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Backward doubly stochastic differential equations and SPDEs
with quadratic growth∗

Ying Hu†, Jiaqiang Wen‡, Jie Xiong§

March 9, 2024

Abstract. This paper shows the nonlinear stochastic Feynman-Kac formula holds under quadratic
growth. For this, we initiate the study of backward doubly stochastic differential equations (BDS-
DEs, for short) with quadratic growth. The existence, uniqueness, and comparison theorem for
one-dimensional BDSDEs are proved when the generator f(t, Y, Z) grows in Z quadratically and the
terminal value is bounded, by introducing innovative approaches. Furthermore, in this framework,
we utilize BDSDEs to provide a probabilistic representation of solutions to semilinear stochastic
partial differential equations (SPDEs, for short) in Sobolev spaces, and use it to prove the existence
and uniqueness of such SPDEs, thereby extending the nonlinear stochastic Feynman-Kac formula
for linear growth introduced by Pardoux–Peng (Probab. Theory Related Fields 98 (1994) 209–227).

Key words: backward doubly stochastic differential equation, stochastic partial differential equa-
tion, quadratic growth, Feynman-Kac formula, Sobolev solution.
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1 Introduction

The nonlinear Feynman-Kac formula was introduced by Pardoux–Peng [26] after they proved the
existence and uniqueness of nonlinear backward stochastic differential equations (BSDEs, for short)
in [25]. It provides a probabilistic representation for a large class of semilinear partial differential
equations (PDEs, for short). A few years later, in order to give a probabilistic representation for
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semilinear stochastic PDEs (SPDEs, for short), a new class of BSDEs called the backward doubly
stochastic differential equations (BDSDEs, for short) was introduced by them too in [27]. In order
to present the work more clearly, we describe the problem in detail.

Let (Ω,F ,P) be a complete probability space on which two standard independent Brownian
motions {Wt; 0 ⩽ t <∞} and {Bt; 0 ⩽ t <∞}, with values in Rd and Rl, respectively, are defined.
Let T > 0 be a fixed terminal time and denote by N the class of P-null sets of F , where

Ft ≜ FW
t ∨FB

t,T , ∀t ∈ [0, T ].

In the above, for any process {ηt; 0 ⩽ t ⩽ T}, F η
s,t = σ{ηr − ηs; s ⩽ r ⩽ t} ∨N and F η

t = F η
0,t. For

each (t, x) ∈ [0, T ]×Rn, let {Xt,x
s ; t ⩽ s ⩽ T} be the solution of the following stochastic differential

equations (SDEs, for short):

Xt,x
s = x+

∫ s

t
b(Xt,x

r )dr +

∫ s

t
σ(Xt,x

r )dWr, t ⩽ s ⩽ T,

and consider the following backward doubly stochastic differential equations: for t ⩽ s ⩽ T ,

Y t,x
s = h(Xt,x

T ) +

∫ T

s
f(r,Xt,x

r , Y t,x
r , Zt,x

r )dr +

∫ T

s
g(r,Xt,x

r , Y t,x
r , Zt,x

r )d
←−
B r −

∫ T

s
Zt,x
r dWr, (1.1)

where the dW integral is a forward Itô’s integral and the d
←−
B integral is a backward one. The

coefficient h is called the terminal value and the coefficient f is called the generator. The solution
of (1.1) is the pair (Y, Z) of F -measurable processes. For convenience, hereafter, by a quadratic
BDSDE, or BDSDE with quadratic growth, we mean that in (1.1), the generator f grows in Z

quadratically. Meanwhile, we call h the bounded terminal value if it is bounded.

Pardoux–Peng [27] introduced BDSDEs (1.1), gave the well-posedness of solutions under global
Lipschitz coefficients, and used it to prove the existence and uniqueness of the following semilinear
SPDEs:

u(s, x) =h(x) +

∫ T

s

{
Lu(r, x) + f

(
r, x, u(r, x), (σ⊤∇u)(r, x)

)}
dr

+

∫ T

s
g
(
r, x, u(r, x), (σ⊤∇u)(r, x)

)
d
←−
B r, t ⩽ s ⩽ T,

(1.2)

where σ⊤ denotes the transpose of σ, and

L =
n∑

i=1

bi
∂

∂xi
+

1

2

n∑
i,j=1

aij
∂2

∂xi∂xj
, (aij) = σσ⊤.

This result is summarized as the nonlinear stochastic Feynman-Kac formula, which permits us to
solve SPDE by BDSDE and, conversely, one can use SPDE to solve BDSDE too. Since then, this
important theory has attracted a lot of attention. For example, Buckdahn–Ma [10, 11] introduced
the stochastic viscosity solution to the nonlinear SPDEs, which connect BDSDEs to extend the
nonlinear stochastic Feynman-Kac formula. Bally–Matoussi [3] obtained the connection between
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the solution of BDSDEs and the Sobolev solution of related SPDEs. Zhang–Zhao [38] studied
infinite horizon BDSDEs and got the stationary solutions of related SPDEs. Xiong [34] solved a
long-standing open problem about the SPDE characterization of the super-Brownian motion by
making use of the BDSDE. Buckdahn–Li–Xing [9] studied mean-field BDSDEs and the associated
nonlocal semilinear SPDEs. Besides, Shi–Gu–Liu [29] obtained the comparison theorem of solutions
of BDSDEs. Han–Peng–Wu [16] got the maximum principle for backward doubly stochastic control
systems. Hu–Matoussi–Zhang [18] studied the Wong-Zakai approximations of BDSDEs. For more
recent developments of BDSDEs, we refer the readers to Boufoussi–Van Casteren–Mrhardy [6],
Gomez et al. [15], Shi–Wen–Xiong [30], Wu–Zhang [32], Zhang–Zhao [39], etc.

Moreover, when the coefficient g is absent, BDSDEs (1.1) are essentially reduced to the following
backward stochastic differential equations:

Yt = ξ +

∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdWs, 0 ⩽ t ⩽ T, (1.3)

which were first introduced by Pardoux–Peng [25], where they obtained the existence and unique-
ness under Lipschitz coefficients. Since then, BSDE has stimulated some significant developments in
many fields, such as partial differential equation (see Pardoux–Peng [26] and Yong [35]), mathemat-
ical finance (see El Karoui–Peng–Quenez [14]), and stochastic optimal control (see Yong–Zhou [36]),
to mention a few. Meanwhile, based on the wide applications and motivated by the open problem
proposed by Peng [24], many efforts have been made to relax the conditions on the generator f of
BSDE (1.3) for the existence and/or uniqueness of adapted solutions. For example, Lepeltier–San
Martin [21] proved the existence of adapted solutions for BSDE when the generator f is contin-
uous and of linear growth in (Y, Z). In 2000, Kobylanski [20] established the well-posedness for
one-dimensional BSDE (1.3) with f growing in Z quadratically and with bounded terminal value.
When the terminal value is unbounded, Briand–Hu [7, 8] proved the existence and uniqueness of
one-dimensional BSDEs with quadratic growth. Delbaen–Hu–Bao [13] studied BSDEs with the gen-
erator f growing in Z super-quadratically. For multi-dimensional situations, Hu–Tang [19] proved
the existence and uniqueness of BSDEs with diagonally quadratic generators, and Xing–Zitkovic
[33] established the existence and uniqueness for a large class of Markovian BSDEs with quadratic
growth. Some other recent developments of quadratic BSDEs can be found in Bahlali–Eddahbi–
Ouknine [1], Barrieu–El Karoui [5], Cheridito–Nam [12], Hu–Li–Wen [17], Richou [28], Tevzadze
[31], and references cited therein.

Note that in quadratic BSDEs, in order to overcome the difficulty of quadratic growth, one always
would like to distinguish whether the terminal value is bounded or not. The reason is that when the
terminal value is bounded, by involving bounded mean oscillation martingales (BMO martingale, for
short), some nice estimates and regularities for the solution (Y, Z) could be obtained. In other words,
in this case, one could prove that Y is bounded and Z belongs to the BMO martingale space, which
is useful when proving the existence and uniqueness. In addition, when proving the existence, the
main idea is to use the exponential transformation, which implies that there is an essential difference
between the study of the one-dimensional case and the multi-dimensional case. In summary, when

3



studying the quadratic BSDEs, it is better to distinguish whether the terminal value is bounded or
not and whether the framework is a one-dimensional situation or a multi-dimensional situation.

On the other hand, during the past two decades, stimulated by the broad applications and
the open problem of Peng [24], tremendous efforts have been made to relax the conditions on the
generator f of BDSDEs and extend the nonlinear stochastic Feynman-Kac formula. However, to
the best of our knowledge, there are few works concerning BDSDEs (1.1) when the generator f

grows in Z quadratically. Some related studies are the works of Zhang–Zhao [40] and Bahlali et
al. [2], where they obtained the existence and uniqueness of BDSDEs when the generator f is of
polynomial growth in Y and is of super-linear (or sub-quadratic) in Z, respectively. For quadratic
BDSDEs, the main difficulty is due to the fact that the collection F = {Ft; 0 ⩽ t ⩽ T} is neither
increasing nor decreasing, and it does not constitute a filtration. So the main technique of BMO
martingale used in quadratic BSDEs is useless here, and one cannot expect to study the regularity
of Z in the BMO martingale space. Besides, the backward Itô’s integral appearing in BDSDE (1.1)
will bring extra troubles when proving the existence and uniqueness of the solutions.

In this paper, we initiate the theory of BDSDEs with quadratic growth. In particular, we
consider the one-dimensional framework of quadratic BDSDEs with bounded terminal value. First,
we study the existence under a general assumption on the generator f . Borrowed some ideas
from Kobylanski [20], we construct an artful exponential transformation (see Example 3.1), which
transforms the quadratic BDSDE into a classical one. It should be pointed out that the solution
(Y, Z) we considered is in the space L∞

F (0, T ;R)×L2
F(0, T ;Rd) (see Section 2 for detailed definitions),

since F = {Ft; 0 ⩽ t ⩽ T} is not a filtration. Moreover, in order to overcome the troubles that
come from the backward Itô’s integral, we introduce the idea of the comparison theorem of classical
BDSDEs, and some restricted condition (see (3.11)) on the coefficient g is made, otherwise, Y cannot
be bounded (see Example 3.2). Furthermore, based on a priori estimate (see Proposition 3.7) and
the monotone stability obtained (see Proposition 3.9), we prove that BDSDE with quadratic growth
admits a solution (Y, Z) ∈ L∞

F (0, T ;R)×L2
F(0, T ;Rd) (see Theorem 3.11). Second, in order to prove

the uniqueness, we study a comparison theorem, due to the fact that the one-dimensional framework
allows us to provide a comparison theorem that directly implies the uniqueness as a by-product
(see Theorem 4.4). However, a stronger assumption on the coefficients f and g than that for the
existence result is used to prove the comparison theorem. In other words, we assume that the partial
derivatives of the coefficients f and g with respect to Z are linear growth and bounded, respectively.
Finally, we use BDSDE (1.1) with quadratic growth to give a probabilistic representation for the
solutions of SPDE (1.2) in Sobolev spaces, and use it to prove the existence and uniqueness of
SPDE (1.2) when f grows in σ⊤∇u quadratically (see Theorem 5.6), thus extending the nonlinear
stochastic Feynman-Kac formula of Pardoux–Peng [27] to quadratic growth situation.

The rest of the paper is organized as follows. In Section 2, some preliminaries are presented.
In Section 3, a priori estimate, the monotonicity stability, and the existence of the solutions are
proved. In Section 4, we focus on the comparison theorem and thus derive the uniqueness of the
solutions. In Section 5, we study the relationship between the solution of BDSDEs with quadratic
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growth and the Sobolev solution of related SPDEs. Section 6 concludes the results.

2 Preliminaries

Repeat that the triple (Ω,F ,P) is a complete probability space, and on which two standard inde-
pendent Brownian motions {Wt; 0 ⩽ t < ∞} and {Bt; 0 ⩽ t < ∞} are defined with values in Rd

and Rl, respectively. Let T > 0 be a fixed terminal time and denote by N the class of P-null sets
of F , where

Ft ≜ FW
t ∨FB

t,T , ∀t ∈ [0, T ].

In the above, for any process {ηt; 0 ⩽ t ⩽ T}, F η
s,t = σ{ηr − ηs; s ⩽ r ⩽ t} ∨ N and F η

t = F η
0,t.

