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ABSTRACT
This work explores the potential of synthetic media generated by
the means of Artificial Intelligence (AI), sometimes referred to as
Deepfakes, as a source of cover-objects for steganography. Deep-
fakes offer a vast and diverse pool of media, potentially improving
steganographic security by leveraging cover-source mismatch, a
challenge in steganalysis where training and testing data come
from different sources. The present paper proposes an initial study
on Deepfakes’ effectiveness in the field of steganography. More
precisely, we propose an initial investigation to assess the impact
of Deepfakes on image steganalysis performance in an operational
environment. Using a wide range of image generation models and
state-of-the-art methods in steganography and steganalysis, we
show that Deepfakes can significantly exploit the cover-source
mismatch problem but that mitigation solutions also exist. The
empirical findings can inform future research on steganographic
techniques that exploit cover-source mismatch for enhanced secu-
rity.
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1 INTRODUCTION
This digital era has given birth to modern steganography: that is,
it enabled methods for concealing a message within a seemingly
innocuous digital carrier, the so-called cover. Among all possible
covers, digital media are extremely suitable for covering sensitive
data due to their redundancy and relatively high content complexity,
making it possible to “hide in plain sight”, without raising suspi-
cions. In this field, digital images have long been one of the most
popular mediums. Indeed, digital images are massively shared over
the Internet, the standard JPEG is extremely dominant and, despite
the compression, images are simple enough to be easily manipu-
lated for hiding data. In addition, this type of media offers a rather
large space for payload sizes of practical interest [18]. For all these
reasons, digital images perfectly fit the needs of steganography.
In the landscape of communication secrecy and digital forensics,
steganography, as a method for communicating with secrecy and
imperceptibility, occupies a unique position. While its use can be
backed with legitimate reasons, its abuse by terrorist organizations
and criminal rings makes it a potential serious threat vector as it is
easy to use as leverage to facilitate illicit activities.

The proliferation of steganography software readily available
from the Internet and application repositories1, along with the
increasing use of digital images, underscores the critical need for
steganalysis which is the counterpart of steganography: it aims at
distinguishing genuine digital photography from those containing
an embedded message [5].

Steganography and steganalysis thus constitute a game of cat-
and-mouse in which the steganographers wish to hide sensitive
data into the cover object while the steganalyst aims at detecting
the presence of hidden data. Having opposing objectives, they both
seek to defeat their adversary or, more precisely, make their task
as difficult as possible.

1.1 Advances in Digital Media Steganography
and Steganalysis

On the one hand, steganography has been considerably improved
thanks to the use of linear error-correcting codes from information
theory. First, the use of Huffman codes [41] allowed reducing the
number of changes, for the same payload (usually measure in Bits
Per Pixels or bpp), hence making detection harder. Then the use of
convolutional codes, especially the Syndrome-Trellis Codes [17],
brought a dramatic improvement. Not only does it significantly
improve the coding efficiency, closing up the gap with Shannon’s
theoretical bounds, but it mainly allows assigning a cost associated
1Dozens of software are available “off-the-shelf” on Android Market, Apple Store as
well as various Linux distributions repos simply searching for keyword “steganography”
or “image steganography”.
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with the modification of every element (either pixels or DCT coeffi-
cients from JPEG images). This work opened the doors for adaptive
steganography that, using a so-called cost function, embeds the
sensitive data precisely where detection is expected to be harder.
Almost all recent steganography approaches for digital images are
based on this principle.

On the other hand, recent breakthroughs in the field of artificial
intelligence have developed steganalysis as never before. Steganal-
ysis techniques were initially developed to catch specific traces of
steganography [5], but machine learning quickly helped to design
universal steganalysis methods that are effective against a wide
range of steganographic techniques. Larger and larger handcrafted
features sets [14, 19, 34] associated with dedicated classifiers oper-
ating on very high-dimensional features space [8, 13, 28], have for
instance been very successful during the BOSS challenge and the
and the subsequent years [3]. Recently, the introduction of deep
learning techniques, with their unparalleled capacity to optimize
jointly the feature extraction, pattern recognition and classification
tasks, has further improved steganalysis significantly [7, 42, 43], as
shown within the ALASKA contest for instance [9, 10].
Furthermore, a new dimension in the interplay between steganog-
raphy and steganalysis has been introduced with the advent of
generative adversarial networks (GANs).

Unfortunately, steganalysis detectors suffer greatly from the so-
called Cover-SourceMismatch (CSM) [16, 29, 38]. This phenomenon
occurs potentially for all machine-learning-based detectors as it
originates from the discrepancy between the statistical properties
of images used for training the detector and the images used during
testing. In practice, the impact of the CSM is that the performance of
a detector can be greatly affected when evaluated over images that
are not coming from the same source as the training set. Steganaly-
sis is notably sensitive to the CSM because it seeks to detect a very
weak signal within a complex object whose properties can greatly
change depending on the many factors involved in its acquisition
such as the light source, sensor, ISO sensitivity, in-camera process-
ing, and compression to cite a few. For an in-depth review of both
sources and the impact of the CSM in digital image steganalysis,
the reader is referred to [32].

1.2 Contribution and Organization of the
Present Paper

Since the most reliable method of steganalysis is signature-based,
a large part of the security of steganography relies on “implemen-
tation details”. Among those, one of the golden rules of stegano-
graphic security is to not use a cover that can be available to the
steganalyst. Generally, it is thus recommended to use digital pho-
tography made for the sole purpose of steganography and to delete
the cover after it has been used.

