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Fig. 1. A Wunderlich thin elastic ribbon (in blue, computed with ourMerci code) does not deform like a rectangular Kirchhoff thin elastic rod (in red, computed
(left) as a flat super-clothoid, and (right) with a shooting technique). Left: Starting from the exact same curly natural shape (in gray), the configuration of the
ribbon under its own weight substantially diverges from that of the rod even though both have the same rectangular cross-section and the same clamping
orientation. Right: Noticeable differences also appear in a clamped-clamped scenario where the ribbon/rod (with 𝑤/𝐿 = 1/12) is twisted by a half-turn (from
top to bottom). In these two scenarios, while the centreline of the rod remains inextensible, its surface stretches too much to represent a ribbon correctly. Note
that as the ribbon and the rod possess two distinct equilibria in both scenarios, we make sure to have them buckle “on the same side” to be able to compare
their geometry in a meaningful way.

Thin elastic ribbons represent a class of intermediary objects lying in-

between thin elastic plates and thin elastic rods. Although the two latter

families of thin structures have received much interest from the Computer

Graphics community over the last decades, ribbons have seldom been con-

sidered and modelled numerically so far, in spite of a growing number of

applications in Computer Design.

In this paper, starting from the reduced developable ribbon models [Sad-

owsky 1929; Wunderlich 1962] recently popularised in Soft Matter Physics,

we propose a both accurate and efficient algorithm for computing the stat-

ics of thin elastic ribbons. Inspired by the super-clothoid model for thin

elastic rods, our method relies on compact ribbon elements whose normal

curvature varies linearly with respect to arc length 𝑠 , while their geodesic

torsion is quadratic in 𝑠 . In contrast however, for the sake of efficiency, our

algorithm avoids building a fully reduced kinematic chain and instead treats
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each element independently, gluing them only at the final solving stage

through well-chosen bilateral constraints.

Thanks to this mixed variational strategy, which yields a banded Hessian,

our algorithm recovers the linear complexity of low-order models while pre-

serving the quadratic convergence of curvature-basedmodels. As a result, our

approach is scalable to a large number of elements, and suitable for various

boundary conditions and unilateral contact constraints, making it possible

to handle challenging scenarios such as confined buckling experiments or

Möbius bands with contact. Remarkably, our mixed algorithm proves an

order of magnitude faster compared to Discrete Elastic Ribbon models of the

literature while achieving, in a few seconds only, high accuracy levels that

remain out of reach for such low-order models. Additionally, our numerical

model can incorporate various ribbon energies, including the RibExt model

for quasi-developable ribbons recently introduced in Physics [Audoly and

Neukirch 2021], which allows to transition smoothly between a rectangular

Kirchhoff rod and a (developable) Sadowsky ribbon. Our numerical scheme is

carefully validated against demanding experiments of the Physics literature,

which demonstrates its accuracy, efficiency, robustness, and versatility.

Our Merci code is publicly available at https://gitlab.inria.fr/elan-public-

code/merci for the sake of reproducibility and future benchmarking.

CCS Concepts: • Computing methodologies → Animation; Physical
simulation.

Additional Key Words and Phrases: Thin elastic ribbon, curvature-based

element, constraints, contact, Möbius band
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1 INTRODUCTION
Thin elastic ribbons form a large class of structures encompassing

natural and manufactured objects that can be observed at vari-

ous scales, from macromolecules and carbon nanoribbons at the

nanoscale to plant leaves, paper strips, and wooden slats at the

macroscopic scale.

A thin (rectangular) ribbon is formally defined as a thin structure

with a thickness ℎ negligible compared to its width 𝑤 , the latter

being itself negligible compared to its length 𝐿. This leads to an

object with three characteristic dimensions ℎ,𝑤 , and 𝐿, satisfying

ℎ ≪ 𝑤 ≪ 𝐿 (see Figure 2). As such, a thin ribbon can be considered

to be an intermediary object lying in-between a thin plate (for which

ℎ ≪ 𝑤 ∼ 𝐿) and a thin rod (for which ℎ ∼ 𝑤 ≪ 𝐿).

The peculiar, narrow geometry of ribbons has led physicists to

imagine reduced models for ribbons, where all kinematic and elastic

quantities are, similarly to rod models, concentrated on a mid-line

called the centreline (see Figure 3). However, a crucial difference

between ribbons and rods is that the surface of a ribbon is, like

the surface of a plate, hardly stretchable. The first reduced models

of ribbons, namely the Sadowsky [1929] and Wunderlich [1962]

models, even consider the ribbon surface to be perfectly inextensible,

i.e. isometric to the initial flat rectangle, and hence developable.

While the Sadowsky model is limited to narrow ribbons (small𝑤 ),

the Wunderlich model captures singularities occurring near the

boundaries, and as such extends the validity domain to ribbons of

finite width𝑤 . Recently, a quasi-inextensible ribbon model [Audoly

and Neukirch 2021; Sano and Wada 2018] was introduced to better

account for the little stretching appearing especially in narrow

ribbons, allowing for a smooth transition between Kirchhoff rods

and Sadowsky ribbons.

ℎ

𝑤

𝐿
ℎ

𝑤

𝐿
ℎ

𝑤

𝐿

Fig. 2. Schematic of a thin rectangular ribbon (middle), lying in-between a
thin rod (left) and a thin plate (right).

In Computer Graphics, such reduced ribbonmodels remainmostly

unknown. Yet, recent years have seen the emergence of a large num-

ber of virtual design applications involving static equilibria of thin

elastic ribbons, from 3D free-form weaving [Ren et al. 2021; Vekhter

et al. 2019] to the design of new flexible metamaterials [Signer et al.

2021] and programmable matter [Hafner and Bickel 2021; Jourdan

et al. 2022]. For these applications, it is desirable to compute equilib-

rium shapes and forces with a high level of accuracy, suitable for the

design of real objects, while restraining the inherent computational

cost. This calls for aminimalist yet predictive static ribbon simulator,

able to cope with various constraints such as clamping conditions

and contact.

In this paper we introduce a static simulator dedicated to thin

elastic ribbons. Our numerical scheme is well-suited for the lat-

est reduced physical models elaborated for ribbons, which are still

the topic of active investigations in physics. Our approach, based

on compact curvature-based elements, is able to resolve challeng-

ing scenarios involving clamped-clamped boundary conditions and

contacting constraints in a both accurate and efficient way, often

outperforming the capabilities of the few existing implementations

of reduced ribbon models made in Physics, and at the same time

offering a fast and reliable tool suitable for virtual prototyping in

Computer Graphics.

2 RELATED WORK
In Computer Graphics, a large body of work has been conducted

since the 1990’s for simulating thin elastic bodies, especially thin

elastic rods, plates and shells. With the increasing interest of the

community for prototyping ribbons, it is interesting to note that

some of these numerical models are now being directed towards the

simulation of ribbons – at the risk of yielding an incorrect physical

behaviour or an unnecessarily high cost.

