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Abstract 

Since the dawn of anticancer immunotherapy, the clinical use of immune checkpoint 

inhibitors (ICI) has increased exponentially. Monoclonal antibodies targeting CTLA-4 and 

the PD-1/PD-L1 interaction were first introduced for the treatment of patients with 

unresectable melanoma. In melanoma, ICI lead to durable regression in a significant 

number of patients and have thus been clinically approved as a first-line treatment of 

advanced disease. Over the past years an increasing number of regulatory approvals have 

been granted for the use of ICI in patients affected by a large range of distinct carcinomas. 

In retrospect surprisingly, it has been discovered that particularly successful 

chemotherapeutic treatments are able to trigger anticancer immune responses because they 

induce immunogenic cell death (ICD), hence killing cancer cells in a way that they elicit 

an immune response against tumor-associated antigens. Logically, preclinical studies as 

well as clinical trials are currently exploring the possibility to combine ICD inducers with 

ICI to obtain optimal therapeutic effects. Here, we provide a broad overview of current 

strategies for the implementation of combinatorial approaches involving ICD induction 

followed by ICI in anticancer therapy. 



Immunotherapy 

Numerous strategies for the therapeutic (re)establishment of cancer immunosurveillance 

have been explored in the past, and an ever-increasing number of immunotherapies against 

cancer are being introduced into clinical routine at this time. Early immunotherapeutic 

treatments such as the non-specific immune stimulation by bacterial cell infiltrates 

employed by Coley in the late 19th century preceded the advent of chemo- and radiotherapy 

in the 20th century. Only in the past few decades immunotherapeutic approaches have been 

further explored and clinically employed, starting with the use of high-dose interferons or 

IL2 in patients with metastatic melanoma or renal cancer as well as the intravesical 

instillation of bacillus Calmette–Guérin in patients with superficial bladder cancer (1-3). 

Moreover, some conventional anticancer chemotherapeutics have been shown to induce 

immunogenic cell stress and death (ICD), thus stimulating adaptive immune responses 

against residual malignant cells (4). 



Immune checkpoint inhibitors 

The identification of immune checkpoints in the T cell compartment and the development 

of specific immune-checkpoint inhibitors (ICI) constituted a pivotal breakthrough for the 

immuno-oncology field, leading to their FDA approval for use in patients with metastatic 

melanoma. The first ICI to be FDA approved was ipilimumab, a human monoclonal 

antibody that inhibits the binding of cytotoxic T lymphocyte associated protein 4 (CTLA-

4; CD152) to CD80 and CD86, followed by the later approval of the anti-programmed cell 

death protein 1 (PD-1; CD279) antibodies nivolumab and pembrolizumab (5, 6). Immune 

checkpoints enable the dynamic control of immune homeostasis and are particularly 

important for regulating T cell functionality. Thus, PD-1 and CTLA-4 are expressed on T 

cells, regulating T cell exhaustion and limiting the extent of T cell activation at the priming 

stage, respectively (7-10). The interaction of PD-1 with its ligand programmed death-

ligand 1 (PD-L1; CD274), which is expressed on tumor and regulatory myeloid cells, 

induces a close-to-permanent dysfunctional state of T cell exhaustion characterized by 

limited cytotoxic effector function and a lack of response to stimuli, altogether maintaining 

immune tolerance (11). (Fig. 1) CTLA-4 mediates immunosuppression by interaction with 

the B7 proteins (CD80 and CD86) on the surface of antigen presenting cells, hence acting 

as a high affinity competitor of the costimulatory receptor CD28, thus restricting T cell 

activation at the priming stage (5, 10). These discoveries and their translational importance 

led to the award of the Nobel Prize in Physiology or Medicine in 2018 to James P. Allison 

and Tasuku Honjo for their pioneering research on CTLA-4 and PD-1, respectively (12). 