However, even in this setting, within the framework of Cover-
Source mismatch, the steganographer can pick the cover image
among all the sources it has at its disposal. Recently Deepfakes,
which can be roughly defined as hyperrealistic synthetic media
generated by AI methods, have raised widespread attention due
to their immediate availability while they reach unprecedented
content realism.
Within this context, one intriguing development in this domain,

that has never been studied, is the potential utilization of Deepfakes
for steganography. Indeed, Deepfakes can be used as cover images
for steganography, potentially offering a large set of sources to
any steganographer who can thus fully leverage the Cover-Source
mismatch.

Therefore, Deepfakes, with their ability, bring a new twist to
the cat-and-mouse game of steganography and steganalysis. This
paper is the first to study the potential use of Deepfakes in steganog-
raphy and their ability to increase the security of hidden data by
leveraging the Cover-Source mismatch. We present the results of a
rather empirical study in which we compare the performance of
the state-of-the-art steganalysis method over digital photography
and Deepfakes. In particular, we assess the cover-source mismatch
between the various AI methods for generating Deepfakes and with
natural photography. Recently, it has become clear that CSM is in
large part due to the discrepancy of various cover image sources in
terms of noise characteristics; we explore how much the observed
results are aligned with those recent findings.

The present paper is organized as follows:
First, Section 2 provides a brief overview of the CSM, explain-

ing its origins and the existing approaches to assess its practical
impact and mitigate it. Second, Section 3 presents the experimental
methodology proposed to study the impact of Deepfakes in image
steganography. Section 4 presents and discusses the numerical re-
sults. Finally, Section 5 concludes the present paper and sketches
the plan for possible future works.

2 COVER-SOURCE MISMATCH AND ITS
IMPLICATION

In academic studies, steganalysis is very often carried out with
knowledge of the properties of the inspected objects, that is the
“source” from which cover objects are generated. This especially
includes the embedding method, the payload, and access to large
datasets of objects from the very same “source” of covers. How-
ever, in real-world scenarios, the steganographer and steganalyst
have limited access to each other’s information. Under this sce-
nario, it can be argued that academic steganalysis mostly serves
to assess steganography in a “worst-case scenario”, invoking Ker-
choff’s principles. On the opposite, the application of academic
studies in real-life, operational, contexts gives birth to the so-called
cover-source mismatch problem. This problem occurs when the
steganalyst trains a detector on a different cover-source than the
one used by the steganographer. This mismatch can lead to a cata-
strophic deterioration in the performance of steganalysis models. In
the broad field of statistical learning, this phenomenon referred to
as the distribution shift, is a common challenge in machine learning
applications. However, steganography and digital forensics face
unique challenges due to the weak signal of interest and the strong
impact of cover-source mismatch, often resulting in ineffective
steganalysis.

The CSM problem in steganalysis has been identified for almost
20 years, with the understanding that different datasets yield dif-
ferent performance results [25, 27]. The significance of CSM was
recognized during the BOSS contest in 2010, coinciding with the
rise of machine learning in steganalysis. However, the problem was
rarely directly studied until 2018, when its causes were thoroughly
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examined [15, 16]. Even deep learning models were found to be sus-
ceptible to CSM. Several strategies have been suggested to mitigate
its impact on steganalysis. Our previous paper [30] for instance
shows that the software used for data hiding can also give birth to
a tremendous mismatch. Despite its severity, CSM remains largely
unexplored [26] and is only briefly discussed in existing survey
papers. The reader can read [32] for a detailed recent systematic
review on CSM, its causes, and its impact on steganalysis. In this
work, we define a cover-source as all the steps and parameters used
in the generation and processing pipeline, based on the findings
of this paper. The objects from a cover-source thus share common
statistical characteristics.
The ensuing steganalysis problem of cover-source mismatch (CSM
problem) is the degradation of a stego-detection performance when
training and testing sets come from different cover-sources.

2.1 Assessment of the CSM problem
Before explaining how the cover-source mismatch is assessed, let
us formally define the concepts one needs to know, and introduce
the notation used to this end.
We use the statistical hypothesisH0 andH1 to represent images
drawn from cover-objects and from stego-images respectively. The
images are denoted X; they are made of 𝑁 pixels, hence lie in the
space of all possible media X ∈ X ⊂ N𝑁 .
A scoring function 𝜆 is a mapping X → R which assigns to an
input image X a score revealing how much it is supposedly a cover
or a stego-object. The ensuing detector 𝛿 is a mapping 𝛿 : X →
{H0,H1} whose decision function is parametrized by the detection
threshold 𝜏 ∈ R:

𝛿 (X) =
{
H0 𝑖 𝑓 𝜆(X) ≤ 𝜏,

H1 𝑖 𝑓 𝜆(X) > 𝜏
. (1)

The false alarm (or false positive) rate in subsequently defined
as:

P (𝜆(X) > 𝜏 | H0) , (2)
Where P(𝐸) denotes the occurrence probability of event 𝐸.
On the opposite, the missed detection (or false negative) rate is
defined as:

P (𝜆(X) ≤ 𝜏 | H1) . (3)
which is often measured with the “sensitivity” or power of the test:

P (𝜆(X) > 𝜏 | H1) . (4)

Of course, as emphasized in Equations 2–4 both the false-positive
and false-negative rates depend upon the decision threshold 𝜏 . In
steganography, the performance of a steganalysis method is very
often defined by the minimal total probability of error under equal
prior, i.e. assuming covers and steganographic media as equally
likely:

𝑃𝐸 = min
𝜏∈R
P (𝜆(X) > 𝜏 |H0) + P (𝜆(X) ≤ 𝜏 |H1)

2 . (5)

Which is the opposite of the maximal accuracy one can get by
adjusting the threshold.

