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On the Potential of Dynamic RF Channel
Configuration for Energy Efficiency Optimization

Antoine Dejonghe⋆†, Safaa Driouech⋆, Zwi Altman⋆, and Francesco de Pellegrini†

Abstract—The deployment of large antenna arrays in Massive
Multiple Input Multiple Output (M-MIMO) systems substan-
tially improves mobile networks’ performance. Nevertheless, the
increase in performance brought by additional antennas is often
counterbalanced by an increase in Power Consumption (PC)
caused by the use of supplemental hardware resources supporting
additional Radio Frequency (RF) channels. In M-MIMO net-
works, switching on/off RF channels and muting the associated
antennas according to load conditions is known to be an efficient
Energy Saving (ES) mechanism. This paper introduces a new RF
channels switch on/off solution to maximize the Energy Efficiency
(EE) under Quality of Service (QoS) constraints. The proposed
solution is based on a MAB algorithm, which appears simpler
than state of the art approaches and can be easily implemented
in real systems. The algorithm leverages the quasiconcave shape
of the EE metric to sequentially select the optimal antenna array
configuration – i.e., the number of RF channels in both azimuth
and elevation – from a predefined set of configurations. Extensive
system-level simulations demonstrate that the proposed algorithm
achieves a significant EE gain over a baseline solution.

Index Terms—Massive MIMO, RF channel configuration, en-
ergy efficiency, energy saving, Multi-Armed Bandit

I. INTRODUCTION

5G and beyond Radio Access Network (RAN) use
M-MIMO technology as a mean to enhance User Equipments
(UEs)’ performance, leveraging on large two dimensional
antenna arrays. M-MIMO systems perform beamforming in
order to focus the overall transmitted power towards UEs
via a suitable weighting of the signal sent by each radiating
antenna [1]. In digital M-MIMO architecture, for example,
beamforming is enabled by feeding each antenna using a
dedicated RF channel, namely an electronic circuit comprising
different components such as digital-to-analog converters and
power amplifiers. Beamforming capabilities and hence UEs’
performance improve with the number of antennas, at the cost
of increased Energy Consumption (EC) due to the additional
RF channels.

The reduction of EC is a key challenge for the sustainability
of future networks [2]. It can be performed by introducing ES
mechanisms, including switching off different components of
the network. The associated time scale for on/off switching can
range from hours and above in case of the entire on/off switch
of a cell, and scale down to the range of tens of microseconds
to tens of milliseconds in the case of Advanced Sleep Modes.
At intermediate time-scales, one can consider on/off switching
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of carriers or RF channels. A detailed overview covering
different aspects of EE in 5G RAN is presented in [3].

In M-MIMO systems, under suitable traffic load conditions,
significant EC savings are obtained by switching on/off certain
RF channels and muting the radiating antennas they feed.
This ES mechanism is addressed in various publications as
an optimization problem: it consists in finding the number of
RF channels that maximizes EE, namely the ratio between
the transmitted data volume and the corresponding EC [4]. It
is noted that in operational systems, one may need to solve
a constrained EE optimization problem taking into account
QoS constraints. Early contributions [5]–[7] address the EE
optimization problem using EE analytic approximations in
conjunction with heuristics. For example, [5] presents an
alternating optimization algorithm enabling to sequentially
optimize the transmit power and the numbers of active RF
channels and scheduled UEs. The authors prove that the
EE analytic approximation is a quasiconcave function of the
optimization parameters. Hence, this guarantees the conver-
gence of the algorithm’s iterations to the optimal solution.
Approaches based on analytic approximations usually assume
a simplified channel model, namely Rayleigh fading, which
neglects certain propagation characteristics such as Angular
Spread (AS), and in turn masks the uneven contribution of RF
channels to UEs’ performance [8].