Note that the collection F = {Ft; 0 ⩽ t ⩽ T} is not a filtration since it is neither increasing nor
decreasing.

Let us introduce some notations that will be used below. Denote by | · | and ⟨·, ·⟩ the Euclidean
norm and dot product, respectively, throughout the paper. For any p ⩾ 1 and Euclidean space H,
denote by Cp(H) the set of functions valued in H and of class Cp with the partial derivations of
order less than or equal to p are bounded. In addition, we introduce the following spaces:

Lp
FT

(Ω;H) =
{
ξ : Ω→ H

∣∣ ξ is FT -measurable, ∥ξ∥Lp ≜
(
E|ξ|p

) 1
p <∞

}
,

L∞
FT

(Ω;H) =
{
ξ : Ω→ H

∣∣ ξ is FT -measurable, ∥ξ∥∞ ≜ esssup
ω∈Ω

|ξ(ω)| <∞
}
,

and for any t ∈ [0, T ) and s ∈ [t, T ], define

Lp
F(t, T ;H)=

{
φ : [t, T ]×Ω→ H

∣∣ φs is Fs-measurable, ∥φ∥Lp
F(t,T ) ≜

(
E
∫ T

t
|φs|pds

) 1
p
<∞

}
,

L∞
F (t, T ;H) =

{
φ : [t, T ]× Ω→ H

∣∣ φs is Fs-measurable, ∥φ∥L∞
F (t,T ) ≜ esssup

(s,ω)∈[t,T ]×Ω
|φs(ω)| <∞

}
,

Sp
F(t, T ;H) =

{
φ : [t, T ]× Ω→ H

∣∣ φs is Fs-measurable, continuous, and

∥φ∥Sp
F (t,T ) ≜

{
E
[

sup
s∈[t,T ]

|φs|p
]} 1

p
<∞

}
.

Consider the following backward doubly stochastic differential equations:

Yt = ξ +

∫ T

t
f (s, Ys, Zs) ds+

∫ T

t
g (s, Ys, Zs) d

←−
B s −

∫ T

t
ZsdWs, 0 ⩽ t ⩽ T, (2.1)

where ξ : Ω → Rk is a random variable, f : Ω × Rk × Rk×d → Rk and g : Ω × Rk × Rk×d → Rk×l

are two coefficients. Note that the dW integral is a forward Itô’s integral and the d
←−
B integral is a

backward one, and both integrals are particular cases of Itô-Skorohod integral (see Nualart [23]).

Definition 2.1. A pair of measurable processes (Y, Z) ∈ S2
F(0, T ;Rk) × L2

F(0, T ;Rk×d) is called a
solution of BDSDE (2.1), if P-almost surely, it satisfies (2.1). In addition, if Y is bounded, then we
call the pair (Y, Z) a bounded solution.
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The following result is the Itô’s formula for backward doubly stochastic differential equations,
which comes from Pardoux–Peng [27].

Proposition 2.2. Let Φ ∈ C2(Rk), α ∈ S2
F(0, T ;Rk), β ∈ L2

F(0, T ;Rk), γ ∈ L2
F(0, T ;Rk×l), δ ∈

L2
F(0, T ;Rk×d) be such that

αt = α0 +

∫ t

0
βsds+

∫ t

0
γsd
←−
B s +

∫ t

0
δsdWs, 0 ⩽ t ⩽ T.

Then

Φ(αt) = Φ(α0) +

∫ t

0
⟨Φ′(αs), βs⟩ds+

∫ t

0
⟨Φ′(αs), γsd

←−
B s⟩+

∫ t

0
⟨Φ′(αs), δsdWs⟩

− 1

2

∫ t

0
Tr[Φ′′(αs)γsγ

⊤
s ]ds+

1

2

∫ t

0
Tr[Φ′′(αs))δsδ

⊤
s ]ds.

Assumption 1. The terminal value ξ comes from L2
FT

(Ω;Rk), and for any y ∈ Rk and z ∈ Rk×d,

f(·, y, z) ∈ L2
F(0, T ;Rk) and g(·, y, z) ∈ L2

F(0, T ;Rk×l).

Moreover, there exist two positive constants C and α with α ∈ (0, 1) such that for any t ∈ [0, T ],
y1, y2 ∈ Rk, z1, z2 ∈ Rk×d,

|f(t, y1, z1)− f(t, y2, z2)|2 ⩽ C
[
|y1 − y2|2 + |z1 − z2|2

]
,

|g(t, y1, z1)− g(t, y2, z2)|2 ⩽ C|y1 − y2|2 + α|z1 − z2|2. (2.2)

Note that under Assumption 1, BDSDEs (2.1) admit a unique solution (Y, Z) ∈ S2
F(0, T ;Rk)×

L2
F(0, T ;Rk×d) (see Pardoux–Peng [27, Theorem 1.1]). In addition, the related comparison theorem

holds (see Shi et al. [29, Theorem 3.1]).

3 Quadratic BDSDE

In this section, we study the existence of one-dimensional BDSDEs with quadratic growth, i.e.,
k = 1. Before proving the existence, we study a priori estimate and the monotone stability, which
are important for us to prove existence later. In order to justify the assumptions that were used
to prove the existence, we give two examples. It should be pointed out that the first example also
implies the main idea to prove existence, which is the central technique throughout this section.

Example 3.1. Consider the following backward doubly stochastic differential equation,

Yt = ξ + C

∫ T

t
|Zs|2ds+ α

∫ T

t
Zsd
←−
B s −

∫ T

t
ZsdWs, 0 ⩽ t ⩽ T, (3.1)

where C > 0 and α ∈ (−1, 1) are two constants. Let β be a positive constant which will be given
later. Applying the exponential change of variable to y = exp(βY ) implies that

yT = yt − C

∫ T

t
βys|Zs|2ds− α

∫ T

t
βysZsd

←−
B s +

∫ T

t
βysZsdWs
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− α2

2

∫ T

t
β2ys|Zs|2ds+

1

2

∫ T

t
β2ys|Zs|2ds

= yt −
[
C − 1− α2

2
β
] ∫ T

t
βys|Zs|2ds− α

∫ T

t
βysZsd

←−
B s +

∫ T

t
βysZsdWs.

Let β = 2C
1−α2 and denote by z = βyZ, then the above equation can be rewritten as

yt = exp(βξ) +

∫ T

t
αzsd

←−
B s −

∫ T

t
zsdWs, 0 ⩽ t ⩽ T, (3.2)

which essentially is a linear backward doubly stochastic differential equation. Then the classical
existence and uniqueness (see Pardoux–Peng [27, Theorem 1.1]) implies that when

exp(βξ) ∈ L2
FT

(Ω;R), (3.3)

there exists a unique solution (y, z) ∈ S2
F(0, T ;R) × L2

F(0, T ;Rd) for BDSDE (3.2). Note that, β is
a positive constant, so taking ξ ∈ L∞

FT
(Ω;R) is a sufficient condition to insure that ξ satisfies (3.3).

In fact, if ξ ∈ L∞
FT

(Ω;R), then exp(ξ) ∈ L∞
FT

(Ω;R) and (3.3) holds, thus Eq. (3.2) admits a unique
solution (y, z) ∈ S2

F(0, T ;R)×L2
F(0, T ;Rd). Moreover, for BDSDE (3.2), by the comparison theorem

(see Shi et al. [29, Theorem 3.1]), one has

exp(−β∥ξ∥∞) ⩽ yt ⩽ exp(β∥ξ∥∞), ∀t ∈ [0, T ],

which implies that yt is positive and bounded. Now, we can define (Y, Z) by

Yt =
ln(yt)

β
, Zt =

zt
βyt

, ∀t ∈ [0, T ].

Then, it is easy to check that the pair (Y, Z) ∈ L∞
F (0, T ;R) × L2

F(0, T ;Rd) defined above is a
solution of BDSDE (3.1). Finally, the uniqueness of (3.1) in L∞

F (0, T ;R)×L2
F(0, T ;Rd) follows from

the uniqueness of (3.2) and the fact that the exponential change of variable is no longer formal.

Example 3.2. Consider the following linear backward doubly stochastic differential equation,

Yt = ξ +

∫ T

t
(H + dsYs)d

←−
B s −

∫ T

t
ZsdWs, 0 ⩽ t ⩽ T, (3.4)

where H is a constant and d· is a bounded deterministic function. From Pardoux–Peng [27, Theorem
1.1], BDSDE (3.4) admits a unique solution (Y, Z). Moreover, Pardoux–Peng [27, Remark 3.4]
implies that the solution Y is given explicitly by

Yt = E
[
Ψ(t, T )ξ +H

∫ T

t
dsΨ(t, s)ds

∣∣∣∣Ft

]
, 0 ⩽ t ⩽ T,

where
Ψ(t, s) = exp

(∫ s

t
drd
←−
B r −

1

2

∫ s

t
|dr|2dr

)
, t ⩽ s ⩽ T,

which is not bounded even if the terminal value ξ is bounded.
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Remark 3.3. On the one hand, Example 3.1 tells us why we require the boundedness of the
terminal value ξ. On the other hand, Example 3.2 implies that even in the classical situation with
bounded terminal value ξ, the normal Lipschitz condition of the coefficient g with respect to y (see
(2.2)) could not guarantee that Y is bounded.

To enrich the content, we would like to give some more examples.

Example 3.4. Consider the following BDSDE: for 0 ⩽ t ⩽ T ,

Yt = ξ + 1 +

∫ T

t

1

2
|Zs|2ds+

∫ T

t

{
Ys − lnE

[
eξ
∣∣∣FW

s

]}
d
←−
B s −

∫ T

t
ZsdWs, (3.5)

where ξ ∈ L∞
FT

(Ω;R). In order to find a solution of (3.5), we introduce the following two equations:

Ỹt = ξ +

∫ T

t

1

2
|Z̃s|2ds−

∫ T

t
Z̃sdWs, 0 ⩽ t ⩽ T, (3.6)

and
Ȳt = 1 +

∫ T

t
Ȳsd
←−
B s, 0 ⩽ t ⩽ T. (3.7)

On the one hand, for Eq. (3.6), Kobylanski [20] implies that

Ỹt = lnE
[
eξ
∣∣∣FW

t

]
.

On the other hand, for Eq. (3.7), the same argument as in Example 3.2 implies that

Ȳt = exp
{
BT −Bt −

1

2
(T − t)

}
,

which is not bounded. Finally, it is easy to verify that the pair

Y = Ỹ + Ȳ and Z = Z̃ (3.8)

is a solution of quadratic BDSDE (3.5) with Y being not bounded.

Example 3.5. Let δ > 0, C > 0, H be some constants, and let (Y., Z.) be the solution of the
following BSDE:

Yt = ξ + C

∫ T

t
|Zs|2+δds−

∫ T

t
ZsdWs. (3.9)

Then the pair (Y. +H(BT −B.), Z.) is a solution of the following super-quadratic BDSDE:

Yt = ξ + C

∫ T

t
|Zs|2+δds+

∫ T

t
Hd
←−
B s −

∫ T

t
ZsdWs. (3.10)

Note that Delbaen–Hu–Bao [13] implies that, for some bounded random variable ξ, BSDE (3.9)
admits infinity many solutions. Then, the super-quadratic BDSDE (3.10) also admits infinitely
many solutions for such bounded random variables.
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3.1 A priori estimate

In this subsection, we prove a priori estimate for the solution (Y, Z) of quadratic BDSDEs. First,
we introduce the assumption.

Assumption 2. Suppose that the terminal value ξ ∈ L∞
FT

(Ω;R). Let a : [0, T ] → R+ and b :

[0, T ]→ R+ be two functions, and C and α be two positive constants with α ∈ (0, 1) such that for
all (t, y, z) ∈ [0, T ]× R× Rd,

|f(t, y, z)| ⩽ at|y|+ bt + C|z|2, |g(t, y, z)|2 ⩽ α|z|2, a.s. (3.11)

Remark 3.6. We point out that the boundedness of the solution Y requires us to make the condition
(3.11) concerning the coefficient g; if not, the solution Y may not be bounded even if the terminal
value ξ is bounded (see Example 3.2 and Remark 3.3). Here we give an example that satisfying
(3.11):

g(t, y, z) = sin(y)l(z) with |l(z)|2 ⩽ α|z|2, ∀(t, y, z) ∈ [0, T ]× R× Rd.