The ensuing steganalysis problem of cover-source mismatch
(CSM problem) is the degradation of a stego-detection performance
when training and testing sets come from different cover-sources.

Table 1: An illustrative example showing the impact cover-
mismatch problem: The diagonal contains intrinsic difficul-
ties, and off-diagonal values are the inconsistencies ; Figure
from our prior paper [32].
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Tested on
source S𝐴 source S𝐵

Trained on source S𝐴 0.20 0.38
source S𝐵 0.33 0.35

𝑃
(S𝐴 )
𝐸 𝑃

(S𝐴→S𝐵 )
𝐸

𝑃
(S𝐵→S𝐴 )
𝐸 𝑃

(S𝐵 )
𝐸

Intrinsic difficulty Inconsistency

For the sake of exemplification, let us consider two sources of
images, ,S𝐴 andS𝐵 respectively. We will denoteX ∼ S𝐴 (resp.X ∼
S𝐴) when images come from the source S𝐴 (resp. S𝐵 ). Similarly,
we will denote 𝛿 (𝐴) (resp. 𝛿 (𝐵) ) a detector that has been trained for
detecting steganographic media coming from the source S𝐴 (resp.
S𝐵 ).

The intrinsic difficulty, of source S𝐴 , measures how much it is
“difficult” for the steganalyst to carry out the hidden information
detection task on this source even when it is known. To this end,
a usual approach consists in measuring the error rate for a given
detector trained and tested on a source S𝐴 . In the present paper, as
very often in media steganalysis, we use the usual total probability
of error 𝑃𝐸 as defined in (5) and will be denoted:

𝑃
(S𝐴 )
𝐸 =

min
𝜏∈R
P(S𝐴 ) (𝜆(X) > 𝜏 |H0;S𝐴) + P(S𝐴 ) (𝜆(X) ≤ 𝜏 |H1;S𝐴)

2 . (6)

Here the superscripted notation P(S𝐴 ) means “trained over media
from source S𝐴”.
The intrinsic difficulty is important as it serves as a baseline and
represents steganalysis error without any mismatch. Indeed, as
we shall see in the present paper, the intrinsic difficulty can vary
significantly even for similar sources.

However, to characterize the cover-source mismatch one also
needs to measure the detection error rate when facing a mismatch
(i.e. when training and testing sources differ). To this end, let us
define the source inconsistency whichmeasures the error rate of a de-
tector trained on source S𝐴 and tested on source S𝐵 . In the present
paper, we will use a measure based on the usual total probability of
error 𝑃𝐸 :

𝑃
(S𝐴→S𝐵 )
𝐸 =
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𝜏∈R
P(S𝐴 ) (𝜆(X) > 𝜏 |H0;S𝐵) + P(S𝐴 ) (𝜆(X) ≤ 𝜏 |H1;S𝐵)

2 (7)

It will be used in the present paper to assess the degradation of
stego-detection performance in the presence of CSM and hence to
assess CSM problem for AI generated sources, or Deepfakes.

Table 1 provides a toy example, in the very same manner as we
shall present in the rest of this paper, with two sources only: rows
represent the training source while columns represent the source
used for testing. One can note that on the error rates on the diago-
nal represent the intrinsic difficulty. On the opposite, off-diagonal
elements report the error rate in the presence when training over
one source and testing over a different one hence assessing the
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Table 2: Average of error rates (in %) of steganalysis carried
out with EfficientNet-v2S (small size model) for the three
main kinds of sources used in the present paper.

Test
BOSS+BOWS ALASKA2 DeepFakes

Tr
ai
n BOSS+BOWS 13.99 37.49 44.56

ALASKA2 37.90 26.35 35.29
DeepFakes 40.03 35.98 23.27

used for testing. One can note that on the error rates on the diago-
nal represent the intrinsic difficulty. On the opposite, off-diagonal
elements report the error rate in the presence when training over
one source and testing over a different one hence assessing the
source inconsistency. However, reporting the source inconsistency
alone is insufficient; indeed it can only be interpreted by comparing
the corresponding intrinsic difficulty of the testing source, hence
reading the table column-wise. On the opposite, one row represent
the “robustness capacity” of a cover-source.

2.2 Position of the present paper
Table 2 provides a motivating introductory example: (see Section 3.1
for detail about the experimental setup)
As explained, the images from BOSS+BOWS are homogeneous and
contain a rather low noise level because of the harsh final rescaling
to size 512×512. This can explain the much lower intrinsic difficulty
over this dataset. However, we were also expecting a rather uniform
and very limited noise level in deepfake images which would yield
a low intrinsic difficulty. Surprisingly, one can note from Table 2
that this is not the case: indeed, those images seem as relevant for
the steganographer as the ALASKA source which was designed to
have a rather high, yet controlled, diversity for academic purposes.
Similarly, one can note from Table 2 that the source inconsistency is
extremely high in all cases but, as expected, slightly higher from
images coming from deepfake sources.

These first results motivated the study carried out in the present
paper and clearly explain both the position and the relevance of
the present paper.
With the widespread of deepfakes, the ease with which one, without
any knowledge, can use AI generators, and given the very fast
pace at which the quality of such images has increased over the
past few years, it is worth studying its applicability for hidden
information detection. In the specific field of steganalysis, it is
generally acknowledged that CSM constitutes one of the most
fundamental issues for practical applications [26].
The present paper aims at studying the problem of steganalysis in
deepfakes which, to the best of our knowledge, was never addressed.
Our goal is to answer simple questions about the relevance of such
sources of images for steganography, and the importance of CSM
between AI generators.

