 𝑝0, 𝑝′0); . . .

letout 𝑥𝑛−1 = 𝑥 .(𝑛 − 1); Refine(𝑥𝑛−1, 𝑝𝑛−1, 𝑝′𝑛−1)
}

Algorithm 7: Refine(𝑥, 𝑝old, 𝑝new) – Memory shape refinement instructions.

7.5 Example of compilation
Let us now consider the following function on lists, in particular its Cons branch:

incr_head(𝑥) = match(𝑥)
{
Nil →Nil
Cons(_, _) → let ℎ = 𝑥 .Cons.0 in let ℎ′ = ℎ + 1 in Cons(h’, x.Cons.1)

}
In Example 6.4, we compiled 𝑥 .Cons.0 with Extract. Our Compile function would call Seek,

which would proceed similarly. Now, let us compile 𝑢 = Cons(h’, x.Cons.1) with Rebuild.
Here is the call-graph of our various procedures in this case, where 𝑑 is our destination location

and Γ =
{
(𝑥 ⊳ Cons(_, _) : 𝜏list as 𝜏𝑝), (ℎ′ ⊳ _ : 𝐼32 as 𝐼32)

}
.

Rebuild
(
Γ, (𝑑 : 𝜏list as 𝜏𝑝), 𝑢

)
=

Explore(Cons(_, _), 𝜏list, 𝜏𝑝) (see Example 6.2)

• branch (Cons(_,Nil),Cons(𝐼32,Nil), 𝜏𝐶1, 𝐹1)
– call E𝑐 = Refine(𝑑, _64, _64 ⋉ [32 : 32] : _32 ⋉ [0 : 2] = 1) = letout 𝑑𝑐 = 𝑑.[0 : 2]; 𝑑𝑐 := 1
– fragment .[32 : 32] ↦→ (.Cons.0 as 𝐼32)where focus (.Cons.0, 𝑢) = ℎ′ and letout 𝑑𝑓 = 𝑑.[32 : 32]
call E𝑓 = Seek(Γ(ℎ′), (𝑑𝑓 : 𝐼32 as 𝐼32), 𝜖) = 𝑑𝑓 := ℎ′ (base case)

yield (Cons(_,Nil), E𝑐 ; E𝑓)
• branch (Cons(_,Cons(_)),Cons(𝐼32,Cons(𝐼32, 𝜏list)), 𝜏𝐶2, 𝐹2)
– call E′𝑐 = Refine(𝑑, _64,&64 ({{_32, _32, _64}}) ⋉ [0 : 2] = 2) (allocates)

, Vol. 1, No. 1, Article . Publication date: June 2024.

Compiling Morphisms of Algebraic Data Types

– fragment (. ∗ .0 ↦→ .Cons.0 as 𝐼32) where focus (.Cons.0, 𝑢) = ℎ′ and letout 𝑑𝑓 0 = 𝑑. ∗ .0 .
call E′

𝑓 1 = Seek(Γ(ℎ′), (𝑑𝑓 0 : 𝐼32 as 𝐼32), 𝜖) = 𝑑𝑓 0 := ℎ′ (base case)
– fragment (.∗.1 ↦→ 𝜋𝑙 = .Cons.1.Cons.0 as 𝐼32)where focus (𝜋𝑙 , 𝑢) = 𝑥 .𝜋𝑙 and letout 𝑑𝑓 1 = 𝑑. ∗ .1 .
call E′

𝑓 1 = Seek(Γ(𝑥), (𝑑𝑓 1 : 𝐼32 as 𝐼32), 𝜋𝑙) = letin 𝑠𝑓 1 = 𝑥 .Cons.0.Cons.1; 𝑑𝑓 1 := 𝑠𝑓 1
– fragment (.∗.2 ↦→ 𝜋𝑟 = .Cons.1.Cons.1 as𝜏𝑝)where focus (𝜋𝑟 , 𝑢) = 𝑥 .𝜋𝑟 and letout 𝑑𝑓 2 = 𝑑. ∗ .2 .
call E′

𝑓 1 = Seek(Γ(𝑥), (𝑑𝑓 2 : 𝐼32 as 𝐼32), 𝜋𝑟) = letin 𝑠𝑓 2 = 𝑥 .Cons.1.Cons.1; 𝑑𝑓 2 := 𝑠𝑓 2
yield (Cons(_,Cons(_, _), E′𝑐 ; E′𝑓 1; E

′
𝑓 2; E

′
𝑓 3)

return Destruct
(
(𝑥 : 𝜏𝑝),

{
(Cons(_,Nil), E𝑐 ; E𝑓), (Cons(_,Cons(_), E′𝑐 ; E′𝑓 1; E

′
𝑓 2; E

′
𝑓 3))

})
7.6 Recursive Constructors
Although the algorithm presented so far is sufficient to handlemost situations, it does not necessarily
terminate in the presence of recursive types and layouts. Let us consider an example.

Example 7.1 (Recursive rebuilding of linked lists). Consider simply-linked lists of 32-bit integers
𝜏 = Nil | Cons(𝐼32, 𝜏) with two possible layouts. 𝜏𝑙 is a traditional “pointers and blocks” layout
with a pointer for each element. 𝜏𝑝 is the packed layout already shown in Example 3.3. We can ask
Rebuild to emit conversion code that transforms inputs of type 𝜏 with representation 𝜏𝑙 into an
output of type 𝜏 with representation 𝜏𝑝 : Rebuild((𝑥 ⊳ _ : 𝜏 as 𝜏𝑙), (𝑦 : 𝜏 as 𝜏𝑝), 𝜖).
Naturally, such conversion code is not so simple: it requires recursive code that walks the

structure and fuse blocks two by two. Our current algorithms will not terminate, as it tries to
Rebuild each block in the list, infinitely. △

To properly handle such cases, we must emit recursive constructor code. Naturally, we could also
refuse to emit such code (in contexts when recursion is not acceptable). In both cases, we need to
detect recursion. We now sketch the main idea; full details are available in Appendix B. Intuitively,
a call to Seek or Rebuild leads to infinite recursion if it attempts to recursively rebuild an output
value with the same type, layout and relative position from an input value with the same type,
layout and provenance. This indicates that the output value contains a subterm which must be
rebuilt in the exact same way: the only way to emit correct code is to introduce an explicit recursive
node and emit recursive calls at this position. For this purpose, we memoise Seek and Rebuild on
their anonymized arguments, i.e. the arguments without any input or output memory locations.
For instance, prov_of(𝑢) is kept instead of 𝑢. We record when we enter one of the algorithms,
and generate a fresh function symbol 𝑓 . If we enter this function again, we emit a call call 𝑓 (𝑥,𝑦)
with the appropriate arguments. Afterwards, we can use simple deforestation to get rid of extra
functions. Note that, on top of emitting recursive code, this also improves sharing.

