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Design and cross-layer optimization of low cost
RIS-assisted communication systems
Antoine Dejonghe★†, Zwi Altman★, Francesco de Pellegrini†, and Eitan Altman‡

Abstract—The deployment of RISs in future 6G networks is
expected to substantially improve mobile network coverage. This
paper introduces a new cross-layer low-complexity scheme for
the online optimization of RIS-assisted communication systems.
It jointly combines BS and RIS configuration and fair UEs’
scheduling which is critical for high-performance deployments.
A RIS beam synthesis method is especially proposed for RIS
configuration. The proposed solution embeds two nested control
loops: i) a fast control loop working at the OFDMA slot scale and
consisting in a standard UEs proportional fair scheduler, and ii)
a slow control loop operating at the OFDMA frame scale which
adapts the RIS’ configuration to the UEs’ spatial distribution and
maximizes the UEs’ aggregated performance. The slow control
loop is based on an online stochastic approximation algorithm
whose convergence to the optimal restpoint is proved. In a
reference scenario, the proposed scheduler achieves a gain of
47% in mean spectral efficiency for NLOS UEs over a baseline
scheme.

Index Terms—Reconfigurable Intelligent Surfaces, propor-
tional fair scheduler, stochastic approximation, RIS beam syn-
thesis, cross-layer design.

I. INTRODUCTION

THE sixth Generation (6G) technology targets new appli-
cations in the 2030 area, with performance requirements

not supported by previous generations [1]. Reconfigurable
Intelligent Surfaces (RISs) have been identified among the
important 6G technological enablers to achieve 6G targets.
RISs are panels composed of numerous electronically control-
lable Reflecting Elements (REs) [2]. The phase-shift applied
by each RE can be tuned to steer the reflection of impinging
waves in desired directions. The overall RIS phase shifts
define the RIS precoder. The deployment of RISs can improve
mobile networks’ performance, e.g., Spectral Efficiency (SE)
by substantially improving User Equipments’ (UEs) Signal to
Noise Ratio (SNR).

Recently, several authors have studied RISs from a Physical
(PHY) layer point of view. The basic system analyzed in this
context is a multi-antenna Base Station (BS) coupled to a RIS.
By leveraging instantaneous Channel State Information (CSI),
the BS and RIS precoders are jointly designed in order to
maximize UEs’ SNR [3], [4], [6]–[9], [11]–[13]. However,
instantaneous CSI-based schemes generally cope with three
main problems. The first one is the computation of optimal BS
and RIS precoders for all UEs in each coherence time interval.
This task usually requires to solve a non-convex optimization
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problem [3], the solution of which is of high complexity and
cannot be solved in real time. It is standard practice to avoid
such complexity by using Machine Learning tools such as
Deep Learning (DL) [8] or Reinforcement Learning (RL) [9].
Moreover, these approaches often require the collection of a
high amount of data specific to a scenario and a long training
period. The second problem corresponds to the pilot overhead
produced by the instantaneous CSI acquisition. In networks
with RIS deployment, the overhead of state-of-the art channel
estimation methods is proportional to the number of REs [13].
It is noted that a RIS is generally composed of a large number
of REs in order to enable a given coverage extension, which
leads to an excessively high overhead. The third problem
is the sensitivity to CSI imperfections which are caused by
the stochasticity of both wireless environment and hardware,
and significantly limit RIS-assisted communication system
performance. Lately, a new class of BS and RIS configuration
schemes refered as statistical CSI-based schemes have been
extensively investigated. They enable to jointly address the
above two problems by leveraging statistical CSI (e.g., channel
covariance matrices), the coherence time of which is much
longer than that of instantaneous CSI. For instance, [11]
exploits departure and arrival angles in order to design the RIS
phase shifts. Alternatively, UEs’ spectral efficiency can be ex-
ploited in order to learn the optimal BS and RIS configurations
as for example is proposed in [7] via a two-stage stochastic
multi-armed bandit strategy to select sequentially the best BS
and RIS precoders from finite-size codebooks. Interestingly,
statistical CSI-based schemes are also less sensitive to CSI
imperfections than instantaneous CSI-based schemes. Hence,
they can provide better performance in specific scenarios (e.g.,
highly dynamic environments). In this work we propose a low-
complexity and efficient solution for the joint BS and RIS
configuration. Having in mind a design practically viable in
production, the scheme relies on three main pillars: (i) the
use of 5G compatible measurements, (ii) the use of standard
Proportional Fair (PF) or 𝛼-fair schedulers, and (iii) the design
of a small set of RIS beam patterns, denoted later RCPs.

In fact, up to date, few works in the literature have ad-
dressed Medium Access Control-layer. However, the related
resource management aspects appear key to enable effective
RIS deployment [5]. In particular, a core problem which is
addressed in this work is how to configure optimally a RIS
in combination with fair UEs’ schedulers [4]. To this end, we
have introduced the RIS configuration pattern (RCP) which
is a novel lightweight solution to configure RISs online in a
blind and adaptive fashion [6]. The RCP is a predetermined
periodic sequence of precoders with fixed duration, drawn
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from a predefined codebook. On the other hand, in order to
guarantee a low complexity of the RCP solution, we consider
codebooks containing few large beams. Therefore, we provide
a specialized RIS beam synthesis method, which is also
detailed in the next sections. In a RCP, each precoder can be
allocated a different time duration within the RCP period. The
time resource allocation for each RCP precoder is based on
an online Stochastic Approximation (SA) algorithm. In a real
deployment, the RCP configuration can be calculated at the BS
scheduler or alternatively at a network controller (e.g., mobile
edge computing). Thus, it does not require any processing load
at the RIS side and can be transmitted to the RIS over a low-
capacity management interface. Ultimately, the resulting RCP
adapts to the UEs’ distribution and maximizes the aggregated
UEs’ throughput of typical eMBB service. Appealingly, it
also retains backward compatibility with standard PF or 𝛼-
fair schedulers. Overall, the RCP optimization and UEs’
scheduling can be viewed as a pair of nested control loops.
The RCP optimization is a slow control loop where the RCP
is only updated every few tens of milliseconds. Conversely,
UEs’ scheduling corresponds to a fast control loop where the
RCP is considered fixed in time.

This paper builds on a preliminary conference paper [6]
adding three main novel contributions:

• We introduce an initial configuration phase to determine
the RIS coverage area. We note that this step is often not
addressed in the literature [6], [7].

• We propose a beam synthesis method based on a Semi
Definite Program (SDP) to adapt the RIS beam patterns
to the desired design characteristics.

• We propose a SA algorithm for RCP optimization. We
prove formally that the iterates of the algorithm converge
to the optimal solution. In particular, convergence to the
optimal restpoint is guaranteed provided that noisy data
samples for UEs’ rates are collected using a standard
unbiased estimator.

The rest of the paper is organized as follows. Section II
details the system model. Sec. III proposes two RIS-assisted
network implementations, one of which is compatible with
the 3GPP-5G standard. Sec. III also covers the initial RIS
configuration and the RIS beam synthesis technique. UEs’
scheduling and the formulation of the RCP optimization
problem are presented in Sec. IV. A SA algorithm for RCP
optimization and its convergence proof are provided in Sec. V.
The complexity of the RCP optimization solution is analyzed
in Sec. VI. Simulation results and conclusions are presented
in Sec. VII and VIII.

II. SYSTEM MODEL

We study an outdoor Downlink (DL) scenario for a Multiple
Input Multiple Output-Orthogonal Frequency Division Mul-
tiple Access (MIMO-OFDMA) system. The reference two-
dimensional (2D) system is depicted in Fig. 1. It is composed
of a BS equipped with 𝑀 antennas (Uniform Linear Array
(ULA)) which serves 𝑈 single-antenna UEs. The system
includes a RIS equipped with 𝑁 REs (ULA) which can assist

the communication between the BS and the UEs. The BS-RIS
model describes the azimuthal variations of the radiated fields,
while Path-Losses (PLs) are considered in 3D. This approach
is often used in the literature and allows to achieve meaningful
Quality of Service (QoS) results [10].

Fig. 1. The baseline system model. Orange dots and blue rectangles represent
BS antennas and RIS REs, respectively; 𝑁B = 8, 𝑁C = 3.

We assume the BS and the RIS are located at fixed positions,
while UEs are mobile. Fig. 1 shows a central obstruction that
splits the playground into two equal zones denoted by ALOS
and ANLOS. UEs located in ALOS experience a Line-of-Sight
(LOS) channel with respect to the BS. Conversely, the UEs
located in ANLOS experience a Non-LOS (NLOS) channel.

TABLE I
MAIN NOTATION USED THROUGHOUT THE PAPER

Symbols Definitions
𝑀 number of BS antennas
𝑁 , N number of RIS REs, set of RIS REs indexes
𝑈, U number of UEs, set of UEs indexes
𝑈𝑡

𝑠𝑐ℎ
, number of UEs scheduled at time 𝑡

U𝑡
𝑠𝑐ℎ

set of indexes of UEs scheduled at time 𝑡
𝑈𝑚𝑎𝑥

𝑠𝑐ℎ
max number of simultaneously scheduled UEs

ALOS, ANLOS cell LOS zone, cell NLOS zone
f𝑡,𝑘𝑢 BS-UE channel at time 𝑡 on subcarrier 𝑘
g𝑡,𝑘𝑢 RIS-UE channel at time 𝑡 on subcarrier 𝑘
H BS-RIS channel

f̃𝑡,𝑘𝑢 , g̃𝑡,𝑘𝑢 , H̃ small-scale fading components of f𝑡,𝑘𝑢 , g𝑡,𝑘𝑢 , H
𝜓𝜓𝜓 RIS precoder

𝜉𝜉𝜉
𝑡,𝑘
𝑢 (𝜓𝜓𝜓) BS-UE aggregated channel at time 𝑡

on subcarrier 𝑘
B, B BS GoB, set of BS beams indexes

C RIS precoder codebook
C set of RIS precoders indexes

𝑁B, 𝑁C number of BS beams, number of RIS precoders
𝑐 (𝑡 ) index of the RIS precoder active at time 𝑡
𝑃𝑡𝑥 BS transmit power
𝐾 number of OFDM subcarriers
K set of subcarriers indexes

𝐾𝑐𝑜𝑛𝑡𝑟𝑜𝑙 , 𝐾𝑑𝑎𝑡𝑎 number of subcarriers for control and data
K𝑐𝑜𝑛𝑡𝑟𝑜𝑙 , K𝑑𝑎𝑡𝑎 set of control and data subcarriers indexes

We respectively define the sets of UEs, RIS REs and OFDM
subcarriers indexes as U = {0, 1, ...,𝑈−1}, N = {0, 1, ..., 𝑁 −
1} and K = {0, 1, ..., 𝐾 −1} where 𝐾 is the number of OFDM
subcarriers. We also define the time-scale T whose granularity
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corresponds to a slot. Finally, we define the indexes 𝑢 ∈ U,
𝑛 ∈ N , 𝑘 ∈ K and 𝑡 ∈ T .

A. Channel Model

Two links between a UE 𝑢 ∈ U and the BS are considered,
namely a direct link and a cascaded link. For the direct link, the
signals transmitted by the BS are received by the UE without
being reflected by the RIS. If the UE is located in ALOS (resp.
ANLOS), this link is modelled thanks to a LOS (resp. NLOS)
channel denoted by f𝑡 ,𝑘

𝑢,LOS ∈ C1×𝑀 (resp. f𝑡 ,𝑘
𝑢,NLOS ∈ C1×𝑀 ).