Ribbons as rods or plates. Motivated by applications in hair and

cloth animation, the Computer Graphics community has focused

in the past on computing the statics and dynamics of thin elastic

rods [Bergou et al. 2010, 2008; Bertails et al. 2006; Casati and Bertails-

Descoubes 2013; Hadap 2006; Pai 2002; Spillmann and Teschner

2007] and plates [Baraff and Witkin 1998; Choi and Ko 2002; English

and Bridson 2008; Narain et al. 2012]. In particular, for visual pur-

poses rod models have sometimes been extrapolated to emulate the

behaviour of narrow ribbons [Bergou et al. 2008, Fig. 5] [Casati and

Bertails-Descoubes 2013, Fig. 1, 12], without verifying the validity

of the rod model in this extended case.

More critically, all the recent virtual design applications men-

tioned in the introduction, which require a high level of predictabil-

ity, have been developed by simulating ribbons either as a flat rect-

angular rod, using a thin elastic rod simulator [Hafner and Bickel

2021; Ren et al. 2021], or as a strip of an elastic plate, based on a

thin plate simulator [Bartels and Hornung 2015; Huang et al. 2020;

Signer et al. 2021]. While the former class of models cannot repre-

sent ribbons accurately as soon as they deform in 3D (in particular,

the quasi-developability of the ribbon surface fails to be preserved

when torsion is at play, see Figure 1), the latter may be unnecessarily

costly as it strives to capture transverse deformations (solving for

equations across the width) which can be neglected in ribbons. Ad-

ditionally, approaching the inextensible limit of a ribbon (i.e., with

a vanishing thickness ℎ) turns out to be particularly challenging

using a plate model. Indeed, plate models usually suffer from a de-

graded convergence as they are made thinner and thinner (ℎ → 0), a

phenomenon called locking [Arnold and Brezzi 1997]. As explained

below, the Computer Graphics community has spent many years

striving to simulate inextensible plates, and fighting against locking.

Simulation of quasi-inextensible surfaces. To bypass the difficulty

of handling quasi-inextensible - hence stiff – plates, the first cloth

simulators developed in Graphics used to rely on an excessively low
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stiffness (disregarding the apparent thickness of the plate), caus-

ing unrealistic, overly stretchy deformations [Carignan et al. 1992;

Terzopoulos et al. 1987]. Implicit integration helped resolve stiff sys-

tems in a stable way while using large time steps [Baraff and Witkin

1998], however at the price of introducing some artificial numerical

damping, and requiring a large number of iterations to converge in

the limit of inextensible cloth. To solve these issues, various works

have attempted in the last decades to build efficient solvers for quasi-

inextensible cloth. Techniques range from the introduction of new

integration schemes [Choi and Ko 2002; Hauth et al. 2003] to the

combination of an overly soft plate material with some strain limit-

ing technique [Goldenthal et al. 2007; Provot 1995; Thomaszewski

et al. 2009], or even the use of non-conforming inextensible mesh

elements [English and Bridson 2008]. To our knowledge, all these

works focus on a triangular or quad mesh to represent the cloth

surface, and none of them leverages a reduced parametrisation dedi-

cated to an inextensible surface. The bending energy
1
of the cloth is

classically discretised using an edge-based discrete formula for the

mean curvature [Bridson et al. 2003; Chen et al. 2018; Grinspun et al.

2003; Solomon et al. 2012]. However such discrete schemes have

been shown to converge slowly, if at all, when the plate undergoes

singularities, like for instance in the lateral bending test [Romero

et al. 2021] where a boundary layer emerges near the clamping. In

their origami-like representation of developable surfaces, in which

fold lines are explicitly provided by a user, Solomon et al. [2012,

Section 5.1] sidestep the problem by discarding singular areas in

the bending energy computation of the smooth patches.

Interestingly, Schreck et al. [2015] combine standard cloth sim-

ulation [Narain et al. 2012] with an explicit developable surface

representation to simulate paper crumpling. At each time step, a

coarse simulation is performed and the resulting surface is remeshed

using elementary developable surfaces such as planar patches or

generalised cones emerging from singular locations that are detected

on the fly. Still, similarly to most former works, the developability

constraint is enforced as a post-processing step on top of an overly

stretchy step. In contrast, although our approach is for now limited

to narrow plates (singularities may only happen at the boundaries),

we directly formulate the discrete equations for a perfectly devel-

opable plate – possibly relaxed to a quasi-developable plate – and

capture smooth deformations as well as singularities using a unique

surface representation.

Computer-aided design of developable surfaces. Originally, devel-
opable surfaces, i.e. surfaces isometric to a plane [Do Carmo 2016],

found some practical importance to the sheet-metal-based industry,

where flat patches are deformed without in-plane distortion – or,

in other words, by pure bending – before being assembled. In this

context, a number of algorithms were proposed in Computer-Aided

Design from the 80’s in order to manipulate developable patches vir-

tually [Pottmann and Farin 1995]. Recently, there has been renewed

interest for developable surfaces in Computer Graphics, owing to

the emergence of new applications for virtual prototyping, such as

architectural design from bent panels [Kilian et al. 2008], pattern-

based cloth modelling [Decaudin et al. 2006; Pietroni et al. 2022], or

1
The bending energy of a developable plate reads

∬
𝐻 2𝑑A, where 𝐻 is the mean

curvature of the surface [Sadowsky 1929] [Audoly and Pomeau 2010, Section 6.6].

paper-based object manipulation and origami art [Bös et al. 2017;

Dudte et al. 2016; Signer et al. 2021; Tang et al. 2016; Wolf et al. 2021].

In this context, a range of different characterisations of developable

surfaces were explored in the continuous and discrete settings, from

ruled surfaces to envelopes of tangent planes and rank deficient

second fundamental forms [Bo and Wang 2007; Inza et al. 2022;

Liu et al. 2006; Pan et al. 2016; Tang et al. 2016]. Interestingly, new

reduced parametrisations were even proposed in the latest years,

in particular networks of orthogonal geodesics [Rabinovich et al.

2018a,b]. However, to our knowledge such kinematic descriptions

are not associated to any physically realistic elastic energy for the

deformed surface: an ad-hoc discrete surface energy, such as the

Laplacian energy of the displacement w.r.t the rest shape, is gener-

ally used. The accurate computation of the mean curvature of the

surface, which is a difficult task especially in the presence of singu-

larities (e.g. when the rulings cross each other at the boundary), is

then omitted.

As such, our work can be seen as orthogonal to these geometrical

methods. We do not search for the best geometric parametrisation

to manipulate flat surfaces isometrically, but focus instead on accu-

rately solving the physics of ribbons in the presence of singularities.

This objective raises a number of specific numerical difficulties,

hardly overcome in the past. Our choice of degrees of freedom takes

inspiration from the curvature-based discretisation of Kirchhoff

rods [Casati and Bertails-Descoubes 2013; Charrondière et al. 2020],

coupled with the explicit representation of rulings over the devel-

opable surface of the ribbon. The developability assumption can be

slightly relaxed so as to extend the range of physical validity of our

simulator, as shown in the last part of the paper.