Proposition 3.7 (A priori estimate). Let (Y, Z) ∈ L∞
F (0, T ;R) × L2

F(0, T ;Rd) be a solution of
BDSDE (2.1) with parameters (f, g, ξ) that satisfying Assumption 2. Then for every t ∈ [0, T ],

Yt ⩽
[
sup
Ω

(YT )
]+
· exp

(∫ T

t
asds

)
+

∫ T

t
bs exp

(∫ s

t
ardr

)
ds, a.s. (3.12)(

resp. Yt ⩾
[
inf
Ω
(YT )

]−
· exp

(∫ T

t
asds

)
−
∫ T

t
bs exp

(∫ s

t
ardr

)
ds, a.s.

)
. (3.13)

Moreover, there exists a positive constant K depending only on ∥Y ∥∞, ∥a∥L1, C and α such that

E
∫ T

0
|Zs|2ds ⩽ K. (3.14)

Proof. Consider the following linear ordinary differential equation,

φt =
[
sup
Ω

(YT )
]+

+

∫ T

t
(asφs + bs)ds, 0 ⩽ t ⩽ T.

Then we have that for 0 ⩽ t ⩽ T ,

φt =
[
sup
Ω

(YT )
]+
· exp

(∫ T

t
asds

)
+

∫ T

t
bs exp

(∫ s

t
ardr

)
ds.

So the result (3.12) holds if we can prove that Yt ⩽ φt for all t ∈ [0, T ]. Applying Itô’s formula (see
Proposition 2.2) to the process Yt−φt and to an nonnegative and increasing C2(R) function Φ with
Φ′′(u) ⩾ 0 for any u ∈ R, which will be determined later, deduce that

Φ(Yt − φt) = Φ(YT − φT ) +

∫ T

t
Φ′(Ys − φs)[f(s, Ys, Zs)− (asφs + bs)]ds

+

∫ T

t
Φ′(Ys − φs)g(s, Ys, Zs)d

←−
B s −

∫ T

t
Φ′(Ys − φs)ZsdWs

9



+
1

2

∫ T

t
Φ′′(Ys − φs)|g(s, Ys, Zs)|2ds−

1

2

∫ T

t
Φ′′(Ys − φs)|Zs|2ds.

From Assumption 2, note that φ is non-negative, we have that for every s ∈ [t, T ],

f(s, Ys, Zs)− (asφs + bs) ⩽ as(|Ys| − φs) + C|Zs|2 ⩽ as|Ys − φs|+ C|Zs|2.

Moreover, note that Φ is increasing, we obtain

Φ(Yt − φt) ⩽ Φ(YT − φT ) +

∫ T

t
as
∣∣Φ′(Ys − φs)(Ys − φs)

∣∣ds
+

∫ T

t

(
CΦ′ − 1− α

2
Φ′′

)
(Ys − φs)|Zs|2ds (3.15)

+

∫ T

t
Φ′(Ys − φs)g(s, Ys, Zs)d

←−
B s −

∫ T

t
Φ′(Ys − φs)ZsdWs.

Set M = ∥Y ∥∞ + ∥φ∥∞ and define the function Φ on the interval [−M,M ] by

Φ(u) =

 e
2C
1−α

u − 1− 2C

1− α
u− 2C2

(1− α)2
u2, u ∈ [0,M ],

0, u ∈ [−M, 0].

Then it is easy to check that for all u ∈ [−M,M ],

Φ(u) ⩾ 0, and Φ(u) = 0 if and only if u ⩽ 0,

Φ′(u) ⩾ 0,

0 ⩽ uΦ′(u) ⩽ (M + 1)
2C

1− α
Φ(u),

CΦ′ − 1− α

2
Φ′′ ⩽ 0.

Hence, if we set
kt = at(M + 1)

2C

1− α
,

then the function k is positive and deterministic. Note that YT−φT ⩽ 0 implies that Φ(YT−φT ) = 0,
and thus for all 0 ⩽ t ⩽ T , one has

0 ⩽ Φ(Yt − φt) ⩽
∫ T

t
ksΦ(Ys − φs)ds

+

∫ T

t
Φ′(Ys − φs)g(s, Ys, Zs)d

←−
B s −

∫ T

t
Φ′(Ys − φs)ZsdWs.

(3.16)

Taking expectations on both sides of the inequality (3.16) implies that

0 ⩽ EΦ(Yt − φt) ⩽ E
∫ T

t
ksΦ(Ys − φs)ds.
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Then Gronwall’s inequality yields that

EΦ(Yt − φt) = 0, ∀t ∈ [0, T ].

Therefore, note that Φ(u) ⩾ 0, for all t ∈ [0, T ],

Φ(Yt − φt) = 0, a.s.

Thus Yt − φt ⩽ 0, a.s., which implies that the inequality (3.12) holds. Similarly, by using the same
computation, one can prove that (3.13) holds too.

Finally, in order to prove the estimate (3.14), we use again (3.15) with t = 0, φ = 0, M = ∥Y ∥∞,
and define Φ on [−M,M ] by

Φ(u) =
1− α

2C2

[
exp

( 2C

1− α
(u+M)

)
− 1− 2C

1− α
(u+M)

]
.

It is easy to check that, for every u ∈ [−M,M ],

Φ(u) ⩾ 0, Φ′(u) ⩾ 0,

uΦ′(u) ⩽ M

C

[
exp

(4CM

1− α

)
− 1

]
,

1− α

2
Φ′′ − CΦ′ = 1.

Then (3.15) implies that

0 ⩽ Φ(Y0) ⩽ Φ(YT ) +

∫ T

0
as

M

C

[
exp

(4CM

1− α

)
− 1

]
ds−

∫ T

0
|Zs|2ds

+

∫ T

0
Φ′(Ys)g(s, Ys, Zs)d

←−
B s −

∫ T

0
Φ′(Ys)ZsdWs,

which leads that

E
∫ T

0
|Zs|2ds ⩽ Φ(M) +

M

C

[
exp

(4CM

1− α

)
− 1

]
∥a∥L1([0,T ];R+).

This completes the proof.

An immediate consequence of this proposition is the following corollary.

Corollary 3.8. Let (Y, Z) ∈ L∞
F (0, T ;R) × L2

F(0, T ;Rd) be a solution of BDSDE with parameters
(f, g, ξ), where ξ belongs to L∞

FT
(Ω;R), and f and g satisfy the condition Assumption 2 with a, b,

C > 0 and α ∈ (0, 1) such that a, b ∈ L1(0, T ;R+), then

∥Y ∥∞ ⩽
(
∥ξ∥∞ + ∥b∥L1([0,T ];R+)

)
exp

(
∥a∥L1([0,T ];R+)

)
.
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3.2 Monotone stability

In this subsection, we would like to study the monotone stability of BDSDEs (2.1) with quadratic
growth, which is also important for us to prove the existence later.

Proposition 3.9 (Monotone stability). Let (f, g, ξ) be a set of parameters and let (fn, g, ξn) be a
sequence of parameters such that:

(i) There exist two positive constants C and α with 0 < α < 1 such that for each n ∈ N,

|fn(t, y, z)| ⩽ C(1 + |y|+ |z|2), |g(t, y, z)|2 ⩽ α|z|2, ∀t ∈ [0, T ], y ∈ R, z ∈ Rd, (3.17)

|g(t, y1, z1)− g(t, y2, z2)|2 ⩽ C|y1 − y2|2 + α|z1 − z2|2, ∀t ∈ [0, T ], y1, y2 ∈ R, z1, z2 ∈ Rd.

(ii) The sequence {fn;n ∈ N} converges to f locally uniformly in (y, z) in compact sets, and for
each n ∈ N, the sequence {ξn;n ∈ N} converges to ξ almost-surely.

(iii) For each n ∈ N, the BDSDE with parameters (fn, g, ξn) has a solution

(Y n, Zn) ∈ L∞
F (0, T ;R)× L2

F(0, T ;Rd),

and the sequence {Y n;n ∈ N} is monotonic such that for every n ∈ N, ∥Y n∥∞ ⩽ M , where
M is a positive constant.

Then there exists a pair of processes (Y, Z) ∈ L∞
F (0, T ;R)× L2

F(0, T ;Rd) such that lim
n→∞

Y n = Y uniformly on [0, T ],

{Zn;n ∈ N} converges to Z in L2
F(0, T ;Rd).

Moreover, (Y, Z) is a solution of BDSDE with parameters (f, g, ξ).

Proof. From the assumptions, we observe that for all t ∈ [0, T ], the sequence {Y n
t ;n ∈ N} is mono-

tonic and bounded. Consequently, it possesses a limit, denoted by Y . Without loss of generality,
let’s consider the case where the sequence Y n;n ∈ N is monotonically increasing towards Y . Ad-
ditionally, based on Proposition 3.7, we can deduce the existence of a positive constant K such
that

E
∫ T

0
|Zn|2ds ⩽ K, ∀n ∈ N.

Then there exists a process Z ∈ L2
F(0, T ;Rd) such that a subsequence of {Zn;n ∈ N} converges to Z

weakly in L2
F(0, T ;Rd). For simplicity presentation, by otherwise choosing a subsequence, we may

assume that the whole sequence {Zn;n ∈ N} converges to Z weakly in L2
F(0, T ;Rd).

Next, we would like to divide the proof into two steps, and denote the following notations:

∆Y n ≜ Y − Y n, ∆Y m,n ≜ Y m − Y n, ∆Zn ≜ Z − Zn, ∆Zm,n ≜ Zm − Zn.
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Step 1. The sequence {Zn;n ∈ N} strongly converges to Z in L2
F(0, T ;Rd), i.e.,

lim
n→∞

E
∫ T

0
|∆Zn

t |2dt = 0. (3.18)

The main arguments of this step come from Zhang [37] and Kobylanski [20]. It is easy to see that
the pair (∆Y m,n,∆Zm,n) satisfies the following equation,

−d∆Y m,n
t = [fm(t, Y m

t , Zm
t )− fn(t, Y n

t , Zn
t )]dt

+[g(t, Y m
t , Zm

t )− g(t, Y n
t , Zn

t )]d
←−
B t −∆Zm,n

t dWt, t ∈ [0, T ],

∆Y m,n
T = ξm − ξn.

By assumptions, there exists a constant C0 depending on C and M , such that for all m,n ∈ N,
t ∈ [0, T ],

|fm(t, Y m
t , Zm

t )− fn(t, Y n
t , Zn

t )| ⩽ C0[1 + |∆Zm,n
t |2 + |∆Zn

t |2 + |Zt|2],

|g(t, Y m
t , Zm

t )− g(t, Y n
t , Zn

t )|2 ⩽ C|∆Y m,n
t |2 + α|∆Zm,n

t |2.
(3.19)

Let Φ : R+ → R+ be a smooth increasing function which will be specified later. For m ⩾ n, using
Itô’s formula (see Proposition 2.2) to Φ(∆Y m,n) we have that

dΦ(∆Y m,n
t ) =− Φ′(∆Y m,n

t )[fm(t, Y m
t , Zm

t )− fn(t, Y n
t , Zn

t )]dt

− Φ′(∆Y m,n
t )[g(t, Y m

t , Zm
t )− g(t, Y n

t , Zn
t )]d
←−
B t +Φ′(∆Y m,n

t )∆Zm,n
t dWt

− 1

2
Φ′′(∆Y m,n

t )|g(t, Y m
t , Zm

t )− g(t, Y n
t , Zn

t )|2dt+
1

2
Φ′′(∆Y m,n

t )|∆Zm,n
t |2dt

⩾− C0Φ
′(∆Y m,n

t )[1 + |∆Zm,n
t |2 + |∆Zn

t |2 + |Zt|2]dt

− Φ′(∆Y m,n
t )[g(t, Y m

t , Zm
t )− g(t, Y n

t , Zn
t )]d
←−
B t +Φ′(∆Y m,n

t )∆Zm,n
t dWt

− C

2
Φ′′(∆Y m,n

t )|∆Y m,n
t |2dt− α

2
Φ′′(∆Y m,n

t )|∆Zm,n
t |2dt+ 1

2
Φ′′(∆Y m,n

t )|∆Zm,n
t |2dt,

where we have used the inequality (3.19).

In the following, we expect ∆Zm,n and ∆Zn to be closed. For this purpose, define

Φ(u) =
1− α

8C2
0

[
exp(

4C0

1− α
u)− 4C0

1− α
u− 1

]
.

