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Abstract

Acknowledging the economic role of knowledge, education, training
and health, can preserve and make them thrive without assuming that
preferences depend on any of them. Here, living capital is defined as their
aggregate.

In a planned economy, we find that the optimal sequence of total cap-
ital is always monotonic. Depending on the productivity of total capital
(defined as the sum of physical and living capital), three different regimes
hold: bounded growth; asymptotically balanced unbounded growth or
unbalanced unbounded growth.

Only at the very early stages of development the economy devotes
all its investment effort to increase the stock of physical capital and only
physical capital. As the economy develops, it will start using living capital
in production. In the first regime, total capital converges to a steady
state with a positive stock of total capital, which is larger than the one
without living capital. In the second regime, growth becomes unbounded,
and consumption grows at a constant rate. Total capital grows at the
same rate but only asymptotically. In the third case, living capital is
used increasingly at the beginning. Once the economy is sufficiently rich,
physical capital starts growing faster than living capital.

To close, we consider a market economy with externalities from the
living. In this case, if the government levies taxes to finance the accu-
mulation of living capital and implements exactly the optimal sequence
of living capital as in the planner’s program, then the equilibrium market
prices decentralize exactly the planner’s solution.
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1 Introduction

Mankind is currently facing tremendous challenges directly or indirectly caused

by economic activities. Among these challenges, we find climate change, the

exhaustion of natural resources, the rapid loss in biodiversity, and the diffusion

of new lethal diseases. Obviously, one feels compelled to immediately reduce

production and consumption, hoping that the virtues of degrowth would re-

establish a healthier (sustainable) equilibrium as praised by Georgescu-Roegen

(1979). Tradition would suggest to consider human, social and natural capital

as productive inputs and as utils, and then to model how production damages

them. While this approach is extremely important and informative, we pro-

pose a more comprehensive measure to contain the living: living capital. Living

capital is defined as a comprehensive measure of all economic inputs that are

alive, and which are not raw labor, to acknowledge that all living things form

a unity. The fact of acknowledging the economic role of all living things can

change investment behaviors, privilege their preservation, and bring degrowth

even without introducing any negative feedback from production to living cap-

ital.

Living capital includes education, knowledge, social interactions, and a broad

definition of health, which recognizes that environmental and human health

are one and the same thing.1 Besides, living capital includes all bonds and

feedbacks among all its components, and this is exactly what distinguishes living

capital from natural and social capital, and even their sum. Obviously, there

are positive and negative feedbacks, but we shall later assume that the net

feedback effect is positive making living capital resilient. The three essential

characteristics of living capital are that, first, it is not essential; second, it may

be irreversible; and third, it depreciates at a slower pace than physical capital.

Living capital is not essential because economies can produce without any living

capital, using physical capital, labor and land. And still, we prove that, once

the role of living capital is accounted for, agents, policy makers and the market

will invest and secure its growth. Living capital is irreversible when it is, for

instance, knowledge or technology embedded in the physical. Finally, regarding

the third assumption: Why does living capital depreciate slower than physical

capital? It cannot be otherwise since living capital is resilient because of the

connections among all its components. Hence it is as if we were assuming that

the positive feedbacks outperform the negative.

From a historical modelling perspective, we have observed the sequential

introduction of various types of productive capitals in economic models. The

first growth models of Ramsey (1928) and Solow (1956) focused on the role of

physical capital in human development. In the Sixties, the new growth the-

1Here we are in line with the World Health Organization, which provides with a compre-

hensive measure of health, defined by One Health as follows: "One Health is an integrated,

unifying approach that aims to sustainably balance and optimize the health of people, animals

and ecosystems. It recognizes that the health of humans, domestic and wild animals, plants,

and the wider environment (including ecosystems) are closely linked and interdependent" (see

https://www.who.int/health-topics/one-health#tab=tab_1).
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ories pioneered by Arrow (1962) and Uzawa (1965) stress instead the roles of

knowledge and human capital. The notion of natural capital was sequentially

introduced in different disciplines in the early Seventies.2 According to Holdren

and Ehrlich (1974) natural capital is the sum of nature’s services which range

from food production, to biodiversity warrant, conversion of waste and disease

control. For Arrow et al. (2004) natural capital includes all contributions of

nature to present and future utility. Contributions can be direct and indirect as

preserving biodiversity, flood control, water purification, etc. Only since 2012,

international organizations like the United Nations and the European Union

started collecting data to account for natural resources and nature services. Al-

though evidence is still scarce, there seems to be a strong will to render nature,

namely in terms of renewable resources and ecosystemic services, its complete

importance, including its economic role. The most recent productive capital to

enter the economic modelling scene is social capital. Coleman (1990) defines

social capital as the institutional relations between people understood widely

to include both as formal and informal relations. Soon after, Putnam (1993)

tested the concept using evidence on the Seventies Italian reform of the regional

administration, to underline in particular the connection between social capital

and the performance of institutions.

In an otherwise standard Ramsey setup in discrete time, we obtain the opti-

mal trajectories for both physical and living capital assuming that the relative

"price" between the two capitals is constant. Following Bruno et al. (2009),

Le Van et al. (2010) and Le Van et al. (2018), we characterize the dynamics

of total capital defined as the sum of the value of physical and living capital.

Depending on the productivity of total capital, three different regimes can arise:

(1) bounded growth; (2) asymptotically balanced unbounded growth; and (3)

unbalanced unbounded growth. Let us briefly describe each of them:

(1) If the sum of the productivity parameters of physical and living capital

is lower than one, then total capital converges to a steady state with a positive

stock of living capital.

(2) When this sum is equal to one, growth becomes unbounded and con-

sumption grows at a constant rate. Interestingly, total capital grows at the

same rate as consumption but only asymptotically. In fact, the economy will

optimally follow an Asymptotically Balanced Growth Path (ABGP).

(3) Finally, when the sum is greater than one, growth is unbounded for both

physical and living capital. When total capital trespasses a given threshold,

the economy starts accumulating living capital. The ratio of physical to living

capital first decreases and then it grows to infinity, after total capital grows

beyond a critical threshold.

We can read these results as both an alternative to degrowth theories and a

challenge to the literature supporting the Environmental Kuznets Curve (EKC

hereafter). Indeed, we show in cases (2) and (3) that an economy which recog-

nizes the productive role of living capital will preserve and promote it along the

2See for instance Holdren and Ehrlich (1974), Solow (1974), Hartwick (1977) and the

numerous references there on.
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optimal path. Only at the very early stages of development, the economy will

devote all its investment effort to increase the stock of physical capital and only

physical capital. As the economy develops, it will start using living capital in

production in an increasing manner, relatively reducing investment in physical

capital. Once the economy is sufficiently rich and the stock of living capital

sufficiently large, but only then, physical capital will start growing faster than

living capital. Hence, our model describes an endogenous production shift that

preserves and makes thrive all living capital without assuming that preferences

depend on the living nor that production degrades the living.

We also mentioned that our model can challenge the EKC because, in case

(3), it actually describes a U-shaped relationship between economic development

and physical capital. Here, physical capital does not decrease in the long term

to privilege living capital. On the contrary, both capitals will increase together.

The premise being that the economy reached a critical development stage in

which living capital was sufficiently abundant. Among the early works that

unearthed the possibility of an inverted U-shaped relationship between produc-

tion and environmental quality when environmental damage affected negatively

welfare, let us mention John and Pecchenino (1994), Selden and Song (1995),

Stokey (1998), Jaeger (1998), Andreoni and Levinson (2001) and Bosi and Des-

marchelier (2018), among others. Regarding empirical support, see Grossman

and Krueger (1995), Harbaoug et al. (2002) or Haberl et al. (2020). Our results

could even be related to the imbalance effect revealed in Ouattara et al. (2016)

in the context of tourism-based economies. Like us, they find that economies

should first build a sufficiently large stock of capital and infrastructure that

will ensure the optimal economic trajectory, before devoting resources to nature

preservation.

Let us close our brief review of the related literature by mentioning some

complementary works, which have adopted different perspectives. As men-

tioned, ours is a standard Ramsey framework and it does not deal with the

problem of sustainability. We could have claimed to do so by trivially sum-

marizing some of the findings in the literature in social welfare considering a

sufficiently small discount factor, or a scrap function in the objective function to

signal that the policy maker cared about the final state of living capital.3 How-

ever, sustainability deserves a more careful treatment, possible only once living

capital is fully understood as a productive factor. Regarding agents’ predator

behavior, Van der Ploeg (2010) shows that cooperation among agents is cru-

cial for environmental preservation when natural capital can be converted into

physical capital. Institutions are also pointed out as key warrants of natural

preservation in Veeman and Politylo (2003) and Arrow et al. (2004) (among

others). We also understand from the later that we should rest cautious about

technological progress since it can increase production without bounds and with-

out accounting for all its consequences. As Arrow et al. (2004), Ehrlich et al.

(2012) also highlight the effects that uncontrolled population growth could have

3See for an introduction to the subject Chichilnisky (1977, 1982, 1996, 1997), Fleurbaey

(2009), Fleurbaey and Zuber (2013) or Cairns et al. (2019), and all the references therein and

thereafter. Obviously, our reference list is not exhaustive.
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on the environment. While all these channels remain key, we have intentionally

excluded them from our analysis to study how economic recognition alone can

secure living capital.

Finally, let us mention that from a strict technical point of view, and regard-

ing the dynamic behavior of the optimal trajectories, our results are in line with

Le Van et al. (2010). It is shown that if human capital and new technologies

are sufficiently efficient, then investment in human capital and new technologies

turn out to be larger than investment in physical capital. Conversely, in Le Van

et al. (2018), investment in physical capital remains larger than investment in

social capital in the long run.

After studying the social planner problem, we consider the market economy

with living externalities. In this case, we show that if the government levies

taxes to finance the accumulation of living capital and implements exactly the

optimal sequence of living capital obtained in the planner’s program, then the

equilibrium market prices exactly decentralize the planner’s solution. Note that

we are able to provide the explicit sequences of these market prices.

The rest of the paper is organized as follows. In section 2, we solve the social

planner’s problem by proving the existence of an optimal path and providing

a global analysis of economic trajectories. These results are complemented by

numerical simulations. In section 3, we consider a market economy with living

externalities and we compute the competitive equilibrium. Section 4 concludes.

All proofs are gathered in the Appendix.

2 Social planner

Let us begin with the policy maker’s problem. The policy maker needs to decide

on both the sequences of physical and living capital that will maximize overall

social welfare.

2.1 Fundamentals

Our economy is endowed with three factors to produce a unique final good,

which is used for all purposes. These three productive factors are labor, physical

capital and living capital. Denoting by Kt and Lt physical and living capital,
let us assume that their evolution in time is described as follows:

Kt+1 = IKt + (1− δK)Kt (1)

Lt+1 = ILt + (1− δL)Lt (2)

where IKt and ILt stand for investment in each of the capitals at time t, and
δK and δL are their depreciation rates. Plausibly, we can suppose that living
capital depreciates less than physical capital. Let us also assume that output

and physical capital are the same good.
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Let q be the constant "price" of living capital in terms of output. Then,
total capital at time t is given by:

Xt ≡ Kt + qLt

Note that there is not an a priori reason why the growth processes of physical
and living capital could not follow different trajectories and trends. Further-

more, physical capital could experience degrowth while total capital grows. This

is exactly the situation we analyze and characterize here, and we will delve with

it in detail once the model is fully presented and completely solved analytically.

The final good sector utilizes both capitals together with labor, Nt, blending
their specific services. However, as we will see next, each input has a very

different role in production. Let us denote by Yt total output at time t. Then,

Yt = A (1 + λLt)
θKα

t N
1−α
t (3)

Our approach departs from the literature on climate change and, instead of

modelling environmental damages from production, the production function in

(3) reveals how living capital enhances productivity.4

Let us introduce some plausible parameter restrictions on technology and

capital depreciation, which are assumed to hold throughout the paper, even if

not mentioned explicitly. Our first assumption ensures that positive production

is possible without any living capital, while production is zero without physical

capital.

Assumption 1 0 < θ < 1, 0 < α < 1, λ > 0, A > 0 and 0 < δL ≤ δK ≤ 1.
Regarding labor, let us assume an inelastic labor supply: Nt = N̄ = 1 for

any t. Then we can write Yt as Yt = A (1 + λLt)
θKα

t .

There exists a planner who maximizes a classic time discounted intertempo-

ral utility function
!∞
t=0 β

t ln ct, where β is the time discount parameter with
0 < β < 1. The policy maker needs to take into account a sequence of con-
straints:

ct + I
K
t + qI

L
t ≤ A (1 + λLt)

θKα
t

for all t ≥ 0, given K0, L0 > 0. Note that investment in natural capital needs
to be multiplied by q, the transformation price. Using (1) and (2), we can write
the overall resource constraint of the economy at time t as

ct +Kt+1 − (1− δK)Kt + q [Lt+1 − (1− δL)Lt] ≤ A (1 + λLt)
θKα

t

Remark 1 Consumption good and physical capital are the same good, while
the investment in living capital may be irreversible. As a result, physical capital
can actually be consumed, and in that case IKt ≡ Kt+1 − (1− δK)Kt < 0 at
some t. We have also assumed that living capital cannot be transformed into the
consumption good, that is ILt ≡ Lt+1 − (1− δL)Lt ≥ 0 for all t. Note that this

4Alternatively, living capital could also be interpreted as a part of the Total Factor Pro-

ductivity (TFP) of physical capital and labor. A higher stock of living capital would make

both physical capital and labor more productive. Our results do not depend on this specific

interpretation.
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assumption is compatible with degrowth in living capital at some period t, that
is Lt+1 < Lt, provided that ILt < δLLt. However, the irreversibility assumption
becomes superfluous, because as we will see, the economy always experiences
growth in living capital along the optimal trajectory.

We can define gross production as

F (Kt, Lt) ≡ A (1 + λLt)
θ
Kα
t + (1− δK)Kt + q (1− δL)Lt (4)

so that gross savings at time t coincides with Xt+1, that is

Xt+1 ≡ Kt+1 + qLt+1

Accordingly, the resource constraint at t can be rewritten as:

ct +Xt+1 ≤ F (Kt, Lt)

Hence, the social planner’s problem becomes:

max
∞"

t=0

βt ln ct

subject to

ct +Xt+1 ≤ F (Xt) (5)

given the initial condition X0 > 0, where

F (Xt) ≡ max {F (Kt, Lt) : Kt + qLt ≤ Xt} (6)

is the maximal gross output given the aggregate capital Xt.
Our analysis begins by proving the existence of a (unique) critical level of

total capital, X̄, with the following characteristic: if the economy’s stock of
total capital lies below X̄, then production does not use any living capital, that
is Xt = Kt. However, beyond X̄, production will always include some living
capital. We will come back to this result and its implications after we actually

prove it. For now, let us start by proving that this critical value X̄ is the unique

solution to equation

f (X) = q (δK − δL) ≥ 0 (7)

where f (X) ≡ (αq − λθX)AXα−1. Note that function f is continuous for any
X > 0, strictly decreasing from ∞ to 0 in (0, αq/ (λθ)], and negative for any
X > αq/ (λθ). Therefore, equation (7) has a unique solution X̄ and, clearly,

this solution satisfies

0 < X̄ ≤
q

λ

α

θ
(8)

Before presenting our first results, we would like to underline that the model’s

dynamics are driven by α and θ, the productivity parameters for physical and
living capital. Furthermore, their sum,

γ ≡ α+ θ > 0
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captures the productivity of total capital, and the ratio α/θ, the relative pro-
ductivity of physical to living capital. As we will see, the magnitude of γ, less or
greater than one, does determine whether the economy will experience bounded

or unbounded growth.