In the sequel, the channel vector f𝑡 ,𝑘𝑢 will be written without
the subscripts LOS and NLOS for sake of notation. For the
cascaded link, the signals transmitted by the BS are reflected
by the RIS before being received by the UE. The cascaded
link is modelled thanks to two channels: a free-space BS-RIS
channel denoted by H ∈ C𝑁×𝑀 and a LOS RIS-UE channel
denoted by g𝑡 ,𝑘𝑢 ∈ C1×𝑁 .

In this work, LOS channels are modelled as Ricean channels
where channel coefficients simulating a free-space path and
multiple reflected paths are summed and scaled by a Ricean
factor [14]. NLOS channels are only based on channel coef-
ficients simulating reflected paths. LOS and NLOS channels
are time-varying, and remain constant during an interval of
time smaller than their time coherence 𝑇𝑐. Finally, given the
large bandwidth considered, these channels are also frequency-
dependent and are expressed in terms of time 𝑡 and a subcarrier
𝑘 (e.g. f𝑡 ,𝑘𝑢 ).

The BS-UE, BS-RIS and RIS-UE channels are modelled as
f𝑡 ,𝑘𝑢 =

√︁
𝛽f,𝑢f𝑡 ,𝑘𝑢 , H =

√
𝛽HH̃ and g𝑡 ,𝑘𝑢 =

√︁
𝛽g,𝑢g̃𝑡 ,𝑘𝑢 , respec-

tively. Here, f̃𝑡 ,𝑘𝑢 and g̃𝑡 ,𝑘𝑢 denote small-scale fading channel
components, defined according to the 3GPP channel model
[14]. H̃ is modelled as in [8]. The terms, 𝛽f,𝑢 = 𝛽0 (1+𝑑f,𝑢)−𝛼f

and 𝛽g,𝑢 = 𝛽0 (1 + 𝑑g,𝑢)−𝛼g denote the PL for BS-UE and
RIS-UE channels; 𝛽0 is the PL at one meter, 𝑑f,𝑢 and 𝑑g,𝑢

are distances and 𝛼f and 𝛼g are PL exponents. 𝛽H =
(Δ𝑁 )2

4𝜋𝑑H
2

denotes the PL for the BS-RIS channel where 𝑑H is a distance
and Δ2 is the area of an RE [8].

B. Signal model

Denote by 𝑈𝑡
𝑠𝑐ℎ

the number of UEs scheduled simultane-
ously by the BS at time 𝑡. Note that, 𝑈𝑡

𝑠𝑐ℎ
≤ 𝑈𝑚𝑎𝑥

𝑠𝑐ℎ
where

𝑈𝑚𝑎𝑥
𝑠𝑐ℎ

is the maximum number of UEs that can be scheduled
on a time slot. Let s𝑡 ,𝑘 ∈ C𝑈𝑡

𝑠𝑐ℎ denote the signal transmitted
by the BS on the subcarrier 𝑘 at time 𝑡, with E{|s𝑡 ,𝑘𝑢 |2} =
𝑃𝑡𝑥

𝐾𝑈𝑡
𝑠𝑐ℎ

,∀𝑢 ∈ U𝑡
𝑠𝑐ℎ

= {1, 2, ...,𝑈𝑡
𝑠𝑐ℎ

}. 𝑃𝑡 𝑥 denotes the BS
total transmit power. At time 𝑡, 𝑃𝑡 𝑥 is equally distributed
among the 𝐾 subcarriers and among the 𝑈𝑡

𝑠𝑐ℎ
beams which

are simultaneously steered by the BS (i.e., at most one UE is
scheduled per beam). The signal received by the UE 𝑢 ∈ U𝑡

𝑠𝑐ℎ

is modelled as

y𝑡 ,𝑘𝑢 = 𝜉𝜉𝜉𝑡 ,𝑘𝑢 (𝜓𝜓𝜓) ©­«W𝑡
.,𝑢s𝑡 ,𝑘𝑢 +

∑︁
𝑣∈U𝑡

𝑠𝑐ℎ
\{𝑢}
W𝑡
.,𝑣s𝑡 ,𝑘𝑣

ª®¬ + e𝑡 ,𝑘𝑢 (1)

where
𝜉𝜉𝜉𝑡 ,𝑘𝑢 (𝜓𝜓𝜓) =

(
f𝑡 ,𝑘𝑢 + g𝑡 ,𝑘𝑢 diag(𝜓𝜓𝜓)H

)
. (2)

In (2), 𝜓𝜓𝜓 = [𝑒 𝑗𝜓0 , 𝑒 𝑗𝜓1 , ..., 𝑒 𝑗𝜓𝑁−1 ] ∈ C𝑁 is the RIS precoder,
with 𝜓𝑛 ∈ [0, 2𝜋] ∀𝑛 ∈ N . e𝑡 ,𝑘 ∼ NC(0, 𝜎2

𝑒 I𝑈𝑡
𝑠𝑐ℎ

) is
an additive white gaussian noise. The BS precoding matrix
is denoted by W𝑡 ∈ C𝑀×𝑈𝑡

𝑠𝑐ℎ . We consider here that the
BS serves UEs via a Grid of Beams (GoB) of 𝑁B beams
denoted by B ∈ C𝑀×𝑁B [15]. The GoB can be modelled
by a DFT codebook: it gathers orthogonal precoders which
permit to steer beams in all directions. Such a codebook can
be constructed as follows: B =

[
b0 b1 ... b𝑏 ... b𝑁B

]
with

b𝑏 = 1√
𝑀

[
1 𝑒 𝑗

2𝜋
𝑁B
𝑏
𝑒
𝑗 2𝜋
𝑁B

2𝑏
... 𝑒

𝑗 2𝜋
𝑁B

(𝑀−1)𝑏
]𝑇

∈ C𝑀 . Note that
in (1), W𝑡

.,𝑢 = B.,𝑏, 𝑏 ∈ B = {0, 1, ..., 𝑁B − 1}. We consider
that the GoB is used for both control and data channels. It is
noted that in comparison with eigen-based beamforming, the
GoB implementation does not require to estimate large channel
matrices and benefits from a low processing complexity at the
expense of lower performance. In the rest of this paper, we
drop the time indexes for the sake of simplicity.

III. RIS-ASSISTED NETWORK IMPLEMENTATION

A. BS working principle

We consider a BS deploying a 3GPP-5G OFDM-Time
Division Duplexing (TDD) system. The 5G standard provides
high flexibility in the configuration of its frame structure. In the
following we present a configuration which enables to address
three challenges encountered in the deployment of efficient
RIS-assisted networks. It is recalled that the RIS configuration
modifies the propagation characteristics which may in turn
modify: (i) the UEs’ achievable rates via the highest available
Modulation and Coding Schemes (MCSs), and (ii) the best BS
precoders to serve UEs. The first two challenges are the ability
to rapidly adapt UEs’ MCSs and BS serving beams following
each RIS reconfiguration. The third challenge is the capability
of serving the users with the best available RIS precoders. To
address these challenges, frequent performance measurements
and Uplink (UL) reports are needed. As explained presently,
this is achieved by selecting: (i) a short slot duration (via
a high Subcarrier Spacing (SCS)), (ii) a high periodicity of
control signals transmissions allowing frequent performance
measurements, and (iii) a UL-DL time slot partitioning that
supports more frequent UL reports.

BS-UE signalling. In our system, the BS transmits on a
carrier bandwidth of 𝑊 MHz centered around a frequency of
𝑓𝑐 GHz. The BS periodically transmits control signals which
permit the UEs to measure performance counters and report
them to the BS for MCS and BS beam determination. We
select a SCS of 𝜇 = 30 kHz (i.e., a slot lasts 0.5 ms) to
shorten the periodicity of control signals’ transmissions. This
enables frequent UEs’ performance measurements.

UE-BS reporting. To enable frequent UEs’ performance
indicators reporting, we use a specific fixed TDD pattern for
UL-DL time slot partitioning [16]. In the rest of the paper, we
consider “Pattern A”, see Fig. 2a: compared to the alternative
pattern, namely “Pattern B”, it ensures more frequent UL
transmissions, i.e., one UL transmission every 2 ms against
4 ms for “Pattern B”.
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Fig. 2. a) The standard TDD patterns; b) RIS Configuration Pattern principle for 𝐹 = 6, 𝑁C = 3.

It is noted that frequent UEs’ performance measurements
and reporting allow to test the performance of numerous RIS
configurations in a short timeframe and to select the best one.

B. RIS working principle

We now introduce two low-complexity schemes for RIS
configuration. As presented in section II, the RIS REs are
configured based on a precoder 𝜓𝜓𝜓 ∈ C𝑁 . In this work, the
RIS is configured following a predetermined sequence of RIS
precoders as depicted in Fig. 2b, namely the RCP. We assume
that an RCP has a fixed duration of 𝐹 frames and repeats over
time. The precoders from the RCP are drawn from a codebook
C ∈ C𝑁×𝑁C of size 𝑁C. At any time, we have 𝜓𝜓𝜓 = C.,𝑐,
𝑐 ∈ C = {0, 1, ..., 𝑁C − 1}.

We build here a codebook C containing few large beams
spanning the zone ANLOS. In real networks, the location of
such a zone is not known a priori and needs to be determined
once for stationary environments or tracked for non-stationary
environments. In subsection III-C, an initial phase to determine
the coverage area of the RIS is presented.

The choice of relatively large RCP beams for covering
ANLOS ensures that all locations in ANLOS are covered fre-
quently enough. Generating large reflected beams with a large
RIS composed of many REs is a complex task. To tackle
this problem, we introduce in subsection III-D a new method
for RIS beam synthesis extending the BS beam synthesis
technique developed in [18].

Beam coverage. In the proposed scheme we synthesize
first one large beam which covers the whole zone ANLOS.
In addition, we design 𝑁C − 1 thinner beams with minimal
overlap, each of which covers a part of ANLOS so that the
union of the zones covered by these beams corresponds to
ANLOS. The large beam and the thinner ones allow both to
transmit control signals and data signals to the UEs located in
ANLOS. Fig. 1 depicts a possible codebook C with 𝑁C = 3. The
large beam and the 𝑁C − 1 = 2 thinner beams are respectively
denoted by C.,0 and by C.,1 and C.,2. Let C denote the set of
RIS precoder indexes. We use notation 𝑐(𝑡) ∈ C for the index
of the RIS precoder which is active in the RCP at time 𝑡.

Network attachment. In the 5G standard, the network at-
tachment procedure corresponds to the transmission of a
sequence of control messages between the BS and an UE.
According to the system configuration detailed in subsection
III-A, this handshake sequence lasts one frame. A successful
attachment procedure hence requires the active RIS precoder

to remain fixed during an entire frame. Also, for network’s
performance optimization purpose, it is necessary to frequently
make performance measurements on all the precoders which
appear within the RCP. This requires each precoder from C
to appear at least once in an RCP.

Precoder Allocation Rules. To ensure the above conditions,
we define the following two rules for RCP design. Rule 1:
each precoder from C appears only once in an RCP and the
order of appearance is fixed. Rule 2: the active RCP precoder
can only be switched at the beginning of a frame (e.g. switch
from C.,0 to C.,1). The above two rules imply that an RCP
precoder is active during an integer number of consecutive
frames (at least one per RCP).

Based on the RCP principle for RIS configuration, we focus
on two reference schemes. The first one denoted by “RCP A”
corresponds to a fixed RCP structure. The percentage of the
𝐹 frames composing the RCP allocated to each precoder from
C is constant over time. It is noted that this simple scheme
does not require dedicated RIS configuration management and
is compatible with the 3GPP-5G standard.

