
HAL Id: hal-04601324
https://hal.science/hal-04601324v1

Submitted on 4 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A State-of-the-Art Karp-Miller Algorithm Certified in
Coq

Thibault Hilaire, David Ilcinkas, Jérôme Leroux

To cite this version:
Thibault Hilaire, David Ilcinkas, Jérôme Leroux. A State-of-the-Art Karp-Miller Algorithm Certified
in Coq. 30th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2024), Apr 2024, Luxembourg, Luxembourg. pp.370 - 389, �10.1007/978-3-031-
57246-3_21�. �hal-04601324�

https://hal.science/hal-04601324v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A State-of-the-Art Karp-Miller Algorithm
Certified in Coq

Thibault Hilaire (0009-0008-7324-8767)
David Ilcinkas (0000-0002-0094-4330)
Jérôme Leroux (0000-0002-7214-9467)

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800,
F-33400 Talence, France

{thibault.hilaire,david.ilcinkas,jerome.leroux}@labri.fr

Abstract

Petri nets constitute a well-studied model to verify and study concur-
rent systems, among others, and computing the coverability set is one of
the most fundamental problems about Petri nets. Using the proof assis-
tant Coq, we certified the correctness and termination of the MinCov
algorithm by Finkel, Haddad, and Khmelnitsky (FOSSACS 2020). This
algorithm is the most recent algorithm in the literature that computes
the minimal basis of the coverability set, a problem known to be prone
to subtle bugs. Apart from the intrinsic interest of a computer-checked
proof, our certification provides new insights on the MinCov algorithm.
In particular, we introduce as an intermediate algorithm a small-step vari-
ant of MinCov of independent interest.
Keywords: Petri net, Karp-Miller tree algorithm, Minimal coverability
set, Coq, Certified decision procedure

This version of the contribution has been accepted for publication, after peer
review, but is not the Version of Record and does not reflect post-acceptance
improvements, or any corrections. The Version of Record is available online at:
https:// doi.org/ 10.1007/ 978-3-031-57246-3_21

1

https://doi.org/10.1007/978-3-031-57246-3_21

1 Introduction
Petri nets constitute a well-studied model to verify and study concurrent sys-
tems, with several applications in other domains, like in chemical [ALS11] and
biological process [BCMS10, PRA05] (see [Sch16] for additional applications).
Formally, a Petri net is given by a finite set of places and a finite set of tran-
sitions. Each place is marked with a natural number that can be incremented
or decremented by the transitions. A function that maps places to the marked
numbers is called a marking. The reachability set of a Petri net from an initial
marking is the set of markings that can be obtained by executing a sequence of
transitions from the initial marking.

The central problem about Petri nets is the reachability problem that con-
sists in deciding whether a final marking is in the reachability set. Many impor-
tant computational problems in logic and complexity reduce or are even equiv-
alent to this problem [Hac75, Sch16]. The reachability problem is known to be
Ackermann-complete [CLL+19, Ler21, CO21, Las22]. On positive instances, it
can be decided with efficient directed exploration strategies [BHO21], but gen-
eral complete algorithms deciding the problem are complex [LS19], and require
a lot of implementation efforts [DL20].

This high complexity is not always a barrier in practice since many problems
related to Petri nets can be decided by introducing an over-approximation of
the reachability set, called the coverability set [KKW12]. This set is defined by
introducing the cover relation over the markings, defined by x ≤ y if x is less
than or equal to y component-wise, i.e., on each place. The coverability set is
then defined as the downward-closure of the reachability set. It provides a way
to decide a variant of the reachability problem, called the coverability problem.
This latter problem can be solved by computing what is called a basis of the
coverability set. Its definition uses the notion of ω-markings, an extension of
markings that allows to mark places with a special symbol denoted by ω, and
interpreted as an infinite number. The well-quasi-order theory [FG20] shows
that any downward-closed set of markings can be symbolically represented by
a finite set of ω-markings, called a basis. Moreover, this theory also proves that
there exists a unique minimal one for the inclusion relation.

The computation of bases of coverability sets is exactly the purpose of
the Karp-Miller algorithm introduced in [KM69]. This algorithm inductively
computes trees where nodes are labeled by ω-markings. When the algorithm
stops, those labels form a basis of the coverability set. Karp-Miller algorithms
(including all variants) are not optimal in worst-case complexity for deciding
the coverability problem. In fact, those algorithms have an Ackermannian
computational complexity [FFSS11, MM81] while the coverability problem is
known to be Expspace-complete [Rac78]. There exist other algorithms, based
on backward computations from the final marking, that are optimal in worst-
case [BG11, LS21]. However, Karp-Miller algorithms outperform backward com-
putation algorithms in practice (see [BHO21] for benchmarks). Moreover, the

2

computation of the coverability set bases provides ways to decide other proper-
ties than the coverability problem, like the termination and boundedness prob-
lems, as well as some liveness properties. It follows that this algorithm is central
for analyzing Petri nets.

Bases computed by the Karp-Miller algorithm are not minimal (for the in-
clusion relation) since they may contain distinct ω-markings x, y with x ≤ y.
Naturally, the unique minimal basis of the coverability set can be computed
by first invoking the Karp-Miller algorithm, and then applying a simple reduc-
tion algorithm. However, such a computation is not optimal in practice since it
requires computing several ω-markings that will be discarded only at the end
of the computation. A first attempt to avoid this problem was introduced by
Alain Finkel in [Fin91]. This algorithm is an optimization of the original Karp-
Miller algorithm that seems very natural. However, a subtle problem when the
computation is performed on a very particular instance was discovered only 14
years later in [FGRVB05]. Several authors tried to find patches for that bug by
proposing various solutions [GRVB07, RS11, PV16, RS19]. Finally, in [FHK20],
an efficient algorithm removing on-the-fly useless basis elements was proved to
be correct with a pen-and-paper proof. This algorithm, called MinCov, is a
state-of-the-art algorithm for computing the minimal basis of the coverability
set. It can be seen as a variant of the Karp-Miller algorithm based on the new
notions of abstractions and accelerations. Since algorithms a la Karp-Miller are
prone to subtle bugs, formal proofs certified by proof assistants are called for.

Our Contributions.

• We developed a complete formal proof in Coq of the correctness and ter-
mination of the MinCov algorithm, via an intermediate algorithm called
AbstractMinCov. We follow the Coq formalization of Petri nets and
markings introduced in [YSM17], built on top of the Mathematical
Components library [GMT16] (MathComp). This formalization con-
tains several formal proofs and basic concepts related to Petri nets and
markings that we extended to handle recent notions. Our proofs are based
on this code to take benefits from those developments, but also to eas-
ily measure the gap between Coq formal proofs of two algorithms that
compute coverability set bases: the original Karp-Miller algorithm and a
state-of-the-art one.

• We provide two new characterizations of the central notion of abstractions
used by the MinCov algorithm. A simple mathematical one, and an alge-
braic one that shows that three operators on abstractions (weakening, con-
traction, and acceleration) provide a complete set of rules for generating
any abstraction starting from the Petri net transitions. The proof of this
result is based on the Jančar well-quasi-order on executions [Jan90, Ler11].

