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46 Summary

47 Plant hydraulics is crucial for assessing the plants’ capacity to extract and transport water 

48 from the soil up to their aerial organs. Along with their capacity to exchange water between plant 

49 compartments and regulate evaporation, hydraulic properties determine plant water relations, 

50 water status, and susceptibility to pathogen attacks. Consequently, any variation in the hydraulic 

51 characteristics of plants is likely to significantly impact various mechanisms and processes related 

52 to plant growth, survival, and production, as well as the risk of biotic attacks and forest fire 

53 behaviour. However, the integration of hydraulic traits into disciplines like plant pathology, 

54 entomology, fire ecology, or agriculture is scarce. This review examines how plant hydraulics can 

55 provide new insights into our understanding of these processes, including modelling processes of 

56 vegetation dynamics, and could open numerous perspectives for the assessment of the 

57 consequences of climate change on forest and agronomic systems, addressing unanswered 

58 questions across multiple areas of knowledge. 

59

60 Keywords: Plant hydraulics; Drought; Wildfire; Pathogens; Crop productivity; Tree growth; 
61 Mortality; Climate Change.
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75 i) Introduction

76 As for most living organisms, water plays a key role in the functioning of plants. Therefore, 

77 understanding the processes involved in plant water uptake, transport and utilization is 

78 fundamental for comprehending the main ecological processes and plant-related risks. The field 

79 of plant hydraulics examines the capacity of plants to extract water from the soil and transport it 

80 up to the aerial organs through the transpiration stream. Moreover, it also considers water exchange 

81 between the plant apoplastic and symplastic compartments, determining plant water relations and 

82 water status. Variations in plant hydraulic properties, water relations and status (e.g. induced by 

83 changes in meteorological conditions or soil water availability) can directly affect key plant 

84 functions such as stomatal behaviour, photosynthetic capacity, biomass production, and growth. 

85 Furthermore, these variations can influence other processes such as the development of plant 

86 diseases caused by pathogens, the sensitivity of forests to wildfires, or the risk of drought-induced 

87 mortality (Fig. 1). Consequently, there has been a growing interest in plant hydraulics across 

88 various scientific disciplines that have found the knowledge in this field to be crucial for addressing 

89 significant questions, particularly regarding ecosystem functioning in the face of global changes. 

90 The increase in the frequency and severity of drought events are causing irreversible damages to 

91 plant productivity and survival, which are further exacerbated by the impacts of pathogens or 

92 wildfires (Littell et al., 2016; McDowell et al., 2018, 2022). Thus, many of the tree mortality events 

93 reported worldwide have been related to low water availability and increased atmospheric 

94 temperatures (Peng et al., 2011; Klein et al., 2022; Hammond et al., 2022). Such conditions can 

95 therefore compromise the crucial contributions of ecosystem services to humankind. Similarly, the 

96 intensifying drought conditions are already causing substantial declines in crop yield in most 

97 agricultural regions worldwide (Lesk et al., 2016), with important implications for livelihood and 

98 food security. It is therefore crucial to identify the key physiological traits that explain such 

99 variation in plant survival and yield for the maintenance and conservation of our forests and 

100 improving crop management.

101 During the last decades, plant hydraulics has contributed key knowledge and tools for 

102 understanding biological and ecological processes, such as the susceptibility of forests to fire 

103 (Ruffault et al., 2022), plant interactions with pathogens and herbivorous insects (Bortolami et al., 

104 2019), and the processes controlling crops and forest productivity and resilience (Flexas et al., 

105 2018; Klein et al., 2022; Morcillo et al., 2022) (Fig. 1). Despite these pioneering attempts, the 
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106 connection between plant hydraulics and other disciplines remains limited, preventing relevant 

107 physiological and ecological questions to be addressed at large scales (e.g. better prediction of 

108 mortality, fire risk, ecosystem functioning or crop production). Significant advances, however, 

109 have been made in understanding processes and mechanisms associated with water transport, 

110 including cavitation formation and spreading (Tyree & Sperry, 1989; Torres-Ruiz et al., 2016a); 

111 hydraulic efficiency and safety within and across species (Choat et al., 2012; Lobo et al., 2018); 

112 the role of hydraulic dysfunction in drought-induced mortality (Adams et al., 2017; Mantova et 

113 al., 2021, 2022; McDowell et al., 2022); water inflows and outflows to the fruits (Morandi et al., 

114 2007; Torres-Ruiz et al., 2016b) and the development of mechanistic models for predicting the 

115 consequences of drought-induced hydraulic failure on plant performance (Sperry & Love, 2015; 

116 Cochard et al., 2021; Ruffault et al., 2022) and the risk of wildfires (Ruffault et al., 2023). As a 

117 result, plant hydraulics provide, at present, a comprehensive framework that represents various 

118 aspects of terrestrial plant and ecosystem functioning, including (i) carbon sequestration and 

119 productivity of crops and forest ecosystems, as photosynthesis is tightly coordinated with hydraulic 

120 functions, (ii) the predictions of plant water status encompassing all components of drought stress 

121 using well-established biophysical equations based on simple diffusion laws; and (iii) the 

122 predictions of plant mortality, demography and the susceptibility to disturbance regimes such as 

123 wildfire or pathogen attacks linked to drought. 

124 Without claiming to be exhaustive, this review intends to bring out how plant hydraulics 

125 can provide relevant insights to other disciplines such as tree physiology, crop sciences, fire 

126 ecology, plant pathology and ecology, providing a broad framework highlighting how it can 

127 advance key questions and draw future research directions of these fields.

128 ii) Plant Hydraulics: A Framework for Measuring Drought Impacts

129 Plant responses to drought are characterized by a sequence of water stress limits for various 

130 plant physiological functions, which are linked to key hydraulic traits (Bartlett et al., 2016; 

131 Blackman et al., 2023). These hydraulic traits play a vital role in shaping critical aspects of plant 

132 performance, including growth, photosynthesis, turgor maintenance, and overall resilience in the 

133 face of drought-induced conditions (Fig. 2). Thus, as soil water availability decreases or 

134 atmospheric vapor pressure deficit (VPD) increases, plants commonly reduce stomatal opening to 

135 mitigate water stress and hydraulic impairment. However, this adaptive response comes at the cost 
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136 of limiting photosynthesis and transpiration (Flexas & Medrano, 2002; Martin-StPaul et al., 2017). 