In order to enhance ESs, recent works propose to use
Machine Learning (ML) for the RF channels switch on/off
problem. The authors of [9] convert the RF channels switching
into the selection of a suitable antenna array configuration
from a predefined set of configurations. The EE is then opti-
mized on a per slot basis by selecting the optimal configuration
thanks to a neural network. Although this approach achieves
significant ESs, it requires the collection of a large amount of
data, specific to a given scenario, i.e., UEs’ average channel
vectors, and a long training period. To circumvent the data
collection requirement, [10] proposes a Multi-Armed-Bandit
(MAB) algorithm which sequentially selects the number of
RF channels that maximizes EE from a set of high cardinality.
The MAB is trained thanks to an intelligent database of geo-
located data called a Radio Environment Map (REM). This
approach assumes the ability to frequently switch on/off RF
channels, namely every 60 ms, which may not be feasible due
to the necessary adaptation of control signals such as, e.g., the
synchronization signal blocks. It further assumes stationary
conditions in the sense that for similar UEs’ locations, a
similar number of active RF channels is expected to maximize
EE. Such assumption may not hold in networks supporting979-8-3503-6224-4/24/$31.00 ©2024 IEEE



Fig. 1: Network layout, S = 7, C = 21.

different types of services.
This paper introduces an efficient low-complexity solution

to perform the on/off switching of RF-channels. This solu-
tion can be easily integrated in a network controller of a
5G-3GPP network. It independently maximizes the EE of
each network cell under QoS constraints. To this end, by
leveraging on a priori knowledge related to the propagation
environment, we first design an antenna array configuration set
with reduced size and order it leading to a quasi-concave EE
utility function over this set. Then, a MAB algorithm adapted
to non-stationary environments is employed to sequentially
select the optimal configuration. It is further shown that the
MAB algorithm can be modified so as to leverage the quasi-
concavity property, and hence significantly limit the selection
of suboptimal configurations and further enhance EE.

The paper is organized as follows. Section II presents the
system model. Section III covers the PC and EE models.
Section IV proposes two MAB-based algorithms to switch
on/off RF channels. Simulation results and conclusions are
presented in sections V and VI.

II. SYSTEM MODEL

Consider a 5G-Downlink (DL)-Orthogonal Frequency Divi-
sion Multiplexing (OFDM)-Time Division Duplexing (TDD)
network, with S tri-sectorial macro-sites (i.e., C = 3×S cells)
in an urban environment. We define the set of cell indexes as
C = {1, ..., C}. Each cell c ∈ C serves a varying number of
single-antenna UEs denoted by U c. We denote by B the total
available bandwidth that can be used by a cell to serve UEs.
This bandwidth is composed of K = B

µ OFDM subcarriers
where µ is the Subcarrier Spacing (SCS).

Massive MIMO Model. Each cell is equipped with a Uni-
form Planar Array (UPA) composed of M = Mh×Mv single-
polarized antennas, where Mh and Mv are the numbers of
columns and rows of antennas, respectively. We consider the
digital M-MIMO architecture, namely each RF channel feeds
one antenna. For cell c, we denote by N c = N c

h ×N c
v ≤ M

the number of active RF channels, where N c
h ≤ Mh and

N c
v ≤ Mv are the numbers of active columns and rows of RF

channels. In order the M-MIMO scheme to operate efficiently,
we consider that N c

h ≥ Nmin
h and N c

v ≥ Nmin
v , where Nmin

h

and Nmin
v are the minimum numbers of active columns and

rows of RF channels. The couple (N c
h, N

c
v) defines the active

antenna array configuration of cell c. A network controller
can periodically adapt such configuration by switching RF
channels on or off. As further explained in the sequel, we
assume here that (N c

h, N
c
v) is selected from a predefined set

of configurations denoted by Nconf .
Channel Model. In M-MIMO networks, channels are char-

acterized among others by the dispersion of the multi-paths’
azimuth and elevation angles (i.e. ASs). Such dispersion
depends on the wireless environment’s characteristics (e.g.
scatterers’ distribution). It is noted that the capability of
M-MIMO to spatially separate UEs increases with the increase
of azimuth and elevation ASs. For example, in a typical Euro-
pean city, the AS is much higher in the azimuthal than in the
elevation direction. As a result, increasing the number of active
antennas in the azimuthal direction permits to enhance UEs’
performance more efficiently. Based on the above discussion,
we write the Signal to Interference plus Noise Ratio (SINR) γc

u

and the rate rcu of UE u ∈ Uc = {1, ..., U c} as functions of
both N c

h and N c
v : rcu(N

c
h, N

c
v) = B log2(1 + γc

u(N
c
h, N

c
v)).