• We introduce as an intermediate algorithm a small-step variant of Min-
Cov, called AbstractMinCov. We implemented in Coq proofs of the

3

correctness and termination of AbstractMinCov. Since the original
MinCov algorithm can be simulated by our algorithm, the proof that the
original MinCov algorithm is correct and terminates is obtained at the
cost of a simple Coq proof. Compared to a direct proof, our approach
provides more succinct proofs in Coq, because proving that some prop-
erties are invariant is usually easier for a small step than for a big step.
Additionally, our algorithm provides room for optimization by decorre-
lating some transformations performed by the original algorithm (this is
discussed in the conclusion).

Outline.

Our Coq formalization of Petri nets, markings, and ω-markings are given in
Section 2, while the ones on abstractions and accelerations are given in Section 3.
The Coq modelization of MinCov is provided in Section 4, and our small-step
algorithm AbstractMinCov is presented in Section 5. The code is available
on Software Heritage [HIL24].

2 Petri Nets
A Petri net is a tuple P = ⟨P, T,Pre,Post⟩ where P, T are two finite sets
of elements called respectively places and transitions, and Pre,Post are two
mappings from T to NP . An element x ∈ NP is called a marking. We denote
by x(p) the value of x at the place p. Markings Pre(t) and Post(t), where t is
a transition in T are called respectively the precondition and the postcondition
of t.

We follow the Coq formalization of Petri nets and markings introduced
in [YSM17]. That formalization was introduced to prove the correctness and
termination of the original Karp-Miller algorithm. This formalization is built
on top of the Mathematical Components library [GMT16] (MathComp).
This library provides finite types (see the Coq keyword finType below) that
provides a useful type for Petri net places and transitions, but also functions
with finite domain (see ffun). Markings are conveniently represented by these
functions. More precisely, in our Coq proofs, Petri nets and markings are
defined as follows.

Record petri_net :=
PetriNet
{ place transition : finType;

_ _ : transition -> {ffun place -> nat}; (* pre, post *)
}.

Definition marking (pn : petri_net) := {ffun place pn -> nat}
(* Re-type the 3rd and 4th fields of PN to use the name "marking". *)
Definition pre (pn : petri_net) : transition pn -> marking pn :=

let: PetriNet _ _ p _ := pn in p.

4

Definition post (pn : petri_net) : transition pn -> marking pn :=
let: PetriNet _ _ _ p := pn in p.

Now, let us provide some elements of Petri net semantics. Given a Petri
net P, a transition t ∈ T is said to be fireable from a marking x if Pre(t) ≤ x;
where ≤ is the component-wise extension of the usual order ≤ on N, i.e. x ≤ m

iff x(p) ≤ m(p) for every place p ∈ P . In that case we write x
t−→ y where

y = x − Pre(t) + Post(t) is called the marking obtained after firing t from x.
We extend the notion of fireability to a sequence σ = t1 . . . tk of transitions
t1, . . . , tk ∈ T by x

σ−→ y if there exists a sequence x0, . . . , xk of markings such
that x0 = x, xk = y and xj−1

tj−→ xj for every 1 ≤ j ≤ k. In that case, we say
that σ is fireable from x and y is naturally called the marking obtained after
firing σ from x. When such a sequence σ exists, we say that y is reachable
from x (for the Petri net P).

The Petri net reachability problem consists in deciding, given a Petri net P
and two markings x, y, whether y is reachable from x. The reachability problem
is Ackermann-complete [CLL+19, Ler21, CO21, Las22] and algorithms deciding
the problem are complex [LS19]. However, this high lower bound is not always
a barrier in practice since many problems related to Petri nets can be decided
by computing an over-approximation of the reachability property, called the
coverability, obtained by introducing the downward-closed sets.

More formally, the downward closure of a set M of markings is defined as
the set {x ∈ NP | ∃y ∈ M, x ≤ y}. We say that M is downward-closed
if it is equal to its downward closure. Downward-closed sets can be finitely
represented by introducing the notion of ω-markings, a notion also known as
the ideal representation of downward-closed sets (see [FG20] for extra results).
We first introduce the set Nω defined as N ∪ {ω}, where ω is a special symbol
not in N that is interpreted as an infinite number. This interpretation is defined
by extending the total order ≤ over N into a total order on Nω by n ≤ ω for
every n ∈ Nω. An ω-marking is an element of x ∈ NP

ω . In [YSM17] and in our
Coq proofs, ω-markings are defined with the type markingc as follows.

Definition natc := optiontop nat.
(* Here None (also denoted Top) denotes Omega and Some n denotes n *)
Definition markingc := {ffun place -> natc}.

We associate with an ω-marking x the downward-closed set ↓x of markings
defined as {y ∈ NP | y ≤ x}. We also denote by ↓B, where B is a finite set of
ω-markings, the downward-closed set

⋃
x∈B ↓x. Let us recall from the well-quasi-

order theory [FG20] that any downward-closed set M of markings admits a finite
set B of ω-markings, called a basis of M , such that M = ↓B. Bases provide
finite descriptions of downward-closed sets. Naturally a downward-closed set
can have several bases. However, among all the bases of a downward-closed set,
the unique minimal one (for the inclusion relation) can be computed from any
basis as follows. We say that a finite set B of ω-markings forms an antichain if
for every x, y ∈ B such that x ≤ y, we have x = y. Notice that if B is a basis

5

of a downward-closed set M that is not an antichain, then there exist x, y ∈ B
such that x < y. Since in that case B\{x} is also a basis of M , it follows that
by recursively removing from B the ω-markings that are strictly smaller than
another one in B, we derive from any basis another one that is an antichain.
One can prove that this antichain is the unique minimal basis of M (for the
inclusion relation).

Given a Petri net P, we say that a marking z ∈ NP is coverable from a
marking x0 if there exists a marking y ≥ z reachable from x0. The set of
coverable markings is called the coverability set.

Since coverability sets are downward-closed, they can be described by bases.
The computation of such those bases is exactly the purpose of Karp-Miller al-
gorithms. While ω components were introduced in the original Karp-Miller
algorithm [KM69] with some algorithmic techniques, this notion was abstracted
away in [FHK20] as kind of meta-transitions, called accelerations and abstrac-
tions. Those notions are recalled in the next section. They are used to compute
the minimal basis of the coverability set, called the clover in [FHK20]. In our
Coq proofs, we encode the clover as a list of ω-markings (a list is denoted by
seq). The definition uses the coverable predicate defined in [YSM17].

Definition clover (m0 : marking) (l : seq markingc) :=
antichain l /\
forall m : marking,

coverable m0 m <-> exists mc : markingc, (mc \in l) && (m \in mc).

(* perm_eq is the list equivalence modulo permutation *)
Theorem clover_unique m0 (l1 l2: seq markingc):

clover m0 l1 -> clover m0 l2 -> perm_eq l1 l2.

