
HAL Id: hal-04601379
https://hal.science/hal-04601379

Submitted on 4 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

PowerAPI: A Python framework for building
software-defined power meters

Guillaume Fieni, Daniel Romero Acero, Pierre Rust, Romain Rouvoy

To cite this version:
Guillaume Fieni, Daniel Romero Acero, Pierre Rust, Romain Rouvoy. PowerAPI: A Python framework
for building software-defined power meters. Journal of Open Source Software, 2024, 9 (98), pp.6670.
�10.21105/joss.06670�. �hal-04601379�

https://hal.science/hal-04601379
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


PowerAPI: A Python framework for building
software-defined power meters
Guillaume Fieni 1, Daniel Romero Acero 1, Pierre Rust 3, and Romain
Rouvoy 1,2

1 Inria, France 2 University of Lille, France 3 Orange Labs, France
DOI: 10.21105/joss.06670

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @varshaprasad96
• @EpicStep

Submitted: 16 April 2024
Published: 04 June 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Software that we use daily for accessing digital services from connected devices has a negative
impact on the environment as it consumes energy. These digital services, hosted by physical
machines around the world, also contribute to planetary pollution. Unfortunately, providers of
these online services mostly focus on hardware efficiency to reduce the environmental impact
without considering the software they host. For this reason, we propose PowerAPI (G. Fieni,
Romero, et al., 2024), a software-defined solution that delivers real-time estimations of software
power consumption to spot opportunities to reduce it and therefore to limit their impact on
the planet beyond hardware improvements.

Statement of need
State-of-the-art power meters only measure the global consumption of power of the machines
hosting the software. To deal with this limitation, several software-defined power meters have
been proposed. However, they are statically designed and coupled to a specific processor family
or they are mainly based on power models that need a lot of data and time to be trained to
predict power consumption accurately (Colmant et al., 2018; LeBeane et al., 2015). Power
models designed in this way are only suitable for environmental conditions (i.e., memory usage,
CPU usage, kinds of running applications) similar to those when the data for the training was
collected. If these conditions change, power models become deprecated and have to be trained
again, which make them unsuitable for production environments of Cloud providers.

To deal with this constraint, we developed PowerAPI (G. Fieni, Romero, et al., 2024), a software
toolkit for assembling software power meters, enabling developers/IT administrators to monitor
power consumption of software that they write/deploy. Software-defined power meters created
with PowerAPI enable power consumption estimations at different granularity levels: process,
thread, container, virtual machine, etc. Furthermore, power models used by PowerAPI are
continuously self-calibrated to consider current execution conditions of the machine hosting
the software.

Figure 1 present the general idea behind a Software Power Meter in PowerAPI:

1. A Sensor collects raw metrics related to a machine hosting applications/software to be
monitored in terms of energy consumption.

2. These metrics are stored in a database to be consumed by a software power model.
3. This power model uses machine learning techniques to estimate energy consumption of

applications/software with the raw metrics and it calibrates itself when required.
4. Estimations produced by the power model are stored in another database.
5. The stored estimations are used to optimize concerned applications/software.

Fieni et al. (2024). PowerAPI: A Python framework for building software-defined power meters. Journal of Open Source Software, 9(98), 6670.
https://doi.org/10.21105/joss.06670.

1

https://orcid.org/0000-0002-0165-6824
https://orcid.org/0000-0002-5317-2610
https://orcid.org/0000-0002-2761-4702
https://orcid.org/0000-0003-1771-8791
https://doi.org/10.21105/joss.06670
https://github.com/openjournals/joss-reviews/issues/6670
https://github.com/powerapi-ng/powerapi
https://doi.org/10.5281/zenodo.11453194
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/varshaprasad96
https://github.com/EpicStep
https://creativecommons.org/licenses/by/4.0/
https://powerapi.org/
https://powerapi.org/
https://doi.org/10.21105/joss.06670


Figure 1: Power consumption estimation in PowerAPI.