Overall, our work can be seen as a first step in Computer Graph-

ics towards the merging of developable surface parametrisation

and quasi-inextensible plate simulation. One key element of our

approach is to rely upon reduced (1D) physical models for mod-

elling quasi-inextensible plates, which so far have been successfully

developed in Physics in the specific case of narrow plates: reduced
ribbon models.

Simulation of reduced ribbon models. The equations of reduced
ribbon models, extensively described in Section 4, have been so far

mostly solved by physicists using shooting techniques, i.e. taking the

strong form of the equations with boundary conditions and solving

them with a Newton solver [Moore and Healey 2019; Neukirch and

Audoly 2021; Starostin and van der Heijden 2015]. Although this

kind of technique is powerful enough to compute accurate phase

diagrams by continuation, its success remains highly dependent on

the choice of the first iterate – the warm start – and requires tiny

parameter changes to go from one static configuration to another.

Beyond the tedious setup procedure it involves, shooting remains

difficult to extend to intermittent boundary conditions like contact.

In the absence of flexible and publicly available numerical tools

for simulating ribbons subject to contact and clamping conditions,

researchers in Mechanics still rely, like in Computer Graphics, on

thin elastic rod simulators for applications in design, even though

structures of interest are ribbons [Lestringant and Kochmann 2020].

Very recently, two interesting alternatives were inspired by rod

models developed in Computer Graphics. On the one hand, the

, Vol. 1, No. 1, Article . Publication date: June 2024.
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Discrete Elastic Rod (DER) model [Bergou et al. 2010, 2008] has

been extended to Wunderlich ribbons in the naturally flat case, first

in Computer Graphics [Shen et al. 2015], then in Mechanics [Huang

et al. 2022; Korner et al. 2021], and validated against the Möbius

band experiment. Huang et al. [2022] even incorporates the quasi-

developable RibExt energy [Audoly and Neukirch 2021] to the

DER formulation, and replicate some of the numerical experiments

performed initially by Audoly and Neukirch [2021]. As shown in

our paper (see Section 7.4), one important drawback of DER ribbons

is the low order (segment-based) geometry of the underlying model,

which calls for a very high number of segments – hence some

significant computational cost – to reach accurate configurations. In

addition, various regularisation strategies may be required to reach

a given equilibrium, especially for dealing with singular points or

large ribbons.

On the other hand, Charrondière et al. [2020] have instead ex-

plored a high order strategy, by developing curvature-based ele-

ments for inextensible ribbons. The key of their numerical approach

is to adapt the adaptive power series computation introduced in the

super-clothoid model [Casati and Bertails-Descoubes 2013] to the

accurate, quasi-formal computation of all kinematic terms of Sad-

owsky and Wunderlich ribbons. While this approach is capable of

computing accurate equilibria for clamped-free inextensible ribbons,

possibly with natural curvature, it is not well-suited for clamped-

clamped conditions nor to a very large number of elements – often

necessary to deal with contact –, owing to its chained kinematic

structure.

3 CONTRIBUTIONS
In this paper, we develop a realistic yet efficient static simulator

dedicated to thin elastic ribbons subject to various constraints, with

a high level of predictability adapted to the needs of virtual proto-

typing. Our work builds upon the accurate model of Charrondière et

al. [2020] based on a curvature-based discretisation of both the Sad-

owsky [1929] and the Wunderlich [1962] reduced models for thin

developable ribbons. After describing the reduced physical ribbon

model of the literature (Section 4), we substantially improve [Char-

rondière et al. 2020]’s numerical model and validate it by:

• Making it scalable to a large number of elements, thanks

to a mixed algorithm gluing curvature-based elements to-

gether through well-chosen bilateral constraints. Our ap-

proach, which decreases the complexity from cubic to linear,

is able to tackle complex scenarios involving various bound-

ary conditions and contact (Section 5);

• Extensively verifying the numerical accuracy of our mixed

algorithm against quantitative 2D and 3D scenarios, with and

without contact (Sections 6, 7 and 8);

• Comparing thoroughly our mixed curvature-based formula-

tion, in terms of accuracy and cost, against a recent static DER-

like implementation of reduced ribbons [Korner et al. 2021].

Because it combines the advantages of both high-order con-

vergence and linear complexity, our mixed algorithm is found

to offer a remarkably effective alternative to DER, showing

on our tests more than 100× speed-ups for low to moderate

accuracy, and unique capabilities to reach high accuracies

(Section 7.4);

• Incorporating a new ribbon energy for an extended validity

range of our approach, namely the recent RibExt energy

for quasi-developable ribbons [Audoly and Neukirch 2021],

which allows to transition smoothly between a rectangular-

section Kirchhoff rod and a (developable) Sadowsky ribbon

(Section 9).

4 GEOMETRY AND PHYSICS OF RIBBONS
Elastic rods, Figure 2 left, have a small cross-section and conse-

quently all geometric quantities are defined on a 1D model, with

centreline r(𝑠). Their equilibrium equations are ordinary differential

equations, where the arc length 𝑠 is the only independent variable.

Elastic plates (or shells), Figure 2 right, have a small thickness but

comparable width and length. Consequently the description of their

geometry involves 2 independent variables (e.g. 𝑥 and𝑦 in the linear

case) and the equilibrium equations controlling their displacement

(𝑧 = 𝑧 (𝑥,𝑦) in the linear case) are partial differential equations. In

both theories, the thickness of the rod or the plate is small and hence

their stretching rigidity (which scales as O(ℎ)) is large compared

to their bending rigidity (which scales as O(ℎ3
)). As a consequence,

little stretching is present in equilibrium configurations [Audoly

and Pomeau 2010; Dill 1992].

Elastic ribbons, Figure 2 middle, are intermediate structures be-

tween rods and plates. As their width is small compared to their

length, the mechanical state from the plate description is averaged

over the width to obtain a 1D model. Consequently, as for rods,

ribbons have equilibrium equations which involve a centreline r(𝑠)
and which are ordinary differential equations. Nevertheless their

large width-to-thickness ratio makes their behaviour clearly distinct

from that of elastic rods, see Figure 1.

In rods models, the large stretching rigidity often leads to dealing

with an inextensible centreline, |r′(𝑠) | = 1, but the material of the

cross-section around the centreline is considered extensible (and

incidentally this is how the bending rigidity of rods is computed).

For ribbons, the large stretching rigidity has motivated early mod-

els [Hinz and Fried 2015; Sadowsky 1929; Todres 2015; Wunderlich

1962] to consider an inextensible mid-surface. Such reduced pa-

rameterisations involve an inextensible centreline r(𝑠) and a set of

rulings to geometrically describe the (inextensible) mid-surface of

the ribbon. A more recent ribbon model keeps the inextensibility

of the centreline (|r′(𝑠) | = 1) but allows for stretching of the mid-

surface [Audoly and Neukirch 2021], and we show in Section 9 that

this finite (although large) stretching resistance may in some cases

have a large impact on the behaviour of the ribbon.