3 Abstractions and Accelerations
Abstractions provide a simple way to explain why some markings can be cov-
ered from other ones. In this section we first recall the definition and semantics
of ω-transitions. Then we introduce the abstractions following the definition
introduced in [FHK20], based on ω-transitions. We show that this rather tech-
nical definition is in fact equivalent to a new simpler one. Whereas the proof of
equivalence between the two definitions is simple, we think that our definition
provides interesting intuitions on abstractions. Finally, in the last part of this
section we show that three operators on abstractions (weakening, contraction,
and acceleration) provides a complete set of rules for generating any abstrac-
tion starting from the Petri net transitions. The proof is based on the Jančar
well-quasi-order on executions [Jan90, Ler11].

Since our Coq proofs for this part are obtained by series of case analyses
(not complicated but lengthy in Coq), we do not provide additional information
concerning that part of our implementation. All proofs can be found in the file
New_transitions.v.

6

3.1 ω-Transitions
An ω-transition t is a pair t = (x, y) where x, y ∈ NP

ω are ω-markings such that
x(p) = ω ⇒ y(p) = ω for every place p ∈ P . The ω-markings x and y are
respectively denoted by Pre(t) and Post(t) and they are called respectively the
precondition and the postcondition of t. This notation provides a natural way to
identify transitions of a Petri net as particular ω-transitions. We implemented ω-
transitions in Coq with the dependent datatype omega_transition as follows.

Definition transitionc := (markingc * markingc)%type

(* t.pre = Pre(t) and t.post = Post(t) *)
Definition inv_omega_transition (t: transitionc) :=

[forall p , (t.pre p == None) ==> (t.post p == None)].

Definition omega_transition := { t | inv_omega_transition t }.

We introduce the operator ⊖ : NP
ω × NP

ω → NP
ω defined component-wise by

x⊖ y = 0 if x ≤ y, ω if x = ω and y ∈ N, and x− y otherwise. As expected, an
ω-transition t is said to be fireable from an ω-marking x if Pre(t) ≤ x. In that
case, we write x

t−→ y where y = (x ⊖ Pre(t)) + Post(t) is called the ω-marking
obtained after firing t from x.

In order to provide a way to manipulate a sequence of ω-transitions as
just one single ω-transition, the notion of Hurdle [Hac75], known by the Petri
net community for sequences of transitions, was extended to sequences of ω-
transitions [FHK20]. More formally, we introduce an internal binary operator
⊗ on ω-transitions, called the contraction, as follows:

s⊗ t = ((Pre(t)⊖ Post(s)) + Pre(s) , (Post(s)⊖ Pre(t)) + Post(t))

We implemented in Coq the contraction operator and we formally proved
the following lemma.

Lemma 1 For every ω-markings x, z ∈ NP
ω , the ω-transition s⊗ t satisfies:

x
s⊗t−−→ z ⇐⇒ ∃y ∈ NP

ω , x
s−→ y

t−→ z

In the sequel, given a sequence of ω-transitions σ = t1 . . . tk, we call the ω-
transition t = t1⊗· · ·⊗ tk the contraction of σ and, when there is no ambiguity,
we identify σ with its contraction. It follows that Pre(σ) and Post(σ) are well
defined.

3.2 Abstractions
Following [FHK20], an abstraction is an ω-transition a such that for all n ≥ 0,
there exists σn ∈ T ∗ such that for all p ∈ P with Pre(a)(p) ∈ N:

• Pre(σn)(p) ≤ Pre(a)(p)

7

• If Post(a)(p) ∈ N then Post(a)(p)+Pre(σn)(p) ≤ Post(σn)(p)+Pre(a)(p)

• If Post(a)(p) = ω then Pre(σn)(p) + n ≤ Post(σn)(p)

Our Coq implementation of abstractions is a direct translation of the previous
definition. We provide the code just below. In that code, note that seq_to_one
is a function that maps sequences of transitions to their contractions. Also, we
provide a simplification of the actual code in which we use the same symbols
for comparisons and operations independently of whether nat, natc, or a mix
of the two, are used. Similarly, we assume in the sequel implicit coercions from
omega_transition, abstraction, or acceleration to transitionc.

Definition inv_abstraction_aux (t : transitionc) (y : marking*marking)
(p : place) (n : nat) :=

mem_nc (t.pre p) (y.pre p)
/\ (t.post p != None -> t.post p + y.pre p <= t.pre p + y.post p)
/\ (t.post p == None -> y.pre p + n <= y.post p).

Definition inv_abstraction (t : transitionc) :=
forall (n : nat), exists (o_n : seq transition), forall (p : place),
t.pre p != None -> (inv_abstraction_aux t (seq_to_one o_n) p n).

Definition abstraction := { a : omega_transition | inv_abstraction a }.

The previous definition of abstraction is in fact equivalent to the following
simpler one, where Cover(x,P) for some ω-marking x denotes the set of mark-
ings z such that x

σ−→ y for some word σ of transitions and some ω-marking
y ≥ z.

Lemma 2 A given ω-transition a is an abstraction if, and only if, it satisfies
↓Post(a) ⊆ Cover(Pre(a),P).

Note that this new characterization provides a way to constructively check
whether an ω-transition is an abstraction. This would allow us to declare ab-
stractions as an eqType in a future work.

We also recall the following lemma proved in [FHK20]. This result is central
for the correctness of the algorithm MinCov. We implemented its proof in Coq
in the file New_transitions.v.

Lemma 3 (Lemma 1 in [FHK20]) Let x0 be a marking of a Petri net P.
For every ω-markings x, y such that x a−→ y for some abstraction a, we have:

↓x ⊆ Cover(x0,P) ⇒ ↓y ⊆ Cover(x0,P)

3.3 Abstraction Builder
In this last part, we show that any abstraction can be built from Petri net tran-
sitions by applying three operators: weakening, contraction, and acceleration.

8

Let us first start with the simplest operator, called the weakening. We intro-
duce a partial order ⊑ on the ω-transitions defined by s ⊑ t if Pre(t) ≤ Pre(s)
and Post(s)+Pre(t) ≤ Post(t)+Pre(s). The second inequality intuitively means
that the effect of t is larger than or equal to the effect of s (component-wise).
Based on Lemma 2, we deduce that if t is an abstraction and s an ω-transition
such that s ⊑ t, then s is also an abstraction. Based on this observation, we
introduce a weakening operator that just replaces an abstraction t by any other
abstraction s ⊑ t.

The second simplest operator is the contraction. Based on Lemmas 1 and 2,
we can deduce that if s, t are two abstractions, then s⊗ t is also an abstraction.

The last operator, called the acceleration, associates with an ω-transition t
the ω-transition tω that intuitively corresponds to the infinite firing of t. More
formally, tω is defined as follows for every place p ∈ P :

Pre(tω)(p) =

{
ω if Pre(t)(p) > Post(t)(p)

Pre(t)(p) otherwise

Post(tω)(p) =

{
ω if Pre(t)(p) ̸= Post(t)(p)

Post(t)(p) otherwise

In [FHK20], it is proved that if a is an abstraction then aω is also an abstraction.

Notice that tω = t if, and only if, Post(t)(p) ∈ {Pre(t)(p), ω} for every
p ∈ P . If a is an abstraction and aω = a, we say that a is an acceleration. Since
accelerations play a central role in the MinCov algorithm, we implemented
them in Coq as follows.