Example 7.2 (Linked lists, cont’d). Usingmemoisation, the Rebuild call from our previous example
terminates and emits recursive code. We explore 𝜏𝑝 and get three branches from its split. The first
two branch with the provenances Nil and Cons(_,Nil) are straightforward. The third branch
Cons(_,Cons(_, _)) requires rebuilding the fragment (. ∗ .2 ↦→ .Cons.1.Cons.1 as 𝜏𝑝), which is
more involved. Indeed, the position .Cons.1.Cons.1 in the original list type 𝜏𝑙 represents itself a tail
of type 𝜏𝑙 . Eventually, we try to Rebuild a piece of type 𝜏 represented as 𝜏𝑝 from the same piece
represented as 𝜏𝑙 , i.e., the same task as the initial Rebuild call. Thanks to memoisation, this task is
now associated with a function symbol 𝑓 and we finally emit the target code in Fig. 12. △

, Vol. 1, No. 1, Article . Publication date: June 2024.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

letᵢ s₂₀ = s.*.1.[0:+1]
Switch s₂₀

1

0

Cast d as ?64 with [0:+2]:?2
letₒ d₅ = d.![0:+2]
d₅ := alloc(128)
letₒ d₈ = d₅.*
Cast d₈ as {{?32,?32,?64}}
letₒ d₆ = d.[0:+2]
d₆ := 2
/* Fragment _.Cons.0 in dest d₁₁ */
letₒ d₁₁ = d.*.0
letᵢ s₈ = s.*.0.[0:+32]
d₁₁ := s₈
/* Fragment _.Cons.1.Cons.0 in dest d₁₂ */
letₒ d₁₂ = d.*.1
letᵢ s₁₁ = s.*.1.*.0.[0:+32]
d₁₂ := s₁₁
/* Fragment _.Cons.1.Cons.1 in dest d₁₃ */
letₒ d₁₃ = d.*.2
letᵢ s₉ = s.*.1

call convert l:s₉ d₁₃

success

Cast d as ?64 with [32:+32]:?32 with [0:+2]:?2
letₒ d₆ = d.[0:+2]
d₆ := 1
/* Fragment _.Cons.0 in dest d₇ */
letₒ d₇ = d.[32:+32]
letᵢ s₈ = s.*.0.[0:+32]
d₇ := s₈

success

letᵢ s₂₁ = s.[0:+1]
Switch s₂₁

1

0

Cast d as ?64 with [0:+2]:?2
letₒ d₆ = d.[0:+2]
d₆ := 0

successLet rec convert = λ l:s d.

Fig. 12. Generated code for rebuilding linked lists 𝑠 is the entry list and 𝑑 the destination name.

8 METATHEORY
We now briefly sketch the semantics of our source and target languages and state the correctness
of our compilation approach. Most of the definitions are delegated to the Appendix.
First, let us specify valid programs. We define a source typing judgement, denoted Γ ⊢ 𝑒 : 𝜏 .

This typing judgement is a straightforward monomorphic type system with ADTs. Additionally,
we follow Baudon et al. [2023] by defining the agreement between a type and its layout, denoted
agree(𝜏, 𝜏). This agreement for instance, ensures that paths are coherent, branches are all repre-
sented, etc. Both are defined in Appendix C.1. We define the shape of a memory value in a store,
denoted shape_of𝜍 (�̂�), in a similar way to the shape of a memory layout (Appendix C, Fig. 20).
The equivalence judgment between store/memory value pairs, denoted 𝜍, �̂� ∼ 𝜍 ′, �̂� ′, holds if and
only if �̂� and �̂� ′ are identical up to address renaming. Both are defined in Appendix C.2.

In order to give a precise account of our semantics, and be able to compare between source and
compiled programs, we provide a semantic for the source language which precisely account for the
state of memory, following the specified memory layout. For this purpose, we define a small-step
evaluation judgment for our source language, denoted Γ, 𝜎, 𝜍, �̂� ↬ Γ′, 𝜎 ′, 𝜍 ′, �̂�′, where:

• Γ : Vars→ Types × �Typesin shape is a typing environment (assigning both a type and a layout);
• 𝜎 : Vars→�Values is a memory value environment (with the same domain as Γ);
• 𝜍 is a memory store used to interpret the contents of 𝜎 ;
• �̂� is amemory expression that represents the memory value currently being built. Its full grammar

is given in Appendix C.2 (Fig. 19); it includes both source expressions and memory values, along
with intermediate stages containing both concrete memory structures and unevaluated triples
(𝑢 : 𝜏 as 𝜏).

Normal forms are states where �̂� is a memory value. In order to reduce a source expression 𝑒 to a
memory value �̂� (along with its store 𝜍),↬ must handle both high-level constructs (e.g., let, match)
and memory-level construction of values (i.e., represent some valuexpression 𝑢 according to a
given layout 𝜏). Its full definition is available in Appendix C.2 (Figs. 22 and 23); here, we quickly
demonstrate it on an example.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Compiling Morphisms of Algebraic Data Types

Example 8.1 (Source semantics on lists). Let us recall our list example with layout 𝜏𝑝 from Exam-
ple 3.3, and evaluate the following expression in initially empty environments and store (environ-
ments Γ and 𝜎 are merged for conciseness): 𝑒 = let 𝑥 : 𝜏list as 𝜏𝑝 = Cons(42,Nil) in 𝑥 .Cons.0.

∅,∅, let 𝑥 : 𝜏list as 𝜏𝑝 = Cons(42,Nil) in (𝑥 .Cons.0 : 𝐼32 as 𝐼32)
↬ ∅,∅, let 𝑥 : 𝜏list as 𝜏𝑝 = _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42 : 𝐼32 as 𝐼32) in (𝑥 .Cons.0 : 𝐼32 as 𝐼32)
↬ ∅,∅, let 𝑥 : 𝜏list as 𝜏𝑝 = _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32 in (𝑥 .Cons.0 : 𝐼32 as 𝐼32)
↬ {𝑥 : 𝜏list as 𝜏𝑝 ↦→ 𝑎.𝜖 }, {𝑎 ↦→ _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32 }, (𝑥 .Cons.0 : 𝐼32 as 𝐼32)
↬ {. . . , 𝑥 ′ : 𝐼32 as 𝐼32 ↦→ 𝑎.[2 : 32] }, {. . . }, (𝑥 ′ .𝜖 : 𝐼32 as 𝐼32)
↬ {. . . }, {. . . }, (42)32 △

For the target IR, we use a more standard small step semantics with a store modeling the content
of the memory. Our target evaluation judgement is denoted 𝜌in, 𝜌out, 𝜍, E ⇝ 𝜌 ′in, 𝜌

′
out, 𝜍

′, E′, where:
• 𝜌in and 𝜌out map input and output location identifiers to concrete locations, which consist of an

address and a memory path (i.e., unaligned pointers);
• 𝜍 is a memory store used to interpret the contents of 𝜌in and 𝜌out;
• E is the target expression to evaluate.
Normal forms are states where E is a return statement (success or fail). The location environments
𝜌in and 𝜌out enforce a distinction between input and output locations, and directly reflect the effects
of let in and let out instructions; for instance, we evaluate letin 𝑥 ′ = 𝑥 .𝜋 by looking up 𝑥 in 𝜌in,
appending 𝜋 to 𝜌in (𝑥) and binding the result to 𝑥 ′ in 𝜌in. The store 𝜍 is only used by instructions
that allocate memory or perform actual reads/writes, such as switches and writes. The full judgment
is available in appendix (Fig. 24).

We can now state our main result: given a source expression and its compiled target expression,
their evaluation eventually yields identical memory contents.

Theorem 8.2 (Soundness). Let 𝜏 a type, 𝜏 a layout and 𝑒 a source expression such that 𝜏 agrees
with 𝜏 and Γ ⊢ 𝑒 : 𝜏 . Let 𝑥 free in 𝑒 and 𝑎 a fresh address. Finally, let 𝜍0 and �̂�0 the initial memory
store and value where �̂�0 is compatible with 𝜏 , i.e. shape_of𝜍0 (�̂�0) = shape_of(𝜏).