In the following, we restrict ourselves to the case of a rectangular

ribbon with a uniform thickness ℎ, and we denote𝑤 the width and

𝐿 the length of the ribbon (see Figure 2, middle). We consider the

rest mid-surface to be flat or possibly curved in the normal direction

(see Figure 1, left). For the sake of simplicity, we only consider rest

mid-surfaces with no geodesic curvature, i.e. the surface can only

bend around its tangent axes d1 and d3 (through normal curvature
and geodesic torsion, respectively), but not around its normal d2 (see

Figure 3). We leave this extension [Dias and Audoly 2014; Yu et al.
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Fig. 3. Kinematics of a developable ribbon.

2021] for future work. As the geodesic curvature is conserved when

the ribbon deforms, geodesic curvature stays zero at all times.

4.1 Developable case
We start with the case of a purely inextensible ribbon, that is a

ribbon whose mid-surface can only deform isometrically. As the

rest mid-surface is rectangular with no Gaussian curvature, it means

that the ribbon mid-surface always preserves a vanishing Gauss

curvature, hence it is developable.

Kinematics. The developability of the ribbon mid-surface allows

one to describe its shape with only two scalar functions, the normal
curvature 𝜅 (𝑠), and the ruling direction 𝜂 (𝑠). These two quantities

are described hereafter.

As illustrated in Figure 3, the variable 𝑠 ∈ [0, 𝐿] is the arc length
along the centreline r(𝑠), which is a 3D curve along the ribbon. To

follow the deformation of the material around the centreline, we

use a set of three orthonormal Cosserat directors R = {d1, d2, d3}
which are organised as columns inside the matrix R(𝑠).

This material frame is such that d2 is normal to the ribbon surface

and {d1, d3} span the tangent plane to the surface, the vector d3

being the tangent of the centreline r(𝑠),

r′(𝑠) = d3 (𝑠)
= R(𝑠) e𝑧 , (1)

where e𝑧 is the third vector of the 3D canonical basis. Similarly to

Kirchhoff rods, the SO3 structure of the material frame R(𝑠) yields
the existence of a so-called Darboux vector Ω(𝑠) = 𝜅1 (𝑠)d1 (𝑠) +
𝜅2 (𝑠)d2 (𝑠) + 𝜅3 (𝑠)d3 (𝑠) dictating the space evolution of R as the

so-called Darboux problem,

R ′(𝑠) = R(𝑠) [𝜅𝜅𝜅]×, (2)

where [𝜅𝜅𝜅]× is the skew-symmetric matrix of the 3D curvature vector

𝜅𝜅𝜅 (𝑠) = {𝜅1 (𝑠), 𝜅2 (𝑠), 𝜅3 (𝑠)} [Charrondière et al. 2020, Section 2.2].

Unlike Kirchhoff rods though, our choice of ribbonmodel imposes

further constraints on the curvatures. In particular, disregarding

geodesic curvature yields 𝜅2 = 0. The only remaining quantity al-

lowing for bending of the ribbon surface is𝜅1 (𝑠) = 𝜅 (𝑠), which is the
normal curvature of the surface. Finally, the second non-vanishing

scalar function 𝜅3 (𝑠), which allows the ribbon to twist, is referred

to as the geodesic torsion of the ribbon. We explain in the following

how the geodesic torsion relates to the normal curvature and to the

ruling parametrisation of the mid-surface.

Developable surfaces being ruled surfaces, there is a set of rulings

spanning the surface of the ribbon. The direction of each ruling q
varies with the function 𝜂 and is defined by

q(𝑠) = d1 (𝑠) + 𝜂 (𝑠)d3 (𝑠) . (3)

This vector is not unit length and the corresponding ruling segment

is

{
r(𝑠) + 𝑡 q(𝑠), 𝑡 ∈ [−𝑤

2
, 𝑤

2
]
}
, see e.g [Charrondière et al. 2020;

Dias and Audoly 2015]. From (3) we have 𝜂 (𝑠) = tan𝜃 (𝑠), with 𝜃 (𝑠)
being the angle between the ruling q and the first frame vector

d1 at arc length 𝑠 . We stress here that the rulings are not material

lines drawn on top of the ribbon surface: in contrast they change

direction as the curvature of the ribbon surface evolves, to always

follow a straight path.

As shown in [Dias and Audoly 2015], the developability of the

mid-surface imposes the geodesic torsion 𝜅3 (𝑠) to be equal to the
product𝜅 (𝑠)𝜂 (𝑠), which corresponds to enforcing a vanishing Gauss
curvature.We are thus left with two scalar functions for representing

the exact degrees of freedom of the ribbon kinematics: 𝜅 (𝑠) and 𝜂 (𝑠).
Furthermore, as explained e.g. in [Charrondière et al. 2020; Dias

and Audoly 2015], for the rulings not to intersect each other on

the ribbon surface, we need to enforce the so-called Wunderlich

constraint,

|𝑤 𝜂 ′(𝑠) | ≤ 2 (4)

for 𝑠 ∈ [0,𝐿].
Finally, the Darboux vector can be written as Ω(𝑠) = 𝜅 (𝑠)q(𝑠)

and the Darboux problem (2) simplified as

R ′(𝑠) = R(𝑠) ©«
0 −𝜅 (𝑠) 𝜂 (𝑠) 0

𝜅 (𝑠)𝜂 (𝑠) 0 −𝜅 (𝑠)
0 𝜅 (𝑠) 0

ª®¬ , (5)

which together with Equation (1) and the initial values r(0), R(0)
uniquely generate the shape of the deformed surface of the ribbon.

Note that for the sake of simplicity, it is common to draw the

ribbon shape using the rulings [Charrondière et al. 2020; Dias and

Audoly 2015], thereby yielding a trapezoidal shape at the boundaries.

One possible drawback is that at the 𝑠 = 0 and 𝑠 = 𝐿 extremities,

the ribbon edges may appear slanted, see Figure 28, top, in the

clamped-clamped case (with unconstrained 𝜂 (𝐿)) and Figure 3 in

the clamped-free case (out of equilibrium solution). However, this

skewed boundary issue disappears in the clamped-clamped case in

which 𝜂 (0) and 𝜂 (𝐿) are set to zero, see Figure 28, middle. Similarly,

this issue is naturally fixed in the clamped-free case as 𝜂 (𝐿) vanishes
at equilibrium due to the absence of external torque at 𝑠 = 𝐿. For

these reasons we found that implementing the exact surface at the
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boundary, which is possible
2
though non-trivial, was not necessary

in this paper.