Definition inv_accel (t : transitionc) :=
[forall p, (t.post p == None) || (t.post p == t.pre p)].

Definition acceleration := { a : abstraction | inv_accel a }.

The following Lemma 4 is one of the main result of this section. It shows
that any abstraction can be derived from the Petri net transitions by applying
the previously mentioned operators.

Lemma 4 An ω-transition a is an abstraction if, and only if, there exist w0,
t1, w1, . . . , tk, wk where w0, . . . , wk ∈ T ∗ and t1, . . . , tk ∈ T such that:

a ⊑ wω
0 t1w

ω
1 . . . tkw

ω
k

4 The Original MinCov Algorithm
In this section, we present our Coq implementation of the MinCov algorithm.
We tried to be as close as possible to the algorithm introduced in [FHK20],
to provide convincing evidence that it is correct and terminating. We how-
ever omitted the trunc function used in the MinCov pseudocode presented

9

in [FHK20] but not in their Python implementation. In practice this function
differs from the identity function only when numbers computed by the algorithm
are larger than the number of atoms in the universe.

4.1 Explicit Coverability Trees
As already mentioned, this algorithm computes the minimal basis of the cover-
ability set of a Petri net P from an initial ω-marking x0. Similarly to the original
Karp-Miller algorithm, it computes inductively a tree T such that nodes are la-
beled by ω-markings, and edges by transitions. In the case of MinCov, the
constructed tree, called an explicit coverability tree, contains additional labels
that are explained a bit later. We implement explicit coverability trees in Coq
as the following inductive definition KMTE:

Inductive KMTE := | Empty_E
| Br_E of markingc &

(seq acceleration) &
bool &
{ffun transition -> KMTE}.

A node obtained with the constructor Empty_E is called empty, whereas a
node obtained with the constructor Br_E is called valid. The first line of the
constructor Br_E of a valid node N provides the ω-marking denoted by λ(N)
that labels the node N . The fourth line provides a function that inductively
maps each transition t to a subtree. The root node of that subtree is denoted
by N.t and called the child of N following t. Given a node, we call the unique
word σ ∈ T ∗ that labels the edges of the tree from the root to that node the
address of that node. A word σ ∈ T ∗ is called a valid address if it is the address
of a valid node. This node is denoted by Nσ in that case. A node is called a
leaf if it is valid and if N.t is an empty node for every transition t.

Compared to trees computed by the Karp-Miller algorithm, explicit cover-
ability trees computed by the MinCov algorithm have two additional pieces of
information on each valid node, provided by the second and third lines of the
constructor Br_E. First of all, since trees may be partially destroyed when a
subtree corresponding to redundant computations is detected, the computation
is no longer a DFS exploration. In order to keep track of nodes that are wait-
ing for further exploration, called front nodes, each valid node is marked with a
boolean flag that is assigned to true when it is a front one. The set of front nodes
of an explicit coverability tree T is denoted by Front(T). Last but not least,
explicit coverability trees contain additional information to recover the way the
node labels were generated. To do so, the second line of the constructor Br_E of
a valid node N provides a sequence a1 . . . ak of accelerations denoted by µ(N).

In our implementation, we prove that the following properties (called invari-
ant properties in the sequel) are maintained throughout any execution of the
algorithm.

• Front nodes are always leaves (predicate Front_leaves).

10

• Non-front node labels form an antichain (predicate Not_Front_Antichain).

• The root node is valid, and x0
µ(Nε)−−−−→ λ(Nε) (predicate consistentE_head).

• If a valid node N is not the root, i.e. N = N ′.t for some node N ′ and some
transition t, then λ(N ′)

tµ(N)−−−−→ λ(N) (predicate consistentE_tree).

4.2 Step Relation
The MinCov algorithm is a while loop algorithm that updates a pair (T , A),
where T is an explicit coverability tree, and A is a (finite) sequence of accel-
erations. Accelerations that occur in T (in the µ labeling) are taken from A.
Moreover, the sequence A can only grow with new discovered accelerations.
Initially, the MinCov algorithm begins with the pair (T , A) where A is the
empty sequence ε and T is the explicit coverability tree reduced to a single
valid front node Nε labeled by λ(Nε) = x0 and µ(Nε) = ε. The algorithm
picks nondeterministically a front node at each iteration of the while loop to
transform the tree. It terminates when the set of front nodes is empty and,
at that point, returns the current T (the set A is discarded at the end). Our
Coq implementation of this algorithm is defined by introducing a binary re-
lation Rel on those pairs (T , A). Such a one-step encoding provides all the
possible nondeterministic behaviors of the algorithm. It follows that our proofs
of correctness and termination are valid whatever the implemented particular
exploration heuristic.

Formally, the relation Rel is defined as follows, with three constructors
Rel_clean, Rel_accel, and Rel_explo that are defined later in this section:

Variant Rel :
(KMTE * seq acceleration) -> (KMTE * seq acceleration) -> Prop :=

| Rel_clean [...] (* cleaning operation *)
| Rel_accel [...] (* accelerating operation *)
| Rel_explo [...] (* exploring operation *) .

As will be discussed later, the termination of the MinCov algorithm is
proved by certifying that the relation Rel is well-founded. For that reason,
Rel (T',A') (T,A) corresponds to a step of the MinCov algorithm from
(T , A) to (T ′, A′), and not the other way around.

One central notion of the algorithm is the definition of saturated ω-markings.
An ω-marking x is saturated for a sequence A of accelerations if, for every accel-
eration a ∈ A such that x a−→ y for some ω-marking y, we have x = y. When an
ω-marking is not saturated for a sequence A, it can be saturated with respect to
A as follows. Note that in general, given two ω-markings x, y such that x

a−→ y
for some acceleration a, then y(p) ∈ {x(p), ω} for every place p. It means that y
is obtained from x by setting to ω some places of x. In particular, if x ̸= y, then
the number of places with natural numbers is strictly decreasing from x to y.
It follows that an algorithm that tries to apply in a round-robin fashion all the
accelerations in A eventually terminates on a fixed point in at most |P | rounds.

11

We implement this algorithm in Coq with a function saturate_KMTree A T ad
that takes as input a sequence A of accelerations, an explicit coverability tree T ,
and a valid address σ ∈ T ∗ (denoted by ad), and returns the explicit coverability
tree obtained from T by saturating λ(Nσ) with respect to A, and by append-
ing to µ(Nσ) the sequence of accelerations used by the round-robin saturation
algorithm.

The MinCov algorithm is implemented in such a way the labels of the non-
front valid nodes form an antichain. To enforce that property, the cleaning
operation takes as input two explicit coverability trees T and T ′, a sequence A
of accelerations, and an address σ (denoted by ad below), and checks if σ is
the address of a front node, if T ′ is the tree obtained from T by saturating
Nσ with respect to A (see above), and if there exists a non-front node N ′ such
that λ(Nσ) ≤ λ(N ′) in T ′ (predicate ad_covered_not_front T' ad below).
In that case, the cleaning operation puts in the relation Rel the pair (T , A)
with (T ′′, A), where T ′′ is obtained from T ′ by removing the node at address σ
(implemented by removeE_add T' ad).