Currently, PowerAPI offers a software-defined power meter composed by Hardware Performance

Counter (HwPC) Sensor (G. Fieni & Rouvoy, 2024) and SmartWatts Formula (Guillaume Fieni
et al., 2020; G. Fieni, D.Romero, et al., 2024). HwPC Sensor is written in C and is based on the
Running Average Power Limit (RAPL) interface (Corporation, 2023), available on Intel and
AMD processors, and the perf tool and cgroup from the Linux kernel. SmartWatts Formula,
developed in Python, defines a power model based on a linear regression from the sckit-learn
library (Pedregosa et al., 2011), which is self-calibrated by using suitable performance counters
and an error threshold provided by the Power Meter user. It is possible to use a CSV files,
MongoDB, or a HTTP Socket to store metrics from Sensors. For storing estimations, PowerAPI
offers CSV files, MongoDB, InfluxDB, and Prometheus.

PowerAPI is based on the actor model (Agha, 1986; Hewitt et al., 1973), which means that there
is a low coupling between different architectural elements in a software-defined power meter.
This fosters the creation of new Formulas and/or Sensors actors to tune software-defined
power meters according to requirements.

Tool Demonstration
A demonstrator of PowerAPI is made available to illustrate the deployment of a software-defined
power meter on a Xeon CPU E5-2407 Intel processor (Sandy Bridge Family) running Debian
11. The selected configuration includes MongoDB for storing metrics and InfluxDB for the
estimations. In this demonstration, we monitor, in real-time, the power consumption of two
web applications based on a microservice architecture and hosted by a bare-metal server: a
social network from DeathStarBench and tea store online developed by the Descartes Research
group. Figure 2 and Figure 3 depicts the grafana dashboard for these web applications.

Fieni et al. (2024). PowerAPI: A Python framework for building software-defined power meters. Journal of Open Source Software, 9(98), 6670.
https://doi.org/10.21105/joss.06670.

2

https://scikit-learn.org/stable/
https://github.com/delimitrou/DeathStarBench
https://github.com/DescartesResearch/TeaStore
https://se.informatik.uni-wuerzburg.de/
https://se.informatik.uni-wuerzburg.de/
https://grafana.com/
https://doi.org/10.21105/joss.06670


Figure 2: Social Network Power consumption, server side.

Figure 3: Tea Store Power consumption, server side.

In the tool demonstration, we also monitor, in real-time, a client laptop accessing the above-
mentioned web applications from Firefox and Chromium. The laptop uses an Intel i5-6300U
(Skylake Family) processor and runs Ubuntu 20.04.5 LTS. Figure 4 and Figure 5 show the
grafana dashboard for the client running 2 instances of each browser.

Figure 4: Social Network Power consumption, client side.

Fieni et al. (2024). PowerAPI: A Python framework for building software-defined power meters. Journal of Open Source Software, 9(98), 6670.
https://doi.org/10.21105/joss.06670.

3

https://doi.org/10.21105/joss.06670


Figure 5: Tea Store Power consumption, client side.

Publications and Projects
The software toolkit has results from contributions described in several publications (Colmant
et al., 2017, 2018; Guillaume Fieni et al., 2020, 2021) and is already exploited in several
research projects:

• Distiller ANR project searches how to reduce energy consumption of Cloud applications.
• Défi FrugalCloud includes the optimization of the energy footprint of cloud infrastructures

operated by OVHcloud.
• Défi Pulse studies how to valorize emissions from High Performance Computing (HPC)

using as use case Qarnot Computing’s offers.

Acknowledgements
Currently, the maintenance of the toolkit is funded by Inria, Orange Labs, OVH Cloud, Davidson
Consulting and La Poste Groupe.

This work received support from the French government through the Agence Nationale de
la Recherche (ANR) under the France 2030 program, including partial funding from the
CARECloud (ANR-23-PECL-0003), DISTILLER (ANR-21-CE25-0022), and GreenAct (ANR-21-
HDF1-0006) projects.