Elastic energy. To enrich the model, the ribbon can have some

natural normal curvature �̆� (see Figure 1, left). Following [Dias and

Audoly 2015, Sec. 6.1], theWunderlich elastic energy of a rectangular

ribbon with natural normal curvature �̆� reads

𝐸W =
𝐷𝑤

2

∫ 𝐿

0

[
𝜅2

(
1 + 𝜂2

)
2

𝜓 (𝑤𝜂 ′) − 2�̆�𝜅 (1 + 𝜈𝜂2)
]
d𝑠 , (6a)

𝜓 (𝑤𝜂 ′) = 1

𝑤𝜂 ′
log

(
2 +𝑤𝜂 ′
2 −𝑤𝜂 ′

)
, (6b)

where 𝐷 = 𝑌ℎ3

12(1−𝜈2) is the bending modulus of the surface, 𝑌 the

Young modulus and 𝜈 is the Poisson ratio
3
. In the limit 𝜂 ′𝑤 → 0,

the Wunderlich energy 𝐸W boils down to the (simpler) Sadowsky

energy,

𝐸S =
𝐷𝑤

2

∫ 𝐿

0

𝜅2

(
1 + 𝜂2

)
2

− 2�̆�𝜅 (1 + 𝜈𝜂2)d𝑠 , (7)

which, unlike the Wunderlich energy, does not avoid possible cross-

ings of the rulings (no log term). As such, the Sadowsky energy is

valid at small widths𝑤 only (i.e. when the Wunderlich constraint

is inactive). For developable ribbons of moderate to large widths,

the Wunderlich model, though more complex to evaluate, should

be considered instead.

4.2 Quasi-developable case
The RibExt model, which accounts for the presence of stretching

on the ribbon surface, is an extension of the work of Shield [1992]

as it includes twist in addition to bending. Even if the surface of

the ribbon is no longer developable and hence no longer contains

rulings, we nevertheless keep on using the variable 𝜂 (𝑠), out of
convenience. The model, which has been detailed in Audoly and

Neukirch [2021], makes use of the curvature𝜅 (𝑠) and twist 𝜂 (𝑠) 𝜅 (𝑠)
to describe the geometry of the ribbon. Its elastic energy is

𝐸R =
𝐷𝑤

2

∫ 𝐿

0

(1 − 𝜈2)𝜅2

(
1 + 2

1 + 𝜈 𝜂
2 +

(
𝜈 + 𝜂2

)
2

1 − 𝜈2
𝝓 (𝑥)

)
d𝑠 (8a)

𝝓 (𝑥) = 1 − 2

𝑥

cosh𝑥 − cos𝑥

sinh𝑥 + sin𝑥
, 𝑥 =

[
3(1 − 𝜈2)

]
1/4

(
𝑤2 |𝜅 |
ℎ

) 1

2

(8b)

The function 𝝓 takes values in [0,1), increasing monotonically

from 𝝓 (0) = 0 to 𝝓 (+∞) = 1. On the one hand, when 𝝓 = 0, we

recover the elastic energy of a Kirchhoff rod with a flat section,

having a ratio of twist to bending rigidities equal to 2/(1 + 𝜈), see
e.g. [Lurie 2005, Chapter 6]. On the other hand, when 𝝓 = 1, we

recover the elastic energy of a Sadowsky ribbon. The RibExt model

can then interpolate between narrow (small width𝑤 , hence small 𝝓)
and wide (large width𝑤 , hence 𝝓 ≃ 1) structures, the appropriate

2
Ribbon models are 1D Cosserat-type models whose actual section shape is known

[Audoly and Neukirch 2021]: at every abscissa 𝑠 the deformed section in the (d1, d2)
plane could be drawn instead of the straight ruling. In such a case no trapezoidal effect

would appear.

3
Note that for a naturally flat ribbon (�̆� = 0), the parameter 𝜈 vanishes from the integral

and remains only in the bending modulus.

measure to decide which behaviour the system is following being

the Shield number

Sh =
𝑤2

ℎ 𝐿

∫ 𝐿

0

|𝜅 (𝑠) | d𝑠 , (9)

with the system being midway between rod and ribbon when 𝝓 =

0.5, that is Sh ≃ 10. An important point to stress is that the Shield

number depends on the actual equilibrium state of the structure

through the local normal curvature 𝜅 (𝑠). Consequently, a ribbon
with a moderate ratio

𝑤2

ℎ 𝐿
may nevertheless have a small Shield num-

ber (and have a rod-like behaviour) if bending is small everywhere,

i.e. |𝜅 (𝑠) | 𝐿 ≪ 1 for all 𝑠 .

4.3 Energy minimisation
In addition to the elastic deformation energy, we consider the gravity

potential energy associated with gravity vector g. To write this

potential energy for the ribbon, we use, following [Charrondière

et al. 2020], the approximation in which the mass is concentrated

on the centreline. Without this approximation, the numerical model

may artificially increase𝜂 at the extremities to lower the total energy.

We obtain

𝐸𝐺 = −
∫ 𝐿

0

𝜌ℎ𝑤 r(𝑠) · g d𝑠

= −𝜌ℎ𝑤g ·
∫ 𝐿

0

r(𝑠) d𝑠 , (10)

where 𝜌 is the density of the material.

We end up with a total potential energy depending on the vector

X ∈ R𝑛 , which gathers all degrees of freedom

𝐸 (X) = 𝐸
el
(X) + 𝐸𝐺 (X) (11)

where 𝐸
el
stands for either 𝐸S , 𝐸W or 𝐸R . In the examples treated

in Section 6, the modelling of e.g. the anchoring of the ribbon, or

of the contact with obstacles, introduces equality and inequality

constraints, ℎ 𝑗 (X) = 0 and 𝑔𝑘 (X) ≥ 0 respectively. The energy (11)

is therefore minimised through the use of the Lagrangian

L(X) = 𝐸 (X) − 𝜆 𝑗 ℎ 𝑗 (X) − 𝜇𝑘 𝑔𝑘 (X) (12)

and its associated Kuhn-Tucker conditions for optimality, see e.g.

[Luenberger 1973]. In practical examples, we found it convenient to

use the Ipopt solver [Wächter and Biegler 2006], which finds local

minima of the energy (i.e. stable equilibrium solutions) satisfying

both equality and inequality conditions. More precisely, the algo-

rithm relies on the Interior Point Method with adaptive barrier up-

date [Nocedal et al. 2009; Wächter and Biegler 2006]. In this method,

a sequence of barrier problems is solved for a decreasing sequence of

barrier parameters 𝜇 converging to zero. Equivalently, this process

can be viewed as solving the primal-dual equations associated to

the Lagrangian (12) through homotopy, with a homotopy param-

eter 𝜇 progressively driven towards zero. During homotopy, each

regularised problem is (approximately) solved through a damped

Newton solver, which in turn requires factorising the Hessian of

the ribbon energy at each internal step.
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5 MIXED VERSUS CHAINED ELEMENTS
We present in this section a numerical implementation of the physi-

cal models listed in the previous section. This numerical implemen-

tation is based on the earlier work of Charrondière et al. [2020] but

brings key new features which enable us to tackle a much wider

range of scenarios. The simulator seeks for stable equilibrium con-

figurations through the minimisation of the ribbon energy.