The second scheme denoted by “RCP B” uses a flexible
allocation of the 𝐹 RCP frames. To maximize the UEs’ perfor-
mance, the allocation can be adapted to the UEs’ distribution.
For example, more resources can be provided to the RIS beams
that serve zones with higher UE density. In this scheme, a
network controller decides at the beginning of each RCP how
are the 𝐹 frames shared among the precoders from C (i.e., the
RCP structure). Each RCP starts with a frame allocated to the
precoder C.,0. The network controller exploits the activation
time of C.,0 to compute the optimal RCP structure following
C.,0 and sends it to the RIS.

C. Initial RIS configuration
The initial RIS configuration requires to track the NLOS

zone, that may vary at long time intervals. The configuration
method exploits a codebook denoted as C𝑡𝑟 containing few
large beams which cover the whole cell as depicted in Fig. 3.
Specifically, the UEs’ performance is evaluated for each beam
and the one bringing the best performance gain is selected as
precoder C.,0 in C. This process can be periodically applied
(e.g., once per month) with RCPs allocating equal amounts of
time resources to precoders from C𝑡𝑟 (Fig. 3).

D. RIS beam synthesis
We detail presently the adaptation and further optimization

of a BS beam synthesis method proposed in [18] to RIS beam
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Fig. 3. RIS codebook and RCP structure for NLOS zone tracking.

synthesis. RIS beam synthesis consists in finding the RIS REs’
excitations 𝜓𝜓𝜓 ∈ C𝑁 such that the power radiated by the RIS in
some azimuthal directions of interest denoted by 𝜙𝑖 , 𝑖 ∈ I =

{0, ..., 𝐼 − 1} follow a specific pattern. The desired radiated
pattern can include design constraints such as side lobe level.
It is noted that the BS and the RIS are both modelled as
ULAs so that only the azimuthal variations of the radiated
fields are considered (i.e. beam synthesis is performed in the
azimuthal plane). However, extending the technique developed
in the sequel to the elevation variations is straightforward.

We assume here that each BS antenna and RIS RE radiates
isotropically. Therefore, when configured with the precoder 𝜓𝜓𝜓,
the far field radiated by the RIS in the direction of interest 𝜙𝑖

can be expressed as follows

𝑟 (𝜙𝑖) = 𝜌𝜌𝜌(𝜙𝑖)𝜓𝜓𝜓 (3)

where

𝜌𝜌𝜌(𝜙𝑖) =
(
a𝑡 𝑥 (𝜙𝑖)𝐻diag

(
a𝑟 𝑥 (𝜈)a𝑡 𝑥 (𝜐)𝐻w

))
. (4)

𝜌𝜌𝜌(𝜙𝑖) ∈ C𝑁 aggregates the BS precoder, the cascaded-link
BS steering vector and the RIS steering and response vectors
denoted by w ∈ C𝑀 , a𝑡 𝑥 (𝜐) ∈ C𝑀 , a𝑡 𝑥 (𝜙𝑖) ∈ C𝑁 and
a𝑟 𝑥 (𝜈) ∈ C𝑁 respectively. The 𝑞-th term of a𝑡 𝑥 (.) and a𝑟 𝑥 (.)
can be expressed as [a𝑡 𝑥 (𝜐)]𝑞 = exp( 𝑗 2𝜋

𝜆
𝑞Δ𝑡 𝑥 cos(𝜐)) and

[a𝑟 𝑥 (𝜈)]𝑞 = exp(− 𝑗 2𝜋
𝜆
𝑞Δ𝑟 𝑥 cos(𝜈)) where 𝜆, Δ𝑡 𝑥 and Δ𝑟 𝑥 are

the wavelength, the transmitter and receiver radiating elements
spacing, respectively. 𝑟 (𝜙𝑖) is a complex scalar whose real and
imaginary parts can be arranged in a vector as[

R(𝑟 (𝜙𝑖)) I(𝑟 (𝜙𝑖))
]𝑇

= A𝑖x (5)

where the matrix A𝑖 ∈ R2×2𝑁 and the vector x ∈ R2𝑁 can be
expressed as in (6).

A𝑖 =
[
R

(
𝜌𝜌𝜌(𝜙𝑖)𝑇

)
−I

(
𝜌𝜌𝜌(𝜙𝑖)𝑇

)
I
(
𝜌𝜌𝜌(𝜙𝑖)𝑇

)
R

(
𝜌𝜌𝜌(𝜙𝑖)𝑇

) ] , x =

[
R(𝜓𝜓𝜓)
I(𝜓𝜓𝜓)

]
(6)

Based on (3), the power radiated by the RIS in the direction
𝜙𝑖 can be formulated as follows��𝑟 (𝜙𝑖)��2 = x𝑇Q𝑖x = Tr(Q𝑖X) (7)

where Q𝑖 = A𝑖𝑇A𝑖 is a symmetric matrix and X = xx𝑇 ∈ S2𝑁

is a symmetric positive semi-definite matrix (i.e. X ⪰ 0) of
rank one (i.e. rank(X) = 1).

RIS beam synthesis consists in finding the vector x such
that the powers radiated by the RIS in the directions of interest
𝜙𝑖 , 𝑖 ∈ I follow a specific pattern. We split the set of directions
into two regions, namely the Main Lobe Region (MLR) and
the Side Lobe Region (SLR). In the MLR, the radiated power
needs to be maximized with flat response (i.e., with limited
gap between its lower and upper extreme values). In the SLR,
the radiated power needs to be minimized. We represent the
radiated pattern by the set S𝑖 whose structure is given as

S𝑖 :
{

Tr(Q𝑖X) ≥ 𝛼𝑖 , (8a)
Tr(Q𝑖X) ≤ 𝛽𝑖 . (8b)

Constraints (8a) and (8b) permit to bound the power of the
radiated beam in the 𝑖-th direction, from below and from
above, respectively. Specifically, if the 𝑖-th direction belongs
to the MLR, 𝛼𝑖 and 𝛽𝑖 should be set to high values with
𝛽𝑖 − 𝛼𝑖 → 𝜖 𝑖 where 𝜖 𝑖 is a small number. Conversely, if the
𝑖-th direction belongs to the SLR, we impose 𝛼𝑖 = 0 whereas
𝛽𝑖 is a small number, as described in the following. As in
prior works, we assume here that precoder weights have unit
amplitude (i.e., lossless system), namely |𝜓𝜓𝜓𝑛 | = 1, 𝑛 ∈ N .
Using the same steps as in (7), the squared amplitude |𝜓𝜓𝜓𝑛 |2
can be expressed in terms of vector x as

|𝜓𝜓𝜓𝑛 |2 = x𝑇O𝑛x = Tr(O𝑛X) (9)

where

O𝑛
𝑗, 𝑗 =


1 if 𝑗 = 𝑛,
1 if 𝑗 = 𝑛 + 𝑁,
0 elsewhere.

(10)

Based on the above discussion, the RIS beam synthesis prob-
lem can be written as an SDP as

find X ∈ S2𝑁 (11a)

subject to Tr(Q𝑖X) ∈ S𝑖 for 𝑖 ∈ I (11b)
Tr(O𝑛X) = 1 for 𝑛 ∈ N (11c)
X ⪰ 0 (11d)
rank(X) = 1. (11e)

It is noted that (11a) is not a convex problem because of
constraint (11e). In [18], constraint (11e) is relaxed to obtain
a convex problem solvable in polynomial-time. A so called
log-det heuristic in turn is introduced in order to encourage
low-rank solutions. The relaxed problem can hence be solved
using standard interior point methods. In this work, the rank
minimization involved in the RIS beam synthesis problem is
tackled via a generalization of the trace heuristic. This method
– whose full development is deferred to Appendix E – appears
much more efficient than log-det heuristic as exemplified by
the synthesis of RIS beam C.,1 in section VII. We remark
that in our numerical implementation, each precoder weight
(𝜓𝜓𝜓𝑛,∀𝑛 ∈ N ) is encoded using 𝑧 bits [4]. Indeed, current RIS
prototypes only admit discrete precoder weights. We further
notice that this RIS beam synthesis method can be performed
at a network controller without any processing load on the
RIS.
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E. UEs working principle

We assume that the carrier bandwidth is divided into
two non-overlapping parts spreading on 𝐾𝑑𝑎𝑡𝑎 and 𝐾𝑐𝑜𝑛𝑡𝑟𝑜𝑙
subcarriers, respectively (i.e. 𝐾 = 𝐾𝑑𝑎𝑡𝑎 + 𝐾𝑐𝑜𝑛𝑡𝑟𝑜𝑙). These
parts respectively group all data and control signals exchanged
between the BS and each UE. Let K𝑑𝑎𝑡𝑎 and K𝑐𝑜𝑛𝑡𝑟𝑜𝑙 denote
the sets of subcarriers dedicated to data and control signals.

During all their active period, UEs periodically perform
power measurements thanks to the control signals transmitted
on the subcarriers from K𝑐𝑜𝑛𝑡𝑟𝑜𝑙 . Based on power measure-
ments reported by UEs, the BS can update as frequently as
necessary the pairing between UEs and BS beams. We denote
by (𝑢 ∈ 𝑏)𝑐, 𝑏 ∈ B, 𝑐 ∈ C, an UE 𝑢 ∈ U attached to the
BS beam B.,𝑏 when the RIS precoder C.,𝑐 is active. Note that
an UE can be attached to different BS beams when different
RIS precoders are active. After each power measurement, the
beam 𝑏 to which the UE 𝑢 is attached, namely (𝑢 ∈ 𝑏)𝑐, is
determined as follows

𝑏 = arg max
𝑏′∈B

{𝑝𝑏′ ,𝑐𝑢 }. (12)

In (12), 𝑝𝑏
′ ,𝑐
𝑢 corresponds to the power measurement of UE

𝑢 when served by the BS beam B.,𝑏′ when the RIS precoder
C.,𝑐 is active. 𝑝𝑏

′ ,𝑐
𝑢 is computed as

𝑝𝑏
′ ,𝑐
𝑢 =

𝑃𝑡 𝑥

𝐾𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝐾𝑈𝑠𝑐ℎ

∑︁
𝑘∈K𝑐𝑜𝑛𝑡𝑟𝑜𝑙

��𝜉𝜉𝜉𝑘𝑢 (C.,𝑐)B.,𝑏′ ��2 (13)

where 𝑃𝑡𝑥
𝐾𝑈𝑠𝑐ℎ

denotes the power transmitted by the BS on
one subcarrier and dedicated to one UE when 𝑈𝑠𝑐ℎ UEs are
scheduled simultaneously. 𝑝𝑏

′ ,𝑐
𝑢 can be interpreted as the mean

power received by the UE 𝑢 on a subcarrier occupied by a
control signal. Note that, the expression of the function 𝜉𝜉𝜉𝑘𝑢 (.)
is the same as in (2). Therefore, 𝜉𝜉𝜉𝑘𝑢 (C.,𝑐) corresponds to the
sum of the direct and cascaded channels on subcarrier 𝑘 when
the RIS precoder C.,𝑐 is active.

Based on (1), we express the Signal to Interference plus
Noise Ratio (SINR) of an UE 𝑢 served by the BS beam B.,𝑏
while the RIS precoder C.,𝑐 is active, on subcarrier 𝑘 as

𝛾𝑏,𝑐,𝑘𝑢 =

𝑃𝑡𝑥
𝐾𝑈𝑠𝑐ℎ

��𝜉𝜉𝜉𝑘𝑢 (C.,𝑐)B.,𝑏��2
𝜎2
𝑒 + 𝑃𝑡𝑥

𝐾𝑈𝑠𝑐ℎ

∑
𝑏′∈B\{𝑏}

��𝜉𝜉𝜉𝑘𝑢 (C.,𝑐)B.,𝑏′ ��2 (14)

where 𝜎2
𝑒 is the noise power.