Lemma 2 (maximal gross output) Function F has the following properties:
(1) If Xt ≤ X̄, then L∗ (Xt) = 0 and K∗ (Xt) = Xt, and F is given by

F (Xt) = AXα
t + (1− δK)Xt (9)

(2) If Xt > X̄, then Lt = L∗ (Xt) ∈ (0,Xt/q) is the solution to L (Lt) =
R (Lt) with

L (Lt) ≡ λθA (1 + λLt)
θ−1 (Xt − qLt)

α + qδK (10)

R (Lt) ≡ αqA (1 + λLt)
θ (Xt − qLt)

α−1 + qδL (11)

and Kt = K∗ (Xt) = Xt − qL∗ (Xt) ∈ (0,Xt). F is given by

F (Xt) = F (K∗ (Xt) , L
∗ (Xt))

= A [1 + λL∗ (Xt)]
θ [Xt − qL∗ (Xt)]

α

+(1− δK) [Xt − qL∗ (Xt)] + (1− δL) qL∗ (Xt) (12)

(3) Function F is continuous, strictly increasing and differentiable for any
Xt ≥ 0, and so it is at Xt = X̄.
(4) Functions K∗ (Xt) and L∗ (Xt) are strictly increasing for Xt > X̄.
(5) F is strictly concave if Xt < X̄. If Xt > X̄, F is strictly concave if and

only if γ < 1.

Lemma 2 shows that poor economies, those whose total capital lies below the

threshold, do not consider living capital as a production factor. In particular,

Lemma 2 proves that economies below the threshold will specialize in "heavy"

industries, relying uniquely on physical capital. This result could be even more

consequential if industrial pollution and its damage was introduced in the model.

Indeed, most probably we would see a "living poverty trap" emerge in which

poor countries would not contemplate living capital as linked to production, and

could never do so since they would induce irreversible damages to living and

physical capital that would retain them below the threshold, in the trap.

In order to gain further understanding on the structure of the economy, we

define the ratio of physical to living capital as

ζ (Xt) ≡
K∗ (Xt)

qL∗ (Xt)

As proven in Lemma 2, this ratio is only defined on
#
X̄,∞

$
since L∗ (Xt) = 0

for values of Xt below X̄.
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Lemma 3 (asymptotic properties of capitals) Physical and living capital
have the following asymptotic properties:
(1) When aggregate capital is unbounded, its components are unbounded as

well:

lim
Xt→∞

L∗ (Xt) = ∞

lim
Xt→∞

K∗ (Xt) = ∞

(2) If γ < 1, then

lim
Xt→∞

F (Xt)
Xt

≤ 1− δL < 1

(3) If γ = 1, there exists µ ∈ (0, α/θ] such that, for any sequence (Xn) with
limn→∞Xn =∞, we have

µ ≤ lim inf
n→∞

ζ (Xn) ≤ lim sup
n→∞

ζ (Xn) ≤
α

θ

(4) If γ > 1, function ζ has the following properties:

lim
Xt→X̄−

ζ (Xt) = ∞

lim
Xt→∞

ζ (Xt) =
α

θ

Moreover, if δK > δL, ζ (Xt) < α/θ for any Xt large enough.

Some comments are in order. Although point (1) could seem a priori a
trivial result, it is absolutely not. Point (1) proves that if total capital increases

to infinite, then both physical and living capital necessarily grow boundless.

That is to say, if the optimal solution implies that total capital will grow forever,

it will be impossible to observe a trajectory along which, for instance, physical

capital will grow while living capital will decrease to reach zero. Both capitals

need to grow in order to sustain the infinite accumulation of total capital.

Points (2), (3) and (4) study the limit behavior of some ratios depending on

the productivity of total capital. Note that these limits are taken with respect

to total capital or time. If total capital productivity is smaller than 1, then case
(2) shows that production per unit of total capital will be bounded by 1− δL,
that is by the persistence of living capital.

According to (3), if γ = 1, that is, if θ = 1 − α and production can be
understood as a Cobb-Douglas production function in physical and living cap-

ital, then the ratio of physical capital to living capital will remain with time

between µ and α/θ = α/ (1− α). The upper limit of the ratio of physical to
living capital is the ratio between their productivity parameters. That is to say,

the ratio of the capitals does not necessarily converge towards the ratio of their

productivities, it could remain "stuck" below. If on the contrary the production

function exhibits increasing returns to scale, i.e. γ > 1 then we have that first,
the ratio of capitals does converge to α/θ when total capital tends to infinite.
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Second, if total capital converges (from above) towards X̄, then the ratio of
physical to living capital will tend to infinite (as living capital will tend to zero

as shown in Lemma 2).

On the technical side, we observe that the maximization in (6) takes place

at any period, included t = 0. Thus, given (K0, L0) and, then, X0 = K0 + qL0,
the initial physical and natural capitals available for production are possi-

bly different and equal to (K∗ (X0) , L
∗ (X0)) = (X0, 0) if X0 ≤ X̄, and to

(K∗ (X0) , L
∗ (X0)) = (X0 − qL∗ (X0) , L∗ (X0)) with L∗ (X0) ∈ (0,X0/q) if

X0 > X̄.

2.2 Existence of an optimal path

The following two lemmas prove that, first, the utility function either converges

to a finite real number or diverges to −∞, and second and most importantly,
they also show that the utility function has a maximum.

As a preliminary step, we need to characterize the steady state of an economy

where living capital does not play any role. Then we tackle the more general

case.

When living capital does not have any role in production, that is, when

λ = 0, then

X̄ =

%
αA

δK − δL

& 1
1−α

(13)

If we further assume that both capitals depreciate at the same rate, that is, if

δK = δL, then Xt ≤ X̄ = ∞, L∗ (Xt) = 0 and K∗ (Xt) = Xt. The maximum
of production is F (Xt) = AXα

t + (1− δK)Xt. Since there is only one capital
in the model now, we naturally recover the traditional Ramsey model. Then,

recall that the Modified Golden Rule is the Euler equation at the steady state,

that is: αAX̃α−1 + 1− δK = 1/β. As a result, the steady state without living
capital is given by

X̃ ≡
'

αβA

1− β (1− δK)

( 1
1−α

(14)

Let us deal next with the general case in which λ ,= 0. We shall assume in
the following that the threshold of total capital is below the Modified Golden

Rule:

Assumption 2 X̄ < X̃.
Assumption 2 is satisfied when living capital is very efficient, that is, when

both of Lt’s productivity parameters λ and θ are high, or when the "relative
price" of living capital q is low. Indeed, when λ and θ are large enough or q is
sufficiently small, we have that

X̄ ≤
αq

λθ
< X̃

In order to prove the following lemma, we introduce a third critical value for

10



total capital X̂ defined as:

X̂ ≡
%
A

δK

& 1
1−α

(15)

and compare the three critical values for total capital defined in (13), (14) and

(15). Since α, β ∈ (0, 1), we have X̃ < X̂ and, because of Assumption 2,

X̄ < X̃ < X̂ (16)

Lemma 4 (convergence of intertemporal utility) Let 0 < γ < 1/β. Un-
der Assumption 2, the objective function of the policy maker is finite, that is!∞
t=0 β

t ln ct < ∞ for any X0 ≥ 0. Moreover, the limit of the utility function
along any feasible path exists. It converges to a finite real number or to −∞:
limT→∞

!T
t=0 β

t ln [F (Xt)−Xt+1] ∈ R ∪ {−∞}.

We can re-write the policy maker’s objective as
!∞
t=0 β

t ln [F (Xt)−Xt+1]
using (5). Note that the objective function is now an infinite sum which de-

pends exclusively on the sequence of total capital. Let Π(X0) denote the set
of sequences of composite capital stocks X ≡ (Xt)

∞
t=0, feasible from X0, that is

the set of X ≡ (Xt)
∞
t=0 such that 0 ≤ Xt+1 ≤ F (Xt) for any t ≥ 0. We can

prove that there exists an optimal solution to the planner’s problem.

Proposition 5 (existence of an optimal path) Let 0 < γ < 1/β. Under
Assumption 2, the function U (X) ≡

!∞
t=0 β

t ln [F (Xt)−Xt+1] is upper semi-
continuous in Π(X0) with respect to the product topology and it attains a max-
imum in Π(X0).

2.3 Dynamics

Having proved the existence of a solution to the social planner problem, and

having characterized some of the asymptotic properties of feasible trajectories

for Xt, let us study next the problem of the convergence of the optimal solution.
Although we have made an effort to keep our setting as simple as possible on the

technical side, production involves two different types of capital which differ not

only in their definition but also in their role in production. Hence, our problem

is essentially complex.

The following lemma provides us with interesting and extremely useful re-

sults: the optimal path of total capital is monotonic. Furthermore, it also shows

that the stock of living capital is positive from a critical date on.

Lemma 6 (monotonicity and threshold) Let X0 > 0. The optimal se-
quence (Xt)

∞
t=0 is monotonic. Furthermore, the optimal solution does not con-

verge to zero when t →∞. Moreover, there exists T such that, for any t ≥ T ,
the sequence remains above the threshold, that is, total capital is always larger
than X̄: Xt > X̄, and the optimal natural capital is positive, Lt > 0, for any
t ≥ T .
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In particular, the previous lemma implies that if the economy is sufficiently

well endowed at t = 0, that is, if X0 > X̄, then T = 0, implying that living
capital is always strictly positive along the optimal solution.

Remark 7 Our lemma can also be read as follows. If X0 < X̄, then the optimal
sequence is monotonically increasing and there will be a time T at which total
capital will be equal to X̄, when the economy will start employing living capital
in production. After T , total capital will continue growing so that living capital
will always be positive after T . Otherwise, if X0 > X̄, then the optimal sequence
of capital could be either monotonic increasing or decreasing. What we know
for sure is that the sequence remains above the threshold for all t, and that the
economy always involves living capital in production.

Whether the optimal sequence reaches a steady state or whether it increases

forever is the subject of the next series of three propositions. These propositions

distinguish three cases depending on whether the productivity parameter of total

capital is smaller, equal or larger than one.

Proposition 8 (bounded growth) If γ < 1, the optimal sequence (Xt)
∞
t=0

converges to a steady state X∗. This steady state is larger than the modified
golden rule steady state value for Xt without living capital: X∗ > X̃.

We know from Lemma 6 that any optimal sequence includes some living

capital from a time T onwards, so that the limit value of total capital does

include a positive amount of living capital. What Proposition 8 further offers

is the proof that taking into account the services of nature and human capital

as part of the production function leads the economy towards a higher level of

total capital. However, since the maintenance of living capital requires some of

the final good, the increase in living capital could come in detriment of physi-

cal capital. Although this increase could also come from the extra production

generated, or from an extraordinary effort in savings, truth is we do not have

the answer this far and the comparison established with the standard Ramsey

model could just stop at total capital. The following lemma sheds light on the

asymptotic composition of total capital.

Lemma 9 Let γ < 1. If δK = δL, then

lim
t→∞

ζt =
α

θ

%
1 +

1

λL∗

&
>
α

θ

where L∗ is the stationary stock of living capital.

Then, when δK = δL, living capital does enhance the accumulation of phys-
ical capital in the long run since the ratio physical to living capital is strictly

larger than the ratio of their productivities. In other words, physical capital is

accumulated beyond its "relative productivity".

When the parameter of total productivity of both capitals is equal to one, we

obtain a balanced growth path as one would have expected in light of similar

12



results in the standard Ramsey model. The following proposition character-

izes the optimal trajectories and growth rates for consumption and each of the

capitals.

Proposition 10 (asymptotically balanced unbounded growth) If γ = 1,
then the optimal paths are given by

ct = c̄0
)
βF ′

#
X̄
$*t

Xt+1 = c̄0
)
βF ′

#
X̄
$*t β

1− β
− z

Lt+1 =

%
c̄0
)
βF ′

#
X̄
$*t β

1− β
− z − X̄

&
1

q + λX̄

Kt+1 =

%
c̄0
)
βF ′

#
X̄
$*t β

1− β
− z +

q

λ

&
λX̄

q + λX̄

where

z ≡
q

λ

+
1 +

δL

F ′
#
X̄
$
− 1

,
(17)

and c̄0 is the value of initial consumption which maximizes

V (c0) =
∞"

t=0

βt ln
-
c0
)
βF ′

#
X̄
$*t.

The maximum is attained at

c̄0 ≡ (1− β)F ′
#
X̄
$
/
X0 +

q

λ

+
1 +

δL

F ′
#
X̄
$
− 1

,0

Therefore, growth is unbounded

lim
t→∞

Kt = lim
t→∞

Lt =∞

with

lim
t→∞

Kt
qLt

= X̄
λ

q
≤
α

θ
(18)

but asymptotically balanced

Lt+1
Lt

∼
Kt+1
Kt

∼
Xt+1
Xt

∼
ct+1
ct

= βF ′
#
X̄
$
> 1 (19)

along the ABGP (Asymptotically Balanced Growth Path).

Let us close this section by characterizing the optimal solution when 1 < γ <
1/β. In this case, the optimal solution exhibits unbalanced unbounded growth:

13



Proposition 11 (unbalanced unbounded growth) Let 1 < γ < 1/β. The
optimal sequence (Xt)

∞
t=0 converges to infinity with limt→∞Lt = limt→∞Kt =

∞ and

lim
t→∞

ζt = lim
t→∞

Kt
qLt

=
α

θ
(20)

(1) If δK = δL, the capital ratio always stays above its limit, that is, the ratio
physical to living capital converges towards its limit value from above. Then, we
have that for any t:

ζt ≡
Kt
qLt

=
α

λθ

1

Lt
+
α

θ
>
α

θ

(2) If δK > δL, then the sequence of capital ratios (ζt) is uniformly bounded
away from zero and from ∞. Moreover, when Xt is sufficiently close to X̄ from
the right, ζ′ (Xt) < 0, and when Xt is sufficiently large, ζ

′ (Xt) > 0. If δK > δL
and Xt is large enough, then ζ (Xt) < α/θ.