The following conditions hold:
• Compile (∅, (𝑥 : 𝜏 as 𝜏), 𝑒) succeeds and yields a target expression E;
• the source evaluation reaches a normal form: ∅,∅,∅, 𝑒 ↬∗ Γ, 𝜎, 𝜍𝑠 , �̂�𝑠 ;
• the target evaluation reaches a successful state:∅, {𝑥 ↦→ 𝑎.𝜖}, 𝜍0∪{𝑎 ↦→ �̂�0}, E ⇝∗ 𝜌in, 𝜌out, 𝜍𝑡 , success
with (𝑥 ↦→ 𝑎.𝜖) ∈ 𝜌out and there exists �̂�𝑡 such that (𝑎 ↦→ �̂�𝑡) ∈ 𝜍𝑡 ;
• the results of source and target evaluation are equivalent: 𝜍𝑠 , �̂�𝑠 ∼ 𝜍𝑡 , �̂�𝑡 .

9 RELATEDWORK
Algebraic Data Types and low-level programming. ADTs, pattern matching compilation and

compact memory representations all have long histories. We summarise the work directly related
to low-level programming.

Our approach directly extends (and subsumes) [Baudon et al. 2023]. In particular, their “regular”
case is covered by our initial naive algorithm in Section 6.2. Our full procedure covers all possible
cases, including the so-called “irregular” ones which they only sketch.

Many of the links between ADTs and low-level programming were initially made for verification.
Notably, Dargent [Chen et al. 2023] allows to specify memory representations in an external DSL
which outputs C code for accessors, and Isabelle/HOL theorems; with the aim of formally verifying
embedded systems. Swamy et al. [2022] propose a similar approach to formally verify binary format
parsers in 𝐹 ∗. These approaches are precise, leveraging their host proof assistant, but do not provide

, Vol. 1, No. 1, Article . Publication date: June 2024.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

language-integrated constructs such as pattern matching. They also provide far less optimisations
than what we propose.
LoCal [Vollmer et al. 2019] and Gibbon [Koparkar et al. 2021], on the other hand, provide

DSLs tailored to describe and manipulate low-level and serialised representations. Their memory
layouts are less flexible than what we presented, making it impossible to provide truly customised
representations, but allowing them numerous powerful optimisations we do not provide, such as
leveraging parallelism. We hope to combine our approaches in the future.

Finally, some general-purpose languages provide ways to improve data layout. Rust’s niches [RFC:
Alignment niches for references types 2021] provide semi-automatic layout optimisations, but are
quite limited. Unboxed constructors [Colin et al. 2018; Keller et al. 2010] allow for manual optimi-
sations, but prevent the use of nice high-level constructs, falling back to a C-like programming
style. By contrast, our approach allows using only a high-level view, while giving full control over
memory layout.
Intermediate Representation. We use a Destination-Passing Style [Shaikhha et al. 2017] repre-

sentation in A-normal form [2023]. This provides us precise control over memory management
and input/output arguments, and could enable further memory improvements, such as using stack
allocation when appropriate and applying tail-call modulo cons [Bour et al. 2021]. Another avenue
would naturally be to use Continuation-Passing Style [Appel 1992], notably to simplify handling of
recursive calls in Section 7.6. This is in line with numerous compilers for functional languages [Hall
et al. 1992; Vincent Laviron 2023] and easily allows moving to SSA representations such as Rust’s
MIR and LLVM.
CONCLUSION
We presented a unified compilation procedure for constructors and destructors of Algebraic Data
Types using a Destination-Passing Style intermediate representation. Our work allows providing
arbitrary memory layouts for ADTs and compiles high-level code to low-level programs accordingly.
In the future, we hope to investigate memory management strategies, for instance following
Lorenzen et al. [2023].

, Vol. 1, No. 1, Article . Publication date: June 2024.

Compiling Morphisms of Algebraic Data Types

REFERENCES
A-normal form. https://en.wikipedia.org/w/index.php?title=A-normal_form&oldid=1121147927. [Online; accessed

19-February-2023]. (2023).
AoS and SoA. https : / / en .wikipedia . org /w/ index .php? title=AoS_and_SoA&oldid=1068565041. [Online; accessed

22-February-2023]. (2023).
Andrew W. Appel. 1992. Compiling with Continuations. Cambridge University Press. isbn: 0-521-41695-7.
Lennart Augustsson. 1985. “Compiling pattern matching”. In: Functional Programming Languages and Computer Architecture.

Ed. by Jean-Pierre Jouannaud. Springer Berlin Heidelberg, Berlin, Heidelberg, 368–381. isbn: 978-3-540-39677-2.
Thaïs Baudon, Gabriel Radanne, and Laure Gonnord. Aug. 2023. “Bit-Stealing Made Legal: Compilation for Custom Memory

Representations of Algebraic Data Types”. Proc. ACM Program. Lang., 7, ICFP, (Aug. 2023). doi: 10.1145/3607858.
Frédéric Bour, Basile Clément, and Gabriel Scherer. 2021. “Tail Modulo Cons”. CoRR, abs/2102.09823. https://arxiv.org/abs/2

102.09823 arXiv: 2102.09823.
Rod M. Burstall, David B. MacQueen, and Donald Sannella. 1980. “HOPE: An Experimental Applicative Language”. In:

Proceedings of the 1980 LISP Conference, Stanford, California, USA, August 25-27, 1980. ACM, 136–143. doi: 10.1145/800087
.802799.

Zilin Chen, Ambroise Lafont, Liam O’Connor, Gabriele Keller, Craig McLaughlin, Vincent Jackson, and Christine Rizkallah.
Jan. 2023. “Dargent: A Silver Bullet for Verified Data Layout Refinement”. Proc. ACM Program. Lang., 7, POPL, (Jan. 2023).
doi: 10.1145/3571240.

Simon Colin, Rodolphe Lepigre, and Gabriel Scherer. 2018. “Unboxing Mutually Recursive Type Definitions in OCaml”.
arXiv preprint arXiv:1811.02300.

Cordelia V. Hall, Kevin Hammond, Will Partain, Simon L. Peyton Jones, and Philip Wadler. 1992. “The Glasgow Haskell
Compiler: A Retrospective”. In: Functional Programming, Glasgow 1992, Proceedings of the 1992 Glasgow Workshop on
Functional Programming, Ayr, Scotland, UK, 6-8 July 1992 (Workshops in Computing). Ed. by John Launchbury and
Patrick M. Sansom. Springer, 62–71. doi: 10.1007/978-1-4471-3215-8_6.

Gabriele Keller, Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon L. Peyton Jones, and Ben Lippmeier. 2010. “Regular,
shape-polymorphic, parallel arrays in Haskell”. In: Proceeding of the 15th ACM SIGPLAN international conference on
Functional programming, ICFP 2010, Baltimore, Maryland, USA, September 27-29, 2010. Ed. by Paul Hudak and Stephanie
Weirich. ACM, 261–272. doi: 10.1145/1863543.1863582.

Chaitanya Koparkar, Mike Rainey, Michael Vollmer, Milind Kulkarni, and Ryan R. Newton. 2021. “Efficient Tree-Traversals:
Reconciling Parallelism and Dense Data Representations”. Proc. ACM Program. Lang., 5, ICFP. doi: 10.1145/3473596.

Anton Lorenzen, Daan Leijen, and Wouter Swierstra. Aug. 2023. “FP2: Fully in-Place Functional Programming”. Proc. ACM
Program. Lang., 7, ICFP, (Aug. 2023). doi: 10.1145/3607840.

Luc Maranget. 2008. “Compiling pattern matching to good decision trees”. In: Proceedings of the ACM Workshop on ML, 2008,
Victoria, BC, Canada, September 21, 2008. Ed. by Eijiro Sumii. ACM, 35–46. doi: 10.1145/1411304.1411311.