Rel_clean (T:KMTE) A ad T': Is_Front T ad
-> T'= saturate_KMTree A T ad
-> ad_covered_not_front T' ad
-> Rel (removeE_add T' ad, A) (T,A)

When the previous cleaning operation cannot be applied on a front node
with address σ (~~ denotes the negation, and ad and ad' in the code refer
to σ and σ′), the algorithm checks if this front node, once saturated, is la-
beled by an ω-marking larger than the label of an ancestor with address σ′

(through the predicate Possible_acceleration, which also checks that σ′ is
the prefix of σ). If so, an accelerating operation is performed. It consists first in
computing the acceleration corresponding to the path between the two nodes.
More precisely, computingE_acceleration T' ad' ad computes the accelera-
tion a = (t1σ1 . . . tkσk)

ω, where σ = σ′t1 . . . tk for a sequence t1 . . . tk of transi-
tions, and σ1, . . . , σk are the sequences of accelerations that occur in T ′ from σ
to σ′, i.e. σj = µ(Nσ′t1...tj). In that case, the accelerating operation puts in the
relation Rel the pair (T , A) with (T ′′, A′), where A′ is the sequence obtained
by adding a to A, and T ′′ is obtained from T ′ by removing the subtree of T ′

from Nσ′ and by setting that node as a front node (to_FrontE T' ad below).

Rel_accel (T:KMTE) A ad T' ad' a: Is_Front T ad
-> T'= saturate_KMTree A T ad
-> ~~ ad_covered_not_front T' ad
-> Possible_acceleration T' ad' ad
-> a = computingE_acceleration T' ad' ad
-> Rel (to_FrontE T' ad', a :: A) (T,A)

When the previous cleaning and accelerating operations cannot be applied
on a front node (tested through No_Possible_acc for the accelerating opera-
tion), the algorithm performs an exploration from that front node by trying to

12

fire all the transitions from the label of that node. This label x is computed
after saturation via the function m_from_add, from the tree and the address σ
(denoted by ad below) of the node. The exploring operation (see Rel_explo
below) puts in the relation Rel the pair (T , A) with (T ′′′, A), where T ′′ is the
tree obtained from T ′ by removing valid nodes labeled by an ω-marking smaller
than x (implemented by removeE_strict_covered T' x), and T ′′′ is obtained
from T ′′ by removing the node at address σ from the front list, and by creating,
for each transition t such that there exists an ω-marking y such that x

t−→ y, a
front node Nσt labeled by λ(Nσt) = y and µ(Nσt) = ε (this last operation is
implemented by Front_extensionE).

Rel_explo (T:KMTE) A ad T' mc: Is_Front T ad
-> T'= saturate_KMTree A T ad
-> ~~ ad_covered_not_front T' ad
-> No_Possible_acc T' ad
-> Some mc = m_from_add T' ad
-> Rel (Front_extensionE (removeE_strict_covered T' mc) ad, A) (T,A)

5 The AbstractMinCov Algorithm
The Coq proofs of correctness and termination of the MinCov algorithm are
obtained by introducing a variant of that algorithm, called AbstractMinCov.
This new algorithm takes a small-step approach obtained by decomposing the
three main operations (cleaning, accelerating, and exploring) of the original
MinCov into sequences of five small-step operations presented in this section.

We implemented in Coq a formalization of AbstractMinCov and proved
the correctness and termination of that algorithm. Since the original MinCov
algorithm can be simulated by our algorithm, we obtain at the cost of a simple
Coq proof of simulation that the original MinCov algorithm is correct and
terminates. Compared to a direct proof, our approach provides more succinct
proofs in Coq, because proving that some properties are invariant is usually
easier for a small step than for a big step.

Compared to the original MinCov algorithm, which performs the three main
operations in a strict order, the five operations of AbstractMinCov can be
executed in any order. It follows that new exploration heuristics, for instance
the early discarding of subtrees after the discovering of an acceleration, can be
implemented without rewriting any proof of correctness or termination.

In Section 5.1, we introduce the (implicit) coverability trees, the central data
structure of the AbstractMinCov algorithm. In Section 5.2, we present the
five operations of the AbstractMinCov algorithm. Finally, in Section 5.3 we
provide some elements of our termination and correctness Coq proofs.

5.1 Coverability Trees
We implement the (implicit) coverability trees in Coq as the following inductive
definition KMTree:

13

Inductive KMTree := | Empty
| Br of markingc &

bool &
{ffun transition -> KMTree}.

As one can see, they are nearly the same as explicit coverability trees: we
just remove the sequence of accelerations that was previously part of the label
of a node. The invariant properties introduced for explicit coverability trees (see
the end of Section 4.1) have straightforward counterparts for the coverability
trees, which are similarly maintained throughout any execution of Abstract-
MinCov.

5.2 The Algorithm
AbstractMinCov also consists of a main while loop that updates a pair
(T , A), where T is a coverability tree instead of an explicit one, and A a finite
sequence of accelerations. Initially, the AbstractMinCov algorithm begins
with the pair (T , A) where A is the empty sequence ε and T is the coverabil-
ity tree reduced to a single valid front node Nε labeled by λ(Nε) = x0. This
tree is built by the Coq function KMTree_init. Then, at each round of the
loop, it picks one of the five operations it can apply on the pair, the one whose
precondition is met, and apply it. It terminates when none of the operations
have preconditions satisfied by the pair (T , A). At the end, A is discarded
and only T is returned. As AbstractMinCov is nondeterministic, we imple-
ment it as a relation, like we do for MinCov. More precisely, we implement it
in Coq as a binary relation Rel_small_step on those pairs (T , A) such that
Rel_small_step (T',A') (T,A) corresponds to a step of AbstractMinCov
from (T , A) to (T ′, A′). Hence all possible executions of AbstractMinCov
are encoded into decreasing sequences of Rel_small_step. Hence, by proving
its well-foundedness and its correctness, we prove that every execution of the
AbstractMinCov algorithm is correct and terminates.

Variant Rel_small_step :
(KMTree * seq acceleration) -> (KMTree * seq acceleration) -> Prop :=

| Rel_small_step_sat [...] (* saturating operation *)
| Rel_small_step_cln [...] (* cleaning operation *)
| Rel_small_step_acc [...] (* accelerating operation *)
| Rel_small_step_cov [...] (* covering operation *)
| Rel_small_step_exp [...] (* exploring operation *) .

In the file MinCov.v, operations of MinCov are proved to be simulated by
sequences of AbstractMinCov operations matching the following regular expres-
sions (for readability, the prefixes Rel_ and Rel_small_step_ are removed):

clean ⊆ sat∗ cln accel ⊆ sat∗ acc explo ⊆ sat∗ cov∗ exp

In MinCov, accelerations are added to the set A only during the accelerating
operation, and the added acceleration comes from the considered branch of the

14

tree. On the contrary, the five operations of AbstractMinCov allow new
accelerations to be added to A. Such accelerations could be computed from the
tree like in MinCov, but they could also be discovered by running an external
heuristic algorithm for example.