Proposition 11 shows that when total capital is very efficient, 1 < γ < 1/β,
both physical and living capital grow without bound (limt→∞K

∗
t = limt→∞L

∗
t =

∞), and so does total capital (limX→∞X∗
t =∞). When 1 < γ < 1/β and living

capital is more efficient than physical capital, i.e. θ > α, then the economy ends
up accumulating relatively more living capital in the long run:

lim
t→∞

Kt
qLt

< 1

Now, let us come back to Proposition 11. The proposition clearly shows that

when physical capital and living capital wear down at the same rate, so that

capitals are indistinguishable from this point of view, then ζt > α/θ for all
t. As mentioned, the economy will optimally accumulate more physical capital
in relative terms than its relative productivity. The more productive physical

capital, the more the economy will favor it. However, the most interesting result

is presented in point (2). Since 1 < γ < 1/β, we know that total capital will be
monotonically increasing. What point (2) brings anew is that, when physical

capital deteriorates faster than living capital, the composition of total capital

will vary with time. When total capital is low, close to X̄ and that the econ-

omy has recently started incorporating nature and human capital services into

account for production purposes, the economy privileges investment in living

capital so that the ratio ζt decreases. Then, when total capital becomes large
enough, then its relative composition changes letting physical capital dominate

the mix from that moment onwards. In this respect, stressing the role of the nat-

ural component in the living capital, we can say that there our model generates

a reverse environmental Kuznets curve.

Before closing this section, let us study the role of the relative price q on the
growth rate of both capitals when γ = 1, and the ratio between physical and
living capital when 1 < γ < 1/β:

Corollary 12 (impact of the relative price on growth) Let us distinguish
two cases:

14



(1) When γ = 1 the growth factor Kt+1/Kt ∼ Lt+1/Lt asymptotically de-
creases with q. Moreover, in the limit, the capital ratio Kt/Lt increases in q,
that is, the economy uses more physical than living capital in the long run.
(2) When 1 < γ < 1/β, the ratio Kt/Lt asymptotically increases with q.

These results deserve some conclusive comments:

(1) According to Proposition 8, when γ < 1, degrowth is possible when the
initial value of total capital is larger then the steady state, X0 > X

∗, as in the

standard Ramsey model.

(2) Corollary 12 shows that an increase in the relative price of living capital

will slow down the economy when γ = 1. In this case, q has a negative impact
on growth because, as shown in the proof, in the long run, the critical value X̄
of total capital increases, lowering in turn total productivity, F ′

#
X̄
$
.

(3) When γ is larger than one, Corollary 12 proves that an increase in the
relative price of living capital q increases the relative amount of physical capital
with respect to living capital in the long run. Indeed, the limit ratio qα/θ
depends both on this price and α/θ, the comparative advantage of physical
capital in terms of productivity (see also the proof).

2.4 Simulations

We close this section providing some numerical illustrations to offer some an-

swers to the remaining open questions.

Note that while illustrating the cases when γ ≤ 1 has little interest since all
trajectories are explicit, it is extremely informative to obtain more information

on the transition dynamics in the more challenging case of unbalanced and

unbounded growth when 1 < γ < 1/β. Here, we define adequate ratios for each
case that converge in the long-run. Then, from that converging sequence we

will be able to recover (numerically this time) some further information on the

original capitals or ratios. Let us consider the following subcases: (1) δK = δL
and (2) δK > δL.
When the depreciation rates are equal, it is possible to write the dynamics in

variable ζt, which, we know, converges to a limit α/θ according to Proposition
11.

Proposition 13 (simulations with equal depreciation rates) Let 1 < γ <
1/β and δK = δL. The optimal dynamics are driven by the Euler equation

ψ
#
ζt+1, ζt+2

$

ψ
#
ζt, ζt+1

$ = βF ′
#
X
#
ζt+1

$$
(21)

where
ψ
#
ζt, ζt+1

$
≡ F (X (ζt))−X

#
ζt+1

$
= ct (22)

represents the resource constraint and

Xt = X (ζt) ≡
q

λ

αζt + α

θζt − α
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total capital.
The optimal trajectory for ζt is determined by (21) together with the transver-

sality condition:
lim
t→∞

ζt =
α

θ

Using (69) and (22), we will obtain the sequences of total capital (Xt)
∞
t=0

and consumption (ct)
∞
t=0.

When the depreciation rates are different, it is possible to write the optimal

dynamics in terms of a new variable ϕt, which also converges to a limit λθ/ (αq).

Proposition 14 (simulations with different depreciation rates) Let 1 <
γ < 1/β and δK > δL. Economic dynamics are driven by a recursive transition
function

ϕt+2 = T
#
ϕt, ϕt+1

$
(23)

where

ϕt = ϕ (Xt) ≡
1 + λL∗ (Xt)

Xt − qL∗ (Xt)
(24)

and

T
#
ϕt, ϕt+1

$
≡ ϕ

#
F
#
ϕ−1

#
ϕt+1

$$
− βF ′

#
ϕ−1

#
ϕt+1

$$ )
F
#
ϕ−1 (ϕt)

$
− ϕ−1

#
ϕt+1

$*$

The trajectory is determined by (23) jointly with the transversality condition:

lim
t→∞

ϕt =
λθ

αq

We close this paper by using the theoretical results presented in the previ-

ous subsection in some numerical illustrations that will complete the long-term

description of the dynamics of our model.

In the first simulation, we assume that both physical and living capital de-

preciate at the same rate: δK = δL = 0.04. The calibration is summarized in
the following table.

A TFP 1/2
α physical capital productivity parameter 1/3
θ living capital productivity parameter 2/3 + 0.01
β time discount 0.99
δK physical capital depreciation rate 0.04
δL living capital depreciation rate 0.04
q relative price of living capital 1/2
λ living capital parameter 1/2

Figures 1 and 2 present the dynamics corresponding to point (1) of Propo-
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sition 11, that is to Proposition 13.

Fig. 1 Fig. 2

Our program uses the fact that the ratio ζ converges towards α/θ and re-
covers backwards the trajectory for ζ (Figure 1). Using this trajectory, we are
able to compute the optimal trajectories for X, K and L. Our results show that
under our calibration, when 1 < γ < 1/β, all original variables grow with time.
Besides, natural capital grows faster than physical capital until ζ approaches
the steady state. Once ζ reaches its steady state, both capitals grow at the

same rate forever (Figure 2).

Now, let us assume different depreciation rates for physical and living capital:

δK = 0.04 > δL = 0.039. We have also modified the calibration to better show
the dynamics according to the following table.

A TFP 1
α physical capital productivity parameter 2/3
θ living capital productivity parameter 1/3 + 0.0001
β time discount 0.99
δK physical capital depreciation rate 0.04
δL living capital depreciation rate 0.039
q relative price of living capital 1/4
λ living capital parameter 1/2

Using equation (7), we compute X̄ = 0.9982 and we fix X0 = 0.9983, just
slightly larger than X̄. Moreover, we choose K0 = (3/4)X0 so that L0 =
(X0 −K0) /q = 0.9983. In this set-up, Figures 3 and 4 present the physical and
living capital dynamics corresponding to point (2) of Proposition 11, that is to
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Proposition 14.

Fig. 3 Fig. 4

As predicted by Proposition 11, when X0 is close to X̄, ζ decreases with
time. Both physical and living capital grow forever.

3 Optimal growth and competitive equilibrium
with living externalities

To complete our analysis, we consider in this section alternative problems where

the decision maker takes as given the trajectory for living capital. Moreover,

living capital coincides with the optimal trajectory from the planner’s program

(P0). We will say that there are externalities from the living capital or "living

externalities".

In the first subsection, we compare (P0) to the problem of a policy maker

identical to that of the previous section except that, as mentioned, she takes

living capital to be equal to its optimal trajectory in (P0). We prove that

both problems have the same optimal solution for physical capital, and hence

consumption. In the final subsection, we consider instead a market economy.

There, the policy maker will also take living capital as given and will levy taxes

to finance investment in living capital. We prove in our last theorem that there

exists a sequence for prices which decentralizes the policy maker’s problem and

ensures that the economy will follow the optimal solution for (P0).

3.1 Optimal growth with living externalities

Reconsider gross output (4) and maximal output (6) with total capital Xt ≡
Kt + qLt given. A solution (K

∗ (Xt) , L
∗ (Xt))

∞
t=0 satisfies

F (Xt) = A [1 + λL∗ (Xt)]
θK∗ (Xt)

α + (1− δK)K∗ (Xt) + q (1− δL)L∗ (Xt)

Let us redefine gross output as a function of total capital and living capital:

G (Xt, Lt) ≡ A (1 + λLt)
θ (Xt − qLt)

α + (1− δK) (Xt − qLt) + q (1− δL)Lt

18



and denote the first derivatives of G by GX and GL. We know that L
∗ (Xt) is

solution to GL (Xt, Lt) = 0. Invoking the Envelope Theorem, we have

F ′ (Xt) = GX (Xt, L∗ (Xt)) +GL (Xt, L∗ (Xt))L∗′ (Xt) = GX (Xt, L∗ (Xt))

when Xt > X̄ (that is L∗ > 0). Hence, if Xt > X̄,

F ′ (Xt) = GX (Xt, L∗ (Xt)) = αA [1 + λL∗ (Xt)]
θ
[Xt − qL∗ (Xt)]

α−1
+ 1− δK

We observe that F ′ (Xt) = FK (Kt, L∗ (Xt)) > 0.
In the following subsections, we compare the initial planner’s program (P0)

to the new program (P1), where the planner chooses the optimal sequence

(K∗
t )
∞
t=0 taking as given the sequence (L

∗
t )
∞
t=0 solution to (P0). In program

(P1), (L∗t )
∞
t=0 is just a particular sequence of externalities from the living. From

now on, for simplicity, we denote a sequence (zt)
∞
t=0 by (zt).

3.1.1 Optimal growth

Let us begin by recalling the initial program (P0) and the most salient asymp-

totic properties of its optimal solution.

(P0) Optimal growth.

max
(Kt,Lt)

∞"

t=0

βtu (ct)

ct +Kt+1 + qLt+1 ≤ F (Kt, Lt)

for any t ≥ 0.
Let (K∗

t , L
∗
t )
∞
t=0 be the optimal path of program (P0) with (K∗

0 , L
∗
0) =

(K0, L0). Assuming u (c) ≡ ln c, we have obtained the following properties of
the optimal sequence (K∗

t , L
∗
t ) depending on the "total productivity" parameter

γ ≡ α+ θ.
(1) If γ < 1, then (K∗

t , L
∗
t ) converges to the steady state (K

∗, L∗) with

lim
t→∞

K∗
t

qL∗t
=
K∗

qL∗
> 0 (25)

(2) If γ = 1, growth is unbounded and asymptotically balanced with

lim
t→∞

K∗
t

qL∗t
= X̄

λ

q
≤
α

θ
(26)

(3) If 1 < γ < 1/β, growth is unbounded and unbalanced with

lim
t→∞

K∗
t

qL∗t
=
α

θ
(27)
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3.1.2 Optimal growth with living externalities

Let us assume that the planner takes as given the optimal sequence of living

externalities (L∗t ), which is the optimal solution to (P0), and that she maximizes
her objective function with respect to the sequence of physical capital levels

(Kt). This problem is denoted by (P1), and it is defined and solved below.

(P1) Optimal growth with living externalities.

max
(Kt)

∞"

t=0

βtu (ct)

ct +Kt+1 ≤M
#
Kt, L

∗
t , L

∗
t+1

$

for any t ≥ 0, where M
#
Kt, L

∗
t , L

∗
t+1

$
≡ F (Kt, L∗t )− qL∗t+1.

There exists an optimal solution (K̃t). Furthermore, this solution is unique
because of the strict concavity of F (K,L) in K and the strict concavity of ln c
in c.
One can prove that the optimal solutions to (P1) and (P0) coincide, that is

(K̃t) = (K∗
t ), where (K

∗
t ) is the optimal solution to (P0). Indeed, maximizing

the Lagrangian function

∞"

t=0

βtu (ct) +
∞"

t=0

λt
)
F (Kt, L

∗
t )− ct −Kt+1 − qL

∗
t+1

*

we obtain the first-order conditions λt = β
tu′ (ct) and λt = λt+1FK

#
Kt+1, L∗t+1

$

for any t. As usual, the first order conditions can be combined to get the Euler
equation

u′ (ct)

u′ (ct+1)
= βFK

#
Kt+1, L

∗
t+1

$
= βF ′ (Xt+1)

which coincides with the Euler equation of program (P0).

3.2 Competitive equilibrium with living externalities

Next, we consider a market economy where the sequence of living capital (Lt)
is given. In particular, let us assume that the market economy takes the

optimal sequence (L∗t ) as given. In other terms, it is as if the government

chooses (Lt) = (L
∗
t ), which is attainable by levying an opportune sequence of

real taxes (τ∗t ) to finance the first-best accumulation of living capital, that is
τ∗t = q

)
L∗t+1 − (1− δL)L∗t

*
.

The firm chooses the sequence of physical capital demand (Kt) that maxi-
mizes its intertemporal profit:

π∗ = max
(Kt)

/
∞"

t=0

p∗t

1
A (1 + λL∗t )

θKα
t + (1− δK)Kt −Kt+1 − τ

∗
t

2
− r∗K0

0

At the same time, the representative agent maximizes her intertemporal

utility function under the intertemporal budget constraint:
!∞
t=0 p

∗
t ct = π∗ +

r∗K0. The associated competitive equilibrium (P2) is defined as follows:
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(P2) Competitive equilibrium (p∗t , q
∗,K∗

t ) with (L
∗
t ) as externality.

(P2) comprehends the firm’s and the representative consumer’s problems

and the clearing of all markets:

(1) The firm chooses the sequence of physical capital demand (Kt) to max-
imize the profit:

π∗ = max
(Kt)

/
∞"

t=0

p∗t
)
M
#
Kt, L

∗
t , L

∗
t+1

$
−Kt+1

*
− r∗K0

0

Profit maximization gives

p∗t = p
∗
t+1MK

#
Kt+1, L

∗
t+1, L

∗
t+2

$
= p∗t+1FK

#
Kt+1, L

∗
t+1

$

for any t ≥ 0.

Remark 15 We observe that there is only one firm acting as a competitive firm
without market power. In other terms, the firm takes prices as given and does
not play strategically by exploiting its market power. In the case of constant
returns to scale, a zero profit condition holds and maximizing the profits of a
large number of firms yields the same solution in terms of optimal aggregate
demand for capital than maximizing the profit of an aggregate firm. However,
in our case, returns to scale are not constant and we assume that the unique
existing firm is a price taker. Even if this is a strong assumption, we can
partially justify it by noticing that the capital good and the consumption good
are the same and the firms shares the market power with many consumers.

(2) The representative consumer maximizes her intertemporal utility func-

tion under an intertemporal budget constraint:

max
(ct)

∞"

t=0

βtu (ct)

∞"

t=0

p∗t ct ≤ π
∗ + r∗K0

where π∗ is the profit she earns as (unique) shareholder. r∗ is the price of K0 at
period −1. Indeed, note that physical capital is bought one period before being
used.

(3) All markets clear:

ct +K
∗
t+1 =M

#
K∗
t , L

∗
t , L

∗
t+1

$

with K∗
0 = K0.

Our final theorem provides with the prices that allow to decentralize the

policy maker’s solution.
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Theorem 16 Let 0 < γ < 1/β and let the sequence (c∗t ,K
∗
t ) be solution to

(P1). Define

p∗t ≡ βtu′ (c∗t ) = β
t/c∗t

r∗ ≡ p∗0MK (K0, L
∗
0, L

∗
1) = αA (1 + λL0)

θKα−1
0 + 1− δK

Then (r∗, (p∗t , c
∗
t ,K

∗
t )
∞
t=0) is a competitive equilibrium where (L∗t ), solution

to (P0), is a sequence of externalities.