137 Drought leads to a decrease in cell turgor pressure due to declining plant water potential, causing 

138 plant growth to halt when it reaches values below the minimum pressure required for cell 

139 enlargement (Lockhart, 1965). Despite this, only few studies to date have attempted to determine 

140 or model the water potential threshold for plant growth (reviewed in Cabon et al., 2020). As for 

141 growth, hydraulic limits can be defined for plant gas-exchange. In this respect, the turgor loss point 

142 (Ψtlp) appears as a sound water potential limit for characterising stomatal closure, considering that 

143 stomata are completely closed when leaf turgor is equal to zero (Brodribb et al., 2003). However, 

144 it should be noted that stomatal closure alone may not be sufficient for assessing the water stress 

145 impact on carbon assimilation and economy because photosynthesis is significantly constrained 

146 before complete stomatal closure (Fig. 2). The water potential at zero carbon assimilation (ΨAn=0) 

147 is therefore crucial for evaluating the effect of drought on plant growth, productivity or carbon 

148 sequestration, requiring to consider the roles of the mesophyll conductance to CO2, the Rubisco 

149 carboxylation rate and the chlorophyll electron transport rate on the photosynthetic capacity in 

150 addition to the hydraulic traits (e.g. Sperry et al., 2017).

151 The closure of stomata delays the decline of water potential, preventing it from reaching 

152 levels below the critical threshold at which cavitation occurs and maximising the time in which 

153 the plant shows a positive safety margin (ie. the difference between the actual water potential and 

154 water potential at which cavitation starts). Despite this, plants continue to dehydrate progressively 

155 under limited soil water extraction (soil drought) or higher atmospheric evaporative demand 

156 (atmospheric drought) due to the water leaks from the cuticle and stomata (Machado et al., 2021). 

157 This causes the relative water content (RWC) and water potential (Ψ) to decrease, ultimately 

158 leading to xylem cavitation and plant hydraulic failure. Hydraulic failure is considered a ubiquitous 

159 factor in drought-induced tree mortality (Adams et al., 2017) so understanding the physiological 

160 traits determining hydraulic failure and its link to tree death is crucial for predicting forest 

161 responses to climate change. In this regard, recent studies have shown how the loss of hydraulic 

162 function is linked to downstream living cell damage (Mantova et al., 2023), which has led to the 

163 hypothesis that the loss of meristematic cell integrity induced by hydraulic dysfunction is the 

164 possible mechanistic link between hydraulic failure and drought-induced tree mortality (Mantova 

165 et al., 2022).
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166 Xylem resistance to cavitation is conventionally assessed by determining the tension 

167 inducing 50% loss of hydraulic conductance (P50), a trait typically well conserved within species 

168 (Lamy et al., 2014; Torres-Ruiz et al., 2019), even if acclimation has also been observed for some 

169 species across their distribution range or among varieties (Trueba et al., 2017; Stojnić et al., 2018; 

170 Dayer et al., 2020). P50 represents the point at which the sensitivity of plant hydraulic conductance 

171 to water potential is maximum. P50 also corresponds to the lethal percentages of loss of 

172 conductivity (PLC) for conifers (Brodribb & Cochard, 2009) but not for angiosperms in which 

173 death occurs at even more negative water potentials (PLC ≈ 88%, Urli et al., 2013). However, the 

174 small number of studies on which these lethal water potential limits were observed, and recent 

175 research showing how trees are actually able to recover from drought even when surpassing these 

176 values (Hammond et al., 2019; Mantova et al., 2021) question their use as physiological thresholds 

177 for plant mortality. 

178 In resume, plant hydraulic characterization can undoubtedly improve our predictive power 

179 for quantifying the impacts of drought and warming on vegetation gas exchange, growth, 

180 production and survival. Such information will be highly relevant to assess future species’ 

181 bioclimatic and growing boundaries and design species-based conservation and management 

182 strategies to alleviate the impact of droughts on natural and managed systems under a changing 

183 climate.

184 iii) Hydraulic properties and crop productivity under drought conditions.

185 Significant drought-induced declines in crop production have been witnessed worldwide in recent 

186 decades (Howitt et al., 2015; Lesk et al., 2016; Schauberger et al., 2017), prompting crop science 

187 researchers to develop cultivars to maintain crop yield under increasing drier conditions. To date, 

188 the development of drought tolerant cultivars/varieties has largely relied on yield potential, on the 

189 selection of morpho-anatomical traits or on identifying hormones and proteins that have broad 

190 range effects (De Micco & Aronne, 2012; Fàbregas & Fernie, 2019) but are not fit to context-

191 specific future climates. Yet, a key aspect for increasing drought tolerance in crops is to identify 

192 mechanistic traits that preserve the integrity of the hydraulic pathway to maintain productivity and 

193 yield under drought conditions. 
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194 In general, it has been assumed that any increase in the rate of photosynthesis per unit leaf 

195 area will automatically translate into higher biomass and yield. However, plant growth and yield 

196 depend not only on photosynthesis capacity but also on the conjunction of several factors that 

197 allows the enhancement of the photosynthesis rate to be translated into yield, such as higher 

198 hydraulic capacities, sink–source balance and transport of photoassimilates, and the availability 

199 and uptake of nutrients (Araus et al., 2021). Also, the relationship between photosynthetic capacity 

200 and yield may not only differ between varieties but also in plants exposed to different 

201 environmental conditions (Lawlor, 1995). The increase in photosynthetic capacity requires the 

202 concurrent enhancement of an efficient water transport system (i.e. hydraulic efficiency) (Tyree & 

203 Sperry, 1989; Brodribb, 2009), and the preservation of its hydraulic integrity (i.e. hydraulic safety), 

204 particularly under drought conditions. These interconnected traits play a key role and must 

205 progress in parallel to ensure optimal adaptation to drought conditions while maximizing 

206 photosynthetic performance. Thus, it has been reported how higher vein densities enhance not only 

207 photosynthetic gas exchange rates but also stomatal conductance and tolerance to drought-induced 

208 disruption of the hydraulic system (Sack & Scoffoni, 2013). However, in trees, there is only a 

209 weak trade-off between xylem efficiency and xylem safety such that very resistant species to 

210 cavitation can show a wide range of hydraulic conductance values (Gleason et al., 2016). An 

211 efficient coordination of plant hydraulics and photosynthesis is therefore essential for the 

212 synchronized regulation of water loss and carbon dioxide uptake in plants through the stomata. 