For sake of simplicity, we assume here that when an UE
is scheduled on a given slot, it receives data on all 𝐾𝑑𝑎𝑡𝑎
subcarriers. Note that multiple UEs can be scheduled on the
same time and frequency resources if they can be spatially
separated. Therefore, the rate of the UE 𝑢 served by the
BS beam B.,𝑏 when the RIS precoder C.,𝑐 is active can be
formulated as follows

𝑟𝑏,𝑐𝑢 =
1

𝐾𝑑𝑎𝑡𝑎

∑︁
𝑘∈K𝑑𝑎𝑡𝑎

log2

(
1 + 𝛾𝑏,𝑐,𝑘𝑢

)
(bit/s/Hz). (15)

Note that, the rate achieved on each subcarrier 𝑘 ∈ K𝑑𝑎𝑡𝑎
obeys to log2 (1 + 𝛾𝑏,𝑐,𝑘𝑢 ) ≤ 𝑟𝑚𝑎𝑥 where 𝑟𝑚𝑎𝑥 corresponds to
the SE of the highest available MCS.

TABLE II
MAIN NOTATION USED IN THE REST OF THE PAPER

Symbols Definitions

𝑝
𝑏,𝑐
𝑢

UE power measurement on BS beam B.,b
when RIS precoder C.,c is active

𝑟
𝑏,𝑐 (𝑡 )
𝑢,𝑡 UE instantaneous rate at time 𝑡
𝑟𝑢,𝑡 UE average rate at time 𝑡
𝐹 RCP duration in frames
𝐹 number of RCP frames to allocate
q𝑠
𝑖

fraction of 𝐹 frames assigned to precoder 𝑖 at time 𝑠
𝜃𝜃𝜃𝑠
𝑖

𝜃𝜃𝜃𝑠
𝑖
= exp(q𝑠

𝑖
)

U𝑐 cluster of UEs whose best RIS precoder is C.,𝑐

r𝑢,𝑠
𝑖

UE average rate at time 𝑠 on RIS precoder C.,𝑐

r̂𝑢,𝑠
𝑖

noisy estimate of r𝑢,𝑠
𝑖

r𝑐,𝑠
𝑖

sum of average rates of UEs from U𝑐

when RIS precoder C.,𝑖 is active
r𝑠 vector storing rates used to compute 𝑋𝛼

𝑠 (𝜃𝜃𝜃𝑠 )
r̂𝑠 noisy estimate of r𝑠
𝜁𝜁𝜁 𝑠 error in r𝑠 estimation

𝑋𝛼
𝑠 (𝜃𝜃𝜃𝑠 ) alpha-fair utility function used for RCP computation
𝑋𝛼
𝑠 (𝜃𝜃𝜃𝑠 ) noisy estimate of 𝑋𝛼

𝑠 (𝜃𝜃𝜃𝑠 )
𝛼 fairness coefficient used in 𝑋𝛼

𝑠 (𝜃𝜃𝜃𝑠 )
𝐿 (𝜃𝜃𝜃𝑠 , 𝜆) Lagrangian derived based on (OPT)
𝐿 (𝜃𝜃𝜃𝑠 , 𝜆) noisy estimate of 𝐿 (𝜃𝜃𝜃𝑠 , 𝜆)

𝜆 Lagrange multiplier
𝜂𝑠 step-size sequence
𝛽𝛽𝛽𝑠 bias noise
𝜔𝜔𝜔𝑠 martingale noise

IV. PROBLEM FORMULATION

This paper addresses both the BS and RIS configuration
and the UEs’ scheduling problems. In principle, these two
problems could be solved jointly. However, the target mathe-
matical model, namely a Markov decision process describing
the process both at the PHY and MAC layers, may result
in a model hardly tractable analytically. Instead, we resort to
time scale separation, where the whole RIS/BS resource allo-
cation scheme is viewed as a double control-loop optimization
problem: (i) a fast loop for UEs’ scheduling where the RCP
structure is considered fixed, and (ii) a slow loop adapting
the RCP structure to optimize the system sum-rate in a fair
manner. It is noted that while the solutions of each of the
two concave maximization problems is indeed optimal, the
resulting solution of the joint problem may be suboptimal.

A. UEs’ scheduling
We first focus on the fast control loop optimization problem,

namely scheduling UEs under a fixed RCP structure. At each
time slot 𝑡, the BS can serve up to 𝑈𝑚𝑎𝑥

𝑠𝑐ℎ
UEs. At most one

UE can be scheduled on each active BS beam per time slot
𝑡, i.e., 𝑈𝑚𝑎𝑥

𝑠𝑐ℎ
= 𝑁B. A BS beam is active if at least one UE

is associated to this beam. Let us denote B𝑡 the set of active
beams at time 𝑡.

UEs attached to the same BS beam are scheduled based
on a PF utility function. This utility function depends on the
instantaneous rate of the UE 𝑢 at time 𝑡+1 denoted by 𝑟𝑏,𝑐 (𝑡+1)

𝑢,𝑡+1
where (𝑢 ∈ 𝑏)𝑐 (𝑡+1) . We define the average rate of the UE 𝑢

at time 𝑡 denoted by 𝑟𝑢,𝑡 . The average rate at time 𝑡 + 1 is the
exponential moving average with parameter 0 < 𝜖 ≤ 1

𝑟𝑢,𝑡+1 = (1 − 𝜖)𝑟𝑢,𝑡 + 𝜖𝑟𝑏,𝑐 (𝑡+1)
𝑢,𝑡+1 . (16)
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Note that if the UE 𝑢 is not scheduled at time 𝑡 + 1, the
instantaneous rate 𝑟𝑏,𝑐 (𝑡+1)

𝑢,𝑡+1 is null. Note also that the average
rate 𝑟𝑢,𝑡 is computed over several frames where the UE 𝑢 can
be served by different BS beams and RIS precoders. Finally,
the PF scheduling utility function at time 𝑡+1, which is adapted
here to the multi-user scheduling, is denoted by 𝑈𝑡+1 and can
be expressed as 𝑈𝑡+1 = 𝑉𝑡 +𝑊𝑡+1 [19]. 𝑉𝑡 and 𝑊𝑡+1 correspond
to the parts of 𝑈𝑡+1 depending on past scheduling decisions
up to time 𝑡 and on the scheduling decision at time 𝑡 + 1,
respectively. 𝑉𝑡 and 𝑊𝑡+1 can be formulated as

𝑉𝑡 =
∑︁
𝑢∈U

[
log(𝑟𝑢,𝑡 + 𝑑) − 𝜖

(
𝑟𝑢,𝑡

𝑟𝑢,𝑡 + 𝑑

)]
(17)

𝑊𝑡+1 =

[
𝜖

∑︁
𝑏∈B𝑡

max
(𝑢∈𝑏)𝑐′

(
𝑟
𝑏,𝑐′

𝑢,𝑡+1

𝑟𝑢,𝑡 + 𝑑

)]
𝑐′=𝑐 (𝑡+1)

(18)

where 𝑑 > 0 is an arbitrarily small constant to avoid problem-
atic behaviors near zero.

B. Optimal RCP structure computation

We now focus on the slow control loop optimization prob-
lem, namely the computation of the RCP structure. Since the
system sum-rate depends on the RIS beams available to UEs,
the frequency by which they appear in the pattern must be
optimized in a fair manner. To this aim, the adaptive RIS
configuration scheme “RCP B” presented in subsection III-B
is the core of the slow optimization loop. In the “RCP B”
scheme, the network controller decides at the beginning of
each RCP how the RCP 𝐹 frames are shared among the 𝑁C
RIS precoders from C. In our scheme each RIS precoder
is activated in at least one frame per RCP (see subsection
III-B). Thus, the remaining 𝐹̃ = 𝐹 − 𝑁C RCP frames are
assigned a RIS precoder each. To this end, the RCP structure
at time 𝑠 ∈ S can be represented by a non-negative real vector
q𝑠 ∈ R𝑁C , where component q𝑠

𝑖
∈ [0, 1] is the fraction of 𝐹̃

frames assigned to precoder 𝑖 at time 𝑠. In our formulation,
we shall control each component q𝑠

𝑖
by variable 𝜃𝜃𝜃𝑠

𝑖
where

q𝑠
𝑖

= exp(𝜃𝜃𝜃𝑠
𝑖
) and

∑
𝑖∈C exp(𝜃𝜃𝜃𝑠

𝑖
) = 1. This identification

permits to halve the number of multipliers required by the
learning algorithm introduced later.

In turn, the control vector 𝜃𝜃𝜃𝑠 is determined via an opti-
mization problem that is described next. Let us consider an
alpha-fair utility function denoted by 𝑋𝛼𝑠 (𝜃𝜃𝜃𝑠). By maximizing
𝑋𝛼𝑠 (𝜃𝜃𝜃𝑠) it is possible to achieve a given degree of fairness
among clusters of UEs associated to each RIS precoder.

The set of UEs U is partitioned into 𝑁C non-overlapping
clusters denoted by U𝑐, 𝑐 ∈ C, i.e., U =

⋃
𝑐∈C U𝑐 and

U𝑐

⋂U𝑐′ = ∅ for every 𝑐 ≠ 𝑐′. The cluster U𝑐 contains
all the UEs whose best RIS precoder is C.,𝑐, i.e., when the
corresponding received power under C.,𝑐 is higher than the
one under any other precoder from C. Note that, because the
PF scheduler does not discriminate between rates obtained
on specific RIS precoders at some time slots, depending on
channel conditions, an UE associated to a tagged cluster may
well be served on different RIS precoders, i.e., those associated
to different clusters.

The clusters U𝑐 are determined at the end of each RCP
based on power measurements as

U𝑐 =

{
𝑢 ∈ U

����max
𝑏∈B

𝑝𝑏,𝑐𝑢 ≥ max
𝑏′∈B,𝑐′∈C\{𝑐}

𝑝𝑏
′ ,𝑐′
𝑢

}
. (19)

Let 𝑟𝑢,𝑠𝑐 denote the average rate experienced at time 𝑠 by
the UE 𝑢 ∈ U when the RIS precoder 𝑐 ∈ C is active.
Note that 𝑟𝑢,𝑠𝑐 is computed based on instantaneous rates 𝑟𝑏,𝑐 (𝑡 )𝑢,𝑡

which respect 𝑐(𝑡) = 𝑐. For each UE 𝑢 ∈ U, we define
the vector r𝑢,𝑠 =

[
𝑟
𝑢,𝑠

0 , ..., 𝑟
𝑢,𝑠

𝑁C−1

]
∈ R𝑁C which stores the

average rate experienced by 𝑢 on each RIS precoder 𝑐 ∈ C.
Finally, we define the vector r𝑐,𝑠 ∈ R𝑁C whose 𝑖-th component
r𝑐,𝑠
𝑖

=
∑

𝑢∈U𝑐

r𝑢,𝑠
𝑖

corresponds to the sum of the average rates

experienced by the UEs from U𝑐 when the RIS precoder 𝑖 ∈ C
is active.