Luc Maranget. 2007. “Warnings for pattern matching”. J. Funct. Program., 17, 3, 387–421. doi: 10.1017/S0956796807006223.
RFC: Alignment niches for references types. https://github.com/rust-lang/rfcs/pull/3204. (2021).
Peter Sestoft. 1996. “ML pattern match compilation and partial evaluation”. In: Partial Evaluation. Springer, 446–464.
Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton Jones, and Dimitrios Vytiniotis. 2017. “Destination-Passing Style for

Efficient Memory Management”. In: Proceedings of the 6th ACM SIGPLAN International Workshop on Functional High-
Performance Computing (FHPC 2017). Association for Computing Machinery, Oxford, UK, 12–23. isbn: 9781450351812.
doi: 10.1145/3122948.3122949.

Nikhil Swamy et al.. 2022. “Hardening attack surfaces with formally proven binary format parsers”. In: PLDI ’22: 43rd ACM
SIGPLAN International Conference on Programming Language Design and Implementation, San Diego, CA, USA, June 13 -
17, 2022. Ed. by Ranjit Jhala and Isil Dillig. ACM, 31–45. doi: 10.1145/3519939.3523708.

[SW exc.] Linus Torvalds, “Red-Black Trees in Linux”, from The Linux Kernel version 6.2, 2023. lic: GPL-2.0 WITH Linux-
syscall-note. url: https://github.com/torvalds/linux, swhid: ⟨swh:1:cnt:45b6ecde3665aa744f790cd915445fe07595181c;ori
gin=https://github.com/torvalds/linux;visit=swh:1:snp:de81d8ff32247a7edaa935cf0468bf16237d25c5;anchor=swh:1:rel:
32758e7a720e4752a824c6062e75f107314e5598;path=/include/linux/rbtree_types.h⟩.

Mark Shinwell Vincent Laviron Pierre Chambart. 2023. “Efficient OCaml Compilation with Flambda 2”. OCaml. https://icfp2
3.sigplan.org/details/ocaml-2023-papers/8/Efficient-OCaml-compilation-with-Flambda-2.

Michael Vollmer, Chaitanya Koparkar, Mike Rainey, Laith Sakka, Milind Kulkarni, and Ryan R. Newton. 2019. “LoCal: a
language for programs operating on serialized data”. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. Ed. by Kathryn S. McKinley and
Kathleen Fisher. ACM, 48–62. doi: 10.1145/3314221.3314631.

Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović. Dec. 2019. The RISC-V Instruction Set Manual,
Volume I: User-Level ISA, Version 20191213. Tech. rep. RISCV fundation, (Dec. 2019).

, Vol. 1, No. 1, Article . Publication date: June 2024.

https://en.wikipedia.org/w/index.php?title=A-normal_form&oldid=1121147927
https://en.wikipedia.org/w/index.php?title=AoS_and_SoA&oldid=1068565041
https://doi.org/10.1145/3607858
https://arxiv.org/abs/2102.09823
https://arxiv.org/abs/2102.09823
https://arxiv.org/abs/2102.09823
https://doi.org/10.1145/800087.802799
https://doi.org/10.1145/800087.802799
https://doi.org/10.1145/3571240
https://doi.org/10.1007/978-1-4471-3215-8_6
https://doi.org/10.1145/1863543.1863582
https://doi.org/10.1145/3473596
https://doi.org/10.1145/3607840
https://doi.org/10.1145/1411304.1411311
https://doi.org/10.1017/S0956796807006223
https://github.com/rust-lang/rfcs/pull/3204
https://doi.org/10.1145/3122948.3122949
https://doi.org/10.1145/3519939.3523708
https://github.com/torvalds/linux
http://archive.softwareheritage.org/swh:1:cnt:45b6ecde3665aa744f790cd915445fe07595181c;origin=https://github.com/torvalds/linux;visit=swh:1:snp:de81d8ff32247a7edaa935cf0468bf16237d25c5;anchor=swh:1:rel:32758e7a720e4752a824c6062e75f107314e5598;path=/include/linux/rbtree_types.h
http://archive.softwareheritage.org/swh:1:cnt:45b6ecde3665aa744f790cd915445fe07595181c;origin=https://github.com/torvalds/linux;visit=swh:1:snp:de81d8ff32247a7edaa935cf0468bf16237d25c5;anchor=swh:1:rel:32758e7a720e4752a824c6062e75f107314e5598;path=/include/linux/rbtree_types.h
http://archive.softwareheritage.org/swh:1:cnt:45b6ecde3665aa744f790cd915445fe07595181c;origin=https://github.com/torvalds/linux;visit=swh:1:snp:de81d8ff32247a7edaa935cf0468bf16237d25c5;anchor=swh:1:rel:32758e7a720e4752a824c6062e75f107314e5598;path=/include/linux/rbtree_types.h
https://icfp23.sigplan.org/details/ocaml-2023-papers/8/Efficient-OCaml-compilation-with-Flambda-2
https://icfp23.sigplan.org/details/ocaml-2023-papers/8/Efficient-OCaml-compilation-with-Flambda-2
https://doi.org/10.1145/3314221.3314631

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

A FOCUSING AND SPECIALISATION
We now give full details of the definition of focusing and specialisation.

Focusing in Types and Layouts. “Focusing”, defined in Fig. 13 allows to focus on a specific part of
a type or layout, according to a given path. Focus in the high-level language is denoted focus (𝜋, 𝜃)
where 𝜃 is a type, an expression, a provenance, or another path, and returns an object of the same
kind. It simply follows the syntax to extract the subterm at position 𝜋 . For instance, we can consider
“the part that is relevant to .Sw.0” in the type 𝜏RISC-V(Example 3.1):

focus (.Sw.0, 𝜏RISC-V) = focus
(
.Sw.0, Sw(𝜏reg, 𝜏reg, 𝐼12)

)
= 𝜏reg

Layout focusing (Fig. 14), denoted �focus (𝜋, 𝜏), similarly extracts the layout located at posi-
tion 𝜋 within the parent layout 𝜏 . It is undefined on splits. For instance, �focus (.[7 : 5], 𝜏Sw) =
(.Sw.0 as 𝜏reg).

focus (𝜖, 𝑥) = 𝑥 focus (.𝑖, ⟨𝑥1, . . . , 𝑥𝑛⟩) = 𝑥𝑖
focus (𝜋, _) = _ focus (.𝐾𝑖 , 𝐾1 (𝑥1) + . . . + 𝐾𝑛 (𝑥𝑛)) = 𝑥𝑖

Fig. 13. Type Focusing.

�focus (𝜖, 𝜏) = 𝜏 �focus (.𝑖, {{𝜏1, . . . , 𝜏𝑛}}) = 𝜏𝑖�focus (.[𝑜𝑘 : ℓ𝑘], _ℓ ⋉1≤𝑖≤𝑛 [𝑜𝑖 : ℓ𝑖] : 𝜏𝑖) = 𝜏𝑘�focus (.[𝑜𝑘 : ℓ𝑘],&ℓ (𝜏) ⋉1≤𝑖≤𝑛 [𝑜𝑖 : ℓ𝑖] : 𝜏𝑖) = 𝜏𝑘�focus (.∗,&ℓ (𝜏) ⋉1≤𝑖≤𝑛 [𝑜𝑖 : ℓ𝑖] : 𝜏𝑖) = 𝜏

Fig. 14. Layout Focusing.

Layout and Type Specialisation. “Specialisation”, defined in Fig. 15 filters a type or a layout to
exclude parts which are incompatible with a given provenance. Type specialisation, denoted 𝜏

/
𝑝 ,

is a simple syntactic filter that discards irrelevant constructors. For instance,
𝜏RISC-V

/
Sw(_, _, _) = Sw(𝜏reg, 𝜏reg, 𝐼12) .