213 This coordination has recently been evidenced in tomato mutants (Andrade et al., 2022), where a 

214 reduction in diameter and  number of xylem vessels resulting in lower hydraulic conductivity was 

215 associated with a 50% and 25% reduction in stomatal conductance and net photosynthesis, 

216 respectively. 

217 Annual crop plants are, in general, relatively vulnerable to embolism, with P12 values (i.e. 

218 the water potential  used as a proxy for the onset of xylem embolism) varying between -1 and -4 

219 MPa, such as in wheat (-1.7 MPa, Corso et al., 2020), sunflower (-2.3 MPa, Ahmad et al., 2018) 

220 or maize (-1.6 MPa, Cochard, 2002). Within this range of water potentials, the relationship 

221 between complete stomatal closure (Pclose) and P12 is close to the 1:1 line (Fig. 3A; Martin-StPaul 

222 et al., 2017) what means that there is little to no stomatal safety margin (i.e. Pclose - P12) for these 

223 species since they close their stomata at, or just before, the onset of xylem embolism (Creek et al., 

224 2020). These narrow stomatal safety margins allow annual crops to maintain gas exchanges up to 
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225 almost the onset of cavitation under drought conditions. Similar results have been observed in 

226 perennial woody crops, like apple trees (Beikircher et al., 2013), for which varieties with a higher 

227 resistance to cavitation are able to maintain their stomata open for a wider range of soil water 

228 availability. Thus, as stomata opening depends on the guard cell turgor, plants have a certain 

229 capacity to adjust osmotic potential to shift the turgor loss point close to the onset of cavitation. 

230 However, this coordinated decrease in Pclose and P12 to maximize gas exchange occurs up to a 

231 given P12 value below which increasing embolism resistance is not associated with further decrease 

232 in Pclose that, instead, remains relatively constant at ca. -3.00MPa (Fig. 3A; Martin-StPaul et al., 

233 2017). Therefore, if the objective is to ensure crop production and the sustainability of food supply 

234 under drought, it is crucial to seek crop species or cultivars with i) relatively high resistance to 

235 embolism, and ii) relatively narrow safety margins to maintain gas exchange and maximize the 

236 photosynthetic activity even when soil water content starts to be limited (Fig. 3B). However, this 

237 is not easy task, as it has been observed for some species as maize that the correlation between 

238 stomatal conductance and hydraulic safety is inverse (Gleason et al., 2019), which would imply 

239 that high yield potentials come at the cost of increased vulnerability to xylem embolism in crops.

240 The hydraulic characteristics of the fruits, which is the final target in fruit tree orchards, 

241 has not attracted so much interest as stem or leaf hydraulics. In fruits, both xylem (inflows) and 

242 phloem (outflow) fluxes play a major role in their growth rate depending on their developmental 

243 stage (Matthews & Shackel, 2005; Clearwater et al., 2012), the irrigation regime (Torres-Ruiz et 

244 al., 2016b), irradiance (Boini et al., 2019) or rootstock-scion combinations (Gerbi et al., 2022; 

245 Narandžić & Ljubojević, 2022). Understanding the growth strategies of the fruits according to 

246 their hydraulic characteristics can, therefore, help growers optimize their resource management 

247 for a more sustainable production and higher fruit quality.

248 Apart from the increasing water scarcity observed in different geographical areas due to 

249 climate change, the growing interest in crop hydraulics stems from the recognition that 

250 understanding the hydraulic mechanisms responsible for drought resistance in crop plants is crucial 

251 for the development of productive and drought-resistant varieties. This is especially important 

252 since improving some morpho-anatomical or physiological traits that could improve drought 

253 resistance may not always result in corresponding improvements to hydraulic traits (e.g. Lamarque 

254 et al., 2020). Thus, multifaceted approaches are required to develop crop varieties with optimal 
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255 trait combinations conferring increased hydraulic safety, efficient hydraulic conductance, 

256 sustained carbon assimilation and high yield. Now that hydraulic traits can be easily quantified in 

257 crops, it is also possible to integrate this information into existing hydraulic models to predict crop 

258 performance under various climate warming scenario and identify traits that can be leveraged to 

259 adapt agriculture to climate change (Cochard et al., 2021; Dayer et al., 2022). 

260 Therefore, considering the actual and predicted climate change scenario, identifying or 

261 creating crop varieties with an optimal combination of hydraulic safety, efficiency and 

262 photosynthetic traits is crucial to ensure the crop production under the expected warmer and drier 

263 conditions for many areas in the world.

264 iv) Linkage between hydraulics-related plant traits and wildfire risk 

265 Wildfire is one of the most important natural disturbances affecting ecosystems worldwide 

266 (Bowman et al., 2020). As climate warming intensifies, vegetation gets drier (lower moisture 

267 content) for longer periods of time (Clarke et al., 2022), thus lengthening the fire season and 

268 potentially increasing the frequency of high intensity fires (Barbero et al., 2015; Dowdy et al., 

269 2019; Ruffault et al., 2020). Plant-fire interactions depend on many physiological mechanisms 

270 acting at different temporal and spatial scales (Resco De Dios, 2020). On the one hand, the 

271 interplay between biomass production (or fuel accumulation and structure) and its moisture content 

272 affect wildfires, at scales ranging from biogeographical patterns of burned area (Boer et al., 2021) 

273 to landscape patterns of fire spread (Nelson, 2001). On the other hand, fire effects on ecosystems 

274 depend on interactions between fire intensity and plant’s resistance and resilience to fire(Karavani 

275 et al., 2018). 