In this work, channels are modelled following the 3GPP
Urban Macro (UMa) scenario [11]. This scenario considers
high azimuth and low elevation ASs. Moreover, channels are
assumed time-varying and frequency-dependent and remain
constant in a coherence block of Tcoh ×Bcoh symbols where
Tcoh and Bcoh respectively denote the coherence time and
bandwidth.

Serving Model. On each time slot, each cell c schedules
U c
sch ≤ Umax

sch UEs based on a standard Proportional Fair
(PF) scheduler [12] adapted to multi-user scheduling. Umax

sch

denotes the maximum number of simultaneously scheduled
UEs. Scheduled UEs are allocated a single data stream and
communicate on all K subcarriers. They are served thanks
to the Zero Forcing (ZF) beamforming technique [1]. In order
the ZF beamformer to operate efficiently, we consider here that
Nmin

h = Nmin
v = Umax

sch . On each time slot, each scheduled
UE is allocated a transmit power of Ptx

Umax
sch

which is equally
distributed among the K subcarriers.

Traffic Model. Consider elastic traffic of an enhanced Mobile
Broadband (eMBB) service. UEs arrive according to a Poisson
process, download a file of size F = 150 MB and leave the
system upon download completion. A minimum Guaranteed
Bit Rate (GBR) of rgbru for each UE u ∈ Uc is assumed. In
this work, the average rate of each UE u ∈ Uc, rcu, is limited
to its GBR via a proper resource allocation. It permits to favor
the achievement by each UE of its GBR even under high load
conditions. It is noted that the system model discussed in the
rest of the paper does not depend on a specific traffic model.

III. POWER CONSUMPTION AND ENERGY EFFICIENCY
MODELS

We first detail a cell PC model adapted to M-MIMO
networks. We then present the construction of the antenna
array configuration set Nconf used for the EE optimization.



A. Power consumption model

Following the approach proposed in [10], we simplify a
model originally developed in [5] by only considering the
components which significantly contribute to the cell PC. The
overall PC of cell c can be expressed as a function of both
N c

h and N c
v as follows

P c
tot(N

c
h, N

c
v) =

P c
tx(N

c
h, N

c
v)

η
+ P c

rf (N
c
h, N

c
v) + Pfix. (1)

In (1), P
c
tx(N

c
h, N

c
v)

η corresponds to the total power fed to the
antennas in order to effectively transmit P c

tx(N
c
h, N

c
v), taking

into account the power amplifiers’ efficiency η. Specifically,
we consider that P c

tx(N
c
h, N

c
v) =

∑Uc

u=1 P
c,u
tx (N c

h, N
c
v) where

P c,u
tx (N c

h, N
c
v) is the transmit power required by the UE u ∈

Uc to achieve its GBR when N c
h columns and N c

v rows of
RF channels are active. The dependency of P c,u

tx (.) on both
N c

h and N c
v is related to the dependency of rcu(.) on these

two parameters. Indeed, rcu(.) impacts the necessary number of
scheduling occasions that permit the UE u to achieve its GBR.
This in turn impacts the power consumed in transmission. In
particular, P c,u

tx (.) and rcu(.) vary inversely. P c
rf (N

c
h, N

c
v) =

N c
h × N c

v × P̂rf + Plo is the power consumed by all active
RF channels where P̂rf and Plo respectively denote the PC
of a single RF channel and of the local oscillator. Finally,
Pfix denotes a constant PC accounting for site cooling and
signaling.