5.1 The chained model of Charrondière et al. [2020]
We quickly summarise here the main aspects of the previous model

of Charrondière et al. [2020], named here the chained model, in

order to better emphasise the improvements of our new, so-called

mixed model. The chained model is a curvature-based approach

where the ribbon configuration is completely defined by the two

scalar functions 𝜂 (𝑠) and 𝜅 (𝑠), together with the position r(0) and
orientation R(0) at the 𝑠 = 0 extremity of the ribbon. We recall

that the geodesic curvature of the ribbon is kept zero, see Section 4.

Once the normal curvature 𝜅 (𝑠) and the geodesic torsion 𝜅 (𝑠) 𝜂 (𝑠)
are known, the orientation R(𝑠) and the position r(𝑠) of the entire
ribbon are obtained through integration of the Darboux system (1),

(5). In [Charrondière et al. 2020] the ribbon is split into 𝑝 elements

and a piecewise linear discretisation for the 𝜅 (𝑠) and 𝜂 (𝑠) functions
is used over the length of the rod: 𝜅 (𝑖) = 𝑎 (𝑖)𝑠 (𝑖) + 𝑏 (𝑖) , 𝜂 (𝑖) =

𝑐 (𝑖)𝑠 (𝑖) + 𝑑 (𝑖) , with 𝑠 (𝑖) ∈ [0, 𝐿 (𝑖) ] the local arc length, and 𝐿 (𝑖)

the length of element 𝑖 . With the exception of the first element,

continuity of the functions 𝜂 (𝑠) and 𝜅 (𝑠) imposes the constraints

𝑏 (𝑖+1) − 𝑏 (𝑖) − 𝑎 (𝑖)𝐿 (𝑖) = 0 (13a)

𝑑 (𝑖+1) − 𝑑 (𝑖) − 𝑐 (𝑖)𝐿 (𝑖) = 0 (13b)

which are used to replace the𝑏 (𝑖) and𝑑 (𝑖) variables andwe therefore
end up in total with only 2 + 2𝑝 scalar degrees of freedom. Starting

with these 2 + 2𝑝 degrees of freedom and the position r(0) and
orientation R(0) at 𝑠 = 0, one can integrate the Darboux system

successively in each element 𝑖 = 0, . . . , 𝑝 − 1 using the power series

summation algorithm described in [Charrondière et al. 2020] and

adapted from [Casati and Bertails-Descoubes 2013]. Consequently

the, say, position at the start of element 𝑘 , is determined from the

computation of r and R in the previous 𝑘 − 1 elements: one obtains

a model with chained elements.

The consequence of dealing with such a kinematic chain is a

dense Hessian and hence a costly Newton step: As the number 𝑝

of elements increases, factorising the Hessian (using e.g. a LU or

Cholesky factorisation) increases as 𝑂 (𝑝3). The chained model has

been proven in [Charrondière et al. 2020] to address accurately and

efficiently various clamped-free scenarios, but we show here that it

poorly scales to a number of elements larger than 20, and fails to

cope with clamped-clamped boundary conditions, see Section 5.6

and Figure 6. In contrast, our new mixed model recovers a sparse

banded Hessian and thus a linear complexity with the number 𝑝

of elements. In the Möbius and confined ribbon tests presented in

Section 6, the number of elements used was typically 𝑝 ∼ 𝑂 (100),
for a computational cost of a few seconds only.

5.2 Our new mixed model
To address the shortcomings of the chained model, and also deal

easily with clamped-clamped (see Figure 4) or circular boundary

conditions (see Figure 7), or with contact with obstacles (see Fig-

ure 13), we introduce a model where elements are independent of

each other, even though this means dealing with redundant degrees

of freedom. Elements are glued to each other through well-chosen

matching constraints, as detailed hereafter.

Independent elements. We consider that for each element 𝑖 , the

two scalars in the normal curvature 𝜅 (𝑖) = 𝑎 (𝑖)𝑠 (𝑖) +𝑏 (𝑖) and the two
scalars in the direction 𝜂 (𝑖) = 𝑐 (𝑖)𝑠 (𝑖) + 𝑑 (𝑖) are degrees of freedom,

in addition to the position r(𝑖) = r(𝑠 (𝑖) = 0) (represented as a 3D

vector) and orientation R (𝑖) = R(𝑠 (𝑖) = 0) (represented by the nine

scalar entries of the rotation matrix
4
). For each of the 𝑝 elements,

we thus have 16 scalar degrees of freedom X(𝑖) = {𝑎 (𝑖) , 𝑏 (𝑖) , 𝑐 (𝑖) ,
𝑑 (𝑖) , r(𝑖) , R (𝑖) }. In the following we denote by 𝑥

(𝑖)
𝛼 each of the 16

scalar components of X(𝑖) .
The Darboux system (1), (5) can then be integrated locally and

independently on each element 𝑖 using the power series method

of Charrondière et al. [2020], starting from the beginning of the

element (r(𝑖) ,R (𝑖) ). This integration gives the frameR (𝑖) (𝑠) and the
position r(𝑖) (𝑠) over the element, both of these quantities depending

only on the variables local to the element, X(𝑖) .
As a result, the gravitational energy (10), which depends on the

centreline position r(𝑠), can now be decomposed as a sum of local

integrals,

𝐸𝐺 (X) =
𝑝∑
𝑖=1

𝐸𝐺
(𝑖) (X(𝑖) ) (14)

where 𝐸𝐺
(𝑖) (X(𝑖) ) = −𝜌ℎ𝑤g ·

∫ 𝐿 (𝑖 )

0

r(𝑖) (𝑠 (𝑖) ) d𝑠 (𝑖) . (15)

Note that each of the gradients of the gravitational energy
𝜕𝐸𝐺

𝜕𝑥
( 𝑗 )
𝛼

with respect to each of the 16 degrees of freedom 𝑥
( 𝑗)
𝛼 of the 𝑗 th

element only depends on the local variable X( 𝑗) , i.e. 𝜕𝐸𝐺

𝜕𝑥
( 𝑗 )
𝛼

(X) =
𝜕𝐸𝐺

( 𝑗 )

𝜕𝑥
( 𝑗 )
𝛼

(X( 𝑗) ). This is in contrast with the chained model, for which

𝜕𝐸𝐺

𝜕𝑥
(𝑖 )
r

depends on all previous elements 𝑗 ≤ 𝑖 (with 𝑥 (𝑖)
r

standing for

the 2 reduced degrees of freedom 𝑎 (𝑖) and 𝑐 (𝑖) of element 𝑖 in the

chained model).