We also explore possible solutions for the steganalyst. In this
field, two main approaches have been used to expand simple de-
tectors and partially mitigate the problem due to the CSM [32]. On
the one hand, the holistic approach aims to train a single detector
on diverse cover-sources, such that it enhances the generalization

ability of the detector. Recent work such as [1] highlights the chal-
lenge in designing the training set. The atomistic approach, on the
other hand, proposes a two-step detection: first a forensic tool iden-
tifies the cover-source of a given inspected image. Then, using one
steganalysis detector per cover-source, the result of the forensics
analysis is used to pick the most appropriate steganalysis detector.
The main challenge lies in designing the forensic tool [33].
Those two approaches will be used in the present paper to assess
the efficiency of these two usual mitigation strategies when cover-
source are AI image generators.

3 EXPERIMENTAL METHODOLOGY AND
RESULTS

3.1 Common core of all experiments
To assess the potential of deepfake images as covers for steganogra-
phy, we carried out a large set of numerical experiments. For mean-
ingful experimentations, three different spatial embedding algo-
rithms from the state of the art, namely HILL [31], UNIWARD [21],
and MiPOD. As shown in Table 3, we explore a considerable variety
of deepfake generation methods, to encompass comprehensively

Table 3: List of generators used in our experiments. Their
accessibility is given as links in the “Origin” column.

Type Name Origin # of imgs

D
iff
us
io
n
M
od

el
s

DeepFloyd-IF Hugging Face 12,000
Kandinsky v3 Hugging Face 14,000

Pixart-𝛼 Hugging Face 14,000
Playground 2.5 Hugging Face 12,000
Playground 2.0 Hugging Face 12,000

DreamLike-PhotoReal 2.0 Hugging Face 12,000
Stable-Diff 1.5 Hugging Face 12,000
Stable-Diff 2.1 Hugging Face 12,000
Stable-Diff XL Hugging Face 12,000

Animagine XL3.1 Hugging Face 12,000

Total 122,000

GA
N
s

GigaGAN Github 10,000
Glide Github 12,000

Dall•E Mini Github 12,000
StyleGAN 3 Github 18,000

StyleGAN 2 ADA Github 20,000

Total 72,000

Te
st
in
g
se
ts

Dall-E 2 website 1,000
Dall-E 3 website 1,000

Midjourney v5 website 1,000
Adobe Firefly website 1,000
Stable-Diff 1.3 Hugging Face 1,000
Stable-Diff 1.4 Hugging Face 1,000
Stable-Diff 2.0 Hugging Face 1,000
Stable-Diff XL Hugging Face 1,000

Total 8,000

ph
ot
o BOSS [3] + BOWS [4] Link 20,000

ALASKA2 [10] website 80,000

Total 100,000

https://huggingface.co/DeepFloyd
https://huggingface.co/kandinsky-community/kandinsky-3
https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS
https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic
https://huggingface.co/playgroundai/playground-v2-1024px-aesthetic
https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0
https://huggingface.co/runwayml/stable-diffusion-v1-5
https://huggingface.co/stabilityai/stable-diffusion-2-1
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
https://mingukkang.github.io/GigaGAN/
https://github.com/openai/glide-text2im
https://github.com/borisdayma/dalle-mini
https://github.com/NVlabs/StyleGAN 3
https://github.com/NVlabs/StyleGAN 2-ada-pytorch
https://openai.com/dall-e-2
https://openai.com/dall-e-3
https://www.midjourney.com/home
https://firefly.adobe.com/
https://huggingface.co/CompVis/stable-diffusion-v-1-3-original
https://huggingface.co/CompVis/stable-diffusion-v-1-4-original
https://huggingface.co/stabilityai/stable-diffusion-2
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
http://dde.binghamton.edu/download/ImageDB/BOSSbase_1.01.zip
http://alaska.utt.fr/


Are Deepfakes a Game Changer in Digital Images Steganography Leveraging the Cover-Source Mismatch? ARES 2024, July 30-August 2, 2024, Vienna, Austria

Table 4: Total Error rates, 𝑃𝐸 (5) in %, for both detectors under assumption that the cover-source is known.

DF Kand PixArt PG2.5 PG2 DL-PR SD1.5 SD2.1 SD-XL Anim megaDallE Giga Glide SGan2 SGan3
SRMQ1 + LC 16.68 27.40 24.93 16.54 8.07 22.95 26.66 23.37 29.40 0.91 21.42 10.30 4.42 18.42 3.17
EfficientNet-v2 16.86 32.15 26.73 19.06 8.20 29.22 30.30 25.35 41.96 0.62 26.68 8.29 9.82 17.71 3.47

Table 5: Comparison of average change rates, in %, ratio of the
expected number of hidden bits divided by the total number
of pixels, for different cover-source and various embedding
algorithms. For comparison the 𝑃𝐸 are the one from Table 4.