Layout specialisation, denoted 𝜏
/
𝑝 (Fig. 16), is more complex: it removes all splits from 𝜏 (up to

fragments) by filtering out branches whose provenance set excludes 𝑝 . It returns a list of pairs of the
form (𝑝′ ↦→ 𝜏 ′), where 𝑝′ is a refined version of 𝑝 and 𝜏 ′ is the restriction of 𝜏 to values that match
𝑝′. For instance, 𝜏RISC-V

/
Sw(_, _, _) returns a single pair (Sw(_, _, _) ↦→ 𝜏Sw), and specialisation

according to the wildcard provenance lists all possible refinement pairs of a layout:

𝜏RISC-V
/
_ =

{
(Sw(_, _, _) ↦→ 𝜏Sw) , (Add(_, _, _) ↦→ 𝜏Add) ,
(Addi(_, _, _) ↦→ 𝜏Addi) ,

(
Jal(_, _) ↦→ 𝜏Jal

) }

, Vol. 1, No. 1, Article . Publication date: June 2024.

Compiling Morphisms of Algebraic Data Types

𝜏
/
_ = 𝜏 ⟨𝜏1, . . . , 𝜏𝑛⟩

/
⟨𝑝1, . . . , 𝑝𝑛⟩ =

〈
𝜏1
/
𝑝1, . . . , 𝜏𝑛

/
𝑝𝑛

〉
𝐾1 (𝜏1) + . . . + 𝐾𝑛 (𝜏𝑛)

/
𝐾 (𝑝) = 𝐾𝑖 (𝜏𝑖

/
𝑝)

Fig. 15. Type Specialisation

𝜏
/
_ = {_ ↦→ 𝜏} (𝜋 as 𝜏)

/
𝑝 = {𝑝 ↦→ (𝜋 as 𝜏)}

{{𝜏1, . . . , 𝜏𝑛}}
/
𝑝 =

𝑝′ ↦→
{{
𝜏 ′1, . . . , 𝜏

′
𝑛

}} ������
(𝑝𝑖 ↦→ 𝜏 ′𝑖) ∈ 𝜏𝑖

/
𝑝

𝑝1 ∩ . . . ∩ 𝑝𝑛 = 𝑝′

split (𝜋)

𝑐1 from 𝑃1 ⇒ 𝜏1
... from

... ⇒
...

𝑐𝑛 from 𝑃𝑛⇒ 𝜏𝑛

/
𝑝 =

𝜏𝑖
/
𝑝

������
𝑝′ ∈ 𝑃𝑖

𝑝 ⊂ 𝑝′

Fig. 16. Layout Specialisation.

|𝑡 | = |Δ(𝑡) | |𝐼ℓ | = ℓ |_ℓ | = ℓ | (𝑐)ℓ | = ℓ |&ℓ (𝜏) | = ℓ
����̂𝜏 ⋉

0≤𝑖<𝑛
[𝑜𝑖 : ℓ𝑖] : 𝜏𝑖

���� = |𝜏 |
|{{𝜏1, . . . , 𝜏𝑛}}| = |𝜏1 | + . . . + |𝜏𝑛 | | (𝜋 as 𝜏) | = |𝜏 |��split (𝜋) {𝑐𝑖 from 𝑃𝑖⇒ 𝜏𝑖

�� 1 ≤ 𝑖 ≤ 𝑛}�� = max
1≤𝑖≤𝑛

|𝜏𝑖 |

Fig. 17. Size of a memory layout in type environment Δ : TyVars→ �Types.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

B RECURSIVE CONSTRUCTORS
We now detail the extension of our algorithm to handle such cases by emitting recursive constructor
code. The idea is to replace Rebuild and Seek withWrap(Rebuild) andWrap(Seek) respectively.
TheWrap function, defined in Algorithm 8, hashes arguments to keep track of which calls have
already been performed. Each argument hash is associated with a function symbol, and any
subsequent call on the same arguments returns a call to this function.

1 functionWrap(Fun):
2 𝐻 := empty
3 return 𝜆 (⟨𝑠in, 𝜏in, 𝜏in, 𝑝in⟩ , ⟨𝑑out, 𝜏out, 𝜏out⟩ , 𝜋) . {
4 ℎ ← (𝜏in, 𝜏in, 𝑝in, 𝜏out, 𝜏out, 𝜋)
5 if ℎ ∈ dom (𝐻) then
6 𝑓 ← 𝐻 (ℎ)
7 return call 𝑓 (𝑠in, 𝑑out); success
8 else
9 𝑓 , 𝑠, 𝑑 ← fresh symbols

10 𝐻 (ℎ) := Declared(𝑓)
11 args′in ← ⟨𝑠, 𝜏in, 𝜏in, 𝑝in⟩
12 args′out ← ⟨𝑑, 𝜏out, 𝜏out⟩
13 Ebody ← Fun(args′in, args′out, 𝜋)
14 𝐻 (ℎ) := Defined

(
𝑓 , 𝜆(𝑠, 𝑑).Ebody

)
15 return call 𝑓 (𝑠in, 𝑑out); success
16 end
17 }

Algorithm 8:Wrapper for emitting recursive code

, Vol. 1, No. 1, Article . Publication date: June 2024.

Compiling Morphisms of Algebraic Data Types

C ASSORTED DEFINITIONS
C.1 Types and layouts
Agreement criteria define the relationship between a high-level type and its memory layout specifi-
cation.

Definition C.1 (Agreement between types and layouts). Let 𝜏 a high-level type and 𝜏 a memory
layout. We say that 𝜏 represents 𝜏 , or agrees with 𝜏 , and we write agree(𝜏, 𝜏), if either 𝜏 and 𝜏 are
integer types of the same width (i.e., 𝜏 = 𝜏 = 𝐼ℓ) or the following conditions hold:
All fragments bind subterms to their valid representation. (Fragment Coherence)

For all 𝜋 such that �focus (𝜋, 𝜏) = (𝜋 as 𝜏 ′), 𝜏 ′ = focus (𝜋, 𝜏) is defined and 𝜏 ′ agrees with 𝜏 ′.
Split branches are valid representations of high-level subtypes. (Branch Coherence)
For all 𝜋 such that �focus (𝜋, 𝜏) = split (𝜋 ′)

{
𝑐𝑖 from 𝑃𝑖⇒ 𝜏𝑖

}
, for each 𝑖 and each 𝑝 ∈ 𝑃𝑖 such

that 𝑝 is a provenance of type 𝜏 , 𝜏𝑖 agrees with 𝜏
/
𝑝 .