To model the impact of the RCP structure on the system
sum-rate, we compute the average sum-rate of cluster U𝑐 as
a weighted sum of the contributions of all RIS precoders as

r𝑠U𝑐
=

1
𝐹

∑︁
𝑖∈C

(
1 + 𝐹̃ exp(𝜃𝜃𝜃𝑠𝑖 )

)
r𝑐,𝑠
𝑖
. (20)

In (20), 1
𝐹

(
1 + 𝐹̃ exp(𝜃𝜃𝜃𝑠

𝑖
)
)

is the fraction of the 𝐹 RCP
frames allocated to the RIS precoder 𝑖 ∈ C at time 𝑠 so that
1
𝐹

(
1 + 𝐹̃ exp(𝜃𝜃𝜃𝑠

𝑖
)
)
r𝑐,𝑠
𝑖

corresponds to the contribution of the
RIS precoder 𝑖 ∈ C to the average sum-rate r𝑠U𝑐

.
Using (20), the alpha-fair formulation of the system sum-

rate for 𝛼 = 1 and 𝛼 ∈ R+\{1} respectively writes as in (21)
and (22) where 𝑑 > 0 is an arbitrarily small constant.

𝑋𝛼𝑠 (𝜃𝜃𝜃𝑠)=
∑︁
𝑐∈C

𝛿 |U𝑐 |≠0

1 − 𝛼

(
𝑑 +

∑︁
𝑖∈C

[
exp(𝜃𝜃𝜃𝑠

𝑖
)𝐹̃ + 1
𝐹

]
r𝑐,𝑠
𝑖

)1−𝛼
(21)

𝑋𝛼𝑠 (𝜃𝜃𝜃𝑠)=
∑︁
𝑐∈C

𝛿 |U𝑐 |≠0 log

(
𝑑 +

∑︁
𝑖∈C

[
exp(𝜃𝜃𝜃𝑠

𝑖
)𝐹̃ + 1
𝐹

]
r𝑐,𝑠
𝑖

)
(22)

As showed in Appendix A, the system sum-rate is actually
concave for positive values of 𝛼.

Proposition 1. The utility function 𝑋𝛼𝑠 (𝜃𝜃𝜃𝑠) (resp. −𝑋𝛼𝑠 (𝜃𝜃𝜃𝑠))
is concave (resp. convex) in 𝜃𝜃𝜃𝑠 for 𝛼 ∈ R+. Strict concavity
(resp. strict convexity) in 𝜃𝜃𝜃𝑠 is observed for 𝛼 ∈ R+∗.

Based on 𝑋𝛼𝑠 (𝜃𝜃𝜃𝑠), the RCP allocation problem is formulated
as a convex optimization problem:

min
𝜃𝜃𝜃𝑠

− 𝑋𝛼𝑠 (𝜃𝜃𝜃𝑠) (OPT)

subject to
∑︁
𝑐∈C

exp(𝜃𝜃𝜃𝑠𝑐) = 1.

In the rest of the paper we denote 𝜃𝜃𝜃∗ the optimal solution of
(OPT). Depending on 𝛼 and 𝑁C, the solution of OPT can be
characterized in different ways. For the cases ii and iii listed
below, only the derivations for 𝛼 ∈ R+\{1} are presented. It is
noted that the same methodology can be used to address the
case where 𝛼 = 1.

Case i: 𝛼 = 0. This case corresponds to opportunistic
scheduling when no fairness is required between UEs clusters.
Specifically, the utility function 𝑋𝛼𝑠 (𝜃𝜃𝜃𝑠) is maximized by
allocating all resources to a single RIS precoder 𝑐 ∈ C.
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Case ii: 𝛼 > 0 and 𝑁C = 2. A closed-form expression of
the value of 𝜃𝜃𝜃𝑠 solving OPT can be derived (see App. B).

Case iii: 𝛼 > 0 and 𝑁C > 2. In this case no simple analytical
solution of problem OPT; the solution is obtained via the
online primal-dual SA algorithm developed next.

V. STOCHASTIC APPROXIMATION SOLUTION

In this section, we propose a stochastic primal-dual op-
timization algorithm to tackle the optimal RCP structure
computation problem (i.e., problem OPT) for the case defined
by 𝛼 ∈ R+∗ and 𝑁C > 2. The proposed SA solution aims at
minimizing the following Lagrangian

𝐿 (𝜃𝜃𝜃𝑠 , 𝜆) = −𝑋𝛼𝑠 (𝜃𝜃𝜃𝑠) + 𝜆
(∑︁
𝑐∈C

exp(𝜃𝜃𝜃𝑠𝑐) − 1

)
(24)

where 𝜆 ∈ R is a Lagrange multiplier. It is possible to observe
that the Slater condition for constraint qualification is verified
[20].

The update rules for the primal and dual variables write as

𝜃𝜃𝜃𝑠+1
𝑐 =

[
𝜃𝜃𝜃𝑠𝑐 − 𝜂𝑠

𝜕𝐿

𝜕𝜃𝜃𝜃𝑠𝑐
(𝜃𝜃𝜃𝑠 , 𝜆𝑠)

] (−∞,0]
(25a)

𝜆𝑠+1 = 𝜆𝑠 + 𝜂𝑠 𝜕𝐿
𝜕𝜆

(𝜃𝜃𝜃𝑠 , 𝜆𝑠) (25b)

where [𝑎] [𝑏,𝑐] denotes the projection and {𝜂𝑠}𝑠∈N is a stan-
dard step-size sequence. The terms 𝜕𝐿

𝜕𝜃𝜃𝜃𝑠𝑐
(𝜃𝜃𝜃𝑠 , 𝜆𝑠) = − 𝜕𝑋

𝛼
𝑠

𝜕𝜃𝜃𝜃𝑠𝑐
(𝜃𝜃𝜃𝑠) +

𝜆𝑠 exp(𝜃𝜃𝜃𝑠𝑐) and 𝜕𝐿
𝜕𝜆

(𝜃𝜃𝜃𝑠 , 𝜆𝑠) = ∑
𝑐∈C exp(𝜃𝜃𝜃𝑠𝑐)−1 are the gradient

of the Lagrangian with respect to 𝜃𝜃𝜃𝑠 and 𝜆 in (𝜃𝜃𝜃𝑠 , 𝜆𝑠).
In general, (24) cannot be solved directly since the pa-

rameters account for the presence of noisy estimates. In
practice, the instantaneous rates 𝑟𝑏,𝑐 (𝑡 )𝑢,𝑡 can be retrieved in
the form of noisy estimates measured via some suitable
estimation procedure. In the rest of the discussion we shall
assume that 𝑟𝑏,𝑐 (𝑡 )𝑢,𝑡 are independent and identically distributed
(i.i.d.) random variables with finite variance. The estimation
of r𝑠 = [r0,𝑠

, ..., r𝑁C−1,𝑠] ∈ R𝑁 2
C is represented by r̂𝑠 ∈ R𝑁2

C

and can be expressed as follows

r̂𝑠 = r𝑠 + 𝜁𝜁𝜁 𝑠 (26)

where 𝜁𝜁𝜁 𝑠 ∈ R𝑁2
C is a noise vector.

We now denote 𝑋𝛼𝑠 (𝜃𝜃𝜃𝑠) the noisy estimate of 𝑋𝛼𝑠 (𝜃𝜃𝜃𝑠) which
can be computed by replacing r𝑐,𝑠

𝑖
by r̂𝑐,𝑠

𝑖
in (21). We also

denote by 𝐿̂ (𝜃𝜃𝜃𝑠 , 𝜆) the noisy estimate of 𝐿 (𝜃𝜃𝜃𝑠 , 𝜆) which can
be calculated by replacing 𝑋𝛼𝑠 (𝜃𝜃𝜃𝑠) by 𝑋𝛼𝑠 (𝜃𝜃𝜃𝑠) in (24).

From (27) and (28) we obtain also the estimate of first order
partial derivatives of the Lagrangian and of the utility function,
respectively.

𝜕𝐿̂

𝜕𝜃𝜃𝜃𝑠
𝑗

(𝜃𝜃𝜃𝑠 , 𝜆𝑠) = −
𝜕𝑋𝛼𝑠

𝜕𝜃𝜃𝜃𝑠
𝑗

(𝜃𝜃𝜃𝑠) + 𝜆𝑠 exp(𝜃𝜃𝜃𝑠𝑗 ) (27)

𝜕𝑋𝛼𝑠

𝜕𝜃𝜃𝜃𝑠
𝑗

(𝜃𝜃𝜃𝑠) =
∑︁
𝑐∈C

[
𝛿 |U𝑐 |≠0

(
𝐹̃

𝐹

)
exp(𝜃𝜃𝜃𝑠𝑗 )̂r

𝑐,𝑠
𝑗

×
(
𝑑 +

∑︁
𝑖∈C

[
exp(𝜃𝜃𝜃𝑠

𝑖
)𝐹̃ + 1
𝐹

r̂𝑐,𝑠
𝑖

])−𝛼] (28)

We denote {𝜂𝑠}𝑠∈N a standard step-size sequence if it has
the following properties

𝜂𝑠 ≥ 0,
∞∑︁
𝑠=0

𝜂𝑠 = ∞,
∞∑︁
𝑠=0

(𝜂𝑠)2 < ∞. (29)

We can now state the convergence properties of the proposed
SA algorithm with the following result, the proof of which is
provided in the Appendix C.

Theorem 1. Let r̂𝑢,𝑠
𝑖

be the output of an asymptotically
unbiased estimator for the average rate r𝑢,𝑠

𝑖
experienced at

time 𝑠 by the UE 𝑢 when the precoder 𝑖 ∈ C is active. Let
{𝜂𝑠}𝑠∈N+ be a standard step-size sequence. Assume that the
estimation error 𝜁𝜁𝜁 𝑠 = r̂𝑠 −r𝑠 is such that lim𝑠→∞ 𝑠 | |𝜁𝜁𝜁 𝑠 | |𝜂𝑠 = 0
w.p.1. Then the iterates of the primal-dual Algorithm (25a)
converge w.p.1. to the optimal solution of problem OPT (i.e.,
𝜃𝜃𝜃𝑠 converges to 𝜃𝜃𝜃∗).

As mentioned above, the instantaneous rates 𝑟𝑏,𝑐 (𝑡 )𝑢,𝑡 are i.i.d
random variables bounded w.p.1. Hence, if the average rates
r̂𝑢,𝑠
𝑖

are computed through the sample mean estimator and we
consider a standard step-size sequence, then Theorem 1 holds
as shown by Theorem 2.

Theorem 2. Let r̂𝑢,𝑠
𝑖

= 1
𝑠

∑𝑠
𝑗=1 𝛿𝑐 ( 𝑗 )=𝑖𝑟

𝑏,𝑐 ( 𝑗 )
𝑢, 𝑗

be the output of
the sample mean average for the rates experienced up to time
𝑠 by the UE 𝑢 when the precoder 𝑖 ∈ C is active. Let 𝜂𝑠 = 1/𝑠𝛾
be the standard stepsize sequence for 𝑠 ∈ N+ and 𝛾 ∈ ( 3

4 , 1].
Then Theorem 1 holds.

VI. COMPLEXITY ANALYSIS

In this section, we analyze the complexity of the “RCP B”
scheme. In particular, we consider the two key operations
involved in the proposed solution: (i) the RCP structure
computation, and (ii) the transmission of the RCP structure
from the BS to the RIS. We remark that, different from the vast
majority of the RIS configuration schemes in the literature, the
“RCP B” scheme only relies on existing 5G low-complexity
measurements. Thus, it does not require any additional channel
estimation, i.e., beyond standardization. As such, the scheme
does not add any additional complexity to data acquisition.