HILL S-UNIW MiPOD 𝑃𝐸
ALASKA 12.48 11.49 12.49 26.35
mix/all 14.79 12.33 15.92 23.27
Kandinsky 15.93 13.13 16.68 27.40
PlayGround 2 15.01 12.30 16.44 8.07
DreamLike-PR 13.39 12.20 14.21 22.95
Stable-Diff 1.5 13.71 12.31 14.04 30.30
Stable-Diff XL 14.27 12.22 14.66 41.96
Animagine 3.1 17.41 12.99 18.31 0.62
GigaGAN 13.99 12.15 15.54 8.29
Glide 16.12 12.20 16.14 9.82
StyleGAN 2 12.95 11.81 13.99 17.71
StyleGAN 3 12.57 11.40 13.34 3.47

the current existing art, from first GAN models, e.g. StyleGAN
2 [23], StyleGAN 3 [24], GigaGAN [22], up to the latest diffusion
models, namely StableDiffusion 2.1, XL [35], Kandinsky [36] and
Pixart-𝛼 [6] to cite a few. For comparison, we also used two refer-
ence datasets of images for digital image steganography. On the one
hand, we have used BOSS [3] and BOWS [4] bases combined, both
made of 10, 000 grayscale images of size 512 × 512. As explained
in [9, 16] this dataset is very specific because all images have been
processed in the same way and especially largely resized. This
dataset is therefore expected to exhibit results consistent with that
uniformity. On the other, to compare the security of embedding in
deepfake images with more realistic photograph datasets, we have
also used the recent ALASKA base [9, 10] which is made of 80, 000
grayscale images of size 512 × 512. Every image from this dataset
has been processed differently using a randomized process.
Note that Deepfake image generators mostly produce color uncom-
pressed images. We convert them into grayscale (retaining only
the luminance channel Y) as steganography has been very seldom
explored in color images (see for instance [11, 12, 20]).
We used the three main state-of-the-art embedding algorithms
for steganography, namely S-UNIWARD [21], HILL [31] and Mi-
POD [37]. However, due to space limitations, we present in this
paper results for the two formers only.

3.2 Experimental method for assessment of
CSM problem with deepfakes

We adopted the empirical assessment approach [16, 33], that is, we
measure the impact of the CSM between deepfake sources, we opt

for the formulas given in Eq. 6 for the intrinsic difficulty and Eq. 7
for the source inconsistency.
To this end, we used twomain steganalysis methods to assess the de-
tectability of steganography over the different sources of images. On
the one hand, we used the most established features-based method,
namely SRMQ1 features set [19] with the fast-linear classifier [13].
On the other, we also included results from steganalysis based on
deep learning because they now constitute the state-of-the-art. We
used the recent and alreadywell-established EfficientNet-v2 [39, 40],
as it has been shown to be extremely efficient for steganalysis during
the ALASKA Steganalysis Challenge [10], see for instance [7, 43].
To train this deep learning-based classifier, we used two simple yet
important tricks to speed up the convergence process. First, it has
been shown during the ALASKA Challenge that, even though the
classification task is very different from steganalysis, using weights
pre-trained from Imagenet dramatically speeds up convergence.
To this end, we used the timm Python package for pytorch, which
offers pre-trained models of a wide range of popular deep-learning
architectures. Second, we also adopted a curriculum learning very
similar to the one proposed in [42], starting with non-adaptive
LSBM steganography, reducing the payload step by step, and then
retraining the model on the different embedding methods starting
again from higher payload. During this curriculum training phase,
we applied the following setting at each step: we used 15 epochs
starting with a Learning Rate of 10−3, reducing this hyperparam-
eter slowly with the “reduced on plateau” strategy. During the
“fine-tuning” stage, we used 25 epochs starting with the maximal
Learning Rate of 10−4 and applied the cosine annealing strategy
with a minimal learning rate of 10−7.

4 RESULTS AND ANALYSIS
4.1 Results on the Relevance of DeepFake

Sources: Intrinsic Difficulty
First, let us contrast the intrinsic difficulty for all the sources of AI
image generation presented in Table 3. For clarity, we recall that
the intrinsic difficulty (6) is measured as the 𝑃𝐸 (5) in the absence
of a mismatch, that is when training and testing the steganalysis
over the same AI generator.
Note we used a very large dataset of over 200, 000 AI generated
images, see the Table 3, and mainly consists of images we generated
ourselves, via the Hugging Face library or Github repositories
with available pre-trained weights. For the proprietary generators,
such as Adobe’s Firefly, samples were gathered previously available
datasets and, due to their much smaller number of images, these
will only be used during the testing phase. Table 42 reports the
𝑃𝐸 (5) obtained with the two aforementioned detectors over the 15

2the following abbreviations are used in column headers : DF: DeepFloyd ; Kand:
Kandinsky v3 ; PixArt: Pixart-𝛼 PG: Playground DL-PR: DreamLike-PhotoReal v2.0 ;
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Table 6: Total Error rates, 𝑃𝐸 (5) in %, of steganalysis using EfficientNet-v2 (small) according to the training and testing datasets.
The diagonal elements show the supposedly minimal error rate (when training and testing sets match) while each column
shows when training with the wrong AI deep fake generator.