It is straightforward to check that for u ⩾ 0, we have

Φ(u) ⩾ 0 with Φ(0) = 0,

Φ′(u) ⩾ 0 with Φ′(0) = 0,

1− α

2
Φ′′(u) = 4C0Φ

′(u) + 2.
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Note that Y m ⩾ Y n when m ⩾ n. Then

dΦ(∆Y m,n
t ) ⩾− C0Φ

′(∆Y m,n
t )[1 + |∆Zm,n

t |2 + |∆Zn
t |2 + |Zt|2]dt

− Φ′(∆Y m,n
t )[g(t, Y m

t , Zm
t )− g(t, Y n

t , Zn
t )]d
←−
B t +Φ′(∆Y m,n

t )∆Zm,n
t dWt

+ [4C0Φ
′(∆Y m,n

t ) + 2]|∆Zm,n
t |2dt− C

2
Φ′′(∆Y m,n

t )|∆Y m,n
t |2dt

=− C0Φ
′(∆Y m,n

t )[1 + |∆Zn
t |2 + |Zt|2]dt−

C

2
Φ′′(∆Y m,n

t )|∆Y m,n
t |2dt

− Φ′(∆Y m,n
t )[g(t, Y m

t , Zm
t )− g(t, Y n

t , Zn
t )]d
←−
B t +Φ′(∆Y m,n

t )∆Zm,n
t dWt

+ [3C0Φ
′(∆Y m,n

t ) + 2]|∆Zm,n
t |2dt,

and thus

EΦ(∆Y m,n
0 ) + E

∫ T

0
[3C0Φ

′(∆Y m,n
t ) + 2]|∆Zm,n

t |2dt (3.20)

⩽E
[
Φ(∆Y m,n

T ) + C0

∫ T

0
Φ′(∆Y m,n

t )[1 + |∆Zn
t |2 + |Zt|2]dt+

C

2

∫ T

0
Φ′′(∆Y m,n

t )|∆Y m,n
t |2dt

]
.

Next we would like to fix n and pass to the infimum limit as m → ∞. Note that there is a
subsequence of {Zm;m ⩾ 1} which converges weakly to Z in L2

F(0, T ;Rd) (still indexed by m for
simplicity), the convergence of Y m → Y is pointwise, and Y m is uniformly bounded by M . Then
Zhang [37, Problem 1.4.11 (ii)] implies that on the one hand,

E
∫ T

0
[3C0Φ

′(∆Y n
t ) + 2]|∆Zn

t |2dt ⩽ lim inf
m→∞

E
∫ T

0
[3C0Φ

′(∆Y m,n
t ) + 2]|∆Zm,n

t |2dt. (3.21)

On the other hand, again, note that the convergence of Y m → Y is pointwise and Y m is uniformly
bounded by M , one has

lim inf
m→∞

E
[
Φ(∆Y m,n

T ) + C0

∫ T

0
Φ′(∆Y m,n

t )[1 + |∆Zn
t |2 + |Zt|2]dt+

C

2

∫ T

0
Φ′′(∆Y m,n

t )|∆Y m,n
t |2dt

]
⩽E

[
Φ(∆Y n

T ) + C0

∫ T

0
Φ′(∆Y n

t )[1 + |∆Zn
t |2 + |Zt|2]dt+

C

2

∫ T

0
Φ′′(∆Y n

t )|∆Y n
t |2dt

]
. (3.22)

Therefore, combining (3.20), (3.21) and (3.22), we have

E
∫ T

0
[2C0Φ

′(∆Y n
t ) + 2]|∆Zn

t |2dt

⩽E
[
Φ(∆Y n

T ) + C0

∫ T

0
Φ′(∆Y n

t )[1 + |Zt|2]dt+
C

2

∫ T

0
Φ′′(∆Y n

t )|∆Y n
t |2dt

]
.

(3.23)

Now, note that Φ(0) = Φ′(0) = 0, we have that as n → ∞, the claim (3.18) follows from the
Lebesgue’s dominated convergence theorem.

Step 2. The uniform convergence of a subsequence of {Y n;n ∈ N} to Y .
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At this stage we know that for all t ∈ [0, T ], limn→∞Y n
t = Yt, and the sequence {Zn;n ∈ N}

converges to Z in L2
F(0, T ;Rd). Then from Kobylanski [20, Lemma 2.5], there exists a subsequence

{Znj ;nj ∈ N} of {Zn;n ∈ N} such that Znj converges almost surely to Z and such that

Z̃ ≜ sup
j
|Znj | ∈ L2

F(0, T ;Rd).

For simplicity presentation, by otherwise choosing a subsequence, we would like to still assume that
the whole sequence {Zn;n ∈ N} converges almost surely to Z in L2

F(0, T ;Rd), and thus we have

Zn → Z a.s. dt⊗ dP and Z̃ = sup
n
|Zn| ∈ L2

F(0, T ;Rd).

Recall that the sequence {fn;n ∈ N} converges to f locally uniformly in (y, z), we obtain that

lim
n→∞

fn (t, Y n
t , Zn

t ) = f (t, Yt, Zt) , t ∈ [0, T ], a.s.

In addition, due to that fn satisfies the condition (3.17), one has

|fn (t, Y n
t , Zn

t )| ⩽ C(1 +M + sup
n
|Zn

t |
2) ⩽ C0(1 + Z̃2

t ).

Thus, Lebesgue’s dominated convergence theorem gives

lim
n→∞

∫ T

0
fn(t, Y n

t , Zn
t )dt =

∫ T

0
f(t, Yt, Zt)dt, a.s.

Similarly, we have

lim
n→∞

E
∫ T

0
|g(t, Y n

t , Zn
t )− g(t, Yt, Zt)|2dt ⩽ lim

n→∞
E
∫ T

0
[C|∆Y n

t |2 + α|∆Zn
t |2]dt = 0,

and therefore

g(t, Y n, Zn)→ g(t, Y, Z) a.s. dt⊗ dP and sup
n
|g(t, Y n, Zn)| ∈ L2

F(0, T ;Rd).

Extracting a subsequence again if necessary, we may assume that the above convergence is P-a.s.
Finally, we have

|∆Y m,n
t | ⩽ |∆Y m,n

T |+
∫ T

t
|fm(s, Y m

s , Zm
s )− fn(s, Y n

s , Zn
s )|ds

+
∣∣∣ ∫ T

t
[g(s, Y m

s , Zm
s )− g(s, Y n

s , Zn
s )]d
←−
B s

∣∣∣+ ∣∣∣ ∫ T

t
∆Zm,n

s dWs

∣∣∣.
Now fix n, and taking limits on m and supremum over t ∈ [0, T ], we obtain that for almost all
ω ∈ Ω,

sup
0⩽t⩽T

|∆Y n
t | ⩽ |∆Y n

T |+
∫ T

t
|f(s, Ys, Zs)− fn(s, Y n

s , Zn
s )|ds
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+ sup
0⩽t⩽T

∣∣∣ ∫ T

t
[g(s, Ys, Zs)− g(s, Y n

s , Zn
s )]d
←−
B s

∣∣∣+ sup
0⩽t⩽T

∣∣∣ ∫ T

t
∆Zn

s dWs

∣∣∣,
from which we deduce that the sequence {Y n;n ∈ N} converges to Y uniformly for t ∈ [0, T ]. In
particular, Y is continuous.

Finally, we could pass to the limit in

Y n
t = Y n

T +

∫ T

t
fn(s, Y n

s , Zn
s )ds+

∫ T

t
g(s, Y n

s , Zn
s )d
←−
B s −

∫ T

t
Zn
s dWs, 0 ⩽ t ⩽ T,

deducing that the pair (Y, Z) is a solution of BDSDE with parameters (f, g, ξ).

3.3 Existence

Based on the results of a priori estimate and the monotone stability, now we can prove the existence
of solutions of one-dimensional BDSDEs (2.1) with quadratic growth.

Assumption 3. Suppose that the terminal value ξ belongs to L∞
FT

(Ω;R), and there exist some
positive constants a, b, C and α with 0 < α < 1 such that for all t ∈ [0, T ], y, ȳ ∈ R, z, z̄ ∈ Rd,

|f(t, y, z)| ⩽ b+ a|y|+ C|z|2, |g(t, y, z)|2 ⩽ α|z|2, a.s.

|g(t, y, z)− g(t, ȳ, z̄)|2 ⩽ C|y − ȳ|2 + α|z − z̄|2, a.s.

Remark 3.10. Note that Assumption 3 implies g(t, y, 0) = 0 for all (t, y) ∈ [0, T ] × R. Here we
present some examples that satisfying Assumption 3:

(i) g(t, y, z) =
√
α cos(y) sin(z); (ii) g(t, y, z) =

√
α

2
[cos(y) sin(z) + z];

(iii) g(t, y, z) = l(z) with |l(z)|2 ⩽ α|z|2 and |l(z)− l(z̄)|2 ⩽ α|z − z̄|2.

The following theorem is the main result of this section.

Theorem 3.11 (Existence). Suppose that the parameters (f, g, ξ) satisfy Assumption 3, then
BDSDE (2.1) has at least one solution (Y, Z) ∈ L∞

F (0, T ;R)× L2
F(0, T ;Rd).

Proof. The main idea here we used is the double approximation (see Briand–Hu [7] and Morlais
[22]). First, for the case of the generator f being non-negative, we construct a sequence fn which
is globally Lipschitz continuous, non-decreasing, and converges pointwise to f . Second, we can
construct similarly a sequence fn,m for the general situation of the generator f .

Step 1. The case of non-negative generator f

In this step, we would like to assume that the generator f is non-negative for all (t, y, z) ∈
[0, T ]× R× Rd. Then, we proceed by defining the sequence {fn;n ⩾ r} by inf-convolution, i.e.,

fn(t, y, z) = inf
{
f(t, p, q) + n|p− y|+ n|q − z| : (p, q) ∈ Q1+d

}
, (3.24)
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where r is an integer. It is easy to see that each fn is well defined and it is globally Lipschitz
continuous in y and z with the constant n. In addition, the sequence {fn;n ⩾ r} is non-decreasing
and converges pointwise to the non-negative generator f . In addition, Dini’s theorem implies that
the convergence is uniformly in (y, z) in compact sets.

Then, the classical results of the existence and uniqueness of BDSDEs (see Pardoux–Peng [27,
Theorem 1.1]) and the comparison theorem (see Shi et al. [29, Theorem 3.1]) for Lipschitz continuous
coefficients give us that, for every n, there exists a unique solution (Y n, Zn) of BDSDE (fn, g, ξ)

such that Y n is non-decreasing, i.e.,
Y n ⩽ Y n+1. (3.25)

In addition, the sequence {Y n;n ⩾ r} is uniformly bounded. In fact, note that fn is non-negative
and

fn(t, y, z) ⩽ f(t, y, z) ⩽ b+ a|y|+ C|z|2, (3.26)

which implies that fn satisfies Assumption 2. Hence from Proposition 3.7, the unique solution
(Y n, Zn) of BDSDE (fn, g, ξ) is bounded by

Y n ⩽
(
∥ξ∥∞ + bT

)
eaT , for any n ⩾ r. (3.27)

Now, from Proposition 3.9, we have that there exists a pair of processes (Y, Z) ∈ L∞
F (0, T ;R) ×

L2
F(0, T ;Rd) such that, the sequence {Y n;n ⩾ r} converges uniformly to Y , the sequence {Zn;n ⩾ r}

converges to Z in L2
F(0, T ;Rd), and (Y, Z) is a solution of BDSDE (f, g, ξ).

Step 2. The general case

Let us explain quickly how to extend the above construction to the general case. The idea
consists in using two successive approximations, for which we refer once again to Briand–Hu [8].
Denote by f+ and f− the non-negative part and the non-positive part of f , respectively. Define

fn,m(t, y, z) = inf
{
f+(t, p, q) + n|p− y|+ n|q − z| : (p, q) ∈ Q1+d

}
− inf

{
f−(t, p, q) +m|p− y|+m|q − z| : (p, q) ∈ Q1+d

}
, (3.28)

which is non-decreasing with respect to n and non-increasing with respect to m. The entire proof
can be rewritten by passing to the limit as n goes to ∞ (m being fixed) and then as m goes to ∞.
In fact, when n goes to ∞ (m being fixed), the related solution Y n,m converges to Y m, which is the
solution of f+ − f−

m, where f−
m is defined similarly by (3.24). In addition, similar to (3.27), Y m has

also a uniformly lower bound by Proposition 3.7. Then as m goes to ∞ we have that Y m converges
to Y , which is the solution of BDSDE with parameters (f, g, ξ).