All data from the high-level type is represented within the memory layout. (Coverage)
For every 𝜋 that leads to a single bit in 𝜏 (i.e., focus (𝜋, 𝜏) = 𝑖1), 𝜏 covers 𝜋 : every memory type
𝜏 ′ ∈ 𝜏

/
𝜋 contains a fragment for a source position 𝜋0 prefix of 𝜋 . More precisely, there exist

source and memory paths 𝜋0, 𝜋0 such that �focus (𝜋0, 𝜏 ′) = (𝜋0 as 𝜏 ′′) and either 𝜋 = 𝜋0.𝜋
′ or

𝜋 = 𝜋 ′ .[𝑜 : ℓ], 𝜋0 = 𝜋 ′ .[𝑜0 : ℓ0] and 𝑜0 ≤ 𝑜 ≤ 𝑜 + ℓ ≤ 𝑜0 + ℓ0.
Memory layouts can tell incompatible provenances apart. (Distinguishability)

For every pair of provenances 𝑝0, 𝑝1 of type 𝜏 such that 𝑝0 and 𝑝1 are incompatible (that is, there
exists some position 𝜋 such that focus (𝜋, 𝑝0) and focus (𝜋, 𝑝1) have different head constructors),
𝜏 distinguishes between 𝑝0 and 𝑝1. More precisely, for any 𝜏0 ∈ 𝜏

/
𝑝0 and 𝜏1 ∈ 𝜏

/
𝑝1, there exists

a memory path 𝜋 such that �focus (𝜋, 𝜏0) = (𝑐0)ℓ , �focus (𝜋, 𝜏1) = (𝑐1)ℓ and 𝑐0 ≠ 𝑐1.
(𝑡 ↦→ 𝜏) ∈ Δ Δ, Γ ⊢ 𝑒 : 𝜏 as 𝜏

Δ, Γ ⊢ 𝑒 : 𝜏 as 𝑡
agree(𝜏, 𝜏) Δ, Γ ⊢ 𝑢 : 𝜏
Δ, Γ ⊢ (𝑢 : 𝜏 as 𝜏) : (𝜏 as 𝜏)

Δ, Γ ⊢ 𝑒 : 𝜏 as 𝜏 Δ, Γ ∪ {(𝑥 : 𝜏 as 𝜏)} ⊢ 𝑒0 : (𝜏0 as 𝜏0)
Δ, Γ ⊢ let 𝑥 = 𝑒 in 𝑒0 : (𝜏0 as 𝜏0)

agree(𝜏, 𝜏)
Δ, Γ ∪ {𝑥 : (𝜏 as 𝜏)} ⊢ 𝑒 : (𝜏 ′ as 𝜏 ′) Δ, Γ ∪ {𝑓 : (𝜏 as 𝜏) → (𝜏 ′ as 𝜏 ′)} ⊢ 𝑒0 : (𝜏0 as 𝜏0)

Δ, Γ ⊢ fun 𝑓 (𝑥 : 𝜏 as 𝜏) = 𝑒 in 𝑒0 : (𝜏0 as 𝜏0)

(𝑥 : (𝜏 as 𝜏)) ∈ Γ
Δ, Γ ⊢ 𝑥 : (𝜏 as 𝜏)

(𝑓 : (𝜏 as 𝜏) → (𝜏 ′ as 𝜏 ′)) ∈ Γ (𝑥 : (𝜏 as 𝜏)) ∈ Γ
Δ, Γ ⊢ 𝑓 (𝑥) : (𝜏 ′ as 𝜏 ′)

𝑥 : 𝜏 as 𝜏 ∈ Γ Δ ⊢ pat𝑖 : 𝜏 Δ, Γ ⊢ 𝑒𝑖 : (𝜏 ′ as 𝜏 ′) ∀𝑝 ∈ provs_ofΔ (𝜏), ∃𝑖, pat𝑖 ▷ 𝑝

Δ, Γ ⊢ match(𝑥){pat1 → 𝑒1 . . . pat𝑛 → 𝑒𝑛} : (𝜏 ′ as 𝜏 ′)

Fig. 18. Typing judgment for source expressions (grammar in Fig. 8): Δ, Γ ⊢ 𝑒 : 𝜏 as 𝜏 with Δ : TyVars →
Types ∪ �Types and Γ : Vars→ Types × �Types

, Vol. 1, No. 1, Article . Publication date: June 2024.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

C.2 Memory values and stores
The notion of memory valuexpressions, whose grammar is depicted in Fig. 19, abstracts from
previously defined memory contents (Fig. 9), and is in our formalism used to capture values halfway
during the interpretation process.

Memory valuexpressions

𝑢 ∈ �ValuExprs ::= (𝑢 : 𝜏 as 𝜏) (unevaluated representation)
| _ℓ (opaque word)
| (𝑐)ℓ (constant word)
| &ℓ (𝑢) (addressless pointer)
| &ℓ (𝑎) (pointer value)
| 𝑢 ⋉

0≤𝑖<𝑛
[𝑜𝑖 : ℓ𝑖] : 𝑢𝑖 (composite word)

| {{𝑢0, . . . , 𝑢𝑛−1}} (struct)
Memory expressions

�̂� ∈ �Exprs ::= 𝑒 (source expression)
| 𝑢 (memory valuexpression)
| let 𝑥 : 𝜏 as 𝜏 = �̂� in 𝑒 (let-binding intermediate stage)

Fig. 19. Memory expressions and valuexpressions, representing intermediate stages between source expres-

sions and memory values

The notion of shape of a memory value �̂� according to a store 𝜍 : Addrs → �Values (Fig. 20) is
useful to characterise our equivalence notion (Fig. 21)

shape_of𝜍 {
_ℓ −→ _ℓ
(𝑐)ℓ −→ (𝑐)ℓ
&ℓ (𝑎) −→ &ℓ

(
shape_of𝜍 (�̂�)

)
when (𝑎 ↦→ �̂�) ∈ 𝜍

�̂� ⋉
0≤𝑖<𝑛

[𝑜𝑖 : ℓ𝑖] : �̂�𝑖 −→ shape_of𝜍 (�̂�) ⋉
0≤𝑖<𝑛

[𝑜𝑖 : ℓ𝑖] : shape_of𝜍 (�̂�𝑖)

{{�̂�0, . . . , �̂�𝑛−1}} −→
{{
shape_of𝜍 (�̂�0), . . . , shape_of𝜍 (�̂�𝑛−1)

}}
}

Fig. 20. Shape of a memory value �̂� in a store 𝜍 : shape_of𝜍 (�̂�)

, Vol. 1, No. 1, Article . Publication date: June 2024.

Compiling Morphisms of Algebraic Data Types

𝜍, _ℓ ∼ 𝜍 ′, _ℓ 𝜍, (𝑐)ℓ ∼ 𝜍 ′, (𝑐)ℓ
(𝑎 ↦→ �̂�) ∈ 𝜍 (𝑎′ ↦→ �̂� ′) ∈ 𝜍 ′ 𝜍, �̂� ∼ 𝜍 ′, �̂� ′

𝜍,&ℓ (𝑎) ∼ 𝜍 ′,&ℓ (𝑎′)

𝜍, �̂� ∼ 𝜍 ′, �̂� ′ 𝜍, �̂�𝑖 ∼ 𝜍 ′, �̂� ′𝑖
𝜍, �̂�⋉

0≤𝑖<𝑛
[𝑜𝑖 : ℓ𝑖] : �̂�𝑖 ∼ 𝜍 ′, �̂� ′⋉

0≤𝑖<𝑛
[𝑜𝑖 : ℓ𝑖] : �̂� ′𝑖

𝜍, �̂�𝑖 ∼ 𝜍 ′, �̂� ′𝑖
𝜍, {{�̂�0, . . . , �̂�𝑛−1}} ∼ 𝜍 ′,

{{
�̂� ′0, . . . , �̂�

′
𝑛−1

}}
Fig. 21. Equivalence between two memory values considered in their stores: 𝜍, �̂� ∼ 𝜍 ′, �̂� ′ (this is equivalent to
shape_of𝜍 (�̂�) = shape_of𝜍 ′ (�̂� ′))

C.3 Semantics/Evaluation
In order to state the correctness of our compilation algorithms, we need to define a “memory-aware”
small steps semantics for our source language, in Fig. 22 (toplevel rules) and Fig. 23 (rules to
construct and evaluate values).