The saturating operation is a small-step version of the already seen function
saturate_KMTree, applying only one acceleration at a time instead of applying
as many accelerations as possible. It can be performed on any front node N
of label x and address ad such that x

a−→ y (i.e. y = apply_transitionc x a)
and x ̸= y, for some a ∈ A and some ω-marking y. The saturating operation
simply sets λ(N) to y (which is what the function saturate_a_little a T ad
does).

Rel_small_step_sat T A A' ad mc (a:acceleration) mc': Is_Front T ad
-> List.In a A
-> Some mc = m_from_add T ad
-> Some mc' = apply_transitionc mc a
-> mc != mc'
-> Rel_small_step (saturate_a_little a T ad, A'++A) (T,A)

The cleaning operation is basically the same as the one of MinCov. The
difference is that now the ω-marking of the considered node is required to be
already saturated (which can be obtained via the Rel_small_step_sat op-
eration). Also note that the removeE_add function has been replaced by the
remove_add function (with the same behavior) because of the change from KMTE
to KMTree. This is also the case for several other functions in the other opera-
tions.

Rel_small_step_cln T A A' ad: Is_Front T ad
-> saturated_node A T ad
-> ad_covered_not_front T ad
-> Rel_small_step (remove_add T ad, A'++A) (T,A)

The accelerating operation is abstracted compared to the MinCov equivalent
operation. More precisely, the acceleration used to justify the cut of the branch
via the to_Front function may come from previous stages of the algorithm,
or be guessed during the operation. In the latter case, the acceleration may
be computed as in MinCov. It follows that subtrees rooted in non-saturated
nodes can be discarded earlier than in MinCov.

Rel_small_step_acc T A A' ad mc : ~~ Is_Front T ad
-> Some mc = m_from_add T ad
-> ~~ (saturated_markingc mc (A'++A))
-> Rel_small_step (to_Front T ad, A'++A) (T,A)

The covering operation removes a node of T when it is covered by a node in
Front(T). It corresponds to a part of the exploring operation of MinCov. The
non-prefix requirement is here to ensure that a front node does not trigger its
own deletion.

15

Rel_small_step_cov T A A' ad mc ad' mc': Is_Front T ad
-> Some mc = m_from_add T ad
-> Some mc' = m_from_add T ad'
-> mc' <= mc
-> ~~ prefix ad' ad
-> Rel_small_step (remove_add T ad', A'++A) (T,A)

The exploring operation is an abstracted version of the one in MinCov.
It only performs the extension of some front node N without any additional
transformation. However, stronger requirements are needed. Namely, N must
be already saturated (this can be obtained thanks to the saturating operation),
and the non-front nodes must satisfy the Not_Front_Antichain property once
the front flag of N is switched to false (this can be obtained thanks to the
covering operation).

Rel_small_step_exp T A A' ad: Is_Front T ad
-> saturated_node A T ad
-> Not_Front_Antichain (remove_Front T ad)
-> Rel_small_step (Front_extension T ad, A'++A) (T,A).

5.3 Certification
Termination proofs of Karp-Miller algorithms are usually based on the fact that
≤ is a well-quasi-order over the set of ω-markings. As in [YSM17], we replace
this classical notion with the notion of almost-full relation [VCW12]. This
order is however just an ingredient and further arguments are needed. This is
especially true for MinCov, because the tree maintained in this algorithm may
not only grow, as in the original Karp-Miller algorithm, but also shrink. The
code can be found in the file Termination.v, including the following theorem,
where Acc is the predicate of the Coq standard library used in the constructive
definition of well-foundedness.

Theorem wf_Rel_small_step: forall (T : KMTree) (A : seq acceleration),
Front_leaves T ->
Not_Front_Antichain T ->
Acc Rel_small_step (T,A).

This theorem is proved thanks to a general well-founded rewriting relation
on trees described in the file wbr_tree.v.

Our correctness proof in Coq is close to the pen-and-paper one of Min-
Cov [FHK20]. Whereas the correctness proof of the original Karp-Miller al-
gorithm is based on branches, operations on trees performed by MinCov de-
pend on the complete tree. The correctness proof can be found in the file
Correctness.v, whose main theorem is the following one, where clos_refl_trans_1n
is the predicate for the reflexive and transitive closure, and Markings_of_T com-
putes the list of all ω-markings of the input coverability tree.

16

Theorem Correctness T A (m0: marking):
clos_refl_trans_1n _ Rel_small_step (T,A) (KMTree_init m0) ->
(forall T' A', ~ Rel_small_step (T',A') (T,A)) ->
clover m0 (Markings_of_T T).

As in [FHK20], this theorem is a corollary of two results, corresponding to
the two directions of the equivalence in the clover definition.

The main theorem of the file KMTrees.v, shown below, provides the first
direction by observing that the desired implication follows from the consistent
properties mentioned in Sections 4.1 and 5.1. The fact that these properties
are invariant (proved in file AbstractMinCov.v) implies that this implication is
in fact satisfied throughout the execution and not just when the algorithm has
terminated.

Theorem cover_consistent_KMTree A m0 T:
consistent_tree A T ->
consistent_head A m0 T ->
forall (mc: markingc) m,
mc \in Markings_of_T T ->
m \in mc ->
coverable m0 m.

The other direction is the main theorem of file Completeness.v.

Theorem Rel_small_step_all_covered T A (m0: marking):
clos_refl_trans_1n _ Rel_small_step (T,A) (KMTree_init m0) ->
(forall T' A', ~ Rel_small_step (T',A') (T,A)) ->
forall m, coverable m0 m -> exists (mc:markingc),
mc \in Markings_of_T T /\
m \in mc.

The following table summarizes the size of [YSM17]’s and our formalizations.
We import and use all files from [YSM17] except the Karp-Miller part.

[YSM17] (commit bbb0668)
Technical tools 631 lines

Petri net 1226 lines
Karp-Miller 775 lines

[This paper]
Technical tools 1790 lines

Petri net extension 1869 lines
MinCov and AbstractMinCov 5590 lines

6 Conclusion
We provide a complete Coq certification of MinCov, an algorithm that com-
putes the minimal basis of the coverability set (of a Petri net with an initial
marking). Our development is obtained by introducing a small-step variant of
that algorithm, called AbstractMinCov. This variant consists of smaller and

17

more abstract steps than in MinCov, and which can be performed in any or-
der. This gives a lot of freedom to an actual implementation of the algorithm,
leaving room for heuristics. In particular, the step Rel_small_step_acc can
prune any subtree rooted on a non-saturated node. Note that such a subtree is
necessarily removed at some step of the MinCov algorithm, since every node is
saturated when the algorithm terminates. This early removal will decrease the
total number of node comparisons that are performed by operations maintain-
ing the antichain property (Rel_small_step_cln and Rel_small_step_cov).
It would be interesting to quantify the actual impact of such a strategy, and more
generally, of all the heuristics permitted by our AbstractMinCov algorithm.