Note that the price the firm has to pay forK0 increases with the relative pro-
ductivity of living capital, λ, and with θ, its share in production. Additionally,
r∗ also increases with the initial level of living capital.

4 Conclusion

We have defined living capital as a comprehensive measure of all economic inputs

that are alive. The three characteristics of living capital are that: first, it is not

essential; second, it is irreversible; third, it depreciates at a slower pace than

physical capital. Among these, the one that makes living capital truly different

from any other productive capital is its non-essentiality, which means that the

economy could very well produce without living capital.

Then, we defined total capital as a sum of physical and living capital in

terms of value and we have considered, first, the planner’s solution and, then,

the market economy.

In the case of the policy maker’s problem, we have shown that the optimal

sequence of capital is always monotonic. Depending on the productivity of total

capital, three different regimes hold: (1) bounded growth; (2) asymptotically

balanced unbounded growth; (3) unbalanced unbounded growth. In case (1),

when the sum of the productivity parameters of physical and living capital is

lower than one, total capital converges to a steady state with a positive stock

of living capital, which is larger than the one without living capital. In the

second case, when this sum is equal to one, growth becomes unbounded and the

economy experiences an asymptotically balanced growth path. Finally, in case

(3), when the sum of the productivity parameters of physical and living capital

is greater than one, growth is unbounded for both physical and living capital.

Clearly, this implies that total capital grows forever. Beyond a critical point of

total capital, living capital starts to grow but the ratio physical to living capital

first decreases and then, after a critical date, it grows to infinity.

In the case of a market economy, we show that if the government levies taxes

to finance the accumulation of living capital and implements exactly the optimal

sequence of living capital as in the planner’s program, then the equilibrium

market prices decentralize exactly the planner’s solution. We provide the explicit

sequence of market prices.
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5 Appendix

Proof of Lemma 2
We maximize F (Kt, Lt) ≡ A (1 + λLt)

θKα
t + (1− δK)Kt + (1− δL) qLt

under the constraint Kt + qLt ≤ Xt with Lt,Kt ≥ 0.
We observe that F (Xt − qLt, Lt) is strictly concave in Lt:

[F (Xt − qLt, Lt)]
′′

A (1 + λLt)
θ
Kα
t

= −α (1− α)
q2

K2
t

−θ (1− θ)
λ2

(1 + λLt)
2−2αθ

qλ

Kt (1 + λLt)
< 0

that is [F (Xt − qLt, Lt)]
′′ < 0.

Equivalently, we can maximize A (1 + λLt)
θ (Xt − qLt)

α + (δK − δL) qLt
with respect to Lt ≥ 0.
If Lt > 0, we obtain the first-order condition:

λθA (1 + λLt)
θ−1 (Xt − qLt)

α−αqA (1 + λLt)
θ (Xt − qLt)

α−1+q (δK − δL) = 0
(28)

or, equivalently, L (Lt) = R (Lt), where L (Lt) and R (Lt) are given by (10) and
(11).

We observe that, for L ∈ [0,X/q), L′ (L) < 0 and R′ (L) > 0.
Moreover, limLt→0 L (Lt) = λθAXα

t + qδK , limLt→0R (Lt) = αqAXα−1
t +

qδL, limLt→Xt/q L (Lt) = qδK and limLt→(Xt/q)
− R (Lt) =∞.

Thus, there exists a unique value L∗ ∈ [0,Xt/q) such that L (L∗) = R (L∗)
if and only if λθAXα

t + qδK ≥ αqAX
α−1
t + qδL.

The critical value X̄ is defined by λθAXα+ qδK = αqAX
α−1+ qδL, that is

by (7).

When Xt = X̄, then L∗ = 0; when Xt > X̄, then L∗ > 0 because
λθAXα

t + qδK − αqAX
α−1
t − qδL > 0 (indeed, the LHS of this inequality is

strictly increasing in Xt).
Therefore, we obtain the following.

(1) If Xt ≤ X̄, then L∗ (Xt) = 0 and K∗ (Xt) = Xt, and the maximum is

given by (9).

(2) If Xt > X̄, then L
∗ (Xt) ∈ (0,Xt/q) and the maximum is given by (12).

(3) Functions (9) and (12) are continuous and differentiable in
)
0, X̄

$
and#

X̄,∞
$
respectively. Moreover, they are also continuous at X = X̄:

lim
Xt→X̄+

F (Xt)

= lim
L∗→0+

1
A (1 + λL∗)

θ
(Xt − qL∗)

α
+ (1− δK) (Xt − qL∗) + (1− δL) qL∗

2

= AXα
t + (1− δK)Xt = lim

Xt→X̄−
F (Xt)

We apply the Envelope Theorem to prove the differentiability of F at Xt =
X̄. Let us define

G (Xt, Lt) ≡ A (1 + λLt)
θ (Xt − qLt)

α + (1− δK) (Xt − qLt) + (1− δL) qLt
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and denote the first derivatives by GX and GL.
We know that L∗ (Xt) is solution to GL (Xt, Lt) = 0. We observe that, if

Xt > X̄ (that is L∗ > 0), then by the Envelope Theorem,

F ′ (Xt) = GX (Xt, L∗ (Xt)) +GL (Xt, L∗ (Xt))L∗′ (Xt) = GX (Xt, L∗ (Xt))

Hence, if Xt > X̄,

F ′ (Xt) = GX (Xt, L∗ (Xt)) = αA [1 + λL∗ (Xt)]
θ
[Xt − qL∗ (Xt)]

α−1
+1−δK > 0

(29)

which proves that, F is strictly increasing.

Additionally, we have that

lim
Xt→X̄−

F ′ (Xt) = αAXα−1
t + 1− δK

lim
Xt→X̄+

F ′ (Xt) = lim
Xt→X̄+

GX (Xt, L
∗ (Xt)) = GX (Xt, 0) = αAX

α−1
t + 1− δK

which proves that F is differentiable at Xt = X̄.
(4) Taking the derivative of (28) with Lt = L∗ (Xt) with respect to Xt, we

obtain

qL∗′ (Xt) =
αqλθ + α (1− α) q2 P (Xt)

K∗(Xt)

θ (1− θ)λ2K
∗(Xt)
P (Xt)

+ 2αqλθ + α (1− α) q2 P (Xt)
K∗(Xt)

> 0 (30)

K∗′ (X) = 1− qL∗′ (X) =
θ (1− θ)λ2K

∗(Xt)
P (Xt)

+ αqλθ

θ (1− θ)λ2K
∗(Xt)
P (Xt)

+ 2αqλθ+ α (1− α) q2 P (Xt)
K∗(Xt)

> 0

(31)

where P (Xt) ≡ 1 + λL∗ (Xt).
(5) Focus on the derivative for Xt > X̄:

F ′ (Xt) = αA [1 + λL∗ (Xt)]
θ [Xt − qL∗ (Xt)]

α−1 + 1− δK > 0 (32)

The second derivative when Xt > X̄ is given by

F ′′ (Xt) = αA
λθK∗ (Xt)L∗′ (X)− (1− α)P (Xt) [1− qL∗′ (Xt)]

P (Xt)
1−θK∗ (Xt)

2−α

Then, F ′′ (Xt) < 0 if and only if

λθK∗ (Xt) qL
∗′ (Xt)− (1− α) qP (Xt) [1− qL∗′ (Xt)] < 0 (33)

Replacing expressions (30) and (31) for qL∗′ (Xt) and 1−qL∗′ (Xt) = K∗′ (Xt)
in (33), we find that F ′′ (Xt) < 0 if and only if γ < 1.
Proof of Lemma 3
(1) First, we show that limXt→∞L

∗ (Xt) =∞.
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If it was not the case, there should exist ν and a sequence (Xn) with
limn→∞Xn =∞ such that L∗ (Xn) ≤ ν for any n.
Let L∗n ≡ L∗ (Xn). According to (28), for any n, we have

0 = λθA (1 + λL∗n)
θ−1 (Xn − qL∗n)

α

−αqA (1 + λL∗n)
θ (Xn − qL∗n)

α−1 + q (δK − δL) (34)

and

λθA (1 + λL∗n)
θ−1 (Xn − qL∗n)

α ≥ λθA (1 + λν)θ−1 (Xn − qν)
α

αqA (1 + λL∗n)
θ (Xn − qL∗n)

α−1 ≤ αqA (1 + λν)θ (Xn − qν)
α−1

We observe that

lim
n→∞

1
λθA (1 + λL∗n)

θ−1
(Xn − qL∗n)

α
2
≥ lim

n→∞

1
λθA (1 + λν)

θ−1
(Xn − qν)

α
2
=∞

lim
n→∞

1
αqA (1 + λL∗n)

θ (Xn − qL∗n)
α−1

2
≤ lim

n→∞

1
αqA (1 + λν)θ (Xn − qν)

α−1
2
= 0

Therefore,

lim
n→∞

1
λθA (1 + λL∗n)

θ−1 (Xn − qL∗n)
α − αqA (1 + λL∗n)

θ (Xn − qL∗n)
α−1 + q (δK − δL)

2
=∞

which is in contradiction with (34), and which proves that limXt→∞ L
∗ (Xt) =

∞.
Next, let us show in a similar manner that limXt→∞K

∗ (Xt) =∞.
If it was not the case, then there should exist κ > 0 and a sequence (Xn)

with limn→∞Xn =∞ such that K∗ (Xn) ≤ κ for any n.
Let K∗

n ≡ K∗ (Xn). According to (28), for any n, we have

λθA (1 + λL∗n)
θ−1

K∗α
n − αqA (1 + λL∗n)

θ
K∗α−1
n + q (δK − δL) = 0 (35)

Since limn→∞L∗n =∞ and K∗
n ∈ [0, κ], a bounded set, we have

lim
n→∞

1
λθA (1 + λL∗n)

θ−1K∗α
n

2
= 0

Moreover, αqA (1 + λL∗n)
θ
K∗α−1
n ≥ αqA (1 + λL∗n)

θ
κα−1 for any n and

lim
n→∞

1
αqA (1 + λL∗n)

θK∗α−1
n

2
≥ lim
n→∞

1
αqA (1 + λL∗n)

θ κα−1
2
=∞

Thus,

lim
n→∞

1
λθA (1 + λL∗n)

θ−1K∗α
n − αqA (1 + λL∗n)

θK∗α−1
n + q (δK − δL)

2
= −∞

which is in contradiction with (35).

Observe that these results hold for any γ > 0.
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(2) We have

F (Xt) = A [1 + λL∗ (Xt)]
θ [Xt − qL∗ (Xt)]

α+(δK − δL) qL∗ (Xt)+(1− δK)Xt

Hence,

F (Xt)
Xt

= A [1 + λL∗ (Xt)]
θ [Xt − qL∗ (Xt)]

α

Xt
+ 1− δL

+(δK − δL)
'
qL∗ (Xt)

Xt
− 1
(

≤ A

'
1 +

λ

q
qL∗ (Xt)

(θ
[Xt − qL∗ (Xt)]

α

Xt
+ 1− δL

< A

%
1 +

λ

q
Xt

&θ
Xα−1
t + 1− δL

since Xt > X̄ entails L∗ (Xt) > 0.
γ < 1 implies

lim
Xt→∞

%
1 +

λ

q
Xt

&θ
Xα−1
t = 0

Therefore,

lim
Xt→∞

F (Xt)
Xt

≤ 1− δL < 1

(3) Let γ = 1.
First we prove that there exists µ ∈ (0, α/θ] such that, for any sequence

(Xn) with limn→∞Xn =∞, we have

µ ≤ lim inf
n→∞

ζ (Xn)

From equation (28), we have

λθA [1 + λL∗ (Xt)]
θ−1 [Xt − qL∗ (Xt)]

α − αqA [1 + λL∗ (Xt)]
θ [Xt − qL∗ (Xt)]

α−1

= q (δL − δK) (36)

Since, by definition,

ζ (Xt) =
Xt − qL∗ (Xt)
qL∗ (Xt)

then, we have

L∗ (Xt) =
1

q

Xt
1 + ζ (Xt)
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and (36) becomes L1 (Xt) + L2 (Xt) = R (Xt), where

L1 (Xt) ≡ λAXα
t

'
1 +

λ

q

Xt
1 + ζ (Xt)

(θ−1 '
θ −

α+ θ

1 + ζ (Xt)

(

L2 (Xt) ≡ −αqAXα−1
t

'
1 +

λ

q

Xt
1 + ζ (Xt)

(θ−1

R (Xt) ≡ q (δL − δK)
'
ζ (Xt)

1 + ζ (Xt)

(1−α

We want to prove that there exist µ > 0 and ν > 0 such that, for anyXt ≥ ν,

ζ (Xt) ≥ µ

Suppose the contrary. In this case, there would exist a sequence (Xn) with
limn→∞Xn =∞ such that limn→∞ ζ (Xn) = 0.
We observe that limn→∞ L1 (Xn) = −∞ because γ ≥ 1,

lim
n→∞

/
λAXα

n

'
1 +

λ

q

Xn
1 + ζ (Xn)

(θ−10
=∞

and

lim
n→∞

'
θ −

γ

1 + ζ (Xn)

(
= −α

Moreover, since α < 1 and θ < 1,

lim
n→∞

L2 (Xn) = −αqA lim
n→∞

/
Xα−1
n

'
1 +

λ

q

Xn
1 + ζ (Xn)

(θ−10
= 0

Finally, since α < 1,

lim
n→∞

R (Xn) = q (δL − δK) lim
n→∞

'
ζ (Xn)

1 + ζ (Xn)

(1−α
= 0

Then, 0 = limn→∞R (Xn) = limn→∞L1 (Xn) + limn→∞L2 (Xn) = −∞, a
contradiction.

Now, let us prove that, for any sequence (Xn) with limn→∞Xn = ∞, we
have

lim sup
n→∞

ζ (Xn) ≤
α

θ

Equation (28) writes:

λθA [1 + λL∗ (Xt)]
θ−1K∗ (Xt)

α+q (δK − δL) = αqA [1 + λL∗ (Xt)]
θK∗ (Xt)

α−1

Since δK ≥ δL, we have

λθA [1 + λL∗ (Xt)]
θ−1

K∗ (Xt)
α ≤ αqA [1 + λL∗ (Xt)]

θ
K∗ (Xt)

α−1
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that is
K∗ (Xt)

qL∗ (Xt)
≤
α

λθ

1 + λL∗ (Xt)

L∗ (Xt)
(37)

Since limXt→∞L
∗ (Xt) =∞, for any sequence (Xn) such that limn→∞Xn =

∞, we find

lim sup
n→∞

K∗ (Xn)

qL∗ (Xn)
≤
α

θ

(4) Finally, let γ > 1.
It is easy to show that limXt→X̄− ζ (Xt) =∞. Indeed, L∗ (Xt) converges to

0 continuously and K∗ (Xt) to X̄ also continuously (L∗ (Xt) and K∗ (Xt) are
differentiable).