Computational complexity. Unlike deterministic optimiza-
tion solutions presented in the literature, e.g., online convex
optimization as in [6], in order to account for noisy measure-
ments, we have adopted an iterative stochastic approximation
algorithm for the computation of the optimal RCP structure.
The iterates of this algorithm are proved to converge to the
optimal solution provided that noisy data samples are collected
using an unbiased estimator. Specifically, algorithm’s iterates
are performed every 𝐹×10 ms and require the computation of
𝑁C gradients as in (27). The computation of a gradient in turn
requires to perform 𝑁C (𝑈 + 𝑑) numerical operations where
𝑑 is a small number independent of scenario’s parameters.
A scenario where the maximum number of admitted UEs is
reached (i.e. 𝑈 = 𝑈𝑚𝑎𝑥) and 𝑁C = 3 leads to the consumption
of about 180 numerical operations by each algorithm’s iterate.

Message complexity. The message complexity of the scheme
is associated to the RCP structure transmission. We observe
that for most of the literature’s works, the number of bits to
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be transmitted per RIS reconfiguration (every time slot) equals
to 𝑁 × 𝑧 where 𝑧 is the number of bits used to encode each
RIS precoder weight. In our case the number of transmitted
bits is much smaller, that is 𝐹 ⌈log2 (𝑁C)⌉ for a whole RCP. In
the present example where 𝑁 = 32 and 𝑧 = 3, our scheme
hence requires a management interface with a capacity of
𝐹 ⌈log2 (𝑁C ) ⌉
𝐹.10.10−3 = 100 bps against 𝑁𝑧

0,5.10−3 = 192 kbps for a
standard scheme.

VII. NUMERICAL RESULTS

The results presented in this section cover simulations of the
RIS beam synthesis, UEs’ scheduling and RCP optimization.
All simulations are carried out using a system simulator with
time resolution of a slot (0, 5 ms).

A. Simulation scenario

We consider a BS and a RIS deployed in a rectangular cell
of size 𝑥𝑚𝑎𝑥 × 𝑦𝑚𝑎𝑥 where 𝑥𝑚𝑎𝑥 = 200 m and 𝑦𝑚𝑎𝑥 = 160 m,
located at ( 𝑥𝑚𝑎𝑥

2 ,0) and (0, 𝑦𝑚𝑎𝑥

2 ), respectively (Fig. 1). The
BS is equipped with 𝑀 = 8 antennas and can steer up to
𝑁B = 8 beams simultaneously. The BS transmit power is set
to 𝑃𝑡 𝑥 = 40 W. The RIS is equipped with 𝑁 = 32 REs.

The PL coefficients are set to 𝛼f = 2.7 (resp. 𝛼f = 4.1) for
LOS UEs (resp. NLOS UEs) and 𝛼g = 2.7. The PL at one
meter is equal to 𝛽0 = −20.4dB. To model the PL associated
to the BS-RIS link, we consider that Δ = 𝜆

2 where 𝜆 is the
wavelength. The small scale fading components f̃𝑡 ,𝑘𝑢 and g̃𝑡 ,𝑘𝑢
are generated following the Urban Macro scenario from [14].
The central frequency and bandwidth of the system are set to
𝑓𝑐 = 3.5 GHz and 𝑊 = 20 MHz, respectively. As the SCS
is set to 𝜇 = 30 kHz, we have 𝐾 = 666, 𝐾𝑑𝑎𝑡𝑎 = 378 and
𝐾𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 288. 256-Quadrature Amplitude Modulation is the
highest MCS used here so that 𝑟𝑚𝑎𝑥 = 7.4 bit/s/Hz [17].

The traffic process is generated by UEs which enter the cell
according to a Poisson process, download a file of size 𝑆 = 3
MB and leave the system when the download is complete. We
consider different arrival rates for the ALOS and ANLOS zones
denoted by 𝜆LOS and 𝜆NLOS (UE/s), respectively. An admission
control that accepts up to 𝑈𝑚𝑎𝑥 = 20 UEs is implemented.

We consider a codebook C with 𝑁C = 3 precoders. The
RCP lasts 𝐹 = 6 frames and 𝛼 is set with a value near to 1.

B. RIS Beam Synthesis Example

Fig. 4a) depicts the normalized gain pattern of RIS beam
C.,1. It is synthesized for a 20◦ beamwidth and centered around
105◦ thanks to the method developed in subsection III-D.
It is compared to the normalized gain pattern of a standard
DFT beam steered in the same direction. The beam pattern
of C.,1 is synthesized with 𝛽𝑖 in (8b) for the SLR set to
the maximum value of the first sidelobe of the DFT pattern.
Fig. 4b) illustrates that the generalized trace heuristic for the
RIS beam synthesis problem permits to concentrate energy
on fewer eigenvalues than the log-det heuristic. Overall, the
proposed heuristic results for RIS beam patterns better satisfy
the input pattern design constraints than that of [18].

C. Online RCP optimization

Regarding the ANLOS zone, we consider time-varying ar-
rival probabilities for the coverage areas of RIS beams C.,1
and C.,2, denoted as p𝑡1 and p𝑡2. Hence, the effective arrival
rate in the coverage area of beam C.,𝑖 , 𝑖 ∈ {1, 2} at time 𝑡
can be expressed as 𝜆NLOS × p𝑡

𝑖
. In the following example

we consider a periodic UEs’ arrival rate to the ANLOS zone,
with a 100s period (see Fig. 5a)). The arrival probabilities p𝑡1
and p𝑡2 vary periodically in the range

[ 1
8 ,

7
8
]
. Fig. 5b) shows

the trajectory of time resources allocated by “RCP B” scheme
to the RIS precoders from C (i.e. q𝑠) for a single run. The
amount of time resources allocated to precoders C.,1 and C.,2
is correlated to UEs’ arrival probabilities. Indeed, the same
variations are observed for q𝑠

𝑖
and p𝑡

𝑖
, 𝑖 ∈ {1, 2}. Fig. 5c)

presents the mean time resources allocation trajectory obtained
by averaging 32 independent runs. This series of experiments
illustrate that the proposed online algorithm is able to adapt
the allocated resources to changing traffic conditions.

D. Performance evaluation

Figures 6a) and 6b) show the results for the UEs long-
term mean SE. Data are obtained by simulating the traffic
generated by UEs, with arrival rates varying periodically as
shown in Fig. 5a) over a very large time horizon. In Fig.
6a), we assess the NLOS UEs mean SE obtained for different
combinations of two UEs’ schedulers (i.e., a PF scheduler (18)
and a Round-Robin (RR) scheduler) and two RIS configuration
schemes (i.e., “RCP A” and “RCP B” schemes). In the
“RCP A” scheme, the 𝐹 RCP frames are equally distributed
among the 𝑁C precoders. We first observe that for both UEs’
schedulers, the “RCP B” scheme achieves a gain of above 15%
over the “RCP A” scheme. The “RCP B” scheme allocates
more time resources to RIS precoders which provide better
performance to active UEs. Moreover, for both RCP schemes,
the PF scheduler outperforms the RR scheduler by at least
28% in terms of mean SE. Overall, the best UEs scheduler-
RIS configuration scheme combination outperforms the worst
combination by 46%.

Finally, we compare in Fig. 6b) the NLOS UEs’ mean SE
offered by five RIS configuration schemes for different NLOS
UEs’ arrival rates. The first scheme denoted by “Direct Path”
(DP) corresponds to the case where no RIS is deployed in
the system. It is noted that in this case, NLOS UEs suffer
from severe power losses and SE degradation. In comparison
with the four other schemes, the “DP” scheme hence reaches
capacity saturation for lower UEs’ arrival rates. Therefore, the
performance offered by this scheme are only assessed for the
lowest UEs’ arrival rate (i.e. 𝜆NLOS = 0.5 (UE/s)) so as to
precisely evaluate the potential of other schemes. The second
scheme denoted by “Large Beam” (LB) represents a setting
that only utilizes the large RIS beam from C. The two next
schemes correspond to the “RCP A” and “RCP B” schemes.
The last scheme denoted by “Oracle” configures the RIS on
each time slot in order to maximize the power received by the
UE scheduled via the RIS. Specifically, it aligns the phases of
the direct and the cascaded channels, as done, e.g., in (19) of
[12]. It can be seen as the optimal RIS configuration scheme.
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Fig. 6. a) NLOS UEs’ mean spectral efficiency for different RIS configuration schemes and UEs schedulers, (𝜆LOS = 2 UE/s, 𝜆NLOS = 1.5 UE/s) b) NLOS
UEs’ mean spectral efficiency for different RIS configuration schemes and NLOS UEs arrival rates, (𝜆LOS = 2).

However, in comparison to the proposed schemes, it assumes
both the availability of full instantaneous CSI and the ability
to compute and transmit to the RIS controller the optimal RIS
precoder for each UE in each coherence time interval. There-
fore, it provides an upper bound on the system’s performance
which might not be practically achievable. The PF scheduler is
considered for all RIS configuration schemes. Firstly, we infer
that by deploying a RIS, the mean SE is significantly improved
for NLOS UEs. The RIS reflections directly improve their
SINRs and hence their mean SEs. Furthermore, it is noted that
NLOS UEs’ performance improvement permits to optimize
the overall system performance. Secondly, we observe that
the mean SE gain of the “RCP A” and “RCP B” schemes

with respect to the “LB” scheme increases with the traffic
demand. In particular, gains of 28% and 47% are observed
for the highest traffic demand. The very high gain achieved by
the “Oracle” scheme comes at the expense of high complexity
and cost, and neglecting latency of control channels. While
the proposed “RCP B” scheme has lower gain than that of
the “Oracle”, it is still very significant, and benefits from low
complexity and consequently lower cost of implementation.

VIII. CONCLUSION

In this paper, we have presented a new cross-layer low-
complexity scheme for joint BS and RIS configuration and
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fair UEs’ scheduling. The RIS is configured following a
predetermined sequence of precoders drawn from a codebook
which is designed thanks to a new RIS beam synthesis method.
We have proposed a SA algorithm that adapts the precoders
sequence to the UEs’ distribution so as to optimize their
performance. We have especially proven the convergence of
the algorithm iterates to the optimal sequence. The solution
fairness has been achieved by adapting the PF scheduler to the
RIS configuration scheme. The optimized solution achieves a
gain of 47% compared to a baseline solution with Round-
Robin scheduler combined with a non-optimized sequence
of precoders for RIS configuration. The optimized precoders
sequence can be computed within a radio controller such as,
e.g., a mobile edge computing one, and transmitted to the RIS
over a management interface that needs to be standardized.
Further, we consider extending our joint BS and RIS configu-
ration scheme to multi-cell scenarios with multiple RISs. The
deployment of efficient RIS-assisted communication systems
in such scenarios especially requires to solve important RIS
positioning problems.

APPENDIX

A. Proof of Proposition 1

Without loss of generality, only the case where 𝛼 ∈ R+\{1}
is considered in this proof. It is noted that the same method-
ology can be used to address the case where 𝛼 = 1.

We first prove that the sub-utility function 𝑌 𝛼𝑐,𝑠 (𝜃𝜃𝜃𝑠), 𝑐 ∈ C,
is concave in 𝜃𝜃𝜃𝑠 for 𝛼 ∈ R+\{1}. We also prove that 𝑌 𝛼𝑐,𝑠 (𝜃𝜃𝜃𝑠)
is strictly concave in 𝜃𝜃𝜃𝑠 for 𝛼 ∈ R+∗\{1}.