Meanwhile monoclonal antibodies targeting CTLA-4 and the PD-1/ PD-L1 axis have 

emerged as a core pillar of cancer therapy, which are approved for the treatment of a wide 



range of cancers and have moved to frontline treatment in many advanced diseases such as 

melanoma, lung, kidney, liver, head and neck and triple-negative breast cancer (TNBC) 

(13). Currently there are eight FDA-approved ICI agents available for the treatment of 17 

different malignancies, including the monoclonal antibodies pembrolizumab, nivolumab, 

cemiplimab and dostarlimab that target PD-1; atezolizumab, durvalumab and avelumab 

that target PD-L1; and ipilimumab which targets CTLA-4 (14, 15). Moreover, countless 

clinical trials are being managed or planned to expand the use of CTLA-4 and even more 

of PD-1/PD-L1 targeting antibodies for additional oncological indications. 

 

Of note, acute clinical toxicities of common terminology criteria for adverse events grade 

≥ 3, as well as chronic effects that arise from long term exposure to ICI has limited their 

use in a large number of patients. In preclinical settings, the genetic ablation of CTLA-4 in 

mice induced more severe consequences early life, such as arthritis or cardiomyopathy, 

than the deletion of PD-1 or PD-L1, that caused less severe consequences at a much later 

stage (14, 16). Consistently, clinical experience shows an elevated incidence rate of high-

grade toxicities in 38.6% - 57.9% of patients with advanced melanoma receiving anti-

CTLA-4 and 10–15 % of patients treated with antibodies targeting PD-1 or PD-L1. 

Concurrent inhibition of CTLA-4 and PD-1/PD-L1 augments the risk of autoimmune 

toxicities, further increasing the percentage of high-grade immune-related adverse events 

(17). 

 

Despite the successful implementation of ICI into clinical routine, with an estimated 

proportion of cancer patients eligible for ICI treatment of 36.1% in 2019, the response rate 



estimated from a cross-sectional study of US patients is still limited to 12.5%. This is 

reflected by the highly variable magnitude of benefit for cancer patients with an odds ratio 

compared to conventional therapy ranging from 4.26 in metastatic melanoma down to 1 in 

colorectal cancer. This large degree of variation might be in part explained by differences 

in tumor mutational burden, mismatch repair deficiency, as well as by the immunological 

characteristics of the tumor microenvironment (TME), in particular the presence of tumor-

infiltrating lymphocytes (TILs) before the initiation of the treatment (18).  

 

Nonetheless, ICI targeting CTLA-4 and the PD-1/PD-L1 axis in cancer shows 

unprecedented efficacy in advanced-stage disease and has become a mainstay of modern 

medical oncology. Expanding immunotherapeutic approaches beyond ICI monotherapy is 

therefore a clear unmet clinical need. Here, we discuss strategies for the sequential 

combination of TME preconditioning plus ICI immunotherapy that may allow to limit the 

exposure to ICI while harnessing the synergistic therapeutic potential of such combination 

treatments. 



Immunogenic cell death 

A large number of oncological interventions have the ability to induce immunogenic cell 

death (ICD) of cancer cells, thus preconditioning the TME to subsequent 

immunotherapeutic treatments. Clinically actionable ICD inducers identified thus far 

comprise certain conventional chemotherapeutic agents including cyclophosphamide, 

anthracyclines, and platinum derivatives such as oxaliplatin and PT-112 (19-22). 

Moreover, other therapeutic approaches such as radiotherapy with ionizing irradiation, 

targeted anticancer agents, including bortezomib, crizotinib and ceritinib, as well as some 

variants of photodynamic therapy (PDT) and oncolytic virotherapy have been shown to 

induce ICD (23-26). In the course of ICD, malignant cells pass through a sequence of 

(terminal) cellular stress events, altogether increasing the antigenicity and adjuvanticity of 

the neoplastic lesion, eventually (re)instating cancer immunosurveillance (27-29). The 

onset of adaptive anticancer immunity is often associated with durable therapeutic success 

beyond treatment discontinuation.  

Tumor antigens can be recognized by the host immune system and are continuously 

exploited by immunosurveillance mechanisms protecting the host from arising neoplasm. 