Focus now on the asymptotic behavior of ζ (Xt) when Xt → ∞. We want
to prove that limXt→∞ ζ (Xt) = α/θ.
Let us to show first that, if ε > 0, then there exists µ > 0 such that ζ (Xt) ≤ µ

for any Xt ≥ X̄ + ε.
According to (37), we have

ζ (Xt) ≤
α

λθ

1 + λL∗ (Xt)

L∗ (Xt)

for any Xt ≥ X̄ + ε. Since limXt→∞L
∗ (Xt) =∞,

lim
Xt→∞

'
α

λθ

1 + λL∗ (Xt)

L∗ (Xt)

(
=
α

θ

Let η > 0. Then, there exists Y > X̄ + ε such that

α

λθ

1 + λL∗ (Xt)

L∗ (Xt)
≤
α

θ
+ η

for any Xt > Y . Let

µ ≡ max

3
max

Xt∈[X̄+ε,Y ]

'
α

λθ

1 + λL∗ (Xt)

L∗ (Xt)

(
,
α

θ
+ η

4

Therefore, we obtain

ζ (Xt) ≤ µ (38)

for any Xt ≥ X̄ + ε.
(28) is equivalent to

λθAK∗ (Xt)− αqA [1 + λL∗ (Xt)] = q (δL − δK) [1 + λL∗ (Xt)]
1−θK∗ (Xt)

1−α

K∗ (Xt)

qL∗ (Xt)
=
α

λθ

1 + λL∗ (Xt)

L∗ (Xt)
+
δL − δK
λθA

[1 + λL∗ (Xt)]
1−θK∗ (Xt)

1−α

L∗ (Xt)
(39)
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Note that

[1 + λL∗ (Xt)]
1−θK∗ (Xt)

1−α

L∗ (Xt)
=

'
1 + λL∗ (Xt)

L∗ (Xt)

(1−θ '
L∗ (Xt)

K∗ (Xt)

(−θ
K∗ (Xt)

1−γ

(40)

According to (38), we have that, for any Xt ≥ X̄ + ε,

K∗ (Xt)

L∗ (Xt)
≤ µq

'
L∗ (Xt)

K∗ (Xt)

(−θ
≤

%
1

µq

&−θ

Then, for any Xt ≥ X̄ + ε,

0 ≤
'
1 + λL∗ (Xt)

L∗ (Xt)

(1−θ '
L∗ (Xt)

K∗ (Xt)

(−θ
K∗ (Xt)

1−α−θ

≤
'
1 + λL∗ (Xt)

L∗ (Xt)

(1−θ %
1

µq

&−θ
K∗ (Xt)

1−α−θ

If γ > 1, we have

lim
Xt→∞

/'
1 + λL∗ (Xt)

L∗ (Xt)

(1−θ %
1

µq

&−θ
K∗ (Xt)

1−γ

0
= 0

and, thus, the limit of (40) also exists with

lim
Xt→∞

[1 + λL∗ (Xt)]
1−θK∗ (Xt)

1−α

L∗ (Xt)
= 0

In addition, according to (39), we obtain

lim
Xt→∞

K∗ (Xt)

qL∗ (Xt)
=
α

λθ
lim

Xt→∞

1 + λL∗ (Xt)

L∗ (Xt)
=
α

θ
(41)

Since
qL∗ (Xt)

Xt
=

1

1 + ζ (Xt)

then
qL∗ (Xt)

Xt
<

θ

α+ θ

for any X and

lim
Xt→∞

qL∗ (Xt)

Xt
=

θ

α+ θ

Finally, consider δK > δL. According to (28), we have

ζ (Xt) ≡
K∗ (Xt)

qL∗ (Xt)
=
α

θ
+
αA+ (δL − δK) [1 + λL∗ (Xt)]

1−θ
K∗ (Xt)

1−α

λθAL∗ (Xt)
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Notice that

lim
X→∞

-
(δL − δK) [1 + λL∗ (Xt)]

1−θK∗ (Xt)
1−α

.
= −∞

For Xt large enough, ζ (Xt) < α/θ and, according to (41), limX→∞ ζ (Xt) =
α/θ.
Proof of Lemma 4
First, we want to prove that, under Assumption 2,

!∞
t=0 β

t ln ct < ∞ for

any X0 ≥ 0.
We observe that ct ≤ F (Xt) for any t. If X0 = 0, then ct = 0 for any t ≥ 0

and
!∞
t=0 β

t ln ct <∞.
Let X0 > 0. If the feasible sequence (Xt)

∞
t=0 is bounded, the sequences

(F (Xt))
∞
t=0 and (ct)

∞
t=0 are bounded as well. Thus,

!∞
t=0 β

t ln ct <∞.
Now, let the sequence (Xt)

∞
t=0 be unbounded.

A sequence (Xt)
∞
t=0 is feasible ifXt+1 ≤ F (Xt) for any t. Define the maximal

sequence

-
X̃t

.∞
t=0

by X̃t+1 = F
-
X̃t

.
for any t with X̃0 = X0. According to

point (3) in Lemma 2, F is strictly increasing and Xt ≤ X̃t for any t. Then, if
(ct)

∞
t=0 is a sequence of feasible consumptions, ct ≤ F (Xt) ≤ F

-
X̃t
.
= X̃t+1

for any t, and
!∞
t=0 β

t ln ct ≤
!∞
t=0 β

t lnF
-
X̃t
.
.

Let us show that there exists T such that X̃t > X̄ for any t ≥ T .
The case X̃t ≤ X̄ for any t is impossible. If X0 = X̃0 ≤ X̄, there exists

T such that X̃T > X̄. Indeed, if not, X̃t+1 = AX̃α
t + (1− δK) X̃t ≡ ξ

-
X̃t
.

for any t ≥ 0. Since ξ is continuous and strictly concave with ξ′ (0) = ∞,
ξ′ (∞) = 1 − δK < 1, it crosses the line X̃t+1 = X̃t at X̃t = 0 and X̃t = X̂.
Thus, according to (16), limt→∞ X̃t = X̂ > X̄, a contradiction.
Let X̃T > X̄ for some T . Since X̂ = AX̂α + (1− δK) X̂ and, according to

(16), X̄ < X̂, we have X̄ < AX̄α + (1− δK) X̄. Moreover, by definition of X̄,
F
#
X̄
$
= AX̄α + (1− δK) X̄. Since F is strictly increasing, if X̃T > X̄, then

X̃T+1 = F
-
X̃T

.
> F

#
X̄
$
= AX̄α+(1− δK) X̄ > X̄. By induction, we obtain

X̃t > X̄ for any t ≥ T . Clearly, if T = 0, we have X̃t > X̄ for any t ≥ 0.
In the following, without loss of generality, we focus on the case X̃t > X̄ for

any t ≥ 0.
We consider three cases: (1) γ < 1, (2) γ = 1, (3) 1 < γ < 1/β.
(1) γ < 1.
According to point (3) of Lemma 2, F is C1, and, since γ < 1, according to

point (5), F is strictly concave. Then, F (Xt) /Xt is a continuous and strictly
decreasing function. Moreover, according to point (2) of Lemma 3,

lim
Xt→0+

F (Xt)
Xt

=∞ and lim
Xt→∞

F (Xt)
Xt

≤ 1− δL < 1

Thus, F (Xt) /Xt crosses 1 once and, therefore, there exists a unique fixed
point Z > X̄ such that Z = F (Z).
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If X̃T ≤ Z for some T , then X̃T+1 = F
-
X̃T

.
< F (Z) = Z. By induction,

we can conclude that X̃t ≤ Z for any t ≥ T .
If X̃T > Z for some T , then X̃T+1 = F

-
X̃T

.
< X̃T and, again by induction,

we conclude that X̃t ≤ X̃T for any t ≥ T .
Therefore, X̃t ≤ max

5
Z, X̃T

6
for any t. This implies

!∞
t=0 β

t ln ct ≤
!∞
t=0 β

t ln X̃t+1 <∞.
(2) γ = 1.
As above, X̃t > X̄ for any t ≥ 0. Then, according to point (5) of Lemma

2, F ′′ (Xt) = 0 for any Xt > X̄ and, thus, F (Xt) = aXt + b for any Xt > X̄.
Therefore, X̃t+1 = F

-
X̃t
.
= aX̃t + b for any t ≥ 0.

We can distinguish two subcases depending on a: (2.1) 0 < a < 1, (2.2)
a ≥ 1.
(2.1) Let 0 < a < 1 and Z satisfy Z = aZ + b.
If X̃t ≤ Z then X̃t+1 ≤ Z and, by induction, X̃t ≤ Z for all t. The sequence-

X̃t
.∞
t=0

is bounded and we are fine:

∞"

t=T

βt ln ct =
∞"

t=T

βt ln [F (Xt)−Xt+1] ≤
∞"

t=T

βt lnF
-
X̃t

.

≤
∞"

t=T

βt lnF (Z) =
βT

1− β
lnF (Z) <∞

If X̃T > Z for some T , then X̃T+1 = aX̃T + b < X̃T and, by induction,

X̃t ≤ X̃T for any t ≥ T . Therefore, X̃t ≤ max
5
Z, X̃T

6
for any t. This implies

!∞
t=0 β

t ln ct ≤
!∞
t=0 β

t ln X̃t+1 <∞.

(2.2) Let a ≥ 1. Then, X̃t+1 = aX̃t + b > X̃t and the sequence
-
X̃t

.∞
t=0

converges to infinity when t goes to infinity.
Let ε > 0. There exists T such that

X̃t >
1

ε

b

a

for any t ≥ T . Clearly,

X̃t+1 =

%
1 +

1

X̃t

b

a

&
aX̃t < (1 + ε) aX̃t

for any t ≥ T .
Since

X̃T+1 > X̃T >
1

ε

b

a
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we get also X̃T+2 < (1 + ε) aX̃T+1. By induction, X̃T+t < [(1 + ε) a]
t
X̃T and,

thus,

∞"

t=T+1

βt ln ct ≤
∞"

t=T+1

βt lnXt+1 = β
T+1

∞"

t=0

βt lnXT+t+2

≤ βT+1
∞"

t=0

βt ln X̃T+t+2 < β
T+1

∞"

t=0

βt ln
-
[(1 + ε) a]t+2 X̃T

.

= βT+1
∞"

t=0

βt
-
(t+ 2) ln [(1 + ε) a] + ln X̃T

.
<∞

because
!∞
t=0 tβ

t = β/ (1− β)2 < ∞. Then,
!∞
t=0 β

t ln ct =
!T
t=0 β

t ln ct +!∞
t=T+1 β

t ln ct <∞.
(3) 1 < γ < 1/β.
We know that X̃t > X̄ for any t ≥ 0 and that

X̃t+1 ≡ F
-
X̃t

.

= A
1
1 + λL∗

-
X̃t
.2θ 1

X̃t − qL∗
-
X̃t
.2α

+(1− δK)
1
X̃t − qL∗

-
X̃t

.2
+ (1− δL) qL∗

-
X̃t

.

We observe that X̃t ≡ K̃∗
-
X̃t

.
+ qL∗

-
X̃t

.
and

X̃t+1 = F
-
X̃t

.

= A

'
1 +

λ

q
qL∗

-
X̃t

.(θ 1
X̃t − qL∗

-
X̃t

.2α

+(1− δK)
1
X̃t − qL∗

-
X̃t
.2
+ (1− δL) qL∗

-
X̃t
.

≤ A

%
1 +

λ

q
X̃t

&θ
X̃α
t + (1− δK) X̃t + (1− δL) X̃t

= A

%
1 +

λ

q
X̃t

&θ
X̃α
t + (2− δK − δL) X̃t

= A

%
λ

q

&θ -
X̃t +

q

λ

.θ
X̃α
t + (2− δK − δL) X̃t

= a
-
X̃t + b

.θ
X̃α
t + cX̃t

where a ≡ A (λ/q)θ > 0, b ≡ q/λ > 0 and c ≡ 2− δK − δL.
Define

Ỹt+1 ≡ a
-
Ỹt + b

.γ
+ cỸt
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with Ỹ0 = X̃0. Clearly,

Ỹt+1 = a
-
Ỹt + b

.α -
Ỹt + b

.θ
+ cỸt ≥ a

-
Ỹt + b

.θ
Ỹ αt + cỸt

and

Ỹ1 ≥ a
-
Ỹ0 + b

.θ
Ỹ α0 + cỸ0 = a

-
X̃0 + b

.θ
X̃α
0 + cX̃0 ≥ F

-
X̃0

.
= X̃1

Ỹ2 ≥ a
-
Ỹ1 + b

.θ
Ỹ α1 + cỸ1 ≥ a

-
X̃1 + b

.θ
X̃α
1 + cX̃1 ≥ F

-
X̃1
.
= X̃2

Thus, by induction, Ỹt ≥ X̃t for any t ≥ 0.
Since γ > 1 we can find ε > 0 such that a (b/ε)

γ
> b/ε. Clearly, Ỹt > b/ε

implies

Ỹt+1 ≡ a
-
Ỹt + b

.γ
+ cỸt > aỸ

γ
t > a

%
b

ε

&γ
>
b

ε

and

Ỹt+1 ≡ a
-
Ỹt + b

.γ
+ cỸt

=

'
a

%
1 +

b

Ỹt

&γ
+

c

Ỹ γ−1t

(
Ỹ γt < a (1 + ε)

γ Ỹ γt

If Ỹt ≤ b/ε for any t, since ct ≤ F
-
X̃t

.
≤ F

-
Ỹt

.
≤ F (b/ε), the sum

!∞
t=0 β

t ln ct is finite-valued.

Suppose instead that ỸT > b/ε for some T . Then, Ỹt > b/ε for any t ≥ T
and Ỹt+1 < a (1 + ε)

γ Ỹ γt for any t ≥ T . Hence, X̃T+1 ≤ ỸT+1 < a (1 + ε)
γ Ỹ γT

and

X̃T+t ≤ ỸT+t < [a (1 + ε)
γ ]

γt−1
γ−1 Ỹ γ

t

T (42)

for any t ≥ 1. In particular, we get

X̃T+t+2 ≤ ỸT+t+2 < [a (1 + ε)
γ]

γt+2−1
γ−1 Ỹ γ

t+2

T
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and, thus,

∞"

t=T+1

βt ln ct ≤
∞"

t=T+1

βt lnXt+1 = β
T+1

∞"

t=0

βt lnXT+t+2

≤ βT+1
∞"

t=0

βs ln X̃T+t+2 ≤ βT+1
∞"

t=0

βt ln ỸT+t+2

< βT+1
∞"

t=0

βt ln

%
[a (1 + ε)γ ]

γt+2−1
γ−1 Ỹ γ

t+2

T

&

≤ βT+1
∞"

t=0

βt
%
γt+2 ln ỸT +

γt+2 − 1
γ − 1

ln [a (1 + ε)γ]

&

≤ βT+1
∞"

t=0

βt
'
γt+2

-
ln ỸT

.+
+
γt+2 − 1
γ − 1

(ln [a (1 + ε)
γ
])
+
(

< ∞

because βγ < 1. Then,
!∞
t=0 β

t ln ct =
!T
t=0 β

t ln ct +
!∞
t=T+1 β

t ln ct <∞.
Finally, we want to prove that the limit of the utility function along any

feasible path converges to a finite real number or diverges to −∞.
From the initial part of this lemma, we know that, under Assumption 2,!∞
t=0 β

t ln ct <∞ for any X0 ≥ 0.
Let ln− ≡ min {0, ln} and ln+ ≡ max {0, ln}.
The sequence

!T
t=0 β

t (ln [F (Xt)−Xt+1])
−
is decreasing in T , so that it

converges to a finite non-positive number or diverges to −∞.
We know that, for any µ > 0, there is T such that

∞"

t=T

βt (ln [F (Xt)−Xt+1])
+ < µ

This implies
!∞
t=0 β

t (ln [F (Xt)−Xt+1])
+ <∞. Indeed, otherwise,

∞"

t=T

βt (ln [F (Xt)−Xt+1])
+ =∞

for any T . Since
!∞
t=0 β

t (ln [F (Xt)−Xt+1])
+
is increasing, it converges to a

finite non-negative number.