Looking now at the Hessian matrix of the gravitational energy, it

is noteworthy that
𝜕2𝐸𝐺

𝜕𝑥
( 𝑗 )
𝛼 𝜕𝑥

(𝑘 )
𝛽

vanishes if 𝑗 ≠ 𝑘 . The consequence

is that only the 16 × 16 blocks
𝜕2𝐸𝐺

𝜕𝑥
( 𝑗 )
𝛼 𝜕𝑥

( 𝑗 )
𝛽

(X) = 𝜕2𝐸𝐺
( 𝑗 )

𝜕𝑥
( 𝑗 )
𝛼 𝜕𝑥

( 𝑗 )
𝛽

(X( 𝑗) )

located on the diagonal of the Hessian are non-zero. Again, this is a

4
We follow the choice of Casati and Bertails-Descoubes [2013] to represent frames as

3 × 3 matrices, and do not use a reduced parametrisation such as quaternions. The

reason is that we want to preserve the linearity of Equation (1) with respect to R,
which is key to the power series integration of the Darboux problem [Casati and

Bertails-Descoubes 2013, Theorem 1]. As explained in [Casati 2015, Remark 4.1.14],

using quaternions would break linearity, hence compromising the effectiveness of the

power series integration scheme.

, Vol. 1, No. 1, Article . Publication date: June 2024.



8 • Charrondière, R. et al.

major difference with the Hessian of the gravitational energy for

the chained model, which turns out to be dense.

Finally, as the elastic energy 𝐸
el
(X) only depends on the curva-

ture 𝜅 (𝑠) and the ruling direction 𝜂 (𝑠), it is trivially decomposed

into a sum of local energies 𝐸
(𝑖)
el
(X(𝑖) ). Similarly to the gravitational

energy, the corresponding Hessian is banded (with an even thin-

ner band of width 4). Therefore, the Hessian of the total energy

𝜕2𝐸

𝜕𝑥
( 𝑗 )
𝛼 𝜕𝑥

(𝑘 )
𝛽

(X) is banded.

As in [Charrondière et al. 2020], the gradient and Hessian terms

can be computed by power series integration, as the applicability of

the summation algorithm of Casati and Bertails-Descoubes [2013]

propagates through differentiation with respect toX and through in-

tegration with respect to 𝑠 . For instance, the (generalised to 3D) gra-

dient ∇r(𝑠,X) = 𝜕r
𝜕X (𝑠,X) admits a power series whose recurrence

is simply obtained by differentiating the recurrence formula for r(𝑠)
obtained from Darboux integration. Its integral

∫ 𝐿

0

𝜕r
𝜕X (𝑠,X)d𝑠 over

the centreline results from a simple integration of the corresponding

power series, which is similar to polynomial integration. Besides,

implementing all these computations turns out to be much simpler

in the mixed case compared to the chained model, as all required

quantities can be decomposed locally over each element.

To form consistent elements smoothly connected to each other,

we use the two high-order continuity conditions (13). Furthermore,

as described below, we introduce six orthonormality constraints

to enforce the frames at the start of each element R (𝑖) to belong

to SO3, as well as six matching constraints to connect element

frames and positions together. Since all the added constraints only

involve one or two elements, the Hessian of the Lagrangian (12),

which is the matrix eventually inverted in the Newton step, remains
banded. Here again, the gradient and Hessian of the Lagrangian are

computed locally using power series integration.

Orthonormality constraints. The six quadratic orthonormality con-

ditions express the fact that the matrix R (𝑖) (𝑠 (𝑖) = 0) describing the
orientation of the three Cosserat directors (which are its columns)

has to be a rotation matrix, i.e. to belong to SO3,

R (𝑖) (𝑠 (𝑖) = 0) |𝑘 · R (𝑖) (𝑠 (𝑖) = 0) |𝑘 = 1 ∀𝑘 ∈ {1, 2, 3} (16a)

R (𝑖) (𝑠 (𝑖) = 0) |𝑘 · R (𝑖) (𝑠 (𝑖) = 0) |𝑘+1𝑚𝑜𝑑 3
= 0 ∀𝑘 ∈ {1, 2, 3} (16b)

whereM|𝑘 stands for the 𝑘th column of matrixM.

Matching constraints. The six matching conditions express the

continuity of the position and orientation between the end of ele-

ment 𝑖 − 1 and the start of element 𝑖 ,

r(𝑖−1) (𝑠 (𝑖−1) = 𝐿 (𝑖−1) ) = r(𝑖) (𝑠 (𝑖) = 0) (17a)

R (𝑖−1) (𝑠 (𝑖−1) = 𝐿 (𝑖−1) ) |𝑘 · R (𝑖) (𝑠 (𝑖) = 0) |𝑘+1𝑚𝑜𝑑 3
= 0 ∀𝑘 ∈ {1, 2, 3}

(17b)

Conditions (13)-(16)-(17) are added as equality constraints in the en-

ergy minimisation procedure when we look for a stable equilibrium

solution, see Section 4.3.

In the rest of this section, we discuss our choice for (17b), already

used in [Sonneville and Brüls 2014], for identifying two rotation ma-

trices. Indeed this identification has the minor issue of non unique-

ness. In essence we want the three column vectors a, b, c of the first

matrix to be identical to the 3 column vectors d, e, f of the second
matrix. Conditions (17b) have the solution a = d, b = e, c = f , but
also a = d, b = −e, c = −f for example.

We briefly discuss below two alternative choices and show they

are actually much more problematic. A first alternative would be to

replace (17b) with

R (𝑖−1) (𝑠 (𝑖−1) = 𝐿 (𝑖−1) ) |𝑘 · R (𝑖) (𝑠 (𝑖) = 0) |𝑘 = 1 ∀𝑘 ∈ {1, 2, 3}.
(18)

In such a case, the minimisation routine adds a Lagrange multi-

plier 𝜆 𝑗 to each constraintℎ 𝑗 (X) = 0 = R (𝑖−1) (𝑠 (𝑖−1) = 𝐿 (𝑖−1) ) |1,2,3 ·
R (𝑖) (𝑠 (𝑖) = 0) |1,2,3 − 1, for 𝑗 = 1, . . . , 𝑝 − 1, where the vector X ∈ R𝑛
gathers all degrees of freedom, see (12). The first order optimality

conditions is then a system for the unknowns X and 𝜆 𝑗 which takes

the form

∇L(X) = 0 (19)

ℎ 𝑗 (X) = 0 (20)

The key point is now to realise that this system is singular on any

solution X = X★
. Indeed, on the solution the three column vectors

of R (𝑖−1) (𝑠 (𝑖−1) = 𝐿 (𝑖−1) ) are equal to those of R (𝑖) (𝑠 (𝑖) = 0) and
they have unit norm. The optimality condition writes ∇L(X★) =
0 = ∇𝐸 (X★) − 𝜆 𝑗 ∇ℎ 𝑗 (X★) and at X = X★

, ∇ℎ 𝑗 (X★) = 0 because

it is the derivative of the square of a normalised vector
5
. Having

∇ℎ 𝑗 (X★) = 0 clearly prevents us from finding the associated La-

grange multiplier 𝜆 𝑗 .