B. Energy efficiency model

It is standard practice to compute the cell EE as the ratio
of the cell average rate and the cell PC:

EEc(N c
h, N

c
v) =

∑Uc

u=1 r
c
u(N

c
h, N

c
v)

P c
tot(N

c
h, N

c
v)

(bit/J). (2)

As mentioned previously, (N c
h, N

c
v) is assumed to take its

value in Nconf . Using the properties of the AS described
in Section II, one can construct a set Nconf with reduced
size. Indeed, Nconf can be restricted to configurations with
higher or equal number of RF channels in the highest AS
direction with respect to the lowest one since they provide
higher EE. Furthermore, the AS properties can also be used
to order the reduced set Nconf so as to render the EE utility
function EEc : Nconf 7→ R quasiconcave. Interestingly, both
the reduced size of Nconf and the quasiconcavity property
will be exploited by the EE optimization algorithm in order to
effectively determine the most energy-efficient configuration
in Nconf . The construction of Nconf can be described as a
three-step procedure:

Step 1. Nconf is initialized with the configuration
(Nmin

h , Nmin
v ).

Step 2. The next configurations are obtained by successively
increasing the number of lines (i.e. rows or columns)
of active RF channels in the highest AS direction in
steps of δN ∈ N until its maximum value is achieved
(while keeping the number of lines of active RF
channels in the lowest AS direction to its minimum).

Step 3. Nconf is completed by successively increasing the
number of lines of RF channels in the lowest AS
direction in steps of δN ∈ N until its maximum value
is achieved (while keeping the number of lines of
active RF channels in the highest AS direction to its
maximum).

The mathematical representation of steps 2 and 3 can be
written as follows. Denote by a ∈ {h, v} and a ∈ {h, v}\{a}
the directions of the highest and lowest ASs, respectively. Step
2 consists in successively increasing N c

a in steps of δN ∈ N
until Ma while considering N c

a = Nmin
a . Analogously, step 3

consists in successively increasing N c
a in steps of δN ∈ N until

Ma while considering N c
a = Ma. Consider a higher AS in the

azimuthal direction (i.e. a = h). The resulting configuration
set can be written as in (3). A numerical example of such a set
is provided in Fig. 2 for Nmin

h = Nmin
v = 4, Mh = Mv = 8

and δN = 2.

Nconf =
{
(Nmin

h , Nmin
v ), (Nmin

h + δN , Nmin
v ), ...,

(Mh, N
min
v ), (Mh, N

min
v + δN ), ..., (Mh,Mv)

}
.

(3)

Fig. 2 shows the typical quasiconcave shape of EEc(.) un-
der realistic propagation conditions (i.e. 3GPP UMa scenario).
We explain here this quasiconcavity property in the context of
Rayleigh fading. The case of realistic propagation conditions
is discussed next.

It is noted that for all configurations in Nconf , the cell
average rate has small oscillations around

∑Uc

u=1 r
gbr
u . There-

fore, it is sufficient to show that P c
tx(.) + P c

rf (.) is a discrete
convex function to explain quasiconcavity. By construction
of Nconf , P c

rf (.) is defined on two joint subsets of Nconf

by linear functions of slopes δNNmin
a P̂rf and δNMaP̂rf ,

respectively. Since we consider Ma ≥ Nmin
a , P c

rf (.) results in
a discrete convex function. When considering Rayleigh fading
and N c ≥ U c

sch+1, the SINR γc
u(.) of each UE u is a strictly

increasing discrete linear function of N c [5]. Hence, the rate
rcu(.) of each UE u is a discrete concave function of N c. As
mentioned in subsection III-A, rcu(.) and P c,u

tx (.) have inverse
variations so that P c,u

tx (.) corresponds to a discrete convex
function. Therefore, P c

tx(.) and hence P c
tx(.) + P c

rf (.) results
in a discrete convex function.

For realistic propagation conditions, we observe from ex-
tensive simulations that rcu(.) and EEc(.) are respectively
discrete concave and discrete quasiconcave. Formally proving
these shapes remains a challenging open problem. However,
in the EE optimization solution, we incorporate an explicit
quasiconcavity test before using this property.