276 Live fuel moisture content (LFMC) (i.e. the ratio of water mass to dry mass of twigs and 

277 leaves within the vegetation) is considered to be one of the most relevant drivers of forest fire 

278 behaviour (Nolan et al., 2016; Pimont et al., 2019; Rao et al., 2022). The sensitivity of LFMC to 

279 drought depends on plant physiological, structural and hydraulics traits, which differ across species 

280 and can vary widely over space and time (Jolly & Johnson, 2018; Ruffault et al., 2018). This is the 

281 case for the pressure-volume curves that link the leaf water status and cell relative water content 

282 (Tyree & Hammel, 1972), and that have been recently transferred for LFMC predictions (Nolan et 

283 al., 2018; Pivovaroff et al., 2019; Ruffault et al., 2023). Also, under intense drought conditions, 

284 some species can reduce significantly the water flow to the leaves due to a vulnerability 
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285 segmentation between the leaves and the stems that makes leaf xylem to cavitate at higher water 

286 potential (i.e. less resistance to cavitation) than stems (Charrier et al., 2016; Levionnois et al., 

287 2020). Apart from exacerbating the dehydration of the leaves, this leaf hydraulic disconnection 

288 can trigger leaf senescence and drop (Tyree et al., 1993; Scholz et al., 2014) that will have an 

289 impact on LFMC and therefore fire behaviour. The same applies when there is significant 

290 hydraulic segmentation between the leaves and the stems, e.g. at the petiole level, which makes 

291 the water potential and water content to decay more rapidly in the leaves than in the stems (Tsuda 

292 & Tyree, 1997). Yet, despite a growing number of plant hydraulics models (Li et al., 2021; 

293 Cochard et al., 2021; Ruffault et al., 2022), attempts to simulate LFMC considering plant hydraulic 

294 properties are still scarce (but see Ma et al., 2021; Balaguer-Romano et al., 2022). Recent studies 

295 have shown the major role of physiological traits (leaf area, vulnerability to cavitation, hydraulic 

296 segmentation, transpiration regulation) on both leaf and canopy fuel moisture content (Ruffault et 

297 al., 2023) but more research is needed to upscale predictions from the leaf or canopy level to the 

298 stand or landscape one. It is also necessary to achieve a better integration between short-term 

299 physiological LFMC models (Balaguer-Romano et al., 2022; Ruffault et al., 2023) and micro-

300 climatic variation driven by the fire-plume so that this effect can be added into dynamical fire 

301 behaviour modelling (Dickman et al., 2023). 

302 Fire effects on plants are tightly linked both to the type of fire and its behaviour as well as 

303 to the plant regeneration mode. Thus, crown fires, canopy scorch or consumption by the fire are 

304 the main triggers for the mortality of seedling trees (Hull Sieg et al., 2006), although there are still 

305 some uncertainties about the critical % of crown mortality necessary for tree death (Resco de Dios 

306 et al., 2020). Trees that initially survive fire may succumb in the months or years following the 

307 disturbance when the cambium is charred and the tree girdled, due to fire-induced hydraulic 

308 dysfunction (Ducrey et al., 1996; Kavanagh et al., 2010; Michaletz et al., 2012). Different 

309 mechanisms involving xylem hydraulics have been proposed to potentially explain post-fire 

310 survival (Michaletz et al., 2012; West et al., 2016; Bär et al., 2019). However, recent studies 

311 indicate that vascular cambium is more sensitive to high temperatures than the xylem, making 

312 phloem charring a likely candidate to explain post-fire survival (Salladay & Pittermann, 2023). 

313 This observation is in accordance with the forestry literature, which considers bark thickness 

314 (along with canopy scorch) as a key indicator of post-fire mortality (Resco De Dios, 2020). For 

315 resprouting trees, however, fire-induced mortality is more difficult to characterise. It was 
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316 traditionally considered that stored reserves played a major role for post-fire recovery, but recent 

317 findings challenge this view and indicate a major effect of plant-hydraulics related processes 

318 (Nolan et al., 2021). In this sense, it has been shown how oak trees are unable to resprout if a 

319 drought prior to the disturbance causes a loss of more than 50% in root hydraulic conductance, 

320 highlighting the critical role of root hydraulic conductance in the resprouting ability of trees (Resco 

321 de Dios et al., 2020). 

322 Improving post-fire management requires therefore a better understanding of the 

323 mechanisms leading to potential recovery. Nowadays, at least in some Mediterranean countries, 

324 forests are often felled after the fire and sprout selection occurs later. This is because the fire is 

325 considered to have damaged the vascular tissue leading to stem necrosis. Hydraulic feedbacks 

326 could exacerbate the responses when the fire was preceded by a strong drought that defoliated part 

327 of the canopy (hence enhancing fire behaviour as previously mentioned). Such feedbacks between 

328 pre-fire drought, fire behaviour and post-fire legacy responses should be at the forefront of our 

329 research efforts (Karavani et al., 2018).

330 v) Role of hydraulic traits on plant-herbivore insects-pathogens interactions. 

331 The xylem plays a key role in organising defences against various biotic stresses (Shigo, 

332 1984; Tyree & Zimmermann, 2002), but plant hydraulics is still rarely studied in the context of 

333 plant pathology and entomology. Vessel anatomy and compartmentalization, hydraulic 

334 conductivity, plant water status, and stomatal conductance are key traits that underlie plant 

335 interactions with insects or pathogens and pathological disturbances (Gely et al., 2020). In 

336 addition, interactions between biotic and abiotic stressors can amplify their individual impacts on 

337 the capacity of the trees to absorb and transport water (Fig. 4) (Griffin-Nolan et al., 2021; 

338 McDowell et al., 2022). Hence, it is high time to recognize the pivotal role of plant hydraulic traits 

339 in plant-pathogen interactions and pave the way for further research in this domain.

340 Xylem vessels host a large breadth of endophytic microorganisms and some of them are 

341 vascular pathogens (Pearce, 1996). Plant responses to vascular fungi or bacteria, and the toxins 

342 they often produce, can lead to compartmentalization of the xylem in order to block the spread of 

343 the pathogen (Shigo, 1984; Yadeta & Thomma, 2013). This highlights the key role of xylem 

344 anatomical characteristics in plant-pathogen interactions, for example, through the size of the 

345 vessels or the pits (Venturas et al., 2014). Pathogenesis can induce losses in hydraulic conductance 
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346 resulting from pathogen clogging of the xylem conduits (Deyett et al., 2019; Ingel et al., 2022), 

347 cavitation (Pérez-Donoso et al., 2007), or vessel occlusion by gums and tyloses (Sun et al., 2013; 

348 Bortolami et al., 2019). These losses can lead to the xylem hydraulic failure and induce irreversible 

349 dehydration of the distal organs (Mensah et al., 2020; Bortolami et al., 2021a). Recently, the use 

350 of X-ray microtomography coupled with the contrasting agent iohexol revealed an induced 

351 production of tyloses and/or gels and the subsequent loss in hydraulic conductivity in vivo, which 

352 shed new lights on xylem functioning during vascular pathogenesis (Bortolami et al., 2019, 

353 2021a). As plant hydraulic functioning is directly linked to gas exchange and carbon metabolism 

354 (Pinheiro & Chaves, 2011; McDowell, 2011), these losses in hydraulic conductance induced by 

355 vascular pathogenesis can affect stomatal regulation (Bortolami et al., 2021b). 