Notice that

T"

t=0

βt ln [F (Xt)−Xt+1]

=
T"

t=0

βt (ln [F (Xt)−Xt+1])
− +

T"

t=0

βt (ln [F (Xt)−Xt+1])
+

Then,
!T
t=0 β

t ln [F (Xt)−Xt+1] converges to a finite number or diverges
to −∞.
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Proof of Proposition 5
The set Π(X0) is compact in the product topology.
We want to show that U (X) ≡

!∞
t=0 β

t ln [F (Xt)−Xt+1] is upper semi-
continuous in Π(X0).

Let X0 be given. Consider the maximal sequence
-
X̃t
.∞
t=0

with X̃t+1 =

F
-
X̃t
.
for any t, and X̃0 = X0.

Consider a sufficiently small ε ∈
#
0, b/X̄

$
.

There are two cases: either (1) X̃t ≤ b/ε for any t ≥ 0, or (2) there exists T
such that X̃T > b/ε.
(1) If X̃t ≤ b/ε for any t ≥ 0, then,

∞"

t=0

βt ln [F (Xt)−Xt+1] ≤
∞"

t=0

βt lnF
-
X̃t
.
≤

∞"

t=0

βt lnF
%
b

ε

&

=
1

1− β
lnF

%
b

ε

&
<∞

Given µ > 0, there exists T0 such that, for any T ≥ T0 and any X ∈ Π(X0),
we have

∞"

t=T

βt (ln [F (Xt)−Xt+1])
+ ≤ µ

where ln+ ≡ max {0, ln}.
Let Xn ∈ Π(X0) such that Xn → X ∈ Π(X0) in the product topology.
Let µ be given. Then, for any T ≥ T0 and any n,

U (Xn) ≤
T"

t=0

βt ln
)
F (Xn

t )−X
n
t+1

*
+

∞"

t=T+1

βt
#
ln
)
F (Xn

t )−X
n
t+1

*$+

≤
T"

t=0

βt ln
)
F (Xn

t )−X
n
t+1

*
+ µ

This implies that

lim sup
n
U (Xn) ≤ lim

n→∞

T"

t=0

βt ln
)
F (Xn

t )−X
n
t+1

*
+ µ

=
T"

t=0

βt ln [F (Xt)−Xt+1] + µ

Let T →∞. We have

lim sup
n
U (Xn) ≤

∞"

t=0

βt ln [F (Xt)−Xt+1] + µ = U (X) + µ
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Since µ is an arbitrary positive number, we get lim supn U (X
n) ≤ U (X),

that is U is upper semi-continuous.
(2) Now, assume that there exists T such that X̃T > b/ε.
As in Lemma 4, we consider the following subcases: (2.1) γ < 1, (2.2) γ = 1,

(2.3) 1 < γ < 1/β.
(2.1) If γ < 1, according to point (1) in the proof of Lemma 4, we have!∞
t=0 β

t ln ct <∞.
(2.2) Let γ = 1. As above, X̃t > X̄ for any t ≥ 0. Then, X̃t+1 = F

-
X̃t

.
=

aX̃t+ b for any t ≥ 0. If a < 1, we follow the point (2.1) in the proof of Lemma
4 to get

!∞
t=0 β

t ln ct <∞. Similarly, if a ≥ 1, we follow the point (2.2) in the
proof of Lemma 4 to obtain

!∞
t=0 β

t ln ct <∞.
(2.3) Let 1 < γ < 1/β. Since ε ∈

#
0, b/X̄

$
, we have b/ε > X̄. Thus,

X̃T > b/ε implies X̃T > X̄. We know that, if X̃T > X̄ for some T , then, under
Assumption 2, X̃t > X̄ and

X̃t+1 = A

'
1 +

λ

q
qL∗

-
X̃t

.(θ 1
X̃t − qL∗

-
X̃t

.2α

+(1− δK)
1
X̃t − qL∗

-
X̃t
.2
+ (1− δL) qL∗

-
X̃t
.

for any t ≥ T . Since γ > 1, we can find ε > 0 such that a (b/ε)γ > b/ε.
Let Ỹt+1 ≡ a

-
Ỹt + b

.γ
+ cỸt for any t ≥ T with Ỹ0 = X̃0. It is easy to see

that Ỹt > b/ε implies Ỹt+1 > b/ε and Ỹt+1 < a (1 + ε)
γ Ỹ γt .

If Ỹt ≤ b/ε for any t, since ct ≤ F
-
X̃t
.
≤ F

-
Ỹt
.
≤ F (b/ε), we have that

the sum
!∞
t=0 β

t ln ct is finite-valued.

If ỸT > b/ε for some T , then, Ỹt > b/ε for any t ≥ T . Hence, X̃T+1 ≤
ỸT+1 < a (1 + ε)

γ Ỹ γT and (42) holds. Applying the same argument of the point
(3) in the proof of Lemma 4, we get

!∞
t=0 β

t ln ct <∞.
Therefore, in all the three subcases: (2.1), (2.2), (2.3), given µ > 0, there

exists T0 such that, for any T ≥ T0 and any X ∈ Π(X0), we have

∞"

t=T

βt (ln [F (Xt)−Xt+1])
+ ≤ µ

Let Xn ∈ Π(X0)→ X ∈ Π(X0). Then, for any T ≥ T0 and any n,

U (Xn) ≤
T"

t=0

βt ln
)
F (Xn

t )−X
n
t+1

*
+

∞"

t=T+1

βt
#
ln
)
F (Xn

t )−X
n
t+1

*$+

≤
T"

t=0

βt ln
)
F (Xn

t )−X
n
t+1

*
+ µ
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This implies that

lim sup
n
U (Xn) ≤ lim

n→∞

T"

t=0

βt ln
)
F (Xn

t )−X
n
t+1

*
+ µ

=
T"

t=0

βt ln [F (Xt)−Xt+1] + µ

Let T →∞. We have

lim sup
n
U (Xn) ≤

∞"

t=0

βt ln [F (Xt)−Xt+1] + µ = U (X) + µ

Since µ is arbitrary, we get lim supn U (X
n) ≤ U (X), that is U is upper

semi-continuous in Π(X0).
Therefore, there exists X that maximizes U (X) in Π(X0).
In order to have U (X) > −∞, we observe the following.
Consider X0 ∈

#
0, X̄

*
. According to Assumption 2,

X0 < X̂ =

%
A

δK

& 1
1−α

In this case, since X0 < AXα
0 + (1− δK)X0 and F (X0) − X0 = AXα

0 +
(1− δK)X0 −X0 > 0, X =(X0,X0, . . .) is feasible from X0. Then,

∞"

t=0

βt ln [F (Xt)−Xt+1] =
∞"

t=0

βt ln [F (X0)−X0] =
ln [F (X0)−X0]

1− β
> −∞

Clearly, maxU (X) ≥
!∞
t=0 β

t ln [AXα
0 + (1− δK)X0 −X0] > −∞.

If X0 > X̄, consider the sequence
#
X0, X̄, X̄, . . .

$
. We have F (X0) >

F
#
X̄
$
> X̄ because, if X̃T > X̄ for some T , then, under Assumption 2, X̃t > X̄

for any t ≥ T . Thus, the sequence
#
X0, X̄, X̄, . . .

$
is feasible and

∞"

t=0

βt ln [F (Xt)−Xt+1] = ln
)
F (X0)− X̄

*
+

∞"

t=1

βt ln
)
F
#
X̄
$
− X̄

*

= ln
)
F (X0)− X̄

*
+

β

1− β
ln
)
F
#
X̄
$
− X̄

*
> −∞

Clearly,

maxU (X) ≥ ln
)
F (X0)− X̄

*
+

∞"

t=1

βt ln
)
AX̄α + (1− δK) X̄ − X̄

*
> −∞

Proof of Lemma 6
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Since F is increasing, the optimal sequence (X∗
t )
∞
t=0 is monotonic (see Amir

(1996) and Le Van and Dana (2002)).

It cannot converge to zero, otherwise, for any t large enough, F (X∗
t ) =

AX∗
t
α + (1− δK)X∗

t . Since F ′ (0) = ∞, the Euler equation would lead to a
contradiction.

There is a period T such that X∗
T > X̄. Otherwise, the optimal path (X

∗
t )

would satisfy F (X∗
t ) = AX

∗
t
α+(1− δK)X∗

t for any t. Besides, it must converge
to the steady state X̃ which is larger than X̄. By Assumption 2, we get a
contradiction.

The optimal path either converges to a steady state larger than the threshold

X̄ or diverges to +∞.
Proof of Proposition 8
Let γ < 1.
From the Euler equation, X∗ is a steady state if and only if F ′ (X∗) = 1/β.

From points (3) and (5) of Lemma 2, F is strictly concave and differentiable on
(0,+∞).
We recall that 1− δK + αAX̃α−1 = 1/β and that X̄ < X̃ implies F ′

#
X̄
$
=

1 − δK + αAX̄α−1 > 1/β. We know that the stationary state X∗ satisfies

1/β = F ′ (X∗).
F ′ (X∗) = 1/β < F ′

#
X̄
$
implies thatX∗ > X̄. Indeed, F is strictly concave.

We want to show that X∗ > X̃.
We have

F ′ (Xt) = αA [1 + λL∗ (Xt)]
θ
[Xt − qL∗ (Xt)]

α−1
+ 1− δK

We know that Xt > X̄ implies L∗ (Xt) > 0, that is Xt − qL∗ (Xt) < Xt and
[Xt − qL∗ (Xt)]

α−1 > Xα−1
t . In addition, [1 + λL∗ (Xt)]

θ > 1.
Then, F ′ (Xt) > αAXα−1

t + 1− δK for any Xt > X̄. Since X̃ > X̄, we get

F ′
-
X̃
.
> αAX̃α−1 + 1− δK = 1/β = F ′ (X∗).

We know also from Lemma 2 that F is strictly concave. We obtain X̃ < X∗.

If δK = δL, (28) becomes

λθ (Xt − qLt) = αq (1 + λLt) (43)

Since

Xt = (1 + ζt) qLt (44)

we obtain

Lt =
α

λ (θζt − α)

(43) entails λθKt = αq + αqλLt and we find

ζt ≡
Kt
qLt

=
α

λθ

1

Lt
+
α

θ
(45)

Thus,

lim
t→∞

ζt =
α

θ

%
1 +

1

λ limt→∞Lt

&
=
α

θ

%
1 +

1

λL∗

&
>
α

θ
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Proof of Proposition 10
(2) Let γ = 1 and δK ≥ δL. Consider only X0 ≥ X̄ and X ≥ X0. In this

case,

F
#
X̄
$
= AX̄α + (1− δK) X̄ = F ′

#
X̄
$
X̄ + Z

where

F ′
#
X̄
$
= αAX̄α−1 + 1− δK >

1

β
(46)

and Z ≡ (1− α)AX̄α. From the first-order condition (32), we know that, for

any X > X̄,

λθA

%
1 + λL

X − qL

&θ−1
(X − qL)γ−1−αqA

%
1 + λL

X − qL

&θ
(X − qL)γ−1+q (δK − δL) = 0

and, since γ = 1,

λθA

%
1 + λL

X − qL

&θ−1
− αqA

%
1 + λL

X − qL

&θ
+ q (δK − δL) = 0 (47)

Then,

1 + λL∗ (X)

X − qL∗ (X)

is constant for any X ≥ X̄ and equal to 1/X̄ (since L∗
#
X̄
$
= 0). Hence,

Lt = L
∗ (Xt) =

Xt − X̄
q + λX̄

(48)

Moreover,

Kt = Xt − qLt = X̄
q + λXt
q + λX̄

(49)

and

Kt
qLt

= X̄

λ
qXt + 1

Xt − X̄
(50)

For any X ≥ X̄, we obtain

F ′ (X) = αA [1 + λL∗ (X)]
θ
[X − qL∗ (X)]α−1 + 1− δK

= αA

'
1 + λL∗ (X)

X − qL∗ (X)

(θ
[X − qL∗ (X)]α+θ−1 + 1− δK

= αA

%
1

X̄

&1−α
+ 1− δK = F ′

#
X̄
$

For any Xt+1 ≥ X̄, the Euler equation implies

ct+1
ct

= βF ′ (Xt+1) = βF ′
#
X̄
$
> 1
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Optimal consumption grows at a constant rate > 1.

ct = c0
)
βF ′

#
X̄
$*t

Let us compute F (Xt) for Xt > X̄:

F (Xt) = A (1 + λLt)
θ (Xt − qLt)

α + (1− δK) (Xt − qLt) + (1− δL) qLt
= A (1 + λLt)

1−α (Xt − qLt)
α + (1− δK) (Xt − qLt) + (1− δL) qLt

= A

%
1 + λLt
Xt − qLt

&1−α
(Xt − qLt) + (1− δK) (Xt − qLt) + (1− δL) qLt

=
#
AX̄α−1 + δL − δK

$
(Xt − qLt) + (1− δL)Xt

Using (48) to replace Lt, we get

F (Xt) =
#
AX̄α−1 + δL − δK

$%
Xt − q

Xt − X̄
q + λX̄

&
+ (1− δL)Xt

=

'
1− δL +

#
AX̄α−1 + δL − δK

$ λX̄

q + λX̄

(
Xt

+
#
AX̄α−1 + δL − δK

$ qX̄

q + λX̄

= aXt + b

which is linear in Xt, where

a ≡ 1− δL +
#
AX̄α−1 + δL − δK

$ λX̄

q + λX̄
(51)

b ≡
#
AX̄α−1 + δL − δK

$ qX̄

q + λX̄
(52)

Notice that X̄ is solution to

AX̄α−1 =
q (δK − δL)
αq − λθX̄

(53)

Then, the optimal path (Xt) satisfies for any t:

Xt+1 = F (Xt)− ct = F (Xt)− c0
)
βF ′

#
X̄
$*t

= aXt + b− c0
)
βF ′

#
X̄
$*t

= aXt + b− c0 (aβ)
t

(54)

since F ′
#
X̄
$
= F ′ (Xt) = a.

Now, we want to prove that the solution to the difference equation:

xt+1 = axt + b− c (aβ)
t

(55)
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with x0 ,= 0, 0 < β < 1 and

a > 1/β > 1, b > 0, c > 0 (56)

is given by

xt+1 = a
t+1

%
x0 −

b

1− a
−
c

a

1− βt+1

1− β

&
+

b

1− a
(57)

that is by

xt+1 = a
t+1

%
x0 −

b

1− a
−
c

a

1

1− β

&
+
c

a

(aβ)t+1

1− β
+

b

1− a
(58)

Let us prove (58) by induction.