It is noted that the average number of simultaneously sched-
uled UEs varies jointly with the network load and impacts
both the number of scheduling occasions and the transmission
power used for each UE. Therefore, a change in network load
entails a change in the shape of both P c

tx(.) and EEc(.). In
particular, continuous variations of the network load result in
a continuous shift of the EE optimum from a configuration to
an adjacent one in Nconf as shown in Fig. 2. This property
will be exploited by the EE optimization algorithm.
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Fig. 2: Average Energy Efficiency of the configurations in
Nconf for different network load levels, (δN = 2, Nmin

h =
Nmin

v = 4, Nconf = {(4, 4), (6, 4), (8, 4), (8, 6), (8, 8)}).

IV. MULTI-ARMED BANDIT-BASED ENERGY EFFICIENCY
MAXIMIZATION

The proposed ES feature aims at independently maximizing
the EE of each cell c ∈ C by switching RF channels on
or off. As in [9], we convert the RF channels switch on/off
problem into the selection of the configuration from Nconf

that maximizes the cell EE under some QoS constraints (i.e.
the achievement by each UE u ∈ Uc of its GBR). For cell c,
the optimization problem is formulated as follows

max
Nc

h,N
c
v

EEc(N c
h, N

c
v) (4a)

subject to (N c
h, N

c
v) ∈ Nconf (4b)

rcu(N
c
h, N

c
v) ≥ rgbru , u ∈ Uc. (4c)

In the proposed solution, a network controller independently
and periodically chooses for each cell c the configuration from
Nconf to activate during a predefined period Tconf . The EE
optimization is performed using a MAB-based scheme. Specif-
ically, for each cell c and at each time t (i.e. every Tconf ),
the MAB selects a configuration from a set N c,t

conf ⊂ Nconf

which gathers all the configurations from Nconf that up to
now satisfied the constraint (4c). This selection is done based
on the following decision rule

ic(t) = arg max
j=1,...,

∣∣N c,t
conf

∣∣ Icj,t (5)

where Icj,t is a utility related to the average EE achieved by cell
c at time t under the j-th configuration from N c,t

conf . During the
Tconf period following each configuration selection, each cell
c estimates the UEs’ average rates and the cell EE provided
by the active configuration. UEs’ average rates are used to

update N c,t
conf , namely the tested configuration which does

not satisfy the constraint (4c) is removed from N c,t
conf for a

duration Tbared. It is noted that the EE metric under the new
set N c,t

conf is still quasiconcave. The estimated EE is fed to the
MAB as a reward so as to update the utility Icic(t),t.

The MAB is a Reinforcement Learning (RL) framework
which generally benefits from low complexity and fast con-
vergence, at the price of continuous learning and can be
adapted to non-stationary environments. In subsections IV-A
and IV-B, we detail two MAB algorithms. The first one
is the standard Sliding-Window-Upper Confidence Bound 1
(SW-UCB1) algorithm. The second corresponds to a modified
version of SW-UCB1 which leverages the quasiconcave shape
of the EE metric so as to accelerate the learning process.

A. Sliding-Window-Upper Confidence Bound 1

Upper Confidence Bound 1 (UCB1) is a MAB algorithm
based on the “optimism in the face of uncertainty” principle
[13]. Such principle encourages the MAB to assign to each
index Icj,t, j ∈ {1, ...,

∣∣N c,t
conf

∣∣}, c ∈ C the most optimistic
value it could possibly get given the history (i.e. previous EEs
achieved under the corresponding configuration). In compli-
ance with this principle, UCB1 computes each index as follows

Icj,t = µ̂c
j,t +

√
α(b− a)2 log (t)

Qc
j,t

(6)

where µ̂c
j,t is the average of EEs achieved up to time t under

the j-th configuration from N c,t
conf . The second term in the

right hand side of (6) corresponds to an Upper Confidence
Bound (UCB) where α denotes the exploration rate, [a, b] is
the support for EE and Qc

j,t corresponds to the number of
times the j-th configuration was selected up to time t.