4 Comparison Theorem

As we all know that the one-dimensional circumstance allows us to establish a comparison theorem
for the solutions of BDSDEs, which implies the uniqueness of solutions of BDSDEs as a by-product.
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So in this section, we would like to prove a comparison theorem for the solutions of BDSDEs with
quadratic growth. For i = 1, 2, we consider the following equation:

Y i
t = ξi +

∫ T

t
f i

(
s, Y i

s , Z
i
s

)
ds+

∫ T

t
g
(
s, Y i

s , Z
i
s

)
d
←−
B s −

∫ T

t
Zi
sdWs, 0 ⩽ t ⩽ T. (4.1)

Then, under Assumption 3, there exists a pair of measurable processes (Y i, Zi) ∈ L∞
F (0, T ;R) ×

L2
F(0, T ;Rd) that satisfies the corresponding BDSDE (4.1), where i = 1, 2. Moreover, Proposition 3.7

implies that there exists a positive constant K such that

∥Y i∥∞ + E
∫ t

0
|Zi

s|2ds ⩽ K, ∀t ∈ [0, T ].

In order to prove the comparison theorem, we assume that the terminal value ξ is bounded, and
the generator f is locally Lipschitz continuous and is of quadratic growth in Z in a strong sense.

Assumption 4. There exist three functions l, lε, k : [0, T ]→ R and three positive constants C, ε,
and α ∈ (0, 1) such that for all t ∈ [0, T ], y ∈ [−M,M ] and z ∈ Rd, the coefficients f and g satisfy
the following conditions:

|f(t, y, z)| ⩽ l(t) + C|z|2, |g(t, y, z)|2 ⩽ α|z|2, a.s.,
∂f

∂y
(t, y, z) ⩽ lε(t) + ε|z|2,

∣∣∣∂g
∂y

(t, y, z)
∣∣∣2 ⩽ C, a.s.,∣∣∣∣∂f∂z (t, y, z)

∣∣∣∣ ⩽ k(t) + C|z|,
∣∣∣∂g
∂z

(t, y, z)
∣∣∣2 ⩽ α. a.s.

(4.2)

Similar to Kobylanski [20], following the method used by Barles–Murat [4] for PDEs, we would
like to divide the proof of the comparison theorem into two steps. First, we consider the comparison
theorem under the condition that the generator f satisfies a structure condition (STR). Then, we
show the proof by giving a change of variable that transforms a BDSDE with the generator f

satisfying Assumption 4 into a BDSDE with the generator f̃ satisfying this structure condition
(STR).

Definition 4.1. We say that a generator f satisfies the structure condition (STR), if there exists
a constant a > 0 and a function b : [0, T ]→ R such that

∂f

∂y
(t, y, z) + a

∣∣∣∣∂f∂z
∣∣∣∣2 (t, y, z) ⩽ b(t), (t, y, z) ∈ [0, T ]× R× Rd. (4.3)

We have the following comparison theorem under the structure condition (STR).

Proposition 4.2. Assume that both ξ1 and ξ2 are bounded, the coefficient g satisfies Assumption 4,
and either f1 or f2 satisfies the structure condition (STR) with the constant a > 0 and the function
b ∈ L1([0, T ];R). For i = 1, 2, denote by (Y i, Zi) a solution of BDSDE (4.1) with parameters
(f i, g, ξi), respectively. Moreover, suppose that for all (t, y, z) ∈ [0, T ]× R× Rd,

ξ1 ⩽ ξ2, f1(t, y, z) ⩽ f2(t, y, z), a.s., (4.4)
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then for any t ∈ [0, T ], we have

Y 1
t ⩽ Y 2

t , a.s.

Remark 4.3. (i) It should be point out that in the condition (STR), when a > 1/(p − 1)(1 − α)

and the function b is bounded, Proposition 4.2 holds true in the space Lp
F(0, T ;R)× L2

F(0, T ;Rd).

(ii) Proposition 4.2 still holds true if f1
(
t, Y 2

t , Z
2
t

)
⩽ f2

(
t, Y 2

t , Z
2
t

)
a.s. for all t ∈ [0, T ] and

the generator f1 satisfies the condition (STR), or if either f1
(
t, Y 1

t , Z
1
t

)
⩽ f2

(
t, Y 1

t , Z
1
t

)
a.s. for all

t ∈ [0, T ] and the generator f2 satisfies the condition (STR).

Proof of Proposition 4.2. For simplicity of presentation, we denote that for t ∈ [0, T ],

Ŷt = Y 1
t − Y 2

t and Ẑt = Z1
t − Z2

t ,

and for any s ∈ [t, T ],

f̂(s) = f1(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s ) and ĝ(s) = g(s, Y 1

s , Z
1
s )− g(s, Y 2

s , Z
2
s ).

Then, note that Ŷ + = max{0, Ŷ }, using Itô’s formula (see Proposition 2.2) to
(
Ŷ +

)p for p ∈ N
with p > 2 implies that

(Ŷ +
t )p = p

∫ T

t
(Ŷ +

s )p−1f̂(s)ds+ p

∫ T

t
(Ŷ +

s )p−1ĝ(s)d
←−
B s − p

∫ T

t
(Ŷ +

s )p−1ẐsdWs

+
p(p− 1)

2

∫ T

t
(Ŷ +

s )p−2|ĝ(s)|2ds− p(p− 1)

2

∫ T

t
(Ŷ +

s )p−2|Ẑs|2ds.
(4.5)

For the term f̂ in the above, note (4.4), we have that

f̂(s) = f1(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s )

= f1(s, Y 1
s , Z

1
s )− f2(s, Y 1

s , Z
1
s ) + f2(s, Y 1

s , Z
1
s )− f2(s, Y 2

s , Z
2
s )

⩽ f2(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s )

⩽
(∫ 1

0

∂f2

∂y
(∗)dλ

)
Ŷs +

(∫ 1

0

∂f2

∂z
(∗)dλ

)
Ẑs,

where
(∗) = (s, λY 1

s + (1− λ)Y 2
s , λZ

1
s + (1− λ)Z2

s ).

Then, for the first term in the right hand side of (4.5), we have that

(Ŷ +
s )p−1f̂(s) ⩽ (Ŷ +

s )p
∫ 1

0

(
∂f2

∂y
+ a

∣∣∣∣∂f2

∂z

∣∣∣∣2)(∗)dλ+
1

4a
(Ŷ +

s )p−2|Ẑs|21{Ŷ +⩾0}, (4.6)

where we have used the well-known inequality 2βγ ⩽ |β|2 + |γ|2 with

β =
√
2a

∂f2

∂z
(∗)

(
Ŷ +
s

)p/2
and γ =

1√
2a

(
Y +
s

)(p−2)/2
Ẑs1{Y +⩾0}.
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For the term ĝ in (4.5), note Assumption 4 satisfied by the coefficient g, we have that

|ĝ(s)|2 =
{(∫ 1

0

∂g

∂y
(∗)dλ

)
Ŷs +

(∫ 1

0

∂g

∂z
(∗)dλ

)
Ẑs

}2

⩽
(∫ 1

0

∂g

∂y
(∗)dλ

)2
|Ŷs|2 + 2

√
ε√
ε

(∫ 1

0

∂g

∂y
(∗)dλ

)(∫ 1

0

∂g

∂z
(∗)dλ

)
|ŶsẐs|+

(∫ 1

0

∂g

∂z
(∗)dλ

)2
|Ẑs|2

⩽ C̃|Ŷs|2 + (α+ ε)|Ẑs|2,

where
C̃ = C +

Cα

ε
and ε =

1− α

2
.

So, for the fourth term on the right hand side of (4.5), we have that

(Ŷ +
s )p−2|ĝ(s)|2 ⩽ C̃(Ŷ +

s )p +
1 + α

2
(Ŷ +

s )p−2|Ẑs|21{Ŷ +⩾0}. (4.7)

Combining (4.5)-(4.7) and (STR), one has

(Ŷ +
t )p +

p

4

(
(p− 1)(1− α)− 1

a

)∫ T

t
(Ŷ +

s )p−2|Ẑs|21{Ŷ +⩾0}ds

⩽ p

∫ T

t

[
b(s) +

1

2
(p− 1)C̃

]
(Ŷ +

s )pds+ p

∫ T

t
(Ŷ +

s )p−1ĝ(s)d
←−
B s − p

∫ T

t
(Ŷ +

s )p−1ẐsdWs,

(4.8)

where the function b comes from (4.3). Note that Ŷ is bounded, which implies that (Ŷ +
s )p−1ĝ(s)

and (Ŷ +
s )p−1Ẑs belong to the space L2

F(0, T ;Rd). Take the expectation on both sides of (4.8),

E(Ŷ +
t )p +

p

4

(
(p− 1)(1− α)− 1

a

)
E
∫ T

t
(Ŷ +

s )p−2|Ẑs|21{Ŷ +⩾0}ds

⩽ p

∫ T

t

[
b(s) +

1

2
(p− 1)C̃

]
(Ŷ +

s )pds.

It is easy to choose a large enough p such that

p

4

(
(p− 1)(1− α)− 1

a

)
⩾ 0.

Finally, Gronwall’s inequality deduces that

E(Ŷ +
t )p ⩽ 0, ∀t ∈ [0, T ].

Therefore, for all t ∈ [0, T ] we have that

Y 1
t ⩽ Y 2

t , a.s.

This completes the proof.

Based on the first step concerning the structure condition (STR), next we are going to prove
the comparison theorem under Assumption 4.

20



Theorem 4.4 (Comparison theorem). Let (ξ1, f1, g) and (ξ2, f2, g) be two parameters of BDSDE
(4.1) with bounded terminal values, and suppose that

(i) ξ1 ⩽ ξ2, a.s., and f1(t, y, z) ⩽ f2(t, y, z), a.s., for all (t, y, z) ∈ [0, T ]× [−M,M ]× Rd.

(ii) Either (f1, g) or (f2, g) satisfies Assumption 4.

Then if (Y 1, Z1) and (Y 2, Z2) are the associated solutions of BDSDE (4.1) with parameters (ξ1, f1, g)

and (ξ2, f2, g), respectively, one has that for any t ∈ [0, T ],

Y 1
t ⩽ Y 2

t , a.s.

Remark 4.5. We point out that Theorem 4.4 still holds true if f1
(
t, Y 2

t , Z
2
t

)
⩽ f2

(
t, Y 2

t , Z
2
t

)
almost surely for all t ∈ [0, T ] and the generator f1 satisfies Assumption 4. Alternatively, it holds
true if either f1

(
t, Y 1

t , Z
1
t

)
⩽ f2

(
t, Y 1

t , Z
1
t

)
almost surely for all t ∈ [0, T ] and the generator f2

satisfies Assumption 4.

Proof of Theorem 4.4. The main idea of the proof is to propose a change of variables that can trans-
form a coefficient f satisfying Assumption 4 into a coefficient f̃ satisfying the structure condition
(STR). By utilizing Proposition 4.2, we can then achieve our desired goal.

Let (Y, Z) ∈ L∞
F (0, T ;R)×L2

F(0, T ;Rd) be a solution of BDSDE (4.1) with parameters (ξ, f, g),
where ξ is a bounded terminal value. Let’s choose M ∈ R such that |Y |∞ < M , and consider the
change of variable y = ϕ(ỹ), where ϕ is a regular increasing function yet to be chosen. Denote

Y = ϕ(Ỹ ), w(Y ) = ϕ′(Ỹ ), Z = ϕ′(Ỹ )Z̃ = w(Y )Z̃, (4.9)

then

Ỹ = ϕ−1(Y ), Z̃ =
Z

ϕ′(Ỹ )
=

Z

w(Y )
,

where (Ỹ , Z̃) is a solution of the following BDSDE with parameters (ξ̃, f̃ , g̃):

Ỹt = ξ̃ +

∫ T

t
f̃(s, Ỹs, Z̃s)ds+

∫ T

t
g̃(s, Ỹs, Z̃s)d

←−
B s −

∫ T

t
Z̃sdWs, (4.10)

where
ξ̃ = ϕ−1(ξ),

g̃(t, ỹ, z̃) =
g(t, y, z)

ϕ′(ỹ)
=

g(t, y, z)

w(y)
=

g
(
t, ϕ(ỹ), ϕ′(ỹ)z̃

)
ϕ′(ỹ)

,

f̃(t, ỹ, z̃) =
1

ϕ′(ỹ)

(
f
(
t, ϕ(ỹ), ϕ′(ỹ)z̃

)
+

1

2
ϕ′′(ỹ)

[
z̃2 − g̃(t, ỹ, z̃)2

])
.