For t = 0, (58) gives

x1 = a

%
x0 −

b

1− a
−
c

a

&
+

b

1− a
= ax0 + b− c

that is (55).

Now, let (58) be true at period t. Check it for period t+ 1.
(55) implies

xt+2 = axt+1 + b− c (βa)
t+1

Replacing (58), we have

xt+2 = a
t+2

%
x0 −

b

1− a
−
c

a

1− βt+1

1− β

&
+

ab

1− a
+ b− c (βa)t+1 (59)

Since
ab

1− a
+ b =

b

1− a
and

−at+2
c

a

1− βt+1

1− β
− c (βa)t+1

= −at+2
c

a

1

1− β
)
1− βt+1 + βt+1 (1− β)

*

= −at+2
c

a

1

1− β
#
1− βt+2

$

(59) becomes

xt+2 = a
t+2

%
x0 −

b

1− a
−
c

a

1− βt+2

1− β

&
+

b

1− a

Thus, (58) is verified also for t+1. Then, it holds for any t ≥ 0 proving that
(57) is the solution to (55).
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Equation (54) is exactly equation (57) with c = c0. Notice that all restric-
tions in (56) are satisfied. Indeed, according to (46),

a = F ′
#
X̄
$
>
1

β

and, according to (51) and (52),

b = [a− (1− δL)]
q

λ
>

'
1

β
− (1− δL)

(
q

λ
> 0 (60)

Therefore, using to (58), the solution becomes

Xt+1 =
)
F ′
#
X̄
$*t+1

/
X0 +

q

λ

+
1 +

δL

F ′
#
X̄
$
− 1

,
−

1

1− β
c0

F ′
#
X̄
$
0

+
β

1− β
c0
)
βF ′

#
X̄
$*t − q

λ

+
1 +

δL

F ′
#
X̄
$
− 1

,
(61)

Noticing that a = F ′
#
X̄
$
> 1, according to (60),

b

1− a
=
q

λ

%
δL
1− a

− 1
&
= −

q

λ

+
1 +

δL

F ′
#
X̄
$
− 1

,
< 0

We need Xt ≥ 0 for any t. If the term multiplying
)
F ′
#
X̄
$*t+1

in (61) was

negative, i.e. if

X0 +
q

λ

+
1 +

δL

F ′
#
X̄
$
− 1

,
−

1

1− β
c0

F ′
#
X̄
$ < 0

since by (56) F ′
#
X̄
$
> 1/β > 1, then Xt would become negative sooner or

later.

Hence, this term must be non-negative, which implies that

1

1− β
c0

F ′
#
X̄
$ ≤ X0 +

q

λ

+
1 +

δL

F ′
#
X̄
$
− 1

,
(62)

establishing an upper bound on c0.

The value of the program is V (c0) =
!∞
t=0 β

t ln
-
c0
)
βF ′

#
X̄
$*t.

and V is

increasing in c0. From (62), the maximum is attained at

c0 = c̄0 ≡ (1− β)F ′
#
X̄
$
/
X0 +

q

λ

+
1 +

δL

F ′
#
X̄
$
− 1

,0

Note that this implies that the first term in (61) becomes zero.
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Therefore, the optimal paths are given by

ct = c̄0
)
βF ′

#
X̄
$*t

Xt+1 = c̄0
)
βF ′

#
X̄
$*t β

1− β
− z

for any t, where z > 0 is defined by (17). Clearly, when t→∞,

Xt+1 ∼ c̄0
)
βF ′

#
X̄
$*t β

1− β

From (48), (49) and (50), Lt+1, Kt+1 and the ratio Kt+1/ (qLt+1) obtain

Lt+1 =
Xt+1 − X̄
q + λX̄

=
c̄0
)
βF ′

#
X̄
$*t β

1−β − z − X̄
q + λX̄

Kt+1 = X̄
q
λ +Xt+1
q
λ + X̄

= X̄

q
λ + c̄0

)
βF ′

#
X̄
$*t β

1−β − z
q
λ + X̄

Kt+1
qLt+1

= X̄

λ
qXt+1 + 1

Xt+1 − X̄

Thus,

lim
t→∞

Kt = lim
t→∞

Lt =∞

Taking the limit of the ratio, we have

lim
t→∞

Kt
qLt

= lim
t→∞

/
X̄

λ
qXt + 1

Xt − X̄

0
= X̄

λ

q
≤
α

θ

where the last inequality follows from (8). Note that this result on the limit is

in line with point (3) of Lemma 3.

Finally, we observe that, asymptotically, physical, living and total capital,

and consumption grow at the same rate:

Lt+1
Lt

∼
Kt+1
Kt

∼
Xt+1
Xt

∼
ct+1
ct

= βF ′
#
X̄
$
> 1

In this respect, we can say that the unbounded growth is asymptotically

balanced.

Proof of Proposition 11
Let 1 < γ < 1/β. In this case, F is strictly convex for Xt > X̄. Hence

F ′ is increasing and F ′ (Xt) > F ′
#
X̄
$
for any Xt > X̄. Since F ′

#
X̄
$
>

1/β, there exists no steady state. The optimal path (Xt)
∞
t=0 diverges to in-

finity: limt→∞Xt = ∞. Then, according to points (1) and (4) of Lemma 3,
limt→∞Lt = limt→∞Kt =∞ and

lim
t→∞

Kt
qLt

=
α

θ
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with Kt/ (qLt) < α/θ for t large enough.
In the following, we consider the two possible cases according to Assumption

1: δK = δL and δK > δL.
(1) Let δK = δL. Following the same argument as at the end of the proof of

Proposition 8, we obtain again equation (45):

ζt =
α

λθ

1

Lt
+
α

θ

However, under the assumptions of Proposition 11, Lt diverges to∞. Thus,
ζt > α/θ for any t and, since limt→∞Lt =∞, we have limt→∞ ζt = α/θ.
(2) Let now δK > δL.
The first order condition in (28) can be written as:

λθAK∗ (X)− αqA [1 + λL∗ (X)] = q (δL − δK) [1 + λL∗ (X)]
1−θ

K∗ (X)
1−α

Since ζ (Xt) ≡ K∗ (Xt) / [qL
∗ (Xt)], we can divide the above expression to

obtain

λθAζ (Xt) = αA

'
λ+

1

L∗ (Xt)

(
+(δL − δK) qθζ (Xt)

θK∗ (Xt)
1−γ

'
λ+

1

L∗ (Xt)

(1−θ

and, taking derivatives on both sides with respect to Xt:

ζ ′ (Xt)

/
λθA+ θ (δK − δL) qθζ (Xt)

θ−1K∗ (Xt)
1−γ

'
λ+

1

L∗ (Xt)

(1−θ0

=
L∗′ (Xt)

L∗ (Xt)
2

/
−αA+ (1− θ) (δK − δL) qθζ (Xt)

θK∗ (Xt)
1−γ

'
λ+

1

L∗ (Xt)

(−θ0

+K∗′ (Xt) (γ − 1) qθ (δK − δL) ζ (Xt)
θK∗ (Xt)

−γ
'
λ+

1

L∗ (Xt)

(1−θ
(63)

We have

K∗ (Xt)
−γ
K∗′ (Xt) = q

1−γL∗ (Xt)
2−γ K

∗′ (Xt)

qL∗′ (Xt)

L∗′ (Xt)

L∗ (Xt)
2

'
K∗ (Xt)

qL∗ (Xt)

(−γ
(64)

(30) and (31) imply

K∗′ (Xt)

qL∗′ (Xt)
=
αqλθ + θ (1− θ)λ2 K∗(Xt)

1+λL∗(Xt)

αqλθ + α (1− α) q2 1+λL
∗(Xt)

K∗(Xt)

since P (Xt) ≡ 1 + λL∗ (Xt).
This means that, for any Xt sufficiently large, the termK

∗′ (Xt) / [qL
∗′ (Xt)]

is uniformly bounded above and below away from zero. We also have that

ζ (Xt) ≡ K∗ (Xt) / [qL
∗ (Xt)] is uniformly bounded away from zero and from

+∞.
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(63) can be rewritten as

ζ ′ (Xt)R (Xt) = S (Xt)

where

R (Xt) ≡ λθA+ θ (δK − δL) qθζ (Xt)
θ−1

K∗ (Xt)
1−γ

'
λ+

1

L∗ (Xt)

(1−θ
> 0

(65)

and

S (Xt) ≡ σ (Xt)
L∗′ (Xt)

L∗ (Xt)
2

with

σ (Xt) ≡ −αA+ (1− θ) (δK − δL) qθζ (Xt)
θ
K∗ (Xt)

1−γ
'
λ+

1

L∗ (Xt)

(−θ

+(γ − 1) (δK − δL) q−αζ (Xt)
−α L∗ (Xt)

2−γ K
∗′ (Xt)

L∗′ (Xt)

'
λ+

1

L∗ (Xt)

(1−θ
(66)

because of (64).

Taking the limit of the second term in (66),

lim
Xt→∞

/
(1− θ) (δK − δL) qθζ (Xt)

θ
K∗ (Xt)

1−γ
'
λ+

1

L∗ (Xt)

(−θ0

= (1− θ) (δK − δL) qθλ−θ lim
Xt→∞

1
ζ (Xt)

θK∗ (Xt)
1−γ

2
= 0

Moreover, taking the limit of the third term of (66),

lim
Xt→∞

+
(γ − 1) (δK − δL) q−αζ (Xt)

−α L∗ (Xt)
2−γ K

∗′ (Xt)

L∗′ (Xt)

'
λ+

1

L∗ (Xt)

(1−θ,

= (γ − 1) (δK − δL) q−αλ1−θ lim
Xt→∞

'
ζ (Xt)

−α
L∗ (X)

2−γ K
∗′ (X)

L∗′ (X)

(
=∞

Hence, for any Xt large enough, S (Xt) > 0 and ζ
′ (Xt) > 0.

Let us prove that ζ ′ (Xt) < 0 when Xt is sufficiently close to X̄ from the

right.

We have

ζ ′ (Xt) =
σ (Xt)

R (Xt)

L∗′ (Xt)

L∗ (Xt)
2 (67)

where R (Xt) > 0 is given by (65) and σ (Xt) by (66).
Observe that

lim
Xt→X̄+

σ (Xt) = −αA+ (1− θ) (δK − δL) X̄1−α (68)
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because

q−αζ (Xt)
−α L∗ (Xt)

2−γ K
∗′ (Xt)

L∗′ (Xt)

'
λ+

1

L∗ (Xt)

(1−θ

∼ q−αζ (Xt)
−α L∗ (Xt)

2−γ L∗ (Xt)
θ−1 K

∗′ (Xt)

L∗′ (Xt)

= q−αq1−θζ (Xt)
−α
K∗ (Xt)

θ−1
L∗ (Xt)

2−γ K
∗′ (Xt)

L∗′ (Xt)

'
qL∗ (Xt)

K∗ (Xt)

(θ−1

= q1−γζ (Xt)
1−γ K∗ (Xt)

θ−1 L∗ (Xt)
2−γ K

∗′ (Xt)

L∗′ (Xt)
→ 0

since 1 − γ < 0 < 2 − γ, limXt→X̄+ L∗ (Xt) = 0, limXt→X̄+ K∗ (Xt) = X̄,

limXt→X̄+ ζ (Xt)
1−γ = 0 and

lim
Xt→X̄+

K∗′ (Xt)

L∗′ (Xt)
= q

αqλθ + θ (1− θ)λ2X̄
αqλθ+ α (1− α) q2 1

X̄

X̄ satisfies (7), that is

(δK − δL) X̄1−α = αA− λθA
X̄

q

Replacing in (68), we find

lim
Xt→X̄+

σ (Xt) = −αA+ (1− θ)
%
αA− λθA

X̄

q

&
= −θA

'
α+ λ (1− θ)

X̄

q

(
< 0

When Xt is sufficiently close to X̄ from the right, we get σ (Xt) /R (Xt) < 0
and, according to (67), ζ′ (X) < 0.
Proof of Proposition 13
Under the proposition’s assumptions γ > 1 and δK = δL, it is possible to

write the dynamics in the variable ζt, which, we know, converges to α/θ (see
Proposition 11).

The existence of a limit for this reduced dynamics will allow us to simulate

the trajectory (ζt) and, then, the trajectories (Xt) and (ct).
We know that

F (Xt+1) = A (1 + λLt+1)
θ (Xt+1 − qLt+1)

α + (1− δK)Xt+1

and that according to (32),

F ′ (Xt+1) = αA (1 + λLt+1)
θ (Xt+1 − qLt+1)

α−1 + 1− δK

Moreover, ct = F (Xt)−Xt+1, Lt = α/ [λ (θζt − α)] and

Xt = (1 + ζt) qLt =
q

λ

αζt + α

θζt − α
≡ X (ζt) (69)
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The Euler equation becomes

u′ (ct)

u′ (ct+1)
=
ct+1
ct

= βF ′ (Xt+1)

that is (21), where ψ is defined by (22).
Besides, (21) obtains solving the "new" optimization problem:

max
∞"

t=0

βt ln
#
ψ
#
ζt, ζt+1

$$

with ζt ≥ α/θ for any t.
The solution will be interior because of ln. Taking the derivative of the

intertemporal utility with respect to ζt+1, we find

ψ2
#
ζt, ζt+1

$

ψ
#
ζt, ζt+1

$ + β
ψ1
#
ζt+1, ζt+2

$

ψ
#
ζt+1, ζt+2

$ = 0

Since ψ
#
ζt, ζt+1

$
≡ F (X (ζt))−X

#
ζt+1

$
, we have

ψ1
#
ζt+1, ζt+2

$
= F ′

#
X
#
ζt+1

$$
X ′ #ζt+1

$

ψ2
#
ζt, ζt+1

$
≡ −X′ #ζt+1

$

and we recover (21).

Proof of Proposition 14
We study now the case γ > 1 with δK > δL. From (28):

λθA

%
1 + λLt
Xt − qLt

&θ−1
= αqA

%
1 + λLt
Xt − qLt

&θ
+ q (δL − δK)K

1−γ
t (70)

for any t, where Kt = Xt − qLt. We know that (28) implies that Lt = L∗ (Xt)
is a strictly increasing function of Xt.
Define ϕ (Xt) according to (24). (70) reduces to

λθAϕ (Xt)
θ−1

= αqAϕ (Xt)
θ
+ q (δL − δK)K∗ (Xt)

1−γ
(71)

Taking derivatives in (71) with respect to Xt, we find

θAϕ′ (Xt)ϕ (Xt)
θ−2

[λ (θ − 1)− αqϕ (Xt)] = q (γ − 1) (δK − δL)K∗ (Xt)
−γ
K∗′ (Xt)
(72)

θ < 1, γ > 1 and K∗′ (Xt) > 0 imply ϕ′ (Xt) < 0. Since ϕ is strictly
monotonic, we can define the inverse function Xt = ϕ−1 (ϕt) for any ϕt > 0.
According to (71), we find

λθA

'
lim

Xt→∞
ϕ (Xt)

(θ−1
= αqA

'
lim

Xt→∞
ϕ (Xt)

(θ
(73)
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since γ > 1 and limXt→∞K
∗ (Xt)

1−γ
= 0. Thus, limXt→∞ ϕ (Xt) = l > 0,

otherwise, according to (73), limXt→∞ ϕ (Xt) = 0 would imply that ∞ = 0,
which is a contradiction. Then, (73) becomes λθAlθ−1 = αqAlθ, that is l =
λθ/ (αq) > 0, which is not surprising:

lim
Xt→∞

ϕ (Xt) = lim
Xt→∞

1 + λL∗ (Xt)

K∗ (Xt)
= lim
Xt→∞

1

K∗ (Xt)
+
λ

q
lim

Xt→∞

qL∗ (Xt)

K∗ (Xt)

= 0 +
λ

q
lim

Xt→∞

1

ζ (Xt)
=
λ

q

θ

α

Now, consider the Euler equation:

ct+1
ct

= βF ′ (Xt+1) = β
-
αA [1 + λL∗ (Xt+1)]

θ [K∗ (Xt+1)]
α−1 + 1− δK

.