testing dataset

tra
in
in
g
da
ta
se
t

DF Kand PixArt PG2.5 PG2 DL-PR SD1.5 SD2.1 SD-XL Anim DallE Giga Glide SGan2 SGan3
Deep Floyd 16.86 47.62 41.57 40.17 27.26 45.92 48.50 36.05 46.91 28.97 45.04 22.12 36.51 32.45 15.65
Kandinsky 37.67 32.15 44.71 44.38 39.96 39.50 41.92 42.83 41.54 18.31 40.09 34.31 25.56 40.98 45.72
PixArt 31.22 45.14 26.73 27.89 11.99 42.42 46.87 34.59 43.00 2.83 38.09 22.12 25.52 31.05 21.48
PlayGround 2.5 34.43 47.65 38.33 19.06 12.19 42.17 47.50 38.88 39.00 2.37 44.87 19.83 38.51 33.33 33.06
PlayGround 2 31.89 48.51 43.82 31.55 8.20 46.66 47.12 40.30 38.88 2.45 46.42 18.98 42.63 35.23 24.65
DreamLike-PR 36.26 43.90 39.79 35.88 27.60 29.22 38.55 41.50 44.21 3.78 41.59 26.62 32.39 36.30 34.12
StableDiff 1.5 37.05 39.52 42.89 38.67 32.01 39.59 30.30 43.83 41.67 4.78 39.63 36.86 26.02 35.63 31.56
StableDiff 2.1 25.06 43.10 37.25 33.13 13.98 43.00 45.62 25.35 39.75 7.32 33.22 34.96 18.81 29.76 24.59
StableDiff XL 40.34 43.24 39.61 36.13 28.01 41.34 43.29 41.04 41.96 12.24 41.84 40.01 33.59 40.73 36.42
Animagine 3.1 32.26 45.38 40.04 32.39 16.98 41.25 41.71 40.17 40.75 0.62 40.92 20.62 41.00 30.78 13.02
megaDallE 30.55 43.38 40.79 37.51 18.19 42.67 44.33 31.76 41.04 18.60 26.68 30.81 15.69 31.48 32.14
GigaGAN 32.76 49.27 40.25 42.29 18.77 47.25 46.54 38.46 48.25 11.61 46.91 8.29 36.71 31.45 9.30
Glide 28.72 45.69 35.54 31.55 16.77 43.75 44.71 32.14 43.79 7.57 31.84 21.62 9.82 30.58 14.43
StyleGAN v2 35.55 46.41 44.43 37.21 31.59 40.67 42.29 44.08 45.33 9.74 41.21 37.31 27.10 17.71 31.84
StyleGAN v3 35.09 49.41 46.21 49.00 37.51 49.79 49.79 45.29 49.33 41.29 49.50 45.70 42.88 40.98 3.47
ALASKA 28.31 47.41 39.36 42.42 21.27 42.38 44.96 38.96 45.92 12.57 46.62 19.68 37.09 33.90 7.96
holistic 20.19 36.35 30.22 23.18 10.28 33.59 34.97 30.01 34.43 0.99 32.01 12.43 12.32 21.01 5.60
atomistic 16.91 32.31 26.74 19.08 8.16 29.08 30.37 25.25 41.54 0.58 26.70 8.78 9.83 17.67 3.44

Table 7: Total Error rates, 𝑃𝐸 (5) in %, of steganalysis using SRMQ1 + Linear Classifier according to the training and testing
datasets. The diagonal elements show the supposedly minimal error rate (when training and testing sets match) while each
column shows when training with the wrong AI deep fake generator.

testing dataset

tra
in
in
g
da
ta
se
t

DF Kand PixArt PG2.5 PG2 DL-PR SD1.5 SD2.1 SD-XL Anim DallE Giga Glide SGan2 SGan3
Deep Floyd 16.68 45.27 44.30 40.82 36.90 48.62 46.75 48.22 48.13 17.91 42.52 46.62 36.34 42.88 26.73
Kandinsky 37.27 27.40 41.78 45.49 31.98 44.07 44.94 43.18 41.57 9.71 40.15 39.27 21.50 44.27 38.70
PixArt 43.45 45.07 24.93 40.06 29.45 48.18 45.95 42.20 47.30 9.25 42.40 36.54 20.47 48.96 39.88
PlayGround 2.5 34.87 45.87 44.31 16.54 17.58 49.16 49.67 47.99 41.52 31.63 44.15 43.30 30.62 47.09 33.36
PlayGround 2 38.25 47.72 48.12 30.88 8.07 49.96 49.93 47.40 44.99 8.80 46.20 46.56 37.07 43.36 26.35
DreamLike-PR 39.08 43.28 43.59 40.83 40.85 22.95 43.83 41.87 47.98 13.90 39.06 35.96 29.93 41.74 39.54
StableDiff 1.5 34.22 41.47 39.57 45.25 32.97 37.77 26.66 42.77 45.15 21.05 37.42 36.14 30.31 38.68 35.00
StableDiff 2.1 39.67 42.03 36.40 42.68 24.00 44.54 45.44 23.37 44.30 18.04 32.37 36.82 20.39 39.58 29.37
StableDiff XL 46.27 45.52 44.80 30.08 21.13 49.22 49.61 46.05 29.40 18.42 40.94 43.24 24.71 43.98 36.94
Animagine 3.1 36.53 41.70 41.95 36.54 33.44 49.04 47.14 48.07 46.54 0.91 39.38 39.40 22.05 43.39 37.36
megaDallE 36.10 40.93 45.11 45.63 36.59 44.64 47.07 39.64 41.50 29.21 21.42 37.90 14.92 44.70 32.36
GigaGAN 42.07 49.31 46.19 45.63 29.83 49.99 49.79 46.57 49.73 33.68 48.94 10.30 37.64 45.42 32.47
Glide 32.11 41.65 36.14 41.26 23.05 47.13 46.41 36.09 41.48 7.49 28.62 37.26 4.42 40.93 30.72
StyleGAN v2 48.40 50.01 47.50 43.89 49.77 49.71 47.65 48.27 49.82 38.46 44.27 34.35 41.77 18.42 40.01
StyleGAN v3 41.55 49.43 48.51 48.31 42.88 49.98 49.74 49.25 49.82 24.52 49.17 48.02 43.31 39.94 3.17
holistic 24.59 37.13 35.14 33.96 18.30 35.74 38.02 33.65 38.53 1.44 30.35 23.28 10.33 25.66 12.54

AI text-to-image generators. To keep things concise, we report the

Anim: Animagine v3.1 ; DallE: mageDallE ; Giga: GigaGAN and SGan2: StyleGan 2
ADA and SGan3: StyleGan 3 see Table 3 for details.