It is noted that, under stationary conditions, the UCB
estimate shrinks as Qc

j,t increases. In fact, the uncertainty on
the sampling average EE achieved under the j-th configuration
decreases (i.e. µ̂c

j,t approaches its true value µc
j). As a result,

the index in (6) permits the MAB to test each configuration
the minimum number of times so as to identify the optimal
configuration with a high confidence.

The UCB1 algorithm performs well under the following
assumption: successive selections of the j-th configuration
for cell c yield EEs EEc

j,l, l ∈ N that are independently
and identically distributed according to an unknown law
with unknown expectation µc

j (i.e. stationary distribution). In
comparison, it usually fails to track the optimal configura-
tion when considering non-stationary EEs’ distributions. Such
distributions are often encountered in real networks due to
load variations. To deal with non-stationary distributions, [14]
proposed the SW-UCB1 algorithm. It encourages a periodic
retraining of the MAB by computing the index (6) over a fixed-
size time horizon τ . Specifically, in (6), log (t) is replaced by
log (min(t, τ)), and µ̂c

j,t and Qc
j,t are computed based on the

last τ decisions as follows

µ̂c
j,t =

1

Qc
j,t

t∑
s=t−τ+1

1c
j,sEEc

j,s ;Qc
j,t =

t∑
s=t−τ+1

1c
j,s (7)



where 1c
j,s is an indicator variable such that 1c

j,s = 1 if the
j-th configuration from N c,t

conf is selected at time s and 0
otherwise.

B. Constrained Sliding-Window Upper Confidence Bound 1

To accelerate the MAB convergence, we use a modified
version of SW-UCB1 [15] which leverages the quasiconcave
shape of the EE metric. This version enables to limit the
exploration of suboptimal configurations in order to further
enhance ESs. Specifically, SW-UCB1 is restricted to the con-
figurations in Nconf which are adjacent to the current optimal
configuration. Given the quasiconcave shape of the EE metric,
such restriction prevents selecting the less energy-efficient
configurations. Furthermore, as explained in subsection III-B,
continuous network load variations result in a continuous shift
of the EE optimum from a configuration to an adjacent one
in Nconf . Therefore, this algorithm also permits to efficiently
track the optimal configuration which always remains in the
restricted version of Nconf .

As explained in subsection III-B, proving the quasicon-
cavity property of the EE metric under realistic propagation
conditions remains a challenging open problem. In a real
system, this property can be periodically checked by running
for some period Tcheck the standard SW-UCB1 algorithm. If
this property is validated for a cell, one can switch to the
constrained algorithm.

V. NUMERICAL RESULTS

The following results present the EE optimization achieved
by the two MAB-based RF channels switch on/off solutions
introduced in section IV. Simulations are carried out using a
system simulator with time resolution of a slot (0.5 ms).

A. Simulation scenario

We consider a hexagonal network composed of S = 7 tri-
sectorial macro sites which are deployed with an inter-site
distance of 300 meters (see Fig. 1). Each cell is equipped with
a UPA of M = Mh × Mv antennas where Mh = Mv = 8.
Furthermore, we consider Nmin

h = Nmin
v = 4. In the

proposed scenario, the three cells of site 1 are used for
performance assessment of the studied ES feature, i.e., they are
the cells of interest. They have a controllable number of active
RF channels (i.e. Nmin

h ≤ N c
h ≤ Mh, N

min
v ≤ N c

v ≤ Mv, c ∈
{1, 2, 3}), while the rest of 18 cells have fixed M-MIMO set-
up (i.e. N c

h = Nmin
h , N c

v = Nmin
v ,∀c ∈ C\{1, 2, 3}) and are

used to generate realistic interference.
The central frequency and the bandwidth of the system are

set to fc = 3.5 GHz and B = 100 MHz. As the SCS is
set to µ = 30 kHz, we have K = 3333 subcarriers. The
Base Station (BS) transmit power is equal to Ptx = 100 W.
The maximum number of simultaneously scheduled UEs is set
to Umax

sch = 4. We assume here the same GBR for all UEs,
namely ∀u ∈ Uc, rgbru = 25 Mbps.