= β
-
αAϕ (Xt+1)

θ [K∗ (Xt+1)]
α+θ−1 + 1− δK

.

Clearly, limt→∞ (ct+1/ct) =∞ since limXt→∞ ϕ (Xt) = l > 0 and

lim
Xt→∞

K∗ (Xt)
α+θ−1 =∞

For the numerical exercises, we will consider the Euler equation ct+1/ct =
βF ′ (Xt+1) with ct = F (Xt)−Xt+1:

F (Xt+1)−Xt+2
F (Xt)−Xt+1

= βF ′ (Xt+1)

Using Xt = ϕ
−1 (ϕt), we obtain

F
#
ϕ−1

#
ϕt+1

$$
− ϕ−1

#
ϕt+2

$

F (ϕ−1 (ϕt))− ϕ−1
#
ϕt+1

$ = βF ′
#
ϕ−1

#
ϕt+1

$$

that is (23), a recursive transition function.

The trajectory is determined by (23) jointly with the transversality condi-

tion:

lim
t→∞

ϕt = l =
λθ

αq

Proof of Theorem 16.
First, we prove that (K∗

t ) maximizes the firm’s profit. Define

∆T ≡
T"

t=0

p∗t
)
F (K∗

t , L
∗
t )−K

∗
t+1 − qL

∗
t+1

*
−

T"

t=0

p∗t
)
F (Kt, L

∗
t )−Kt+1 − qL

∗
t+1

*

where K∗
0 = K0 and 0 ≤ Kt+1 ≤ F (Kt, L

∗
t ) − qL∗t+1 = L

#
Kt, L

∗
t , L

∗
t+1

$
. We

have:

∆T =
T−1"

t=0

#
−p∗t

#
K∗
t+1 −Kt+1

$
+ p∗t+1

)
F
#
K∗
t+1, L

∗
t+1

$
− F

#
Kt+1, L

∗
t+1

$*$

−p∗T
#
K∗
T+1 −KT+1

$
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Since F (K∗
t , L

∗
t )− F (Kt, L∗t ) ≥ FK (K∗

t , L
∗
t ) (K

∗
t −Kt), we obtain

∆T ≥
T−1"

t=0

)
−p∗t + p

∗
t+1FK

#
K∗
t+1, L

∗
t+1

$* #
K∗
t+1 −Kt+1

$
− p∗T

#
K∗
T+1 −KT+1

$

The Euler equation implies −p∗t + p∗t+1FK
#
K∗
t+1, L

∗
t+1

$
= 0, that is ∆T ≥

−p∗T
#
K∗
T+1 −KT+1

$
≥ −p∗TK

∗
T+1.

To finish this proof, we have to show that limT→∞ p
∗
TK

∗
T+1 = 0. As above,

we focus on the three cases: (1) γ < 1, (2) γ = 1, and (3) 1 < γ < 1/β.
(1) γ < 1. Since c∗T = F (K

∗
T , L

∗
T )−K

∗
T+1 − qL

∗
T+1, we get

p∗TK
∗
T+1 = β

Tu′ (c∗T )K
∗
T+1 = β

T K
∗
T+1

c∗T
= βT

K∗
T+1

L∗T+1

F(K∗
T ,L

∗
T )

L∗T+1
− K∗

T+1

L∗T+1
− q

≡ βTρ∗T

(74)

where the ratio ρ∗T is uniformly bounded because (K∗
t , L

∗
t ) converges to the

steady state (K∗, L∗). According to (74) limT→∞ β
T = 0 implies that

lim
T→∞

p∗TK
∗
T+1 = lim

T→∞
βTρ∗T = 0

(2) γ = 1. According to (4), we have

F (K∗
T , L

∗
T )

L∗T+1
=

+
A

%
1 + λL∗T
K∗
T

&θ
K∗
T

L∗T
+ (1− δK)

K∗
T

L∗T
+ q (1− δL)

,
L∗T
L∗T+1

since γ ≡ α+ θ = 1. The growth path is asymptotically balanced and, by (19),
limT→∞

#
L∗T+1/L

∗
T

$
= βF ′

#
X̄
$
. Then,

lim
T→∞

F (K∗
T , L

∗
T )

L∗T+1
=

+
Aλθ lim

T→∞

%
K∗
T

L∗T

&1−θ
+ (1− δK) lim

T→∞

K∗
T

L∗T
+ q (1− δL)

,
lim
T→∞

L∗T
L∗T+1

=
λX̄

#
AX̄−θ + 1− δK

$
+ q (1− δL)

βF ′
#
X̄
$ (75)

since limT→∞K
∗
T =∞ and limT→∞ (K

∗
T/L

∗
T ) = λX̄.

ρ∗T in (74) is uniformly bounded because of (75) and limT→∞ (K
∗
T/L

∗
T ) =

λX̄. Then, according to (74), limT→∞ β
T = 0 implies limT→∞ p

∗
TK

∗
T+1 = 0.

(3) 1 < γ < 1/β. We know that

c∗T+1 = βc∗TFK
#
K∗
T+1, L

∗
T+1

$
= βc∗T

1
αA

#
1 + λL∗T+1

$θ
K∗α−1
T+1 + 1− δK

2

= β
c∗T
K∗
T+1

αA
#
1 + λL∗T+1

$θ
K∗α
T+1 + βc

∗
T (1− δK)

Hence,

c∗T+1
K∗
T+2

= β
c∗T
K∗
T+1

+
αA

%
1 + λL∗T+1
K∗
T+1

&θ
K∗α+θ−1
T+1 + 1− δK

,
K∗
T+1

K∗
T+2

(76)
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From the budget constraint, at equilibrium, we have:

K∗
T+2 + qL

∗
T+2 ≤ A

#
1 + λL∗T+1

$θ
K∗α
T+1 + (1− δK)K

∗
T+1 + q (1− δL)L

∗
T+1 − c

∗
T+1

≤ A
#
1 + λL∗T+1

$θ
K∗α
T+1 + (1− δK)K

∗
T+1 + q (1− δL)L

∗
T+1

that is, dividing by K∗
T+2, and rearranging

1 +
qL∗T+2
K∗
T+2

A
-
1+λL∗T+1
K∗
T+1

.θ
K∗α+θ−1
T+1 + 1− δK + (1− δL)

qL∗T+1
K∗
T+1

≤
K∗
T+1

K∗
T+2

(77)

Replacing (77) in (76), we get

c∗T+1
K∗
T+2

≥ β
c∗T
K∗
T+1

-
1 +

qL∗T+2
K∗
T+2

.'
αA

-
1+λL∗T+1
K∗
T+1

.θ
K∗α+θ−1
T+1 + 1− δK

(

A
-
1+λL∗T+1
K∗
T+1

.θ
K∗α+θ−1
T+1 + 1− δK + (1− δL)

qL∗T+1
K∗
T+1

Since γ ≡ α + θ > 1, limT→∞ (qL∗T/K
∗
T ) = θ/α and limT→∞K

∗
T = ∞, we

find

lim
T→∞

-
1 +

qL∗T+2
K∗
T+2

.'
αA

-
1+λL∗T+1
K∗
T+1

.θ
K∗α+θ−1
T+1 + 1− δK

(

A
-
1+λL∗T+1
K∗
T+1

.θ
K∗α+θ−1
T+1 + 1− δK + (1− δL)

qL∗T+1
K∗
T+1

= α

%
1 + lim

T→∞

qL∗T+2
K∗
T+2

&
= α

%
1 +

θ

α

&
= γ

Fix ε ∈ (0, γ − 1). Then, there exists T0 such that, for any T ≥ T0, we
have c∗T+1/K

∗
T+2 ≥ β (γ − ε) c

∗
T/K

∗
T+1 and, by induction, c

∗
T0+τ+1

/K∗
T0+τ+2

≥
[β (γ − ε)]τ+1 c∗T0/K

∗
T0+1

or, equivalently,

K∗
T0+τ+2

c∗T0+τ+1
≤

1

[β (γ − ε)]τ+1
K∗
T0+1

c∗T0
(78)

Therefore,

lim
T→∞

p∗TK
∗
T+1 = lim

T→∞

βTK∗
T+1

c∗T
≤
βT0K∗

T0+1

c∗T0
lim
T→∞

(γ − ε)T0−T = 0

since γ − ε > 1.
Let us prove that the consumer does maximize her overall utility when

0 < γ < 1/β, that is, if (ct) satisfies
!∞
t=0 β

tu (ct) >
!∞
t=0 β

tu (c∗t ), then!∞
t=0 p

∗
t ct > π

∗ + r∗K0.
(1) From (P0), we have c∗t +K

∗
t+1 + qL

∗
t+1 = F (K∗

t , L
∗
t ) for any t. Thus,

p∗t c
∗
t = p

∗
tF (K

∗
t , L

∗
t )−p∗tK∗

t+1−qp∗tL∗t+1. Let us show that the series
!∞
t=0 p

∗
t c
∗
t ,
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!∞
t=0 p

∗
tK

∗
t+1,

!∞
t=0 p

∗
tL

∗
t+1 and

!∞
t=0 p

∗
tF (K

∗
t , L

∗
t ) are bounded away from ∞

and, thus,
!∞
t=0 p

∗
t c
∗
t = π∗ + r∗K0 with

!∞
t=0 p

∗
t c
∗
t < ∞ and π∗ + r∗K0 =!∞

t=0

)
p∗tF (K

∗
t , L

∗
t )− p∗tK∗

t+1 − qp∗tL∗t+1
*
<∞.

Note that p∗t ≡ β
tu′ (c∗t ) = β

t/c∗t . Then,
!∞
t=0 p

∗
t c
∗
t =

!∞
t=0 β

t = 1/ (1− β) <
∞. Moreover, since

!∞
t=0 p

∗
t c
∗
t =

!∞
t=0 p

∗
t

)
F (K∗

t , L
∗
t )−K∗

t+1 − qL∗t+1
*
and!∞

t=0 p
∗
t c
∗
t < ∞, we get

!∞
t=0 p

∗
tF (K

∗
t , L

∗
t ) =

!∞
t=0 p

∗
t c
∗
t +

!∞
t=0 p

∗
tK

∗
t+1 +

q
!∞
t=0 p

∗
tL

∗
t+1 <∞, provided that

!∞
t=0 p

∗
tK

∗
t+1 <∞ and

!∞
t=0 p

∗
tL

∗
t+1 <∞.

First, since the sequence (L∗t/K
∗
t ) is bounded away from 0 and from ∞, if!∞

t=0 p
∗
tK

∗
t+1 <∞, then we would have that

∞"

t=0

p∗tL
∗
t+1 =

∞"

t=0

p∗tK
∗
t+1

#
L∗t+1/K

∗
t+1

$
<∞

In this regard, let us show that
!∞
t=0 p

∗
tK

∗
t+1 <∞. We need to distinguish

two cases: γ ≤ 1 and 1 < γ < 1/β. If γ ≤ 1, we have that ρ∗T in (74) is

uniformly bounded and
!∞
t=0 p

∗
tK

∗
t+1 =

!∞
t=0 β

tρ∗T < ∞. In the second case,
1 < γ < 1/β and according to (78), we have

∞"

t=0

p∗tK
∗
t+1 =

∞"

t=0

βtK∗
t+1

c∗t
=

T0"

t=0

βtK∗
t+1

c∗t
+

∞"

τ=0

βT0+τ+1K∗
T0+τ+2

c∗T0+τ+1

≤
T0"

t=0

βtK∗
t+1

c∗t
+

∞"

τ=0

βT0+τ+1

[β (γ − ε)]τ+1
K∗
T0+1

c∗T0

=

T0"

t=0

βtK∗
t+1

c∗t
+
βT0K∗

T0+1

(γ − ε) c∗T0

∞"

τ=0

%
1

γ − ε

&τ

=

T0"

t=0

βtK∗
t+1

c∗t
+
βT0K∗

T0+1

c∗T0

1

γ − ε− 1
<∞

Therefore,
!∞
t=0 p

∗
tF (K

∗
t , L

∗
t ) <∞.

Finally, let us show that, if (ct) satisfies
!∞
t=0 β

tu (ct) >
!∞
t=0 β

tu (c∗t ),
then

!∞
t=0 p

∗
t ct > π∗ + r∗K0. Indeed, 0 >

!∞
t=0 β

tu (c∗t ) −
!∞
t=0 β

tu (ct) ≥!∞
t=0 β

tu′ (c∗t ) (c
∗
t − ct). Thus, 0 >

!∞
t=0 p

∗
t c
∗
t −

!∞
t=0 p

∗
t ct and

!∞
t=0 p

∗
t ct >!∞

t=0 p
∗
t c
∗
t = π

∗ + r∗K0. To finish the proof, take r
∗ = p∗0FK (K0, L0).

Proof of Corollary 12.
(1) When γ = 1, according to (19), growth factors are asymptotically bal-

anced with
Kt+1
Kt

∼
Lt+1
Lt

= βF ′
#
X̄
$

(79)

and the definition for X̄ is given by equation (53) in the proof of Proposition

10:

AX̄α−1 =
q (δK − δL)
αq − λθX̄

(80)
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Equation (80) can be written as

α−
λθ

q
X̄ =

δK − δL
A

X̄1−α (81)

It is easy to show that equation (81) has a unique solution. Note first that

the LHS strictly decreases in X̄, while the RHS strictly increases in X̄. Since
LHS (0) = α > RHS (0) = 0, the RHS and the LHS cross only once proving
the existence and uniqueness of the solution to (81), X̄∗ (q).
From (81), it is easy to see that X̄∗ is strictly increasing in q.
According to (46) in the proof of Proposition 10, F ′

#
X̄
$
= αAX̄α−1+1−δK .

Hence, (79) implies that the balanced growth factor decreases when q increases.
Moreover, (18) is equivalent to limt→∞ (Kt/Lt) = λX̄, entailing that, when

q increases, the asymptotic capital ratio Kt/Lt increases as well.
(2) Let 1 < γ < 1/β. Equation (20) implies limt→∞ (Kt/Lt) = qα/θ,

entailing that, when q increases, the asymptotic capital ratio Kt/Lt increases
as well.
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