intrinsic difficulties for HILL embedding with the SRMQ1 feature-
based detector (first row) and MiPOD embedding scheme with
the EfficientNet-v2 steganalyzer (second row). Several interesting
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Table 8: Analysis of robustness with respect to changes in the
deepfakes generation process via the total Error rates, 𝑃𝐸 (5)
in %, of steganalyzers using EfficientNet-v2 (small) trained
on our own dataset and test on other datasets

testing dataset

tra
in
in
g
da
ta
se
t

D·2 D·3 FF MJ-5 SD1.3 SD1.4 SD2 SD-XL
Deep Floyd 49.7 46.9 29.2 45.7 49.0 49.3 48.7 47.8
Kandinsky 49.6 47.1 46.8 45.6 48.1 48.1 46.5 44.4
PixArt 49.4 46.1 36.8 43.1 49.1 49.1 47.2 39.1
PlayGround 2.5 47.9 47.1 32.8 46.4 49.0 49.0 47.9 35.5
PlayGround 2 49.4 48.0 34.3 46.6 49.2 49.5 47.8 39.6
DreamLike-PR 49.7 46.0 40.8 46.0 47.1 47.6 46.5 39.2
StableDiff 1.5 49.1 46.9 41.5 45.5 46.7 46.1 46.1 43.2
StableDiff 2.1 49.5 47.2 39.8 39.6 48.6 48.7 41.3 37.8
StableDiff XL 49.3 46.6 43.7 45.3 48.2 47.6 46.9 41.3
Animagine 3.1 48.6 46.7 32.7 45.0 48.4 48.1 47.5 41.9
megaDallE 49.7 46.5 44.9 38.6 48.6 48.7 43.3 38.6
GigaGAN 49.5 46.4 40.4 46.8 48.8 49.0 48.2 48.5
Glide 49.5 46.2 34.2 40.5 49.0 49.1 44.6 41.8
StyleGAN v2 46.8 45.4 44.0 45.3 47.3 47.6 46.6 41.7
StyleGAN v3 49.8 49.0 28.5 48.1 49.6 49.7 49.5 49.8
mix/all 49.7 45.2 33.5 38.9 46.6 47.1 44.7 36.2
ALASKA 46.5 42.3 24.9 46.1 48.3 48.4 48.0 42.5

conclusions can be made from these results.
First of all, the intrinsic difficulty varies dramatically between the
different generators, ranging from less than 1% fromAnimagine-XL-
3.1 to almost 30% for StableDiffusion-XL and Kandinsky, in the case
of steganalysis with SRMQ1 and LCLC, and even more than 40%
with EfficientNet-v2. Similarly, it can be noted that some generators
whose architectures are very close present very different intrinsic
difficulties. See for instance the couple’s Animagine-XL-3.1 which is
a fine-tuning of StableDiffusion-XL, PlayGround-v2.5 which derives
from PlayGround-v2 and StyleGAN-v2 which derives StyleGan-v3.
Second, the use of SRMQ1 features with the low-complexity linear
classifier (LCLC) is surprisingly efficient, even slightly better then
EfficientNet. This can be explained in part by the fact that the
number of images for each AI text-to-image generator is rather
limited to train a rather complex deep learning detector such as
EfficientNet-v2.

Table 9: Overall comparison of the robustness of detectors
trained over the two main kinds of deepfakes generators:
GANs and Diffusion models. Average 𝑃𝐸 (5), in %, over all
other generators (excluding the only matching case).

Tested on
GANs Diffusion models

Trained on GANs 40.0 45.4
Diffusion models 39.2 38.2

Eventually, we explored the average changing rate, that is the
number of actual pixels modified (in our case to allow the embed-
ding of 0.4 bpp) over these different cover-sources. Indeed, this
information is important as it tells meaningful information about
the “distribution of content complexity” and its relevance with re-
spect to a steganographic scheme. For instance, an overly adapted
steganographic algorithm will tend to concentrate the payload in
textured areas, reducing the embedding efficiency and hence the
higher changing rate. On the opposite, smoothed image content
and uniform noise yield similar costs over all pixels, increasing the
embedding efficiency and hence the lower changing rate.
These results are reported in Table 5 which, for the sake of com-
prehensiveness also reports the average over the ALASKA dataset
along with the intrinsic difficulty. One can observe that the em-
bedding efficiency is almost always lower for AI-generated images
than for ALASKA images. An exception is S-UNIWARD with Style
Gan 3, which provides a ratio of 11.40%, slightly better than that of
ALASKA (11.49%). This can be explained by the fact that the stegano-
graphic methods are designed for natural photography. However,
this also points out the fact that image steganography is more “adap-
tive” over deepfake images. The second interesting result is that
it does not seem that adaptivity to image source content plays a
significant role. However, the sources with the lowest difficulty are
those for which the change rate is the highest, hence the embed-
ding into more restrictive areas, see for instance the comparison
between StyleGan-v2 and StyleGan-v3.

4.2 Results on the Robustness of steganalysis:
Inconsistency Between Sources

Let us now move on to the study of the cover-source mismatch
between AI text-to-image generators. To this end, we have adopted
an experimental method that consists of testing all classifiers, hence
trained for a specific cover-source, over each and every dataset of
images from a different source. As explained in Section 2.1, this
provides us with the inconsistency and should be compared with
the intrinsic difficulty of the testing dataset in order to assess the
“robustness” of steganalyzers with respect to the cover-source hence
the importance of the CSM problem.