The judgment is denoted Γ, 𝜎, 𝜍, �̂� ↬ Γ′, 𝜎 ′, 𝜍 ′, �̂�′, where:
• Γ : Vars→ Types × �Typesin shape is a typing environment (assigning both a type and a layout);
• 𝜎 : Vars→�Values is a memory value environment (with the same domain as Γ);
• 𝜍 is a memory store used to interpret the contents of 𝜎 ;
• �̂� is a memory expression that represents the memory value currently being built. it includes both

source expressions and memory values, along with intermediate stages containing both concrete
memory structures and unevaluated triples (𝑢 : 𝜏 as 𝜏).

Normal forms are states where �̂� is a memory value. In order to reduce a source expression 𝑒 to a
memory value �̂� (along with its store 𝜍),↬ must handle both high-level constructs (e.g., let, match)
and memory-level construction of values (i.e., represent some valuexpression 𝑢 according to a given
layout 𝜏).

Variable
(𝑥 ↦→ �̂�) ∈ 𝜎

Δ, Σ ⊢ Γ,𝜎, 𝜍,𝑥 ↬ Γ,𝜎, 𝜍,̂𝑣

FunApp
(𝑥 ↦→ �̂�) ∈ 𝜎 (𝑓 ↦→ 𝜆𝑥 ′ .𝑒) ∈ Σ

Δ,Σ ⊢ Γ, 𝜎, 𝜍,𝑓 (𝑥) ↬ Γ ∪ {𝑥 ′ : Γ(𝑥)}, 𝜎 ∪ {𝑥 ′ ↦→ �̂�}, 𝜍,𝑒

LetStep
Δ, Σ ⊢Γ, 𝜎, 𝜍, �̂� ↬ Γ′, 𝜎 ′, 𝜍 ′, �̂�′

Δ, Σ ⊢Γ, 𝜎, 𝜍, let 𝑥 : 𝜏 as 𝜏 = �̂� in 𝑒 ↬ Γ′, 𝜎 ′, 𝜍 ′, let 𝑥 : 𝜏 as 𝜏 = �̂�′ in 𝑒

LetBind
Δ, Σ ⊢Γ, 𝜎, 𝜍,let 𝑥 : 𝜏 as 𝜏 = �̂� in 𝑒 ↬ Γ ∪ {𝑥 : 𝜏 as 𝜏}, 𝜎 ∪ {𝑥 ↦→ �̂�}, 𝜍,𝑒

Match
(𝑥 : 𝜏 as 𝜏) ∈ Γ (𝑥 ↦→ �̂�) ∈ 𝜎 eval_match (𝜏, 𝜏, �̂�, 𝜍, {𝑝𝑖 | 1 ≤ 𝑖 ≤ 𝑛}) = 𝑖

Δ, Σ ⊢Γ, 𝜎, 𝜍,match(𝑥){𝑝1 → 𝑒1 . . . 𝑝𝑛 → 𝑒𝑛} ↬ Γ, 𝜎, 𝜍, 𝑒𝑖

Fig. 22. Evaluation judgment for source expressions, high-level rules: Γ, 𝜎, 𝜍, �̂� ↬ Γ′, 𝜎′, 𝜍 ′, �̂�′. Δ is a global type

variable environment and Σ a global function definition environment. Environments that are not relevant to a

particular rule are displayed in gray. TheMatch rule relies on a memory-level pattern matching evaluation

function eval_match which implements the approach presented in [Baudon et al. 2023] and returns the

smallest 𝑖 such that the 𝑖-th pattern matching branch matches, or ⊥ if no branch matches.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

It remains to define the semantics of our target representation (see grammar in Fig. 11), in Fig. 24.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Compiling Morphisms of Algebraic Data Types

𝐶 [□] ::= □ | &ℓ

(
𝐶 [□]

)
| 𝐶 [□] ⋉ 𝑏 : 𝑢 | 𝑢 ⋉ 𝑏 : 𝐶 [□] |

{{
𝑢, . . . , 𝑢,𝐶 [□], 𝑢, . . . , 𝑢

}}
| let 𝑥 : 𝜏 as 𝜏 = 𝐶 [□] in 𝑒

SubStep
Δ, Σ ⊢Γ, 𝜎, 𝜍,𝑢 ↬ Γ′, 𝜎 ′, 𝜍 ′, 𝑢′

Δ, Σ ⊢Γ, 𝜎, 𝜍,𝐶 [𝑢] ↬ Γ′, 𝜎 ′, 𝜍 ′,𝐶 [𝑢′]

Alloc
𝑎 ∉ dom (𝜍)

Δ, Σ ⊢ Γ, 𝜎,𝜍,&ℓ (�̂�) ↬ Γ, 𝜎,𝜍 ∪ {𝑎 ↦→ �̂�},&ℓ (𝑎)

TypeVar
(𝑡 ↦→ 𝜏) ∈ Δ Δ, Σ ⊢ Γ, 𝜎, 𝜍, (𝑢 : 𝜏 as 𝜏) ↬ Γ′, 𝜎 ′, 𝜍 ′, �̂�

Δ, Σ ⊢ Γ, 𝜎, 𝜍, (𝑢 : 𝜏 as 𝑡) ↬ Γ′, 𝜎 ′, 𝜍 ′, �̂�

Split
𝜏 = split (. . .) 𝑃 =

{
𝑥 ↦→ �prov_ofΔ,𝜍 (𝜏𝑥 , 𝜎 (𝑥)) ��� (𝑥 : 𝜏𝑥 as 𝜏𝑥) ∈ Γ

}
𝑝 = prov_ofΔ (𝜏,𝑢) [.𝜋 ← focus (𝜋 ′, 𝑃 (𝑥)) | focus (𝜋,𝑢) = 𝑥 .𝜋 ′] 𝜏

/
𝑝 = {(𝑝, 𝜏 ′)}

Δ, Σ ⊢ Γ, 𝜎, 𝜍, (𝑢 : 𝜏 as 𝜏) ↬ Γ, 𝜎, 𝜍, (𝑢 : 𝜏
/
𝑝 as 𝜏 ′)

Fragment
Δ ⊢ Γ, 𝜎, 𝜍,(𝑢 : 𝜏 as (𝜋 as 𝜏)) ↬ Γ, 𝜎, 𝜍,(focus (𝜋,𝑢) : focus (𝜋, 𝜏) as 𝜏)

Atom
Δ ⊢ Γ, 𝜎, 𝜍,(𝑐 : 𝜏 as 𝐼ℓ) ↬ Γ, 𝜎, 𝜍,(𝑐)ℓ

Constant
Δ ⊢ Γ, 𝜎, 𝜍,(𝑢 : 𝜏 as (𝑐)ℓ) ↬ Γ, 𝜎, 𝜍,(𝑐)ℓ

Word
Δ ⊢ Γ, 𝜎, 𝜍,(𝑢 : 𝜏 as _ℓ) ↬ Γ, 𝜎, 𝜍,_ℓ

Pointer
Δ ⊢ Γ, 𝜎, 𝜍,(𝑢 : 𝜏 as &ℓ (𝜏)) ↬ Γ, 𝜎, 𝜍,&ℓ ((𝑢 : 𝜏 as 𝜏))

BitRange
Δ ⊢ Γ, 𝜎, 𝜍,(𝑢 : 𝜏 as 𝜏 ⋉ 𝑏 : 𝜏 ′) ↬ Γ, 𝜎, 𝜍,(𝑢 : 𝜏 as 𝜏) ⋉ 𝑏 : (𝑢 : 𝜏 as 𝜏 ′)

Struct
Δ ⊢ Γ, 𝜎, 𝜍,(𝑢 : 𝜏 as {{𝜏1, . . . , 𝜏𝑛}}) ↬ Γ, 𝜎, 𝜍, {{(𝑢 : 𝜏 as 𝜏1), . . . , (𝑢 : 𝜏 as 𝜏𝑛)}}