Thus, only failure of immunosurveillance leads to the establishment and later clinical 

manifestation of nascent tumors. In the course of ICD, malignant lesions re-establish 

antigenicity by stress-associated posttranslational changes in the immunopeptidome and 

the presentation of tumor associated antigens (TAA) as well as tumor neoantigens, 

oncofetal antigens or autoimmunity-prone lineage-specific antigens in autologous MHC 

class I complexes that can be recognized by the conventional αβ T cell repertoire (30, 31). 

Moreover, ICD can concur with the expression of MHC molecules on tumor cells, thus 



further enhancing their antigenic potential (32). Nevertheless, antigenicity itself is not 

sufficient to elicit adaptive immunity. In the absence of adjuvant and co-stimulatory 

signals, the presence of (auto)antigens usually results in T cell anergy and peripheral 

tolerance. 

Cellular stress and death in the course of ICD trigger a series of endogenous adjuvant 

signals, cumulatively referred to as danger associated molecular patterns (DAMPs), 

expediting the attraction/activation and maturation of antigen presenting cells (APCs) 

(majorly dendritic cells, DCs), which facilitate tumor antigen presentation while delivering 

co-stimulatory signals both necessary for efficient T cell priming (33-38). In response to 

ICD induction, a set of spatiotemporally regulated DAMPs emitted by tumor cells are 

sensed by an evolutionarily conserved array of pattern recognition receptors (PRRs) 

expressed by myeloid cells (39).  

The list of ICD-associated DAMPs includes ATP, which is secreted in a pannexin 1 

(PANX1)- and lysosome-dependent way during the onset of autophagic stress or can be 

passively released when plasma membrane integrity is corrupted. Elevated levels of 

extracellular ATP bind to purinergic receptors such as P2YR2 expressed on immature 

APCs, resulting in their chemoattraction into the tumor bed (40). Final homing of APCs, 

in particular DCs, is guided by the liberation of the cytosolic protein annexin A1 (ANXA1) 

into the close vicinity of dying cancer cells. ANXA1 acts on formyl peptide receptor 1 

(FPR1), which is expressed by myeloid cells including DCs (41). The relocation of 

endoplasmic reticulum (ER)-resident calreticulin (CALR) together with protein disulfide 

isomerase family A member 3 (PDIA3) to the surface plasma membrane of stressed and 

dying cancer cells occurs upon the onset of the unfolded protein response. CALR exposure 



serves as an uptake signal that stimulates the phagocytosis of cancer cells by DCs, 

presumably through an interaction of CALR with LDL receptor-related protein 1 (LRP1) 

also known as apolipoprotein E receptor (APOER) or cluster of differentiation 91 (CD91) 

(42, 43). Moreover, type I interferon (IFN) responses (44) and the release of cancer cell-

derived nucleic acids (45) triggered during ICD sustain adjuvant signaling and provide 

further APC stimuli. Altogether, ICD results in the onset of adaptive immune responses 

directing cytotoxic T lymphocytes against malignant cells in primary and metastatic 

lesions, accompanied by the education of memory T cells and the durable re-establishment 

of cancer immunosurveillance.  

In sum, both adjuvanticity and antigenicity are indispensable features of ICD that together 

facilitate the onset of adaptive immunity and promote antitumor responses (33). Moreover, 

ICD causes the infiltration of tumors by immune cells including DCs and T lymphocytes 

and thus preconditions the TME for subsequent responses to ICI (Fig. 2). 



Combinatorial approaches 

In most patients, chemotherapy as well as ICI monotherapy fail to induce significant 

clinical responses. Primary resistance to ICI correlates with the absence of tumor-

infiltrating lymphocytes (TILs) and is related to a general lack of pre-existing immune 

priming in the TME (46, 47). Consistently, scoring the density, type and localization of 

infiltrating immune cells, as well as measurements of the activation and exhaustion state 

of local T lymphocytes, are predictive of the response to ICIs (48, 49). Recently 

considerable efforts have been focused on approaches that turn “cold” tumors, which are 

scarcely infiltrated by leukocytes, into “hot” tumors, characterized by the local presence of 

immune effectors. This has been attempted by in situ vaccination with oncolytic viruses or 

physical treatments, such as fractionated radiotherapy, cryotherapy and targeted 

photodynamic therapy (50). Moreover, preclinical drug design now aims at targeting co-

inhibitory receptors including lymphocyte activation gene 3 (LAG3), T cell 

immunoglobulin and mucin-domain containing 3 (TIM3), T cell immunoglobulin and 

immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), V-domain 

immunoglobulin suppressor of T cell activation (VISTA), and B and T cell lymphocyte 

attenuator (BTLA), as well as modulating co-stimulatory signaling such as glucocorticoid-

induced TNFR-related protein (GITR), tumor necrosis factor receptor superfamily, 

member 4 (TNFRSF4, better known as OX40 receptor), TNF receptor superfamily member 