(4.11)

In fact, applying Itô’s formula to ϕ(Ỹ ), we get that

ϕ(Ỹt) = ϕ(ξ̃) +

∫ T

t

[
ϕ′(Ỹs)f̃(s, Ỹs, Z̃s) +

1

2
ϕ′′(Ỹs)g̃(s, Ỹs, Z̃s)

2 − 1

2
ϕ′′(Ỹs)Z̃

2
s

]
ds

+

∫ T

t
ϕ′(Ỹs)g̃(s, Ỹs, Z̃s)d

←−
B s −

∫ T

t
ϕ′(Ỹs)Z̃sdWs,
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which, note that Y = ϕ(Ỹ ), comparing with BDSDE (4.1) implies (4.11). In other words, BDSDEs
(4.1) and (4.10) are equivalent. It is easy to check that the coefficient g̃ satisfies Assumption 4.
Next, we are going to verify that the coefficient f̃ given by (4.11) satisfies the structure condition
(STR). For this, in order to make it more clear, recalling (4.9), we have

y = ϕ(ỹ), w(y) = ϕ′(ỹ) = w(ϕ(ỹ)), z = ϕ′(ỹ)z̃ = w(y)z̃ = w(ϕ(ỹ))z̃. (4.12)

Thus
∂y

∂ỹ
= w,

∂z

∂ỹ
= w′wz̃,

∂z

∂z̃
= w,

ϕ′′(ỹ) =
∂w

∂ỹ
=

∂w

∂y
· ∂y
∂ỹ

= w′w,
∂w′

∂ỹ
=

∂w′

∂y
· ∂y
∂ỹ

= w′′w,

∂g̃

∂ỹ
(t, ỹ, z̃) =

∂g̃

∂y
(t, ỹ, z̃) · ∂y

∂ỹ
=

∂
(
g(t, y, z)/w

)
∂y

· ∂y
∂ỹ

=
∂g

∂y
(t, y, z)− w′

w
g(t, y, z),

∂g̃

∂z̃
(t, ỹ, z̃) =

∂g̃

∂z
(t, ỹ, z̃) · ∂z

∂z̃
=

∂
(
g(t, y, z)/w

)
∂z

· ∂z
∂z̃

=
∂g

∂z
(t, y, z).

Then, from (4.11), we could compute that

∂f̃

∂ỹ
(t, ỹ, z̃) = −w′

w

(
f (t, y, z) +

1

2
w′w[z̃2 − g̃(t, ỹ, z̃)2]

)
+

1

w

(
∂f

∂y
(t, y, z)w +

∂f

∂z
(t, y, z)w′wz̃ +

1

2
[w′′w2 + (w′)2w] · [z̃2 − g̃(t, ỹ, z̃)2]

+ w′wg̃(t, ỹ, z̃)
[w′

w
g(t, y, z)− ∂g

∂y
(t, y, z)

])
= −w′

w

(
f (t, y, z) +

1

2

w′

w
[z2 − g(t, y, z)2]

)
+

∂f

∂y
(t, y, z) +

w′

w

∂f

∂z
(t, y, z)z +

1

2

[w′′

w
+
(w′

w

)2]
· [z2 − g(t, y, z)2]

+
(w′

w

)2
g(t, y, z)2 − w′

w
g(t, y, z) · ∂g

∂y
(t, y, z)

=
1

2

w′′

w
z2 +

w′

w

(
∂f

∂z
(t, y, z)z − f(t, y, z)

)
+

∂f

∂y
(t, y, z)

+
[(w′

w

)2
− 1

2

w′′

w

]
g(t, y, z)2 − w′

w
g(t, y, z) · ∂g

∂y
(t, y, z),

∂f̃

∂z̃
(t, ỹ, z̃) =

∂f

∂z
(t, y, z) +

w′

w

[
z − g(t, y, z) · ∂g

∂z
(t, y, z)

]
.

We now show that a good choice of ϕ allows f̃ to satisfy the structure condition (STR). Indeed, if
ϕ is such that w > 0, w′ > 0, and w′′ < 0, note that (4.2) with 0 < α2 < α < 1, then∂f̃

∂ỹ
+ a

∣∣∣∣∣∂f̃∂z̃
∣∣∣∣∣
2
 (t, ỹ, z̃)
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=
1

2

w′′

w
z2 +

w′

w

(∂f
∂z

z − f
)
+
[(w′

w

)2
− 1

2

w′′

w

]
g2 − w′

w
g · ∂g

∂y

+
∂f

∂y
+ a

∣∣∣∣∂f∂z +
w′

w

[
z − g · ∂g

∂z

]∣∣∣∣2
⩽

[
α
(w′

w

)2
+

1− α

2

w′′

w

]
|z|2 + w′

w

(
k(t)|z|+ l(t) + 2C|z|2

)
+
[(w′

w

)2
− 1

2

w′′

w

]
l(t)

+
w′

w
Cα|z|+ lε(t) + ε|z|2 + a

(
k(t) +

(
C +

w′

w
(1 + α)

)
|z|

)2

⩽ |z|2
[
α
(w′

w

)2
+

1− α

2

w′′

w
+

w′

w
2C + ε+ a

(
C +

w′

w
(1 + α)

)2
]

+ |z|
[
w′

w

[
k(t) + Cα

]
+ 2ak(t)

(
C +

w′

w
(1 + α)

)]
+
[(w′

w

)2
− 1

2

w′′

w

]
l(t) +

w′

w
l(t) + lε(t) + ak(t)2

⩽ |z|2
[
1− α

2

w′′

w
+

w′

w
2C +

(w′

w

)2
+ ε+ 2a

(
C +

w′

w
(1 + α)

)2
]

+
[(w′

w

)2
− 1

2

w′′

w

]
l(t) +

w′

w
l(t) + lε(t) + ak(t)2 +

1

4(1− α)

[
k(t) + Cα

]2
+ ak(t)2,

where in the last inequality we have used the inequality 2βiγi ⩽ |βi|2 + |γi|2 for i = 1, 2, with

β1 =
√
1− α

w′

w
|z|, γ1 =

1

2
√
1− α

[
k(t) + Cα

]
;

β2 = |z|
√
a

(
C +

w′

w
(1 + α)

)
, γ2 =

√
ak(t).

Thus, if we find ϕ satisfying all the required assumptions and such that on [−M,M ],

1− α

2

w′′

w
+

w′

w
2C +

(w′

w

)2
< −δ < 0,

then choosing a and ε small enough, the coefficient before |z|2 is non-positive for all y ∈ [−M,M ].
Therefore (STR) is satisfied. In fact, by setting

ϕ(ỹ) =
1

λ
ln

(
eλAỹ + 1

A

)
−M,

then, recalling (4.12), a straightforward yet tedious computation gives us that

w(y) = A− exp{−λ(y +M)}, w′(y) = λ exp{−λ(y +M)}, w′′(y) = −λ2 exp{−λ(y +M)},

which implies that w′′ < 0 for all y ∈ [−M,M ] and λ > 0. Moreover, when A > 1 and λ > 0, it
is easy to see that w > 0 and w′ > 0 on the interval [−M,M ]. Furthermore, one could choose a
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proper A and λ such that

1− α

2

w′′

w
+

w′

w
2C +

(
w′

w

)2

=
[
λ2

(
− (1− α)A+ (3− α) exp(−λ(u+M))

)
+ λ4C(A− exp(−λ(u+M)))

]
× 1

2

exp(−λ(u+M))

(A− exp(−λ(u+M)))2
⩽ −δ < 0.

The proof is complete.

5 Application to SPDE

When the generator f is of linear growth with respect to y and z, Pardoux–Peng [27] used BDSDEs
to give a probabilistic representation for the classical solution of semilinear SPDEs; and Bally–
Matoussi [3] and Zhang–Zhao [38] obtained the relationship between the solution of BDSDEs and the
Sobolev solution of SPDEs. Then, Wu–Zhang [32] got the Sobolev solution of related SPDEs when
f is continuous and locally monotone in y. Zhang–Zhao [40] and Bahlali et al. [2] used BDSDEs to
prove the existence and uniqueness of related SPDEs when the generator f is of polynomial growth
in Y and grows in Z super-linearly (or sub-quadratically), respectively. In this section, when the
generator f is of quadratic growth in z, we use BDSDEs to give a probabilistic representation for
the solutions of related semilinear SPDEs in Sobolev spaces, and use it to prove the existence and
uniqueness of Sobolev solutions of the SPDEs, thus extending the nonlinear stochastic Feynman-Kac
formula.

First, we recall some notations. For Euclidean spaces H and G, denote by Ck
l,b(H;G) the set of

functions of class Ck from H to G, whose partial derivatives of order less than or equal to k are
bounded. Denote by C1,∞c ([0, T ]×H) the set of compactly supported functions φ(t, x) which are
continuously derivable in the t-variable and infinitely continuously derivable in the x-variable.

Consider the following forward-backward doubly stochastic differential equation:

Xt,x
s = x+

∫ s

t
b(Xt,x

r )dr +

∫ s

t
σ(Xt,x

r )dWr, t ⩽ s ⩽ T, (5.1)

Y t,x
s = h(Xt,x

T ) +

∫ T

s
f(r,Xt,x

r , Y t,x
r , Zt,x

r )dr +

∫ T

s
g(r,Xt,x

r , Y t,x
r , Zt,x

r )d
←−
B r −

∫ T

s
Zt,x
r dWr, (5.2)

where the coefficients b and σ come from C2
l,b(Rn;Rn) and C3

l,b(Rn;Rn×d), respectively. Then it is
well known that the forward equation (5.1) admits a unique adapted solution, denoted by {Xt,x

s ; t ⩽
s ⩽ T}, which satisfying

E
[
sup

t⩽s⩽T
|Xt,x

s |p
]
<∞, ∀p > 1.
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Now, we would like to connect the forward-backward system (5.1) and (5.2) with quadratic growth
to the following semilinear stochastic partial differential equation:

u(s, x) =h(x) +

∫ T

s

{
Lu(r, x) + f

(
r, x, u(r, x), (σ⊤∇u)(r, x)

)}
dr

+

∫ T

s
g
(
r, x, u(r, x), (σ⊤∇u)(r, x)

)
d
←−
B r, t ⩽ s ⩽ T,

(5.3)

where σ⊤ denotes the transpose of σ, and

L =
n∑

i=1

bi
∂

∂xi
+

1

2

n∑
i,j=1

aij
∂2

∂xi∂xj
, (aij) = σσ⊤. (5.4)

Before introducing the definition of Sobolev solutions of SPDE (5.3), we let ρ : Rn → R+ be
an integrable continuous non-negative function, and L2(Rn; ρ−1(x)dx) be the weighted L2 space
endowed with the norm

∥u∥2ρ ≜
∫
Rn

|u(x)|2ρ−1(x)dx.

Let us take the weight ρ(x) = exp{F (x)}, where F : Rn → R is a continuous function and there
is a positive constant R > 0 such that F ∈ C2

l,b (Rn,R) when |x| > R. For example, one can take
ρ(x) = exp{δ|x|} with δ ∈ R+ or ρ(x) = (1 + |x|)q with q > n+ 2.

Let H be the set of random fields {u(t, x); 0 ⩽ t ⩽ T, x ∈ Rn} such that u(t, x) is FB
t,T -

measurable, and both u and σ⊤∇u belong to L2
(
Ω× (0, T )× Rn; dP⊗ dt⊗ ρ−1(x)dx

)
. Then H

is a Banach space endowed with the following norm:

∥u∥2H ≜ E
[∫

Rn

∫ T

0

(
|u(t, x)|2 +

∣∣∣(σ⊤∇u)(t, x)
∣∣∣2) dtρ−1(x)dx

]
.

Now we present the definition of Sobolev solution of SPDE (5.3).