Table 7 and 6. provide error rates of steganalysis using the
SRMQ1 feature-based classifier and EfficentNet, respectively. Sev-
eral interesting conclusions can be drawn from these tables. First
and foremost, one can note that deepfake sources exhibit high in-
consistency between them: the average intrinsic difficulty, given
in Table 4 is about 19.5% (resp. 17%) for SRMQ1 (resp. Efficient-
Net), the average inconsistency increases to 38% (resp. 35%). More
surprisingly, cover-sources supposedly close to each other do not
necessarily yield lower inconsistencies: for example, Animagine
XL has an intrinsic difficulty lower than 1% whereas the inconsis-
tency when training over StableDiffusion-XL goes up to 15% while
the former is a fine-tuned version of the latter. Similar observa-
tions can be made for DreamLike-PhotoReal and StableDiffusion-
v1.5, StableDiffusion-XL and Playground-2.0, or Stylegan-v2 and
Stylegan-v3.
Note that these important inconsistencies do not stem from differ-
ent prompts; indeed, we used the same prompts for every generator;
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therefore, high inconsistencies can only be explained by the deep-
fake cover-sources.
We further confirmed these observations using an additional dataset
from [2]. Table 83. shows a selective subset of inconsistencies ob-
tained when training on the same 15 generators as in Table 7 and 6,
but testing on these additional images, as for Table 6. Steganalysis
is performed with EfficientNet-v2 against the MiPOD embedding
algorithm with payload 0.4 bpp (Bits Per Pixels).
Similar conclusions can be drawn from [2]: the inconsistency be-
tween deepfake cover-sources is very important even for models
supposedly close to each other (see the family of StableDiffusion
for instance). However, one can observe that the only common
cover-source, namely StableDiffusion-XL, exhibits similar results
as the one reported in Table 6. This seems to point out that the
specific hyperparameter and overall settings of the AI image gener-
ator (prompt, diffusion steps, etc.) may have a limited impact on
cover-source mismatch.

Interestingly, it appears that none of the cover-source allows
mitigation of the cover-source mismatch problem. However one
can note that, generally speaking, diffusion models tend to offer a
slightly higher robustness, hence the slightly lower inconsistency.
To better highlight this phenomenon, Table 9 presents the average
inconsistency over all GAN image generators (megaDallE, Giga-
GAN, Glide, StyleGAN v2 and v3) and Diffusion models. Even when
testing on deepfakes generated from GAN-based image generators,
the average inconsistency is lower when training on diffusion mod-
els.

Last but not least, we have tried implementing two usual strate-
gies for mitigating the cover-source mismatch: namely the holistic
and the atomistic approaches.
The holistic approach, which consists of training a steganalysis
classifier over a dataset made from all the sources merged together,
provides overall quite satisfactory results with an average error
rate 𝑃𝐸 of 22.5% and 26.5% for EfficientNet and SRMQ1 respectively.
While this result is a significant improvement to the very high
inconsistencies presented in Table 6 and 7 averaging to 35% and
38%.
However, this must be tempered by comparing it with the intrinsic
difficulties from Table 4 of about 17% and 19.5% respectively.

On the opposite the atomistic approach consists in a two-step
steganalysis process: first a multiclass classifier method is trained
to identify which AI generator a given deepfake image has been
produced with. Then, the second step is made of as many binary
steganalysis classifier as there are different deepfake generators.
Therefore, when an atomistic detector is given an image to in-
spect it tries to identify, first, the possible AI generator and then it
applies the steganalysis detector trained specifically for the most
likely cover-source. This approach seems extremely accurate for
EfficientNet, see the Table 6, but this results must be confirmed by
replications in larger-scale and diverse experiments.

3the following abbreviations are used in column headers : D·2: Dalle·2 ; D·3: Dalle·3
; FF: Adobe FireFly ; MJ-5: MidJourney v5 and SD: StableDiffusion ; see Table 3 for
details.

5 CONCLUSIONS
The use of AI-generated images, so-called deepfakes, has been sky-
rocketing and such technology has become widely accessible off-
the-shelf over the past few years . The potential misuse of such
technology, such as spreading misinformation, impersonating indi-
viduals, or even forging evidence, has been broadly studied.

On the opposite, the present paper anticipates the case when
such images will often be exchanged and study their applicability
to steganography. To the best of our knowledge, such an evaluation
has never been proposed. Using an empirical method and state-
of-the-art tools, we have assessed how relevant such a source of
images can be used to hide sensitive data. We have also studied
how much one could leverage the Cover-Source Mismatch problem
in steganalysis, which is widely acknowledged as a fundamental
barrier for steganalysis in an operational context, using the vari-
ability of existing AI text-to-image generators.
Surprisingly, the experimental results presented in this paper show
that deepfakes can provide a source of images that is rather difficult
to inspect for steganalysis. However, steganographers should use
it with caution as this highly depends on the AI image generator
model.
In addition, our results show that it is very difficult for the stegana-
lyst to inspect deepfakes images regardless of the models used as a
generator. Eventually, while the steganalyst does have some meth-
ods to mitigate the cover-source mismatch problem, our results
seem to indicate that both holistic and atomistic approaches have
some limitations and yield substantial loss of steganalysis detection
accuracy.

The present paper unveils a particularly interesting blind spot of
AI image generation. However, we shall also emphasize that some
future works are required to confirm and generalize these results,
and to explain them in greater detail. We especially have in mind
studies to explain which characteristics of deepfake images can
explain such a difference in terms of steganalysis intrinsic difficulty.
Similarly, the sensitivity of steganalysis with respect to AI image
generator parameters, their content, their variability, their noise
level, etc. is a crucial factor that shall be investigated to understand
and explain better the reasons behind the tremendous cover-source
mismatch effect we report.
Last, but not least, experiments with JPEG steganography in order
to study on the effect of JPEG compression on the very high CSM
over AI generated images is an interesting future work.
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