𝑌 𝛼𝑐,𝑠 (𝜃𝜃𝜃𝑠) =
𝛿 |U𝑐 |≠0

1 − 𝛼

(
𝑑 +

∑︁
𝑖∈C

[
exp(𝜃𝜃𝜃𝑠

𝑖
)𝐹̃ + 1
𝐹

]
r𝑐,𝑠
𝑖

)1−𝛼
. (30)

Thanks to the second order conditions [23,§3.6.4], we know
that if 𝑌 𝛼𝑐,𝑠 : (−∞,∞)𝑁C → R is a twice differentiable
multivariate function and that its domain is convex, it is
sufficient to show that its hessian is semi-negative definite
(i.e., ∇2𝑌 𝛼𝑐,𝑠 (𝜃𝜃𝜃𝑠) ⪯ 0) for all 𝜃𝜃𝜃𝑠 and 𝛼 ∈ R+\{1} in order
to prove concavity. Under the same conditions, it is sufficient
to show that the hessian ∇2𝑌 𝛼𝑐,𝑠 (𝜃𝜃𝜃𝑠) is negative definite (i.e.,
∇2𝑌 𝛼𝑐,𝑠 (𝜃𝜃𝜃𝑠) ≺ 0) for all 𝜃𝜃𝜃𝑠 ≠ 0 and 𝛼 ∈ R+∗\{1} in order to
prove strict concavity.

Since ∇2𝑌 𝛼𝑐,𝑠 (𝜃𝜃𝜃𝑠) is a real symmetric matrix, its negative
semi-definiteness (resp. definiteness) can be proven by show-
ing that x𝑇∇2𝑌 𝛼𝑐,𝑠 (𝜃𝜃𝜃𝑠)x ≤ 0,∀x ∈ R𝑁C (resp. x𝑇∇2𝑌 𝛼𝑐,𝑠 (𝜃𝜃𝜃𝑠)x <
0,∀x ∈ R𝑁C

∗ ).
The second order cross partial derivative of 𝑌 𝛼𝑐,𝑠 (𝜃𝜃𝜃𝑠) can be

expressed as follows

𝜕2𝑌 𝛼𝑐,𝑠

𝜕𝜃𝜃𝜃𝑠
𝑖
𝜕𝜃𝜃𝜃𝑠

𝑗

(𝜃𝜃𝜃𝑠) = −𝛼𝛿 |U𝑐 |≠0

(
𝐹̃

𝐹

)2

r𝑐,𝑠
𝑖

r𝑐,𝑠
𝑗

exp(𝜃𝜃𝜃𝑠𝑖 ) exp(𝜃𝜃𝜃𝑠𝑗 )

×
(
𝑑 +

∑︁
𝑖∈C

[
exp(𝜃𝜃𝜃𝑠

𝑖
)𝐹̃ + 1
𝐹

]
r𝑐,𝑠
𝑖

)−𝛼−1

.

(31)

Based on (31), x𝑇∇2𝑌 𝛼𝑐,𝑠 (𝜃𝜃𝜃𝑠)x can be expanded as follows

x𝑇∇2𝑌 𝛼𝑐,𝑠 (𝜃𝜃𝜃𝑠)x = −𝛼𝛿 |U𝑐 |≠0

[
𝐹̃

𝐹

∑︁
𝑖∈C

x𝑖r𝑐,𝑠𝑖 exp(𝜃𝜃𝜃𝑠𝑖 )
]2

×
(
𝑑 +

∑︁
𝑖∈C

[
𝜃𝜃𝜃𝑠
𝑖
𝐹̃ + 1
𝐹

]
r𝑐,𝑠
𝑖

)−𝛼−1

.

(32)

For all 𝜃𝜃𝜃𝑠 and 𝛼 ∈ R+\{1} (resp. 𝛼 ∈ R+∗\{1}), it is
straightforward to show that x𝑇∇2𝑌 𝛼𝑐,𝑠 (𝜃𝜃𝜃𝑠)x ≤ 0,∀x ∈ R𝑁C

(resp. x𝑇∇2𝑌 𝛼𝑐,𝑠 (𝜃𝜃𝜃𝑠)x < 0,∀x ∈ R𝑁C
∗ ). Therefore, 𝑌 𝛼𝑐,𝑠 (𝜃𝜃𝜃𝑠)

is concave (resp. strictly concave) for 𝛼 ∈ R+\{1} (resp.
𝛼 ∈ R+∗\{1}). Finally, since 𝑋𝛼𝑠 (𝜃𝜃𝜃𝑠) =

∑
𝑐∈C 𝑌

𝛼
𝑐,𝑠 (𝜃𝜃𝜃𝑠), the

result follows.

B. Closed-form expression of 𝜃𝜃𝜃∗ for 𝛼 > 0 and 𝑁C = 2
For 𝛼 > 0 and 𝑁C = 2, (21) can be reformulated to (33)

where 𝜃𝜃𝜃𝑠 reduces to a scalar and exp(𝜃𝑠) ∈ [0, 1].

𝑋𝛼𝑠 (𝜃𝑠) =
∑︁
𝑐∈C

𝛿 |U𝑐 |≠0

(1 − 𝛼)

(
𝑑 + exp(𝜃𝑠)𝐹̃ + 1

𝐹
r𝑐,𝑠0

+ (1 − exp(𝜃𝑠))𝐹̃ + 1
𝐹

r𝑐,𝑠1

)1−𝛼 (33)

For this scenario, the optimization problem (OPT) and the
Lagrangian (24) can be be rewritten as in (34a) and (35) where
𝜆 ∈ R+ is a Lagrange multiplier.

min
𝜃𝑠

− 𝑋𝛼𝑠 (𝜃𝑠) (34a)

subject to exp(𝜃𝑠) ≤ 1. (34b)

𝐿 (𝜃𝑠 , 𝜆) = −𝑋𝛼𝑠 (𝜃𝑠) + 𝜆(exp(𝜃𝑠) − 1) (35)

From the Karush-Kuhn-Tucker (KKT) conditions, we know
that if 𝜃∗ and 𝜆∗ minimize 𝐿 (𝜃𝑠 , 𝜆), then the two following
conditions are satisfied.

𝜕𝑋𝛼𝑠

𝜕𝜃𝑠
(𝜃∗) − 𝜆∗ exp(𝜃∗) = 0 (36)

𝜆∗ (exp(𝜃∗) − 1) = 0 (37)

The first condition (36) imposes the gradient of 𝐿 (𝜃𝑠 , 𝜆∗) to
vanish at 𝜃∗ whereas the second condition (37) derives from
complementary-slackness [23]. Solving the problem (34a) is
equivalent to solving 𝜕𝑋𝛼

𝑠

𝜕𝜃𝑠
(𝜃∗) = 0. The optimal amount of

resources to allocate to precoder C.,0, namely 𝑞∗ = exp(𝜃∗)
has the closed form

𝑞∗ =
𝐵𝛼𝑠 + (𝐹̃ + 1)r1,𝑠

1 + r1,𝑠
0 − 𝐴𝛼𝑠

(
r0,𝑠

0 + r0,𝑠
1 (𝐹̃ + 1)

)
𝐹̃

(
𝐴𝛼𝑠 (r0,𝑠

0 − r0,𝑠
1 ) + (r1,𝑠

1 − r1,𝑠
0 )

) (38)

where 𝐴𝛼𝑠 =

(
𝛿|U1 |≠0 (r1,𝑠

1 −r1,𝑠
0 )

𝛿|U0 |≠0 (r0,𝑠
0 −r0,𝑠

1 )

) 1
𝛼

and 𝐵𝛼𝑠 = 𝐹𝑑 (1 − 𝐴𝛼𝑠 ). The

term 𝜌𝜌𝜌𝑠
𝑖
= (r𝑖,𝑠

𝑖
− r𝑖,𝑠

𝑗
), 𝑖 ∈ C, 𝑗 ∈ C\{𝑖}, appearing in (38) is

the gain perceived by UEs from U𝑖 when they are served by
C.𝑖 instead of C., 𝑗 . Indeed, 𝜌𝜌𝜌𝑠

𝑖
is non-negative since UEs from

U𝑖 experience better rates when they are served by C.,𝑖 than
by C., 𝑗 . Since 𝑓 (𝑦) = 𝑦 1

𝛼 is a strictly increasing function for
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𝑦 ∈ R+ and 𝛼 > 0, 𝐴𝛼𝑠 and
𝜌𝜌𝜌𝑠1
𝜌𝜌𝜌𝑠0

have same variations. Finally,

𝑞∗ increases (resp. decreases) if
𝜌𝜌𝜌𝑠1
𝜌𝜌𝜌𝑠0

decreases (resp. increases)
over time, so that the optimal amount of resources to allocate
to C.,0 should be high (resp. low) if C.,0 (resp. C.,1) enhances
by a larger extent UEs’ performance than C.,1 (resp. C.,0).

C. Proof of Theorem 1

Proof: The proof of convergence of the iterates of the
primal-dual algorithm (25a) to the optimal solution of problem
(OPT) is based on the ODE method for SAs. Its application
requires to verify the assumptions of Theorem 2.1 in [21].
These assumptions will be verified for the update rule associ-
ated to primal variable 𝜃𝜃𝜃𝑠 . They can be verified in the same
way for the update rule associated to the dual variable 𝜆, but
will be omitted for sake of space.

We first rewrite the update rule (25a) as 𝜃𝜃𝜃𝑠+1
𝑐 = 𝜃𝜃𝜃𝑠𝑐 +𝜂𝑠 (y𝑠𝑐 +

z𝑠𝑐), where z𝑠 ∈ R𝑁C corresponds to a projection error and the
𝑐-th term of y𝑠 ∈ R𝑁C can be expended as follows

y𝑠𝑐 =
𝜕𝐿

𝜕𝜃𝜃𝜃𝑠𝑐
(𝜃𝜃𝜃𝑠 , 𝜆𝑠) +𝜔𝜔𝜔𝑠𝑐 + 𝛽𝛽𝛽𝑠𝑐 . (39)

In (39), 𝛽𝛽𝛽𝑠 ∈ R𝑁C corresponds to a possibly non zero-mean
noise, i.e., a bias noise, whereas 𝜔𝜔𝜔𝑠 ∈ R𝑁C is a zero-mean
martingale noise. We can express the bias noise as follows

𝛽𝛽𝛽𝑠𝑐 = E𝑠

[
𝜕𝐿̂

𝜕𝜃𝜃𝜃𝑠𝑐
(𝜃𝜃𝜃𝑠 , 𝜆𝑠)

����(𝜃𝜃𝜃0, 𝜆0), 𝜕𝐿̂
𝜕𝜃𝜃𝜃𝑠𝑐

(𝜃𝜃𝜃𝑘 , 𝜆𝑘), 𝑘 < 𝑠
]

− 𝜕𝐿

𝜕𝜃𝜃𝜃𝑠𝑐
(𝜃𝜃𝜃𝑠 , 𝜆𝑠) = 𝑓𝑐 (𝜃𝜃𝜃𝑠 , r̂𝑠) − 𝑓𝑐 (𝜃𝜃𝜃𝑠 , r𝑠).

(40)

Preliminary, we observe that rate r𝑢,𝑠𝑐 , 𝑐 ∈ C experienced
by an UE 𝑢 is upper-bounded by a constant, i.e., the rate
associated to the highest MCS. Since the number of UEs is
finite, this holds also for the estimates r̂𝑠 . The Lagrangian
appearing in 𝛽𝛽𝛽𝑠 is a continuously differentiable function of r̂𝑠 ,
taking values in a compact set and hence uniformly Lipschitz
continuous therein. Therefore there exists a constant 𝐿 > 0 so
that ∀ r̂𝑠 , r𝑠 , | |𝛽𝛽𝛽𝑠 (̂r𝑠) − 𝛽𝛽𝛽𝑠 (r𝑠) | | ≤ 𝐿 | |̂r𝑠 − r𝑠 | | = 𝐿 | |𝜁𝜁𝜁 𝑠 | |.