The constructive logic of Coq provides automatic correct-by-construction
Ocaml code extraction. This is however not currently possible because we use
relations to describe the algorithms in order to preserve their non-determinism.
It should be interesting in a future work to implement choice functions and
boolean versions of our Prop predicates, and to benchmark the extracted code
against the existing Python implementation of MinCov. Since most of our
predicates are already boolean functions (although their boolean natures are
hidden by a coercion), we think that obtaining an OCaml extraction would be
reasonably easy. However, obtaining an efficient one would require a significant
additional amount of work.

Acknowledgments.

We thank the anonymous TACAS reviewers for their numerous and very inter-
esting remarks.

References
[ALS11] David Angeli, Patrick De Leenheer, and Eduardo D. Sontag. Persis-

tence results for chemical reaction networks with time-dependent
kinetics and no global conservation laws. SIAM Journal on Ap-
plied Mathematics, 71(1):128–146, 2011. URL: http://www.jstor.
org/stable/41111581, doi:10.1137/090779401.

[BCMS10] Paolo Baldan, Nicoletta Cocco, Andrea Marin, and Marta Sime-
oni. Petri nets for modelling metabolic pathways: A sur-
vey. Natural Computing, 9:955–989, 12 2010. doi:10.1007/
s11047-010-9180-6.

[BG11] Laura Bozzelli and Pierre Ganty. Complexity Analysis of the Back-
ward Coverability Algorithm for VASS. In Giorgio Delzanno and
Igor Potapov, editors, Reachability Problems - 5th International
Workshop, RP 2011, Genoa, Italy, September 28-30, 2011. Pro-
ceedings, volume 6945 of Lecture Notes in Computer Science, pages
96–109. Springer, 2011. doi:10.1007/978-3-642-24288-5_10.

18

http://www.jstor.org/stable/41111581
http://www.jstor.org/stable/41111581
https://doi.org/10.1137/090779401
https://doi.org/10.1007/s11047-010-9180-6
https://doi.org/10.1007/s11047-010-9180-6
https://doi.org/10.1007/978-3-642-24288-5_10

[BHO21] Michael Blondin, Christoph Haase, and Philip Offtermatt. Directed
Reachability for Infinite-State Systems. In Jan Friso Groote and
Kim Guldstrand Larsen, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems - 27th International Conference,
TACAS 2021, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2021, Luxembourg
City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part II,
volume 12652 of Lecture Notes in Computer Science, pages 3–23.
Springer, 2021. doi:10.1007/978-3-030-72013-1_1.

[CLL+19] Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Ler-
oux, and Filip Mazowiecki. The reachability problem for Petri nets
is not elementary. In Moses Charikar and Edith Cohen, editors,
Proceedings of the 51st Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pages 24–33. ACM, 2019. doi:10.1145/3313276.3316369.

[CO21] Wojciech Czerwinski and Lukasz Orlikowski. Reachability in Vec-
tor Addition Systems is Ackermann-complete. In 62nd IEEE An-
nual Symposium on Foundations of Computer Science, FOCS 2021,
Denver, CO, USA, February 7-10, 2022, pages 1229–1240. IEEE,
2021. doi:10.1109/FOCS52979.2021.00120.

[DL20] Alex Dixon and Ranko Lazic. KReach: A Tool for Reachability
in Petri Nets. In Armin Biere and David Parker, editors, Tools
and Algorithms for the Construction and Analysis of Systems -
26th International Conference, TACAS 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part
I, volume 12078 of Lecture Notes in Computer Science, pages 405–
412. Springer, 2020. doi:10.1007/978-3-030-45190-5_22.

[FFSS11] Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe
Schnoebelen. Ackermannian and Primitive-Recursive Bounds with
Dickson’s Lemma. In Proceedings of the 26th Annual IEEE Sym-
posium on Logic in Computer Science, LICS 2011, June 21-24,
2011, Toronto, Ontario, Canada, pages 269–278. IEEE Computer
Society, 2011. doi:10.1109/LICS.2011.39.

[FG20] Alain Finkel and Jean Goubault-Larrecq. Forward analysis for
WSTS, part I: completions. Math. Struct. Comput. Sci., 30(7):752–
832, 2020. doi:10.1017/S0960129520000195.

[FGRVB05] Alain Finkel, Gilles Geeraerts, Jean-François Raskin, and Laurent
Van Begin. A counter-example to the minimal coverability tree
algorithm. Université Libre de Bruxelles, Tech. Rep, 535, 2005.

[FHK20] Alain Finkel, Serge Haddad, and Igor Khmelnitsky. Minimal
Coverability Tree Construction Made Complete and Efficient. In

19

https://doi.org/10.1007/978-3-030-72013-1_1
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1007/978-3-030-45190-5_22
https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.1017/S0960129520000195

Jean Goubault-Larrecq and Barbara König, editors, Foundations of
Software Science and Computation Structures - 23rd International
Conference, FOSSACS 2020, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25-30, 2020, Proceedings, volume 12077 of
Lecture Notes in Computer Science, pages 237–256. Springer, 2020.
doi:10.1007/978-3-030-45231-5_13.

[Fin91] Alain Finkel. The Minimal Coverability Graph for Petri Nets. In
Grzegorz Rozenberg, editor, Advances in Petri Nets 1993, Papers
from the 12th International Conference on Applications and Theory
of Petri Nets, Gjern, Denmark, June 1991, volume 674 of Lecture
Notes in Computer Science, pages 210–243. Springer, 1991. doi:
10.1007/3-540-56689-9_45.

[GMT16] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A small scale
reflection extension for the Coq system. PhD thesis, Inria Saclay
Ile de France, 2016.

[GRVB07] Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. On
the Efficient Computation of the Minimal Coverability Set for Petri
Nets. In Kedar S. Namjoshi, Tomohiro Yoneda, Teruo Higashino,
and Yoshio Okamura, editors, Automated Technology for Verifica-
tion and Analysis, pages 98–113, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg. doi:10.1007/978-3-540-75596-8_9.

[Hac75] Michel Hack. Decidability Questions for Petri Nets. Outstanding
Dissertations in the Computer Sciences. Garland Publishing, New
York, 1975.

[HIL24] Thibault Hilaire, David Ilcinkas, and Jérôme Leroux. Petri-net-
in-coq, 2024. URL: https://archive.softwareheritage.org/swh:
1:rev:7b5523e30026266c471c73e911f0fda525c6f900;origin=https:
//gitub.u-bordeaux.fr/thhilaire/petri-net-in-coq.git.

[Jan90] Petr Jančar. Decidability of a Temporal Logic Problem for Petri
Nets. Theor. Comput. Sci., 74(1):71–93, 1990. doi:10.1016/
0304-3975(90)90006-4.

[KKW12] Alexander Kaiser, Daniel Kroening, and Thomas Wahl. Efficient
Coverability Analysis by Proof Minimization. In Maciej Koutny
and Irek Ulidowski, editors, CONCUR 2012 - Concurrency Theory
- 23rd International Conference, CONCUR 2012, Newcastle upon
Tyne, UK, September 4-7, 2012. Proceedings, volume 7454 of Lec-
ture Notes in Computer Science, pages 500–515. Springer, 2012.
doi:10.1007/978-3-642-32940-1_35.