356 Vascular dysfunction may also be linked to insect damages leading to the abnormal 

357 production of xylem (Liphschitz & Mendel, 1987), the alteration of xylem fibre anatomy 

358 (Hillabrand et al., 2019b), the increase of vulnerability to embolism (Aguadé et al., 2015), or the 

359 alteration of hydraulic conductivity (Hillabrand et al., 2019a) (Fig. 4). Also, insect mining 

360 damages induce the partial closure of the stomata, enriching leaf δ13C and reducing plant 

361 transpiration (Bansal, 2015; Peschiutta et al., 2016; Wagner et al., 2020). In the short term, this 

362 may have some positive effects for the plant as it would reduce water losses and thus its risk of 

363 hydraulic failure (Wagner et al., 2020), however, it would also reduce considerably carbon 

364 assimilation. Leaf mining insects not only compromise the leaf's water-retaining properties by 

365 feeding on both superficial and deeper living tissues, but epidermis mining can also result in cuticle 

366 breaks. This, in turn, leads to an increase in plant residual transpiration (Raimondo et al., 2013), 

367 significantly elevating the risk of hydraulic failure in infected plants (Billon et al., 2020; Blackman 

368 et al., 2023).

369  Overall, biotic damage can increase on water-stressed trees, but the interactions between 

370 drought and biotic stressors likely depend on the pathogen lifestyle (biotrophic, hemibiotrophic, 

371 vascular, necrotrophic (Jactel et al., 2012, 2019) (supplementary Fig. S1), the insect feeding guild 

372 (xylem-tappers, bark or wood borers, leaf chewers or miners and gall formers) (Gely et al., 2020), 

373 and both the timing and intensity of water stress. Thus, too negative water potentials can limit the 

374 development of the xylem inhabiting micro-organisms (Beattie, 2011) and sap-feeding insects 

375 (Huberty & Denno, 2004) but also increase the susceptibility of conifers to bark beetle attacks 
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376 through a decrease in duct and resin volume production (Gaylord et al., 2013). Different pathogen 

377 and insect guilds can interact with plant hydraulic functioning (vessel occlusion; loss of hydraulic 

378 conductivity; stomatal regulation) and/or carbon balance (carbohydrate consumption or activation 

379 of the plant defence response), which could impair maintenance of carbon-dependent metabolic, 

380 defence or hydraulic functions (Anderegg, 2015; Jactel et al., 2019; McDowell et al., 2022). For 

381 example, insect defoliation can alter xylem fibre anatomy more consistently and severely than 

382 drought alone, likely leading to a reduced structural support to vessels and an increased 

383 vulnerability of defoliated trees to drought-induced cavitation when leaf area recovers (Hillabrand 

384 et al., 2019b). These interactions between biotic and abiotic stresses may be synergistic (Croisé et 

385 al., 2001; Gao et al., 2017, p. 201; Lima et al., 2019), antagonistic (Arango-Velez et al., 2016; 

386 Bortolami et al., 2021b), or neutral (Lopisso et al., 2017), and they likely vary with stress intensity 

387 and the measured hydraulic traits (Bansal, 2015). 

388 Therefore, hydraulic traits play a key role in understanding the interaction between 

389 drought-induced decrease in plant water potential and plant functional response to biotic stressors, 

390 but they are rarely monitored in this context. In fact, among 62 reviewed studies on drought and 

391 cryptogamic disease interactions in plants (see Supplementary material), only 60% of them used 

392 an unambiguous metric of plant water status (leaf or stem water potential) to quantify drought 

393 intensity, while only 11% measured hydraulic traits (hydraulic conductance, gas exchange, or 

394 relative water content). Considering the interacting effects between biotic and abiotic stressors 

395 across latitudes and cropping systems is crucial to predict plant functioning under the actual 

396 climate change context, especially in the long term when abiotic and biotic factors can interact to 

397 predispose, incite, or contribute directly or indirectly to plant death (i.e. the “death spiral”, Manion, 

398 1981; Griffin-Nolan et al., 2021). Pathologists and entomologists should therefore explicitly 

399 quantify the plant water status in general, and plant hydraulic traits in particular, if we are to better 

400 understand the mechanisms involved in insect- or pathogen-plant interactions.

401 vi) Plant hydraulic as a hub for vegetation models. 
402 Vegetation function and dynamics process-based models (VFDM) are becoming necessary 

403 tools to predict the impact of climatic change on vegetation dynamics and associated ecosystem 

404 services. Historically, VFDM were primarily based on modeling the gas exchanges between the 

405 canopy and the atmosphere, with a primary focus on carbon dynamics (Fatichi et al., 2019). More 
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406 recently, the implementation of plant hydraulics in VFDM has gained in popularity with strong 

407 expectations to improve predictions of the impact on tree physiology and thus on forests' 

408 response to climate change (Rowland et al., 2021; Trugman, 2022).