Next, we verify the assumptions of Theorem 2.1 in [21]
A1) sup𝑠 E[|y𝑠𝑐 |2] < ∞, ∀ 𝑐 ∈ C: this condition is verified
since the instantaneous rates 𝑟𝑏,𝑐 (𝑡 )𝑢,𝑡 are assumed to be finite
with probability 1 (w.p.1).
A2) There is a measurable function 𝑓𝑐 (.) of (𝜃𝜃𝜃𝑠 , r𝑠) and ran-
dom variables 𝛽𝛽𝛽𝑠𝑐 such that E𝑠 [y𝑠𝑐 |𝜃𝜃𝜃0, y𝑘𝑐 , 𝑘 < 𝑠] = 𝑓𝑐 (𝜃𝜃𝜃𝑠 , r𝑠) +
𝛽𝛽𝛽𝑠𝑐. The assumption is automatically verified by construction
for equation (40), where 𝑓𝑐 (𝜃𝜃𝜃𝑠 , r𝑠) = 𝜕𝐿

𝜕𝜃𝜃𝜃𝑠𝑐
(𝜃𝜃𝜃𝑠 , 𝜆𝑠).

A3) The function 𝑓𝑐 (.) is continuous: it holds since the
Lagrangian is continuously differentiable.
A4) From (29): it holds by assumption.
A5) ∀𝑐 ∈ C,∑𝑠 𝜂

𝑠 |𝛽𝛽𝛽𝑠𝑐 | < ∞: we know that |𝛽𝛽𝛽𝑠𝑐 | ≤ 𝐿 | |𝜁𝜁𝜁 𝑠 | |.
Hence, it is sufficient to prove that

∑
𝑠 𝜂

𝑠 | |𝜁𝜁𝜁 𝑠 | | < ∞, which
holds by assumption on the properties of the estimation error.

Once the assumptions of Theorem 2.1 in [21] are verified,
the ODE method can be used to prove that the trajectories of
(25a) are guaranteed to converge w.p.1 to an invariant set of

¤𝜃𝜃𝜃 = −𝜕𝐿
𝜕𝜃𝜃𝜃

(𝜃𝜃𝜃, 𝜆), ¤𝜆 =
∑︁
𝑐∈C

exp(𝜃𝜃𝜃𝑐) − 1. (41)

In particular, in order to grant convergence to the optimal
solution it is sufficient to enlist the following observations.
First, since the ODE (41) is Lipschitz continuous, the solution
is unique. Second, a restpoint of (41) must verify the first-order
KKT conditions of (36) and the complementary slackness
conditions (37). Therefore, a restpoint of (41) must coincide
with the optimal solution of (OPT) so that the invariant set of
the ODE (41) is formed by the optimal primal-dual variables.
Theorem 2.1 in [21] states that the sample paths of the
primal-dual dynamics (25a) converge with some probability
to such restpoint. Third, because of asymptotic stability of
the restpoint with respect to (41), the sample paths of the
primal-dual dynamics converge almost surely to the restpoint
of (41) for any initial condition in the stability set. Finally, the
strict convexity of the Lagrangian [22] ensures the Lyapunov
condition for asymptotic stability of a restpoint is verified
for the primal-dual trajectory in (41), which ensures a.s.
convergence for any initial condition.

D. Proof of Theorem 2

Proof: Without loss of generality, we restrict to the case
where 𝑁C = 1 (single RIS precoder) and 𝑈 = 1 (single
UE). In this case, the bias error 𝜁𝜁𝜁 𝑠 reduces to a scalar
𝜁 𝑠 = 𝑟̂𝑠 − 𝑟𝑠 where 𝑟̂𝑠 = 1

𝑠

∑𝑠
𝑘=1 𝑟

1
1,𝑘 and indeed 𝜎2

𝜁
= 𝜎2

𝑟 /𝑠
where we have omitted the RIS and UE index. It is noted
that the extension to the case where 𝑁C > 1 and 𝑈 > 1
is straightfoward. The statement is proved for 𝛾 = 1; the
extension for 𝛾 ∈ ( 3

4 , 1] follows from simple calculations. We
shall prove that 𝜂𝑠𝜁 𝑠 = 𝑜(1/𝑠1+𝑝), i.e., for a suitable 𝑝 > 0
it holds 𝑠𝑝𝜁 𝑠 → 0 w.p.1. The argument of the proof is based
on the method of subsequences (see [24]) in order to apply
the Borel-Cantelli Lemma to the events E𝑠 = {𝑠𝑝𝜁 𝑠 > 𝜖} and
prove that

∑+∞
𝑠=0 𝑃(E𝑠) < +∞. First, by using the Chebyshev’s

inequality we observe that for the subsequence of events of
index 𝑠 = 𝑛2 we can write

𝑃(𝑛2𝑝𝜁𝑛
2
> 𝜖) ≤ 1

𝑛2−4𝑝
𝜎2
𝑟

𝜖2 (42)

for all 𝜖 > 0. By choosing 0 < 𝑝 < 1/4 it holds 𝑛2𝑝𝜁𝑛
2 → 0

w.p.1. Now, we can consider index set 𝑘 ∈ K𝑛2 = {𝑛2 ≤ 𝑘 ≤
(𝑛 + 1)2} and define

𝐹𝑛2 := max
𝑘∈K

𝑛2
|𝑘 𝑝𝜁 𝑘 − 𝑛2𝑝𝜁𝑛

2 |. (43)

The following facts hold for 𝑘 ∈ K𝑛2 :

|𝑘 𝑝𝜁 𝑘 − 𝑛2𝑝𝜁𝑛
2 | = |𝑘 𝑝𝜁 𝑘 − 𝑘 𝑝𝜁𝑛2 + 𝑘 𝑝𝜁𝑛2 − 𝑛2𝑝𝜁𝑛

2 | (44a)

≤ 𝑘 𝑝 |𝜁 𝑘 − 𝜁𝑛2 | + (𝑘 𝑝 − 𝑛2𝑝) |𝜁𝑛2 | (44b)

so that 𝐹𝑛2 ≤ 𝐹
(𝑎)
𝑛2 + 𝐹 (𝑏)

𝑛2 where 𝐹 (𝑎)
𝑛2 := max

𝑘∈K
𝑛2
𝑘 𝑝 |𝜁 𝑘 − 𝜁𝑛2 |

and 𝐹
(𝑏)
𝑛2 := max

𝑘∈K
𝑛2
(𝑘 𝑝 − 𝑛2𝑝) |𝜁𝑛2 |. We shall prove next that

𝐹
(𝑎)
𝑛2 and 𝐹 (𝑏)

𝑛2 converge to 0 w.p.1. First we can observe that

𝜁 𝑘 − 𝜁𝑛2
=

(𝑛2

𝑘
− 1

)
𝜁𝑛

2 + 1
𝑘

𝑘∑︁
ℎ=𝑛2+1

𝜁ℎ (45)
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where the first and second terms of the sum which appear at
the RHS are independent so that

var
(
𝜁 𝑘 − 𝜁𝑛2

)
=

(𝑛2

𝑘
− 1

)2 1
𝑛2𝜎

2
𝑟 +

(𝑘 − 𝑛2)
𝑘2 𝜎2

𝑟 (46a)

= 𝜎2
𝑟

(
1
𝑛2 − 1

𝑘

)
≤ 𝜎2

𝑟

(
1
𝑛2 − 1

(𝑛 + 1)2

)
. (46b)

Based on (46b) and using the Chebyshev’s inequality it
holds

𝑃(𝑘 𝑝 |𝜁 𝑘 − 𝜁𝑛2 | > 𝜖) ≤ 𝑘2𝑝𝜎2
𝑟

𝜖2

(
1
𝑛2 − 1

(𝑛 + 1)2

)
≤ 𝜎2

𝑟

𝜖2𝑘2−2𝑝

(47)
from which for all 𝑘 ∈ K𝑛2 it holds

∑
𝑛2 𝑃(𝑘 𝑝 |𝜁 𝑘 − 𝜁𝑛2 | >

𝜖) < +∞ so that 𝐹 (𝑎)
𝑛2 converges to 0 w.p.1. Furthermore, we

can observe that 𝑘 𝑝 − 𝑛2𝑝 ≤ (𝑛 + 1) 𝑝 − 𝑛𝑝 so that

𝑃((𝑘 𝑝 − 𝑛2𝑝) |𝜁𝑛2 | > 𝜖) ≤ 𝜎2
𝑟 ((𝑛 + 1) 𝑝 − 𝑛𝑝)2

𝜖2𝑛2 ∼ 𝜎2
𝑟

𝜖2𝑛2−2𝑝
(48)

Noting that the last term is convergent for 0 < 𝑝 < 1/4: by
comparison the series with terms 𝐹 (𝑏)

𝑛2 converges to 0 w.p.1.
It hence holds 𝐹𝑛2 → 0 w.p.1.

Finally we can observe that for any 𝑘 ∈ N

|𝑘 𝑝𝜁 𝑘 | = |𝑘 𝑝𝜁 𝑘 − 𝑛2𝑝𝜁𝑛
2 + 𝑛2𝑝𝜁𝑛

2 | (49a)

≤ |𝑘 𝑝𝜁 𝑘 − 𝑛2𝑝𝜁𝑛
2 | + |𝑛2𝑝𝜁𝑛

2 | (49b)

≤ |𝐹𝑛2 | + |𝑛2𝑝𝜁𝑛
2 |. (49c)

Now by observing that {|𝑘 𝑝𝜁 𝑘 | > 𝜖} ⊆ {|𝐹𝑛2 | + |𝑛2𝑝𝜁𝑛
2 | >

𝜖} the thesis follows since both 𝐹𝑛2 and 𝑛2𝑝𝜁𝑛
2

converge to
0 w.p.1.

E. Rank minimization for RIS beam synthesis

As mentioned previously, the problem (11a) is not convex
because of the rank-one constraint. In this work, we propose
to use a rank minimization method that generalizes the trace
heuristic [23]. This method consists in iteratively solving the
two convex problems (50a) and (51a) until convergence. In
both problems, W is a direction matrix X∗ and W∗ correspond
to the optimal solutions of the first and the second problem.

min
X∈S2𝑁

Tr(W∗X) (50a)

subject to Tr(Q𝑖X) ∈ S𝑖 for 𝑖 ∈ I (50b)
Tr(O𝑛X) = 1 for 𝑛 ∈ N (50c)
X ⪰ 0 (50d)

min
W∈S2𝑁

Tr(WX∗) (51a)

subject to 0 ⪯ W ⪯ I2𝑁 (51b)
Tr(W) = 𝑁 − 1 (51c)

Note that finding a rank-one solution to the problem (50a)
is subject to the existence of such solution in the convex
set (50b), (51c), (50d). Note also that only local optimality
convergence of problems (50a) and (51a) iterates is guaranteed
as proved in [23,§4.4.1]. Therefore, finding a rank-one solution
or even a low-rank solution is not guaranteed. In this case, a

feasible vector 𝜓̃𝜓𝜓 ∈ C𝑁 can be computed from a rank-one
approximation of X∗ as 𝜓̃𝜓𝜓 =

√
𝜎u where 𝜎 and u ∈ C𝑁 are

the largest eigenvalue of X and the associated eigen vector.
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