Extract-like
(𝑥 : 𝜏𝑥 as 𝜏𝑥) ∈ Γ 𝜏𝑥 = 𝜏

Δ, Σ ⊢ Γ, 𝜎, 𝜍, (𝑥 .𝜖 : 𝜏 as 𝜏) ↬ Γ, 𝜎, 𝜍, 𝜎 (𝑥)

Seek-like
(𝑥 : 𝜏𝑥 as 𝜏𝑥) ∈ Γ (𝑥 ↦→ �̂�) ∈ 𝜎

𝑝 = �prov_ofΔ,𝜍 (𝜏𝑥 , �̂�) 𝜏𝑥
/
𝑝 = {(𝑝𝑏, 𝜏𝑏)} (𝜋 ↦→ 𝜋𝑓 as 𝜏𝑓) ∈ Shatter(𝜏𝑏)

𝜋 = 𝜋𝑓 .𝜋
′ 𝑥 𝑓 fresh symbol 𝜏𝑓 = focus

(
𝜋𝑓 , 𝜏𝑥

)
�̂� 𝑓 = �focus𝜍 (𝜋, �̂�)

Δ, Σ ⊢ Γ, 𝜎, 𝜍, (𝑥 .𝜋 : 𝜏 as 𝜏) ↬ Γ ∪ {𝑥 𝑓 : (𝜏𝑓 as 𝜏𝑓)}, 𝜎 ∪ {𝑥 𝑓 ↦→ �̂� 𝑓 }, 𝜍, (𝑥 𝑓 .𝜋 ′ : 𝜏 as 𝜏)

Fig. 23. Evaluation judgment for source expressions, memory value construction.
�prov_of(𝜏, �̂�) explores all

splits in 𝜏 and gathers the branches whose discriminant values are coherent with �̂� .

, Vol. 1, No. 1, Article . Publication date: June 2024.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

𝑦 ∉ dom (𝜌in) ∪ dom (𝜌out) 𝑥 ∈ dom (𝜌in) 𝜌in (𝑥) = 𝑎.𝜋0
𝜌in, 𝜌out, 𝜍, letin 𝑦 = 𝑥 .𝜋 ; E ⇝𝑇 𝜌in ∪ {𝑦 ↦→ 𝑎.𝜋0.𝜋}, 𝜌out, 𝜍, E

𝑦 ∉ dom (𝜌in) ∪ dom (𝜌out) 𝑥 ∈ dom (𝜌out) 𝜌out (𝑥) = 𝑎.𝜋0
𝜌in, 𝜌out, 𝜍, letout 𝑦 = 𝑥 .𝜋 ; E ⇝𝑇 𝜌in, 𝜌out ∪ {𝑦 ↦→ 𝑎.𝜋0.𝜋}, 𝜍, E

𝑥 ∉ dom (𝜌in) ∪ dom (𝜌out) 𝑎 fresh address
𝜌in, 𝜌out, 𝜍, letout 𝑥 = alloc(ℓ); E ⇝ 𝜌in, 𝜌out ∪ {𝑥 ↦→ 𝑎.𝜖}, 𝜍 ∪ {𝑎 ↦→ _ℓ }, E

𝑥 ∈ dom (𝜌out)
𝜌in, 𝜌out, 𝜍, 𝑥 := 𝑐; E ⇝ 𝜌in, 𝜌out, 𝜍 [𝜌out (𝑥) ← 𝑐], E

(𝑥 ↦→ 𝑎0.𝜋) ∈ 𝜌out
����focus𝜍 (𝜋, 𝜍 (𝑎0))��� = ℓ0 𝑎 fresh address

𝜌in, 𝜌out, 𝜍, 𝑥 := &alloc(ℓ); E ⇝ 𝜌in, 𝜌out, 𝜍 [𝑎0 .𝜋 ← &ℓ0 (𝑎)] ∪ {𝑎 ↦→ _ℓ }, E

𝑥 ∈ dom (𝜌in) 𝑦 ∈ dom (𝜌out) 𝜌in (𝑥) = 𝑎.𝜋 �focus𝜍 (𝜋, 𝜍 (𝑎)) = �̂�
𝜌in, 𝜌out, 𝜍, 𝑦 := 𝑥 ; E ⇝ 𝜌in, 𝜌out, 𝜍 [𝜌out (𝑦) ← �̂�], E

𝑥 ∈ dom (𝜌out)
𝜌in, 𝜌out, 𝜍, freeze(𝑥); E ⇝ 𝜌in ∪ {𝑥 ↦→ 𝜌out (𝑥)}, 𝜌out \ 𝑥, 𝜍, E

𝑥 ∈ dom (𝜌out) 𝜌out (𝑥) = 𝑎.𝜋 �focus𝜍 (𝜋, 𝑎) = _ℓ ℓ = ℓ0 + ℓ1
𝜌in, 𝜌out, 𝜍, cast 𝑥 to _ℓ0 ⋉ 𝑟 : _ℓ1 ; E ⇝ 𝜌in, 𝜌out, 𝜍 [𝑎.𝜋 ← _ℓ0 ⋉ 𝑟 : _ℓ1], E

𝑥 ∈ dom (𝜌out) 𝜌out (𝑥) = 𝑎.𝜋 �focus𝜍 (𝜋, 𝑎) = _ℓ ℓ = ℓ1 + · · · + ℓ𝑛
𝜌in, 𝜌out, 𝜍, cast 𝑥 to

{{
_ℓ1 , . . . , _ℓ𝑛

}}
; E ⇝ 𝜌in, 𝜌out, 𝜍 [𝑎.𝜋 ←

{{
_ℓ1 , . . . , _ℓ𝑛

}}
], E

(𝑥 ↦→ 𝑎.𝜋) ∈ 𝜌in (𝑎 ↦→ �̂�) ∈ 𝜍 �focus𝜍 (𝜋, �̂�) = (𝑐𝑖)ℓ
𝜌in, 𝜌out, 𝜍, switch (𝑥) {𝑐1 → E1 . . . 𝑐𝑛 → E𝑛}⇝𝑇 𝜌in, 𝜌out, 𝜍, E𝑖

Fig. 24. Evaluation judgment for target expressions: 𝜌in, 𝜌out, 𝜍, E ⇝ 𝜌′
in
, 𝜌′

out
, 𝜍 ′, E′. Steps labelled with 𝑇

indicate transitions that do not correspond to any↬-step in the simulation used to prove correctness.

, Vol. 1, No. 1, Article . Publication date: June 2024.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Compilation of Constructors and Destructors
	2.2 Morphisms of Complex Types
	2.3 Contribution and Outline

	3 Algebraic Data Types and Their Layouts
	3.1 Algebraic Data Types
	3.2 Memory Layouts
	3.3 Input Programs
	3.4 Memory Model

	4 Target in Destination Passing Style
	5 Compilation of Destructors: A Primer
	6 Compilation of Paths: A First Attempt
	6.1 Exploring Layouts with Focus and Specialise
	6.2 A Naive Compilation Algorithm for Accessors

	7 Full Compilation
	7.1 Compilation of Expressions
	7.2 Seek a path
	7.3 Rebuild constructors
	7.4 Refine memory locations
	7.5 Example of compilation
	7.6 Recursive Constructors

	8 Metatheory
	9 Related Work
	A Focusing and Specialisation
	B Recursive constructors
	C Assorted definitions
	C.1 Types and layouts
	C.2 Memory values and stores
	C.3 Semantics/Evaluation