409 Whole-tree hydraulic models simulating plant water use and transport (Sperry et al., 1998), 

410 embolism and refilling (Edwards & Jarvis, 1982; Sperry et al., 2003) and even drought-related 

411 mortality (Martı́nez-Vilalta et al., 2002) have long been available. However, it is only recently that 

412 such models have been framed with the goal of being operational to predict ecosystem functions 

413 and dynamics at global (Eller et al., 2020) and local scales (De Cáceres et al., 2021; Ruffault et 

414 al., 2023). There are key potential benefits of such integration, in particular the possibility to 

415 improve climate change impact simulations by mechanistically accounting for the combined effect 

416 of atmospheric and soil drought on the plant water status (e.g. water potential, Allen et al., 2015; 

417 Martin-StPaul et al., 2023); see Introduction section, Fig. 1). In fact, when implemented in 

418 multilayer vegetation models, this also allows to represent microclimatic effects on plant water 

419 status (De Cáceres et al., 2021). In addition, the possibility of accounting for plant hydraulic traits 

420 and environmental conditions - increasingly available in different databases - enables the 

421 integration of knowledge and data to generalize predictions of the sequence of plant responses to 

422 drought (see section 1). For instance, the explicit representation of plant water potentials allows to 

423 account for sink limitations (i.e. cambial activity) when simulating secondary growth (Hayat et al., 

424 2017). More specifically, turgor effects can now be included, along with temperature effects, when 

425 predicting cambium division and cell expansion (Cabon et al., 2020), although there are still some 

426 questions to address about the integration of these sink limitations with other determinants of 

427 xylogenesis, such as hormonal control (Hartmann et al., 2017) or sugar availability (Cartenì et al., 

428 2018). In addition, thanks to their traits-based approach and the increasing knowledge of traits 

429 coordination and syndromes (section 6) hydraulic models have also the potential to help identify 

430 trade-offs between productivity and stress tolerance (section2) and improve the representation of 

431 succession and forest dynamics (Morin et al., 2021). Plant hydraulic models also allow to model 

432 gas exchanges during drought by accounting for plant water status (Fig. 5), opening the door to 

433 new stomatal behaviour models based on optimization criteria by balancing the carbon gain of 

434 opening stomata vs. the risk of hydraulic failure (Wolf et al., 2016; Sperry et al., 2017). 
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435 Plant hydraulic modelling is seen as a promising tool to predict the disturbances related to 

436 water stress in VDFM. Firstly, it enables the evaluation of drought-induced tree mortality caused 

437 by hydraulic failure and/or plant desiccation (De Kauwe et al., 2020; Cochard et al., 2021; Ruffault 

438 et al., 2022), thanks to empirically-determined thresholds (section 1). Furthermore, it can predict 

439 moisture content in different plant organs, which proves to be a better factor in explaining mortality 

440 (Mantova et al., 2021) (section 1) and could also be associated with other disturbances such as 

441 wildfire risk (see section 3). However, empirical models currently tend to be more accurate in 

442 predicting tree mortality events within their calibration context compared to hydraulic-based 

443 models (Adams et al., 2013). Nevertheless, this accuracy is expected to improve with a more robust 

444 parameterization of traits and environmental variables, particularly concerning micro-local 

445 edaphic conditions such as soil depth or percent rock content. Another important aspect is gaining 

446 a better understanding of the interdependency between water and carbon processes and their role 

447 in mortality (McDowell et al., 2022). In this sense, available models can simulate both xylem and 

448 sugar phloem transport (De Schepper & Steppe, 2010; Hölttä et al., 2017), but a more precise 

449 mechanistic coupling is still required between water and carbon economies concerning water 

450 transport and stomatal behaviour. Additionally, simulating the legacies of previous drought 

451 impacts is challenging as it necessitates an explicit representation of functional sapwood area and 

452 accurate predictions of growth following drought events. While models incorporating plant 

453 hydraulics can simulate plant competition for water resources, advancements are needed to 

454 understand to what extent plants coexisting in the same stand share the same water pools. 

455 Furthermore, the linkage of plant hydraulic physiology to pathogens and pest attack risk (as 

456 mentioned in section 4) is currently poorly implemented.

457 Apart from this, one of the most crucial challenges for the plant hydraulic models is 

458 appropriately parameterizing plant hydraulics, taking into account both inter-specific and intra-

459 specific variability. Global plant trait databases serve as essential data sources for this task. 

460 However, additional knowledge is required in cases where further scaling of tissue-level 

461 measurements to organ- or plant-level parameters is needed (see section 6). Strategies such as 

462 utilizing trait-trait relationships or other approaches to fill missing trait data (De Cáceres et al., 

463 2023) and considering plastic trait responses to changing environmental conditions are essential 

464 in this process.
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465 vii) Water-use and drought tolerance strategies in the global spectrum of plant functions

466 Trait-based ecology posits that functional traits describe the ecological strategies of 

467 individuals and species, influence their performance and fitness and, therefore, allow predicting 

468 population-level demographic rates, community dynamics and ecosystem functioning (Violle et 

469 al., 2007). Among the different functional traits, tree hydraulics properties influence tree water 

470 use, photosynthesis and growth, while also crucially determining tolerance to drought. This makes 

471 hydraulic traits good candidates to predict tree behaviour and forest dynamics under the actual 

472 climate change scenario. However, a fundamental question remains open: how are hydraulic traits 

473 related to the trait trade-off axes governing tree functions and forest demography? (Volaire, 2018; 

474 Guillemot et al., 2022).

475 Current knowledge states that the functions of trees can be largely captured by a 

476 fundamental axis differentiating the acquisitive and conservative strategies: the “fast-slow” axis 

477 (Reich, 2014). The fast-slow axis was originally described as a leaf economic axis (Wright et al., 

478 2004), contrasting fast and slow return on investments of nutrients and dry mass in leaves, and was 

479 later proposed to apply at the whole-plant scale to explain individual performances and 

480 demography (Reich, 2014). Consequently, in this axis, leaf photosynthesis can be interpreted as a 

481 return on a building investment. As water mainly runs through the soil–tree–atmosphere 

482 continuum, this interpretation may not apply, and there is still an open debate on how to expand 

483 the axes related to carbon and nutrients to whole-plant water relations. Various studies suggested 

484 that tree species exhibiting high growth and/or acquisitive leaf traits tended to have lower hydraulic 

485 safety margin and xylem hydraulic resistance (Oliveira et al., 2021; Guillemot et al., 2022). This 

486 suggests that drought tolerance is, to some extent, aligned with the fast-slow axis, but the 

487 mechanisms involved remain elusive. In this sense, at least three non-exclusive mechanisms could 

488 be involved: 

489 i)   A direct trade-off among xylem traits. The hydraulic safety-efficiency trade-off states 

490 that species evolving xylem able to efficiently transport water are also more vulnerable to 

491 cavitation, due to inherent structural constraint. However, the relationship between safety and 

492 efficiency, despite significant, is very weak (Gleason et al., 2016). Studies on this topic mostly 

493 considered efficiency as the ability to transport an amount of water in a small cross-section of 

494 living wood (i.e., space-use efficiency). However, other definitions of xylem hydraulic efficiencies 
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495 exist (Bittencourt et al., 2016; Mencuccini et al., 2019) and deserve to be better explored in relation 

496 with drought tolerance, such as hydraulic energy efficiency (the energy invested - production and 

497 maintenance - in the hydraulic system) or the hydraulic nutrient efficiency (hydraulic conductance 

498 by unit nutrient invested). If these alternative definitions of efficiency show a clearer trade-off with 

499 drought tolerance, they would be compatible with the return-on-investment concept of the leaf 

500 economics, and would pertain to the mechanisms described in the next paragraph. 