References
Agha, G. (1986). Actors: A model of concurrent computation in distributed systems. MIT

Press. ISBN: 0262010925

Colmant, M., Felber, P., Rouvoy, R., & Seinturier, L. (2017). WattsKit: Software-defined
power monitoring of distributed systems. In F. Capello, G. Fox, & J. Garcia-Blas (Eds.),
17th IEEE/ACM international symposium on cluster, cloud and grid computing (CCGrid)
(p. 10). IEEE. https://doi.org/10.1109/ccgrid.2017.27

Colmant, M., Rouvoy, R., Kurpicz, M., Sobe, A., Felber, P., & Seinturier, L. (2018). The
next 700 CPU power models. Journal of Systems and Software, 144, 382–396. https:
//doi.org/10.1016/j.jss.2018.07.001

Corporation, I. (2023). Intel 64 and IA-32 architectures software developer’s manual - combined
volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4. Intel Corporation.

Fieni et al. (2024). PowerAPI: A Python framework for building software-defined power meters. Journal of Open Source Software, 9(98), 6670.
https://doi.org/10.21105/joss.06670.

4

https://distiller.cloud
https://www.inria.fr/fr/inria-ovhcloud
https://www.ovhcloud.com/
https://www.inria.fr/fr/pulse-defi-qarnot-computing-ademe-calcul-intensif-hpc-environnement
https://qarnot.com/
https://www.inria.fr/en
https://lelab.orange.fr/
https://www.ovhcloud.com/en/
https://www.davidson.fr/
https://www.davidson.fr/
https://www.lapostegroupe.com/en
https://carecloud.irisa.fr
https://anr.fr/Projet-ANR-21-CE25-0022
https://anr.fr/Projet-ANR-21-HDF1-0006
https://doi.org/10.1109/ccgrid.2017.27
https://doi.org/10.1016/j.jss.2018.07.001
https://doi.org/10.1016/j.jss.2018.07.001
https://doi.org/10.21105/joss.06670


Fieni, G., D.Romero, & Rouvoy, R. (2024). SmartWatts formula. In GitHub repository. GitHub.
https://github.com/powerapi-ng/smartwatts-formula

Fieni, G., Romero, D., & Rouvoy, R. (2024). PowerAPI core. In GitHub repository. GitHub.
https://github.com/powerapi-ng/powerapi

Fieni, G., & Rouvoy, R. (2024). Hardware performance counters (HwPC) sensor. In GitHub
repository. GitHub. https://github.com/powerapi-ng/hwpc-sensor

Fieni, Guillaume, Rouvoy, R., & Seinturier, L. (2020, May). SmartWatts: Self-calibrating
software-defined power meter for containers. CCGRID 2020 - 20th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Internet Computing. https://doi.org/10.1109/
CCGrid49817.2020.00-45

Fieni, Guillaume, Rouvoy, R., & Seinturier, L. (2021, May). SELFWATTS: On-the-fly selection
of performance events to optimize software-defined power meters. CCGRID 2021 - 21th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing. https:
//doi.org/10.1109/ccgrid51090.2021.00042

Hewitt, C., Bishop, P., & Steiger, R. (1973). A universal modular ACTOR formalism for
artificial intelligence. Proceedings of the 3rd International Joint Conference on Artificial
Intelligence, 235–245.

LeBeane, M., Ryoo, J. H., Panda, R., & John, L. K. (2015). Watt watcher: Fine-grained power
estimation for emerging workloads. 2015 27th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), 106–113. https://doi.org/
10.1109/SBAC-PAD.2015.26

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., & others. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12(Oct), 2825–2830.

Fieni et al. (2024). PowerAPI: A Python framework for building software-defined power meters. Journal of Open Source Software, 9(98), 6670.
https://doi.org/10.21105/joss.06670.

5

https://github.com/powerapi-ng/smartwatts-formula
https://github.com/powerapi-ng/powerapi
https://github.com/powerapi-ng/hwpc-sensor
https://doi.org/10.1109/CCGrid49817.2020.00-45
https://doi.org/10.1109/CCGrid49817.2020.00-45
https://doi.org/10.1109/ccgrid51090.2021.00042
https://doi.org/10.1109/ccgrid51090.2021.00042
https://doi.org/10.1109/SBAC-PAD.2015.26
https://doi.org/10.1109/SBAC-PAD.2015.26
https://doi.org/10.21105/joss.06670

	Summary
	Statement of need
	Tool Demonstration
	Publications and Projects
	Acknowledgements
	References