9 (4-1BB) and inducible T cell costimulator (ICOS) to reinvigorate T cell responses and 

further promote anticancer immunity. 

Despite comparable clinical outcomes across many chemotherapy formulations the 

preconditioning of tumors via the stimulation of adaptive anticancer immunity through the 



use of ICD-inducing regimens appears especially promising for the generation of 

synergistic therapeutic outcomes. Thus, combining ICD induction with additional 

immunotherapeutic interventions such as ICI targeting the PD-1/PD-L1 axis has already 

proven promising responses in preclinical models, as well as in clinical trials (51-54).  

Preclinical ICD induction is generally performed several days prior to the administration 

of ICI in order to reshape the tumor microenvironment and to prime adaptive anticancer 

immunity. Thus, sequential combination of the ICD inducer oxaliplatin with PD-1/PD-L1 

targeting ICI has shown synergistic interactions in several models of cancer (55-65). 

Genetic induction of Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation and 

tumor suppressor p53 deletion (KP) drives a model of non-small cell lung cancer (NSCLC) 

that exhibits a poor infiltration by CD3+ T cells at baseline and are notoriously resistant to 

treatment. However, KP NSCLC responded to a sequential combination of the ICD 

inducers oxaliplatin plus cyclophosphamide, followed by ICI targeting CTLA-4 and PD-1 

(57). Consistently, the induction of ICD with targeted agents such as the tyrosine kinase 

inhibitor crizotinib can sensitize orthoptic models of NSCLC to subsequent 

immunotherapy with ICI in mice. Sequential combination of the ICD inducer crizotinib 

together with cisplatin, followed by PD-1 blockade cured 90% of the mice from established 

NSCLC (66, 67). In both studies, ICD induction yielded a significant infiltration of tumor 

nodules by CD3+ T cells as well as a rise in the ratio of tumor-infiltrating cytotoxic T 

lymphocytes (CTL) over immunosuppressive regulatory T cells (Tregs), indicative for the 

conversion of a ‘cold’ into a ‘hot’ TME susceptible to subsequent ICI. Synergistic effects 

of oxaliplatin-induced ICD exhibiting an increase in tumor infiltrating T cells prior to ICI-

based immunotherapy have been confirmed in additional orthotopic models including 



fibrosarcoma, colon, gastric and liver cancer (55-65). Oxaliplatin not only orchestrates the 

recruitment of CTLs to the site of the tumor but also leads to an enrichment of the TME 

with additional immune effectors and antigen presenting cells (APCs) such as natural killer 

(NK) cells and DC, respectively (56, 61, 68). Moreover, oxaliplatin triggers the depletion 

of immunosuppressive tumor-associated macrophages (TAM) and myeloid- derived 

suppressive cells (MDSC), thus provoking broad immunostimulatory effects while 

beneficially remodeling the TME (54, 61, 68). Other instances of ICD inducing regimens 

such as local oncolysis employing LTX- 401 or HER2-targeted antibody drug conjugates 

(ADC) with the anthracycline derivate T-PNU as payload showed synergistic effects with 

sequentially applied ICI and elicited long-lasting immune protection in murine models of 

orthotopic fibrosarcoma and breast cancer, respectively (69, 70). Altogether this indicates 

that preclinically ICD induction can be successfully employed for sensitizing tumors to 

subsequent ICI immunotherapy (Fig. 3). 