501 ii)   A trade-off between water relations and carbon and/or nutrient investment. A 

502 stomatal safety-efficiency trade-off was recently proposed (Henry et al., 2019), where species with 

503 greater maximum stomatal conductance show greater sensitivity to closure during leaf 

504 dehydration, i.e., a higher leaf water potential at which stomatal conductance is reduced. This 

505 trade-off potentially relates to the observation that species with high stomatal conductance at low 

506 vapor pressure deficit (VPD) show a greater sensitivity to VPD, as originally described by (Oren 

507 et al., 1999). Overall, this implies that acquisitive species show greater isohydricity, i.e., they have 

508 a narrower leaf operating range under water stress, which implies a higher (less negative) turgor 

509 loss point. Variation of turgor loss point between species is known to be largely driven by leaf 

510 osmolality (Bartlett et al., 2012), which is related to the nutrient and carbon investment in organic 

511 and/or inorganic solutes (Patakas et al., 2002). Therefore, anisohydry, i.e., wider leaf operating 

512 range under water stress, may come at the cost of higher structural and osmotic carbon and/or 

513 nutrient investment, which may align water relation strategies on the fast-slow axis. 

514 iii)   An indirect effect of carbon or nutrient scarcity on water relation traits. Recent 

515 studies reported that tropical woody species with more resistant xylem occur preferentially on P-

516 poor soils and they show low leaf P concentration (Oliveira et al., 2019; Guillemot et al., 2022). 

517 Although this pattern could arise from the mentioned energy or nutrient cost of water transport, it 

518 could also merely result from the fact that nutrient-poor soils impose slow conservative strategies 

519 that favour efficient nutrient use and low tissue turn-over. This results in species growing dense, 

520 small-vessel wood (Heineman et al., 2016), which may also exhibit high xylem resistance to 

521 embolism. In such a case, the association between drought tolerance and slow strategy would not 

522 arise from adaptive trade-offs but rather from an exaptive result of resource scarcity (Laughlin et 

523 al., 2020).
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524 In resume, future research needs to link leaf-scale and xylem-scale water relation traits and 

525 processes to tree growth, reproduction and mortality. This will allow us, on the one hand, to better 

526 predict forest dynamics under climate change and, on the other hand, to unveil the evolutionary 

527 and physiological constraints within which breeding programs can seek to improve tree species 

528 performances.

529 Conclusions and prospects

530 Variations in plant hydraulic properties, such as conductivity and resistance, can have a 

531 profound impact on plant water relations. These changes can directly affect critical plant functions, 

532 such as stomatal behaviour, photosynthetic capacity, growth, and susceptibility to environmental 

533 stressors and disturbances such as drought, pathogens, and wildfires. The purpose of this review 

534 is to highlight the increasing significance of plant hydraulics in diverse scientific disciplines that 

535 have recognized hydraulic traits as critical components. Thus, the integration of the plant hydraulic 

536 properties into studies and vegetation models aimed at understanding the functioning and response 

537 of ecosystems under drought conditions is crucial for the evaluation of plant response to drought 

538 and its impacts on forest and agronomic ecosystems. Indeed, this will provide key information for 

539 selecting and breeding more resilient and productive species or varieties in order to maintain their 

540 productivity even under drought conditions. Similarly, plant-hydraulics related processes are 

541 crucial for evaluating fire activity, encompassing biogeographical patterns of burned areas, fuel 

542 dynamics, and the interplay between pre-fire drought, fire behaviour, and post-fire effects. It can 

543 also significantly improve our understanding on the mechanisms involved in insect- or pathogen-

544 plant interactions and on the influence of drought on them. Also, understanding the relationship 

545 between hydraulic traits and the trade-offs defining a more acquisitive or conservative strategy for 

546 the different species is a fundamental question to tree behavior and forest dynamics in the face of 

547 climate change. Therefore, expanding the use of these hydraulic aspects to other fields and 

548 disciplines offers promising perspectives for assessing and predicting the effects that climate 

549 change and, more specifically, drought will have on both forestry and agricultural systems through 

550 its influence on both abiotic and biotic factors.
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1039 Figure legends
1040 Fig. 1. Conceptual diagram depicting the main physiological processes related to the hydraulic 
1041 characteristics of plants and how they are linked to other processes crucial for assessing the 
1042 consequences of climate change in forest and agricultural systems. The abbreviation VFD stands 
1043 for 'Vegetation Function and Dynamics' process-based models".

1044

1045 Fig. 2. Conceptual graph showing the relative variation in the main physiological functions linked 
1046 to plant hydraulic traits as plants are subjected to increasing levels of water stress. The intensity of 
1047 stress increases along the x-axis until reaching levels at which their survival is compromised and 
1048 plant death is induced by drought due to the negative effects on the different physiological 
1049 functions.

1050

1051 Fig. 3. Crops function with a narrow stomatal safety margin (SSM) that could allow species with 
1052 a delayed onset of embolism to maintain gas exchanges longer under drought. A. Within the range 
1053 of pressure inducing xylem embolism reported in crops (i.e. P12 ranging from -1 to -4 MPa; grey 
1054 area), the linear relationship between Pclose (pressure inducing 90% of stomatal closure) and P12 is 
1055 close to the 1:1 line (plain line; adapted from Martin-StPaul et al. 2017). The dashed line 
1056 corresponds to the absolute limit by which stomata closure must occur to avoid rapid death under 
1057 drought conditions. B. Cultivars of wheat (T. aestivum) exhibit differences in xylem vulnerability 
1058 to cavitation (plain lines). Assuming that stomatal safety margin is constant in the range of xylem 
1059 pressure going from -1 to -4 MPa (i.e. SSMCes = SSMArm), wheat cv. Cesario, that shows a delayed 
1060 P12 in comparison to cv. Armstrong, would maintain gas exchanges under greater water stress 
1061 (dotted lines). 