Definition 5.1. We say that u is a Sobolev solution of SPDE (5.3), if u ∈ H and for any φ ∈
C1,∞c ([0, T ]× Rn),∫

Rn

∫ T

t
u(s, x)∂sφ(s, x)dsdx+

∫
Rn

u(t, x)φ(t, x)dx−
∫
Rn

h(x)φ(T, x)dx

− 1

2

∫
Rn

∫ T

t
(σ⊤∇u)(s, x) · (σ⊤∇φ)(s, x)dsdx−

∫
Rn

∫ T

t
udiv[(b− Ã)φ](s, x)dsdx

=

∫
Rn

∫ T

t
f
(
s, x, u(s, x), (σ⊤∇u)(s, x)

)
φ(s, x)dsdx

+

∫
Rn

∫ T

t
g
(
s, x, u(s, x), (σ⊤∇u)(s, x)

)
φ(s, x)dBsdx,

(5.5)

where A is a n-vector whose coordinates are given by Ãj =
1
2

∑n
i=1

∂aij
∂xi

with 1 ⩽ j ⩽ n.
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It should be pointed out that, for the classical solution, indeed, if one supposes that u is a
solution of SPDE (5.3) of class C2, then, similar to the method of Pardoux–Peng [27], applying
Proposition 2.2 to u(s,Xt,x

s ) implies that the pair of processes {Y t,x
s , Zt,x

s ; t ⩽ s ⩽ T} defined by

Y t,x
s = u(s,Xt,x

s ) and Zt,x
s = (σ⊤∇u)(s,Xt,x

s )

is a solution of the backward doubly stochastic differential equation (5.2).

In the following, we discuss this relationship between the Sobolev solution of SPDEs and the
solution of BDSDEs with quadratic growth. In particular, we first focus on a simple situation to
better reflect the idea of solving the problem.

5.1 Simple situation

Consider the following type of backward doubly stochastic differential equations: for t ⩽ s ⩽ T ,

Y t,x
s = h(Xt,x

T ) +

∫ T

s

[
f(r,Xt,x

r , Y t,x
r ) + C(Zt,x

r )2
]
dr +

∫ T

s
αZt,x

r d
←−
B r −

∫ T

s
Zt,x
r dWr, (5.6)

where Xt,x is the solution of (5.1), C > 0 and α ∈ (−1, 1) are two constants, and the functions
f : [0, T ]× Rn × R→ R and h : Rn → R satisfy the following assumption.

Assumption 5. The function h is bounded, and there exist bounded functions l : [0, T ]→ R+ and
k : [0, T ]→ R+ such that for all t ∈ [0, T ], x ∈ Rn and y ∈ R, the generator f satisfies the following
condition:

|f(t, x, y)| ⩽ l(t), |∂f
∂y

(t, x, y)| ⩽ k(t), a.s.

Proposition 5.2. Under Assumption 5, the following stochastic partial differential equation

u(s, x) =h(x) +

∫ T

s

{
Lu(r, x) + f

(
r, x, u(r, x)

)
+ C

(
(σ⊤∇u)(r, x)

)2}
dr

+ α

∫ T

s
(σ⊤∇u)(r, x)d

←−
B r, t ⩽ s ⩽ T,

(5.7)

admits a unique Sobolev solution u ∈H , and for every t ∈ [0, T ],

u(s,Xt,x
s ) = Y t,x

s and (σ⊤∇u)(s,Xt,x
s ) = Zt,x

s , a.s., a.e. s ∈ [t, T ], x ∈ Rn,

where {(Y t,x
s , Zt,x

s ); t ⩽ s ⩽ T} is the unique solution of quadratic BDSDE (5.6).

Proof. Applying the exponential transformation of variable to Ȳ = exp{βY } transforms formally
BDSDE (5.6) into the following BDSDE:

Ȳ t,x
s = Ȳ t,x

T +

∫ T

s
βȲ t,x

r f(r,Xt,x
r , Y t,x

r )dr +
[
C − 1− α2

2
β
] ∫ T

s
βȲ t,x

r |Zt,x
r |2dr

+ α

∫ T

s
βȲ t,x

r Zt,x
r d
←−
B r −

∫ T

s
βȲ t,x

r Zt,x
r dWr, t ⩽ s ⩽ T.
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By taking β = 2C
1−α2 , the above equation becomes

Ȳ t,x
s = h̄(Xt,x

T ) +

∫ T

s
f̄(r,Xt,x

r , Ȳ t,x
r )dr + α

∫ T

s
Z̄t,x
r d
←−
B r −

∫ T

s
Z̄t,x
r dWr, t ⩽ s ⩽ T, (5.8)

where

Z̄t,x
r = βȲ t,xZt,x

r , h̄(Xt,x
T ) = exp{βh(Xt,x

T )},

f̄(r,Xt,x
r , Ȳ t,x

r ) = βȲ t,x
r f

(
r,Xt,x

r ,
1

β
ln Ȳ t,x

r

)
. (5.9)

Under Assumption 5, Eq. (5.8) is a classical BDSDE with a globally Lipschitz generator. Then
Bally–Matoussi [3] (see also Zhang–Zhao [39] and Wu–Zhang [32]) implies that the following SPDE

ū(s, x) = h̄(x) +

∫ T

s

{
Lū(r, x) + f̄

(
r, x, ū(r, x)

)}
dr + α

∫ T

s
(σ⊤∇ū)(r, x)d

←−
B r, t ⩽ s ⩽ T,

(5.10)
admits a unique Sobolev solution ū ∈H , and for every t ∈ [0, T ],

ū(s,Xt,x
s ) = Ȳ t,x

s and σ⊤∇ū(s,Xt,x
s ) = Z̄t,x

s , a.s., a.e. s ∈ [t, T ], x ∈ Rn.

On the other hand, we see that

Ȳ t,x
s = exp(βY t,x

s ) and Z̄t,x
s = βȲ t,x

s Zt,x
s , t ⩽ s ⩽ T,

where the pair (Y t,x, Zt,x) ∈ L∞
F (0, T ;R) × L2

F(0, T ;Rd) is the solution of BDSDE (5.6). So we
would like to define

u(s,Xt,x
s ) ≜ ln ū(s,Xt,x

s )

β
=

ln Ȳ t,x
s

β
= Y t,x

s , t ⩽ s ⩽ T, (5.11)

and then one can compute that

(σ⊤∇u)(s,Xt,x
s ) =

(σ⊤∇ū)(s,Xt,x
s )

βū(s,Xt,x
s )

=
Z̄t,x
s

βȲ t,x
s

= Zt,x
s , t ⩽ s ⩽ T. (5.12)

Hence, by applying Itô’s formula (see Proposition 2.2) to u = ln(ū/β), one can formally transform
SPDE (5.10) into SPDE (5.7). In fact, by using Itô’s formula to u = ln ū/β, one has that

du(s, x) =
−1

βū(s, x)

{
Lū(s, x) + f̄

(
s, x, ū(s, x)

)}
ds

− α(σ⊤∇ū)(s, x)
βū(s, x)

d
←−
B s +

α2

2

(
(σ⊤∇ū)(s, x)

)2
βū(s, x)2

ds.

(5.13)

From the definitions (5.4) and (5.11), it is easy to compute that

Lū(s, x) = βū(s, x)
[
Lu(s, x) + β

2

(
(σ⊤∇u)(s, x)

)2]
. (5.14)
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Then, combining (5.9), (5.11), (5.12), (5.13), (5.14), and note that β = 2C
1−α2 , we deduce that

du(s, x) =−
{
Lu(s, x) + f

(
s, x, u(s, x)

)
+ C

(
(σ⊤∇u)(s, x)

)2}
ds

− α(σ⊤∇u)(s, x)d
←−
B s, t ⩽ s ⩽ T,

u(T, x) =h(x).

(5.15)

In other words, u is a Sobolev solution of SPDE (5.7), and for every t ∈ [0, T ],

u(s,Xt,x
s ) = Y t,x

s and (σ⊤∇u)(s,Xt,x
s ) = Zt,x

s , a.s., a.e. s ∈ [t, T ], x ∈ Rn,

where (Y t,x, Zt,x) is the unique solution of BDSDE (5.6).

Finally, the uniqueness of solutions of SPDE (5.7) comes from the uniqueness of BDSDE (5.6).
This completes the proof.

Remark 5.3. The concept of the above proof is first to transform a simple quadratic BDSDE into
a classical BDSDE. Then, by leveraging the relationship between classical BDSDEs and SPDEs,
one can obtain the corresponding relationship between the BDSDE with quadratic growth and its
associated SPDE.

5.2 General situation

In this subsection, we utilize BDSDE (5.2) to provide a probabilistic representation for the solutions
of SPDE (5.3) in the Sobolev space. This representation is then used to establish the existence and
uniqueness of Sobolev solutions for SPDE (5.3), resulting in the derivation of the nonlinear stochastic
Feynman-Kac formula within this framework. The following lemma extends the equivalence of norm
principle given in Bally–Matoussi [3] and plays a crucial role in subsequent analysis.

Lemma 5.4. There exist two positive constants k1 and K1 which depend on T, ρ, b and σ, such
that for any t ⩽ s ⩽ T and ϕ ∈ L1

(
Ω× Rn; dP⊗ ρ−1(x)dx

)
which is independent of FW

t,s ,

k1E
∫
Rd

|ϕ(x)|ρ−1(x)dx ⩽ E
∫
Rd

∣∣ϕ (
Xt,x

s

)∣∣ ρ−1(x)dx ⩽ K1E
∫
Rd

|ϕ(x)|ρ−1(x)dx.

Moreover, for any Φ ∈ L1
(
Ω× [0, T ]× Rd; dP⊗ dt⊗ ρ−1(x)dx

)
such that Φ(s, ·) is independent of

FW
t,s , one has

k1E
∫
Rd

∫ T

t
|Φ(s, x)|dsρ−1(x)dx ⩽ E

∫
Rd

∫ T

t

∣∣Φ (
s,Xt,x

s

)∣∣ dsρ−1(x)dx

⩽ K1E
∫
Rd

∫ T

t
|Φ(s, x)|dsρ−1(x)dx.

For the coefficients of BDSDE (5.2), we present the following assumption.

Assumption 6. For all t ∈ [0, T ], x ∈ Rn, y ∈ R and z ∈ Rd, the function h : Rn → R is bounded,
and the functions f : [0, T ]×Rn×R×Rd → R and g : [0, T ]×Rn×R×Rd → Rl satisfy Assumption 4.
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Remark 5.5. Note that under Assumption 6, BDSDE (5.2) has a unique solution (Y t,x, Zt,x) ∈
L∞
F (0, T ;R)× L2

F(0, T ;Rd). Moreover, the coefficients f , g and h satisfy that∫
Rn

∫ T

0

(
|h(x)|2 + |f(t, x, 0, 0)|2 + |g(t, x, 0, 0)|2

)
dtρ−1(x)dx <∞.

Now we are in a position to present the main result of this section.

Theorem 5.6 (Feynman-Kac formula). Under Assumption 6, SPDE (5.3) admits a unique Sobolev
solution u ∈H , and for every t ∈ [0, T ],

u(s,Xt,x
s ) = Y t,x

s and (σ⊤∇u)(s,Xt,x
s ) = Zt,x

s , a.s., a.e. s ∈ [t, T ], x ∈ Rn,

where {(Y t,x
s , Zt,x

s ); t ⩽ s ⩽ T} is the unique solution of BDSDE (5.2) with quadratic growth.

Proof. Uniqueness. The uniqueness of SPDE (5.3) follows from the uniqueness of BDSDE (5.2). In
fact, if u1 and u2 are two Sobolev solutions of SPDE (5.3), then both the following two pairs(

u1(s,Xt,x
s ), (σ⊤∇u1)(s,Xt,x

s )
)

and
(
u2(s,Xt,x

s ), (σ⊤∇u2)(s,Xt,x
s )

)
solve BDSDE (5.2). So the uniqueness of BDSDE (5.2) gives us that

u1(s,Xt,x
s ) = u2(s,Xt,x

s ), a.s., a.e. s ∈ [t, T ], x ∈ Rn,

and in particular
u1(t, x) = u2(t, x), a.s., a.e., x ∈ Rn.

Next, we prove the existence. Compared with the proof of the simple situation (see Propo-
sition 5.2), the main idea here we used comes from the proof of Theorem 3.11. However, the
techniques here are more complex than the proof of Theorem 3.11. For this, first we still assume
that the generator f is non-negative for all (t, y, z) ∈ [0, T ] × R × Rd, and for which the proof will
be divided into the following steps.

Step 1. Approximation of SPDE.