[KM69] Richard M. Karp and Raymond E. Miller. Parallel Program
Schemata. J. Comput. Syst. Sci., 3(2):147–195, 1969. doi:
10.1016/S0022-0000(69)80011-5.

20

https://doi.org/10.1007/978-3-030-45231-5_13
https://doi.org/10.1007/3-540-56689-9_45
https://doi.org/10.1007/3-540-56689-9_45
https://doi.org/10.1007/978-3-540-75596-8_9
https://archive.softwareheritage.org/swh:1:rev:7b5523e30026266c471c73e911f0fda525c6f900;origin=https://gitub.u-bordeaux.fr/thhilaire/petri-net-in-coq.git
https://archive.softwareheritage.org/swh:1:rev:7b5523e30026266c471c73e911f0fda525c6f900;origin=https://gitub.u-bordeaux.fr/thhilaire/petri-net-in-coq.git
https://archive.softwareheritage.org/swh:1:rev:7b5523e30026266c471c73e911f0fda525c6f900;origin=https://gitub.u-bordeaux.fr/thhilaire/petri-net-in-coq.git
https://doi.org/10.1016/0304-3975(90)90006-4
https://doi.org/10.1016/0304-3975(90)90006-4
https://doi.org/10.1007/978-3-642-32940-1_35
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1016/S0022-0000(69)80011-5

[Las22] Slawomir Lasota. Improved Ackermannian Lower Bound for the
Petri Nets Reachability Problem. In Petra Berenbrink and Ben-
jamin Monmege, editors, 39th International Symposium on The-
oretical Aspects of Computer Science, STACS 2022, March 15-
18, 2022, Marseille, France (Virtual Conference), volume 219 of
LIPIcs, pages 46:1–46:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.STACS.2022.46.

[Ler11] Jérôme Leroux. Vector addition system reachability problem: a
short self-contained proof. In Thomas Ball and Mooly Sagiv,
editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2011,
Austin, TX, USA, January 26-28, 2011, pages 307–316. ACM,
2011. doi:10.1145/1926385.1926421.

[Ler21] Jérôme Leroux. The Reachability Problem for Petri Nets is Not
Primitive Recursive. In 62nd IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 1241–1252. IEEE, 2021. doi:10.1109/
FOCS52979.2021.00121.

[LS19] Jérôme Leroux and Sylvain Schmitz. Reachability in Vector Addi-
tion Systems is Primitive-Recursive in Fixed Dimension. In 34th
Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–
13. IEEE, 2019. doi:10.1109/LICS.2019.8785796.

[LS21] Ranko Lazic and Sylvain Schmitz. The ideal view on Rackoff’s
coverability technique. Inf. Comput., 277:104582, 2021. doi:10.
1016/j.ic.2020.104582.

[MM81] Ernst W. Mayr and Albert R. Meyer. The Complexity of the Finite
Containment Problem for Petri Nets. J. ACM, 28(3):561–576, 1981.
doi:10.1145/322261.322271.

[PRA05] Mor Peleg, Daniel Rubin, and Russ B. Altman. Using Petri
Net Tools to Study Properties and Dynamics of Biological
Systems. Journal of the American Medical Informatics Associ-
ation, 12(2):181–199, 03 2005. arXiv:https://academic.oup.
com/jamia/article-pdf/12/2/181/2316365/12-2-181.pdf,
doi:10.1197/jamia.M1637.

[PV16] Artturi Piipponen and Antti Valmari. Constructing Minimal Cov-
erability Sets. Fundam. Informaticae, 143(3-4):393–414, 2016.
doi:10.3233/FI-2016-1319.

[Rac78] Charles Rackoff. The Covering and Boundedness Problems for
Vector Addition Systems. Theor. Comput. Sci., 6:223–231, 1978.
doi:10.1016/0304-3975(78)90036-1.

21

https://doi.org/10.4230/LIPIcs.STACS.2022.46
https://doi.org/10.1145/1926385.1926421
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1016/j.ic.2020.104582
https://doi.org/10.1016/j.ic.2020.104582
https://doi.org/10.1145/322261.322271
http://arxiv.org/abs/https://academic.oup.com/jamia/article-pdf/12/2/181/2316365/12-2-181.pdf
http://arxiv.org/abs/https://academic.oup.com/jamia/article-pdf/12/2/181/2316365/12-2-181.pdf
https://doi.org/10.1197/jamia.M1637
https://doi.org/10.3233/FI-2016-1319
https://doi.org/10.1016/0304-3975(78)90036-1

[RS11] Pierre-Alain Reynier and Frédéric Servais. Minimal coverabil-
ity set for petri nets: Karp and miller algorithm with prun-
ing. In International Conference on Application and Theory of
Petri Nets and Concurrency, pages 69–88. Springer, 2011. doi:
10.1007/978-3-642-21834-7_5.

[RS19] Pierre-Alain Reynier and Frédéric Servais. On the Computation
of the Minimal Coverability Set of Petri Nets. In Emmanuel Fil-
iot, Raphaël M. Jungers, and Igor Potapov, editors, Reachability
Problems - 13th International Conference, RP 2019, Brussels, Bel-
gium, September 11-13, 2019, Proceedings, volume 11674 of Lec-
ture Notes in Computer Science, pages 164–177. Springer, 2019.
doi:10.1007/978-3-030-30806-3_13.

[Sch16] Sylvain Schmitz. The complexity of reachability in vector addition
systems. ACM SIGLOG News, 3(1):4–21, 2016. doi:10.1145/
2893582.2893585.

[VCW12] Dimitrios Vytiniotis, Thierry Coquand, and David Wahlstedt. Stop
When You Are Almost-Full - Adventures in Constructive Termi-
nation. In Lennart Beringer and Amy P. Felty, editors, Interac-
tive Theorem Proving - Third International Conference, ITP 2012,
Princeton, NJ, USA, August 13-15, 2012. Proceedings, volume 7406
of Lecture Notes in Computer Science, pages 250–265. Springer,
2012. doi:10.1007/978-3-642-32347-8_17.

[YSM17] Mitsuharu Yamamoto, Shogo Sekine, and Saki Matsumoto. For-
malization of Karp-Miller tree construction on petri nets. In Yves
Bertot and Viktor Vafeiadis, editors, Proceedings of the 6th ACM
SIGPLAN Conference on Certified Programs and Proofs, CPP
2017, Paris, France, January 16-17, 2017, pages 66–78. ACM,
2017. doi:10.1145/3018610.3018626.

22

https://doi.org/10.1007/978-3-642-21834-7_5
https://doi.org/10.1007/978-3-642-21834-7_5
https://doi.org/10.1007/978-3-030-30806-3_13
https://doi.org/10.1145/2893582.2893585
https://doi.org/10.1145/2893582.2893585
https://doi.org/10.1007/978-3-642-32347-8_17
https://doi.org/10.1145/3018610.3018626

	Introduction
	Petri Nets
	Abstractions and Accelerations
	-Transitions
	Abstractions
	Abstraction Builder

	The Original MinCov Algorithm
	Explicit Coverability Trees
	Step Relation

	The AbstractMinCov Algorithm
	Coverability Trees
	The Algorithm
	Certification

	Conclusion