1062

1063 Fig. 4. Impacts of pests and pathogens on plant hydraulic traits (adapted from Martinez-Vilalta et 
1064 al. 2017). Green and orange arrows represent positive and negative relationships, respectively, 
1065 between variables. The dashed blue line indicates the hydraulic disconnection that occurs 
1066 following severe vessel occlusion (embolism and/or tyloses) and impedes the plant from 
1067 continuing to transpire. Red arrows represent how plant pathogen infections or pest damages may 
1068 also have an antagonistic or synergistic effect on plant response to drought.

1069

1070 Fig. 5. Diagram summarizing the key advancements and challenges related to integrating plant 
1071 hydraulic models into process-based models of vegetation function and dynamics. The diagram is 
1072 organized both by discipline (hydrology and forestry), by physiological processes and 
1073 disturbances. Green boxes summarize main achievements and pink boxes the main challenges. 

1074

1075
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1084 Figure 1

1085

Fig. 1. Conceptual diagram depicting the main physiological processes related to the hydraulic 
characteristics of plants and how they are linked to other processes crucial for assessing the 
consequences of climate change in forest and agricultural systems. The abbreviation VFD stands for 
'Vegetation Function and Dynamics' process-based models".
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1086 Figure 2
1087

1088

1089

1090

Fig. 2. Conceptual graph showing the relative variation in the main physiological functions 
linked to plant hydraulic traits as plants are subjected to increasing levels of water stress. The 
intensity of stress increases along the x-axis until reaching levels at which their survival is 
compromised and plant death is induced by drought due to the negative effects on the different 
physiological functions.
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Fig. 3. Crops function with a narrow stomatal safety margin (SSM) that could allow species with 
a delayed onset of embolism to maintain gas exchanges longer under drought. A. Within the range 
of pressure inducing xylem embolism reported in crops (i.e. P12 ranging from -1 to -4 MPa; grey 
area), the linear relationship between Pclose (pressure inducing 90% of stomatal closure) and P12 is 
close to the 1:1 line (plain line; adapted from Martin-StPaul et al. 2017). The dashed line 
corresponds to the absolute limit by which stomata closure must occur to avoid rapid death under 
drought conditions. B. Cultivars of wheat (T. aestivum) exhibit differences in xylem vulnerability 
to cavitation (plain lines). Assuming that stomatal safety margin is constant in the range of xylem 
pressure going from -1 to -4 MPa (i.e. SSMCes = SSMArm), wheat cv. Cesario, that shows a delayed 
P12 in comparison to cv. Armstrong, would maintain gas exchanges under greater water stress 
(dotted lines). 
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Fig. 4. Impacts of pests and pathogens on plant hydraulic traits (adapted from Martinez-Vilalta et al. 
2017). Green and orange arrows represent positive and negative relationships, respectively, between 
variables. The dashed blue line indicates the hydraulic disconnection that occurs following severe 
vessel occlusion (embolism and/or tyloses) and impedes the plant from continuing to transpire. Red 
arrows represent how plant pathogen infections or pest damages may also have an antagonistic or 
synergistic effect on plant response to drought.
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1116

Fig. 5. Diagram summarizing the key advancements and challenges related to integrating plant 
hydraulic models into process-based models of vegetation function and dynamics. The 
diagram is organized both by discipline (hydrology and forestry), by physiological processes 
and disturbances. Green boxes summarize main achievements and pink boxes the main 
challenges. 
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Fig. 1. Conceptual diagram depicting the main physiological processes related to the hydraulic 
characteristics of plants and how they are linked to other processes crucial for assessing the consequences 
of climate change in forest and agricultural systems. The abbreviation VFD stands for 'Vegetation Function 

and Dynamics' process-based models". 
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Fig. 2. Conceptual graph showing the relative variation in the main physiological functions linked to plant 
hydraulic traits as plants are subjected to increasing levels of water stress. The intensity of stress increases 
along the x-axis until reaching levels at which their survival is compromised and plant death is induced by 

drought due to the negative effects on the different physiological functions. 
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Fig. 3. Crops function with a narrow stomatal safety margin (SSM) that could allow species with a delayed 
onset of embolism to maintain gas exchanges longer under drought. A. Within the range of pressure 
inducing xylem embolism reported in crops (i.e. P12 ranging from -1 to -4 MPa; grey area), the linear 

relationship between Pclose (pressure inducing 90% of stomatal closure) and P12 is close to the 1:1 line 
(plain line; adapted from Martin-StPaul et al. 2017). The dashed line corresponds to the absolute limit by 
which stomata closure must occur to avoid rapid death under drought conditions. B. Cultivars of wheat (T. 

aestivum) exhibit differences in xylem vulnerability to cavitation (plain lines). Assuming that stomatal safety 
margin is constant in the range of xylem pressure going from -1 to -4 MPa (i.e. SSMCes = SSMArm), wheat 
cv. Cesario, that shows a delayed P12 in comparison to cv. Armstrong, would maintain gas exchanges under 

greater water stress (dotted lines). 
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Fig. 4. Impacts of pests and pathogens on plant hydraulic traits (adapted from Martinez-Vilalta et al. 2017). 
Green and orange arrows represent positive and negative relationships, respectively, between variables. The 

dashed blue line indicates the hydraulic disconnection that occurs following severe vessel occlusion 
(embolism and/or tyloses) and impedes the plant from continuing to transpire. Red arrows represent how 

plant pathogen infections or pest damages may also have an antagonistic or synergistic effect on plant 
response to drought. 
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Fig. 5. Diagram summarizing the key advancements and challenges related to integrating plant hydraulic 
models into process-based models of vegetation function and dynamics. The diagram is organized both by 
discipline (hydrology and forestry), by physiological processes and disturbances. Green boxes summarize 

main achievements and pink boxes the main challenges. 
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