Let the sequence {fn;n ∈ N} be defined as in (3.24). Then, the same arguments we developed
as in the proof of Theorem 3.11 deduce that fn is globally Lipschitz continuous with the constant
n and non-decreasing converges pointwise to the generator f . Now, for each (t, x) ∈ [0, T ]×Rn and
n ∈ N, we define the processes un and vn by

un(t, x) = Y t,x,n
t and vn(t, x) = Zt,x,n

t , (5.16)

where (Y t,x,n, Zt,x,n) is the unique solution of BDSDE (5.2) with parameters (fn, g, h). Then Bally–
Matoussi [3] (see also Zhang–Zhao [39] and Wu–Zhang [32]) deduce that

vn(s, x) = (σ⊤∇un)(s, x), (5.17)
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and un is the unique Sobolev solution to the following SPDE:

un(s, x) =h(x) +

∫ T

s

{
Lun(r, x) + fn

(
r, x, un(r, x), (σ⊤∇un)(r, x)

)}
dr

+

∫ T

s
g
(
r, x, un(r, x), (σ⊤∇un)(r, x)

)
d
←−
B r, s ∈ [t, T ],

(5.18)

with

un
(
s,Xt,x

s

)
= Y t,x,n

s and
(
σ⊤∇un

) (
s,Xt,x

s

)
= Zt,x,n

s , a.s., a.e. s ∈ [t, T ], x ∈ Rn. (5.19)

On the other hand, similar to the discussion of (3.28) and (3.27), the sequence {Y t,x,n;n ∈ N}
is non-decreasing and uniformly bounded. In addition, by using the same arguments we developed
in the proofs of Proposition 3.7 and Proposition 3.9, there exists a positive constant K such that

sup
n∈N

E
∫ T

t
|Zt,x,n

s |2ds ⩽ K, (5.20)

and

lim
n→∞

Y t,x,n
s = Y t,x

s , a.s. s ∈ [t, T ]; lim
n→∞

E
∫ T

t
|Zt,x,n

s − Zt,x
s |2ds = 0, (5.21)

where (Y t,x, Zt,x) ∈ L∞
F (0, T ;R)× L2

F(0, T ;Rd) is the solution of BDSDE (5.2) with (f, g, h).

Step 2. Convergence of SPDE (5.18)

We point out that the limits which we consider below hold along with a subsequence, however
for simplicity, the subsequence will still be indexed by n. From Lemma 5.4, note (5.17), (5.19),
(5.20), and {Y t,x,n;n ∈ N} is uniformly bounded, we have that

E
∫
Rn

∫ T

t

(
|un(s, x)|2 + |vn(s, x)|2

)
dsρ−1(x)dx

⩽ K1E
∫
Rn

(
T∥Y t,x,n∥2L∞

F (t,T ) +

∫ T

t
|Zt,x,n

s |2ds
)
ρ−1(x)dx

⩽ K1

∫
Rn

[
T exp(2β∥h∥∞) +K

]
ρ−1(x)dx <∞.

(5.22)

Moreover, note that fn satisfies the inequality (3.26) for any n ∈ N, and

|g
(
s, x, un(s, x), vn(s, x)

)
|2 ⩽ α|vn(s, x)|2, a.s., a.e. s ∈ [t, T ], x ∈ Rn.

Then we deduce from (5.22) that

E
∫
Rn

∫ T

t

[
|fn

(
s, x, un(s, x), vn(s, x)

)
|+ |g

(
s, x, un(s, x), vn(s, x)

)
|2
]
dsρ−1(x)dx ⩽ K̃,
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where K̃ is some constant depending on ∥h∥∞, K, K1 and T . Now, from Lemma 5.4, (5.16), (5.21)
and Lebesgue dominated convergence theorem, we have that

lim
n,m

∫
Rn

∫ T

t
|un(s, x)− um(s, x)|2dsρ−1(x)dx = 0,

lim
n,m

∫
Rn

∫ T

t
|(σ⊤∇un)(s, x)− (σ⊤∇um)(s, x)|2dsρ−1(x)dx = 0.

Then, using Lemma 5.4 again, and note that the space H is complete, it follows that there exists
u ∈H such that

lim
n

∫
Rn

∫ T

t
|un(s, x)− u(s, x)|2dsρ−1(x)dx = 0, (5.23)

lim
n

∫
Rn

∫ T

t
|(σ⊤∇un)(s, x)− (σ⊤∇u)(s, x)|2dsρ−1(x)dx = 0, (5.24)∫

Rn

∫ T

t

(
|u(s, x)|2 + (σ⊤∇u)(s, x)|2

)
dsρ−1(x)dx <∞.

Step 3. We show that for any t ∈ [0, T ],

u(s,Xt,x
s ) = Y t,x

s and (σ⊤∇u)(s,Xt,x
s ) = Zt,x

s , a.s., a.e. s ∈ [t, T ], x ∈ Rn. (5.25)

By triangular inequality, it is easy to see that

E
∫
Rn

∫ T

t
|u(s,Xt,x

s )− Y t,x
s |2dsρ−1(x)dx

⩽ E
∫
Rn

∫ T

t
|u(s,Xt,x

s )− un(s,Xt,x
s )|2dsρ−1(x)dx (5.26)

+ E
∫
Rn

∫ T

t
|un(s,Xt,x

s )− Y t,x
s |2dsρ−1(x)dx. (5.27)

From Lemma 5.4 and (5.23), one has that the term (5.26) tends to 0 as n tends to ∞. In addition,
Lemma 5.4, (5.19) and (5.21) deduce that the term (5.27) tends to 0 as n tends to ∞. So the first
result in (5.25) holds. We next prove the second result in (5.25), i.e.,

(σ⊤∇u)(s,Xt,x
s ) = Zt,x

s , a.s., a.e. s ∈ [t, T ], x ∈ Rn. (5.28)

It is sufficient to show that the following term

E
∫
Rn

∫ T

t
|(σ⊤∇u)(s,Xt,x

s )− Zt,x
s |2dsρ−1(x)dx

⩽ E
∫
Rn

∫ T

t
|(σ⊤∇u)(s,Xt,x

s )− (σ⊤∇un)(s,Xt,x
s )|2dsρ−1(x)dx

+ E
∫
Rn

∫ T

t
|(σ⊤∇un)(s,Xt,x

s )− Zt,x
s |2dsρ−1(x)dx

−→ 0 as n→∞.

(5.29)
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In fact, similarly, combining Lemma 5.4, (5.19), (5.21), and (5.24), it is easy to see that (5.29) holds,
which implies that (5.28) holds too.

Step 4. We show that u is a Sobolev solution to the following SPDE:

u(s, x) =h(x) +

∫ T

s

{
Lu(r, x) + f

(
r, x, u(r, x), (σ⊤∇u)(r, x)

)}
dr

+

∫ T

s
g
(
r, x, u(r, x), (σ⊤∇u)(r, x)

)
d
←−
B r, s ∈ [t, T ].

(5.30)

First, it was shown in Step 2 that u belongs to the space H , so by Definition 5.1, we only need to
verify that u satisfies Eq. (5.5) with parameters (f, g, h). Note that for every n ∈ N, since un is the
Sobolev solution of SPDE (5.18), so for any φ ∈ C1,∞c ([0, T ]× Rn), un satisfies∫

Rn

∫ T

t
un(s, x)∂sφ(s, x)dsdx+

∫
Rn

un(t, x)φ(t, x)dx−
∫
Rn

h(x)φ(T, x)dx

− 1

2

∫
Rn

∫ T

t
(σ⊤∇un)(s, x) · (σ⊤∇φ)(s, x)dsdx−

∫
Rn

∫ T

t
undiv[(b− Ã)φ](s, x)dsdx

=

∫
Rn

∫ T

t
fn

(
s, x, un(s, x), (σ⊤∇un)(s, x)

)
φ(s, x)dsdx

+

∫
Rn

∫ T

t
g
(
s, x, un(s, x), (σ⊤∇un)(s, x)

)
φ(s, x)dBsdx.

(5.31)

Hence, if we can prove that along a subsequence (5.31) converges to (5.5) with parameters (f, g, h),
then u satisfies (5.5) with parameters (f, g, h).

Due to that φ ∈ C1,∞c ([0, T ] × Rn), b ∈ C2
l,b(Rn;Rn) and σ ∈ C3

l,b(Rn;Rn×n), then as n → ∞,
clearly the left hand side of (5.31) tends to the following term:∫

Rn

∫ T

t
u(s, x)∂sφ(s, x)dsdx+

∫
Rn

u(t, x)φ(t, x)dx−
∫
Rn

h(x)φ(T, x)dx

− 1

2

∫
Rn

∫ T

t
(σ⊤∇u)(s, x) · (σ⊤∇φ)(s, x)dsdx−

∫
Rn

∫ T

t
udiv[(b− Ã)φ](s, x)dsdx.

Next, we compute the limit on the right hand side of (5.31). We show that along a sequence

lim
n→∞

∫
Rn

∫ T

t
fn

(
s, x, un(s, x), (σ⊤∇un)(s, x)

)
φ(s, x)dsdx

=

∫
Rn

∫ T

t
f
(
s, x, u(s, x), (σ⊤∇u)(s, x)

)
φ(s, x)dsdx.

(5.32)

In fact, note that the sequence {fn;n ∈ N} is globally Lipschitz continuous and non-decreasing
converges pointwise to the function f , and for every t ∈ [0, T ],(

un(s,Xt,x
s ), (σ⊤∇un)(s,Xt,x

s )
)
=

(
Y t,x,n
s , Zt,x,n

s

)
, a.s., a.e. s ∈ [t, T ], x ∈ Rn,
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(
u(s,Xt,x

s ), (σ⊤∇u)(s,Xt,x
s )

)
=

(
Y t,x
s , Zt,x

s

)
, a.s., a.e. s ∈ [t, T ], x ∈ Rn,

with
lim
n→∞

Y t,x,n
s = Y t,x

s , a.s. s ∈ [t, T ]; lim
n→∞

E
∫ T

t
|Zt,x,n

s − Zt,x
s |2ds = 0.

Then, similar to the argument as in the proof of Proposition 3.9, we get that

lim
n→∞

E
∫ T

t
|fn(s,Xt,x

s , un(s,Xt,x
s ), (σ⊤∇un)(s,Xt,x

s ))−f(s,Xt,x
s , u(s,Xt,x

s ), (σ⊤∇u)(s,Xt,x
s ))|ds = 0.

So combining Lemma 5.4 and the Lebesgue dominated convergence theorem we have that

lim
n→∞

E
∫
Rn

∫ T

t
|fn(s, x, un(s, x), (σ⊤∇un)(s, x))− f(s, x, u(s, x), (σ⊤∇u)(s, x))|dsρ−1(x)dx = 0,

which implies that (5.32) holds. Finally, for the second term on the right hand side of (5.31), similar
to the previous discussion, one has that

lim
n→∞

∣∣∣∣ ∫
Rn

∫ T

t
g
(
s, x, un(s, x), (σ⊤∇un)(s, x)

)
φ(s, x)dBsdx

−
∫
Rn

∫ T

t
g
(
s, x, u(s, x), (σ⊤∇u)(s, x)

)
φ(s, x)dBsdx

∣∣∣∣ = 0, in probability.

Therefore u satisfies Eq. (5.5), and thus u is a Sobolev solution to SPDE (5.30). This completes
the proof of the case of the non-negative generator f .

Finally, as for the general situation of the generator f , one can also introduce a sequence fn,m

defined as in (3.28), which is non-decreasing with respect to n and non-increasing with respect to
m. The entire proof can be rewritten by passing to the limit as n goes to ∞ (m being fixed) and
then as m goes to ∞. This completes the proof.

6 Conclusion Remarks

We initiate the study of quadratic BDSDEs, where we establish the existence, uniqueness, and
comparison theorem for one-dimensional BDSDEs with quadratic growth and bounded terminal
value. It is worth noting that, while proving the a priori estimate, we introduce the condition (3.11)
regarding the coefficient g to ensure the boundedness of Y , which we consider necessary in the case
of bounded terminal value. However, if someone discusses the solution of quadratic BDSDEs with
an unbounded terminal value, the condition (3.11) can be relaxed since the boundedness of Y is not
required in such contexts. We intend to pursue further investigations in cases where the terminal
value ξ is unbounded and/or Y is multi-dimensional. Moreover, within this framework, we employ
BDSDEs to prove the existence and uniqueness of Sobolev solutions for semilinear SPDEs, thus
extending the nonlinear Feynman-Kac formula proposed by Pardoux and Peng [27]. Additionally,
it would be interesting and important to conduct further studies on the existence and uniqueness
of viscosity solutions for related SPDEs in the near future.
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