The PC of each cell is computed while considering η = 0.5,
P̂rf = 0.4 W, Plo = 0.2 W and Pfix = 10 W. We
consider here δN = 2 so that the set of available antenna
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Fig. 3: Trajectory of the selection ratio produced by the
constrained SW-UCB1 algorithm for each configuration from
Nconf (χc

j,t, j ∈ {1, ..., |Nconf |}), network load: 10% from 0
to 400 seconds and 30% afterwards.

array configurations (see subsection III-B) corresponds to
Nconf = {(4, 4), (6, 4), (8, 4), (8, 6), (8, 8)}. In the proposed
ES feature, the MAB algorithm associated to each cell c peri-
odically selects the configuration from Nconf to apply during
a predefined period Tconf = 1 second. Such period permits to
perform significant ESs based on the computation of a robust
EE metric, while leaving enough time for the adaptation of
control signals. We respectively set the MAB learning rate
and the sliding-window size to α = 0.05 and τ = 175. Such
setting enables to track the optimal configuration, in a time
interval of τ × Tconf = 175 seconds.

B. Optimal configuration tracking

We consider a 800 seconds simulation with the following
traffic profile. An average network load of 10% is observed
during the first 400 seconds and then increases to 30% for
the last 400 seconds. Let χc

j,t =
Qc

j,t

τ denote the selection
ratio of the j-th configuration from N c,t

conf . Fig. 3 shows the
trajectory of the selection ratio produced by the constrained
SW-UCB1 algorithm for each configuration from Nconf

(χc
j,t, j ∈ {1, ..., |Nconf |}). These trajectories are correlated

to the average network load. Indeed, for an average network
load of 10% the algorithm selects more frequently the (4, 4)
configuration which provides the highest average EE (see Fig.
2). Moreover, as the network load increases from 10% to 30%,
the algorithm tends to choose more frequently the (6, 4) and
(8, 4) configurations which offer similar levels of average EE
(see Fig. 2). A delay between the network load increase and
the selection ratios adaptation can be observed. This is due
to the sliding-window size τ and the exploration rate α which
influence the frequency at which all configurations are retested.
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Fig. 4: Average Energy Efficiency of the different RF channels switch on/off schemes as a function of network load conditions.

C. Performance evaluation

In Fig. 4 we assess the average EE offered by one baseline
scheme and two RF channels switch on/off solutions for dif-
ferent average network loads. The baseline scheme is denoted
by (Mh,Mv) and represents a setting in which all RF chan-
nels are active for every transmission. The two RF channels
switch on/off solutions correspond to the SW-UCB1 and the
constrained SW-UCB1 algorithms presented in section IV. We
observe that by adapting the antenna array configuration to the
traffic conditions, the average EE is significantly improved.
Specifically, the EE gains achieved by the two RF channels
switch on/off solutions with respect to the baseline scheme
decrease with network load since the (Mh,Mv) configuration
tends to become more optimal. For a 10% network load,
the average EE is enhanced by respectively 28% and 33%
with the SW-UCB1 and the constrained SW-UCB1 algorithms.
The latter outperforms the former since it is able to limit
the exploration of suboptimal configurations by exploiting
the EE quasiconcave shape (see section IV). Finally, it is
noted that both RF channels switch on/off solutions permit to
significantly reduce network’s PC without incurring any QoS
degradation.

VI. CONCLUSIONS

In this paper, we have presented two efficient RF channels
switch on/off solutions to maximize EE under QoS constraints.
They permit to sequentially select the optimal antenna array
configuration from a predefined set of configurations. To
this end, two MAB algorithms are adapted to non-stationary
environments: SW-UCB1 and its constrained version lever-
aging the quasiconcave shape of the EE metric to limit the
selection of suboptimal configurations. The numerical results
show the capability of the proposed solutions to track the
optimal configuration when considering non-stationary traffic
conditions. The SW-UCB1 algorithm obtains significant EE
gains with respect to a baseline solution at low and medium
loads, while its constrained version further increases the gain
by a few percent.
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