 

Results from clinical studies investigating the sequential combination of ICD inducing 

regimens with subsequent ICI-based immunotherapy corroborate the hypothesis of 

beneficial ICD-mediated tumor preconditioning (52, 71, 72). Thus, ICD-inducing 

radiotherapy plus standard of care chemotherapy sensitized NSCLC patients to subsequent 

PD-L1 blockade, hence enhancing durable progression free survival (PFS) and overall 

survival (OS) compared to the placebo group that received chemoradiotherapy alone (73, 

74). Similarly, immunogenic doxorubicin-based induction therapy in metastatic triple-

negative breast cancer patients, followed by PD-1 blockade, increased the objective 

response rate from 20% (without induction therapy) to 35% (75). Moreover, the 



anthracycline amrubicin was shown to sensitize small cell lung cancer (SCLC) to PD-1 

targeting ICI, leading to an overall response rate (ORR) of 52% and a PFS at 1 year of 

14.4% in patients with relapsed small cell lung cancer (SCLC) (76). In accord with 

preclinical data, the combination of oxaliplatin (which is an efficient ICD inducer) with 

ICI showed superior therapeutic outcomes as compared to cisplatin (which is a non-ICD-

inducing platinum agent) plus ICI (clinical trials CheckMate 649 vs Keynote 062). Thus, 

in patients with advanced unresectable gastric cancer or gastro-esophageal junction (GEJ) 

carcinomas, oxaliplatin but not cisplatin induced synergistic effects with PD-1 ICI leading 

to improved PFS and OS as compared to chemotherapy alone (52). Similarly, patients with 

HER-2+ GEJ carcinomas that received oxaliplatin-based chemotherapy plus HER2 

blocking monoclonal antibody in combination with PD-1 ICI exhibited an improved ORR 

of 24.3% as compared to 11.8% in patients receiving cisplatin instead of oxaliplatin (77).  

In sum, it has become clear that ICD-mediated preconditioning sets the stage for efficient 

PD-1/PD-L1 ICI in a variety of solid tumors. For this reason, current ICI treatment 

regimens in clinical routine should be optimized by preconditioning of the tumor immune 

microenvironment with immunogenic chemotherapy. Nevertheless, despite overwhelming 

evidence for the superior efficacy of ICD-inducing oxaliplatin-based combination therapies 

with ICI in lung and gastric cancer, the distinct immunogenic properties of platinum-based 

agents are still not fully appreciated by regulatory instances. Oncological guidelines need 

to be updated with recommendations to prioritize the use of immunogenic platinum 

compounds for subsequent curative ICI.   



Data availability statement: All data sources are cited in this manuscript. 
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Figure Legends 

Figure 1. ICI targeting the PD-1/PD-L1 axis. T cell receptor (TCR) expressed on T 

lymphocytes can engage with tumor antigen presented by malignant cells via 

histocompatibility complex II (MHC II) leading to the formation of an immunological 

synapse and the activation of effector cells. Parallel expression of PD-L1 on cancer cells 

and binding to PD-1 receptors on T cells can lead to premature exhaustion thus negatively 

regulating T cell functions. Monoclonal antibodies designed to target PD-1 or PD-L1 can 

sterically inhibit their interaction thus operating as immune checkpoint inhibitors. 

 

Figure 2. Immunogenic cell death-mediated TME preconditioning. Induction of 

immunogenic cell stress and death (ICD) can trigger the emission of danger associated 

molecular patterns (DAMP) by malignant cells in turn leading to the attraction and 

activation of antigen presenting cells. Tumor antigen presentation to T cells and the 

resulting priming of cytotoxic T lymphocytes (CTL) further stimulates the infiltration of 

the tumor microenvironment (TME) by immune cells. Altogether ICD induction facilitates 

immune infiltration thus converting an immune scarce (cold) into an immune rich (hot) 

TME. 

 

Figure 3. Sequential ICD+ICI combination therapy. Multiple lines of evidence support 

the idea that the sequential combination of of immunogenic cell death (ICD) induction, 

which triggers the infiltration of the tumor microenvironment by adaptive immune effector 

cells, with subsequent immune checkpoint blockade, which inhibits premature T cell 

exhaustion, triggers therapeutically important synergistic effects. 
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