A second alternative would be to replace (17b) with the 9 con-

ditions equating each element of R (𝑖−1) (𝑠 (𝑖−1) = 𝐿 (𝑖−1) ) with the

corresponding element of R (𝑖) (𝑠 (𝑖) = 0). Because the column vec-

tors of each matrix are linked by orthonormality conditions, these 9

conditions are not independent. Therefore the gradient of the New-

ton method associated with the first order optimality conditions

becomes singular.

In practice, the non uniqueness issue of (17b) is avoided by choos-

ing close-enough warmstarts in the minimisation procedures. For

example if we are looking for a ribbon equilibrium where the 𝑠 = 𝐿

extremity is rotated by a large amount, we are going to start with

the untwisted solution and find solutions for a series of interme-

diate problems where the rotation is gradually increased and each

solution is used to warmstart the minimisation procedure when

looking for the next solution (the solution with increased rotation).

This type of approach is reminiscent of path following algorithms.

5.3 Clamping conditions
If the ribbon is clamped at its 𝑠 = 0 extremity, its position r(0) and
orientation R(0) should match those of the clamping. One could

filter out the corresponding degrees of freedom or add constraints

as in (17). The chained model uses the filtering. For the mixed model,

we have tried both and found the same efficiency for both solutions.

Since filtering degree of freedom involves restructuring the matrices,

we chose to keep the 12 degrees of freedom in r(0) and R(0) and

5
We consider u(𝛼) ∈ R𝑛 a normalised vector function of a scalar 𝛼 . We take the

squared norm ∥u(𝛼) ∥2 = 1 and differentiate it with respect to 𝛼 . We find u(𝛼) ·
𝑑u(𝛼 )
𝑑𝛼

= 0.

, Vol. 1, No. 1, Article . Publication date: June 2024.



MERCI • 9

Fig. 4. A simple clamped-clamped experiment. The orange ribbon describes
a perfectly circular arc and serves as a warmstart for the minimisation
algorithm. This warmstart shape is clamped at the right end, but not at the
left end. The two frames are indicating the clamping constraints, and the
orange arrow indicates the gravity direction. The blue ribbon is the result of
the constrained minimisation. For this experiment, we have used 𝑤

𝐿
= 1

11
,

Γ = 100, 𝜈 = 0.35.

enforce the constraints

r(0) (𝑠0 = 0) − r
clamp

= 0 (21a)

R (0)
𝑖, 𝑗
(𝑠 (0) = 0) − R

clamp𝑖, 𝑗
= 0 ∀𝑖, 𝑗 ∈ {1, 2, 3} (21b)

Clamping a ribbon at the end (𝑠 = 𝐿) is achieved, for both the

chained and the mixed model, with the same approach as in (17)

r(𝑝−1) (𝑠𝑝−1 = 𝐿 (𝑝−1) ) − r
clamp’

= 0 (22a)

R (𝑝−1) (𝑠 (𝑝−1) = 𝐿 (𝑝−1) ) |𝑘 · Rclamp’
|𝑘+1𝑚𝑜𝑑 3

= 0 ∀𝑘 ∈ {1, 2, 3}
(22b)

As in the matching of elements, these clamping conditions suf-

fer from non uniqueness of solutions, but are fixed by using good

enough warmstarts.

5.4 Circular boundary conditions
In Section 7, to study aMöbius configuration resting on an horizontal

support in the presence of gravity, we introduce circular boundary

conditions in the same spirit as (21) and (22)

r(𝑝−1) (𝑠𝑝−1 = 𝐿 (𝑝−1) ) − r(0) (𝑠0 = 0) = 0 (23a)

R (𝑝−1) (𝑠 (𝑝−1) = 𝐿 (𝑝−1) ) |𝑘 · R (0) (𝑠 (0) = 0) |𝑘+1𝑚𝑜𝑑 3
= 0 (23b)

∀𝑘 ∈{1, 2, 3}

Three different invariances can then arise in the mathematical op-

timisation problem: (i) a translational invariance, (ii) a rotation

invariance, and (iii) a 𝑠 → 𝑠 + Δ𝑠 invariance. Each of these invari-

ances renders the gradient of the Newton routine involved in the

minimisation procedure singular (zero eigenvalue(s)). We found it

convenient to kill the translation invariance by either prescribing

the position of the center of mass of the ribbon or its 𝑠 = 0 point.

Owing to the powerful treatment of singular gradient matrices by

Ipopt, see [Wächter and Biegler 2006], we did not need to kill the

rotation invariance. The 𝑠 → 𝑠 +Δ𝑠 invariance is also easily reduced
by requiring some special point of the ribbon to be at 𝑠 = 0.

5.5 Contact handling
We introduce the possibility for the ribbon to come to contact with

one or more planes, and we use the position degrees of freedom

of the mixed model to handle it. The contact constraint is tested

at the start of each element and the end of the last element, i.e. for

𝑠 = 𝑠𝑐 ∈ {0, 𝐿 (1) , 𝐿 (1) + 𝐿 (2) , . . . , 𝐿 − 𝐿 (𝑝−1) , 𝐿}, and written for the

two extremities 𝐶± of each ruling passing through the centreline

points r(𝑠𝑐 ), that is for

r𝑐± = r(𝑠𝑐 ) ±
𝑤

2

q(𝑠𝑐 ) (24)

see Figure 3. If we want to restrict the ribbon to be outside the half

space delimited by the plane passing through point 𝐴 with outward

normal n, for each of the 2(𝑝 + 1) points 𝐶± we write the condition(
r𝑐± − r𝐴

)
· n ≥ 0 (25)

As these contact conditions are written directly with the degrees

of freedom of the model, the cost for computing the Lagrangian

and its first and second derivatives stays linear in the number of

elements. For this reason, if we want to refine the contact treatment,

we think preferable to increase the number 𝑝 of elements rather than

introducing second order points 𝐶± (at the middle of the elements

for example).

5.6 Efficiency of the mixed model
The chained model of Charrondière et al. [2020] has a dense energy

Hessian, making its inversion cubic with respect to the number of el-

ements 𝑝 . The cubic complexity of chained models was already illus-

trated in the case of super-clothoids [Casati and Bertails-Descoubes

2013, Fig. 9]. In contrast, the introduction of the variables r(𝑖) and
R (𝑖) in the mixed model makes the system sparse, and as all con-

straints only involve one or two elements, its Hessian matrix is

essentially banded. This allows us to recover a linear computation

complexity of the system with respect to 𝑝 . In practice, the mixed

model becomes quicker to solve than the chained model as soon as

there are more than 𝑝 ≈ 20 elements, see Figure 5. It is moreover

worth noting that although there are more variables in the mixed

model than in the chained model, from a developer point of view,

the former is easier to implement compared to the latter, and less

error prone.

We illustrate the efficiency of the mixed model over the chained

model on two scenarios using the Sadowsky and Wunderlich ener-

gies. The first scenario consists in computing the equilibrium of a

ribbon hanging under gravity and allows to check the theoretical

complexity. The second scenario is more complex as we clamp both

extremities of the ribbon and leads to a failure of the chained model.

We nondimensionalise the system with 𝐷 and 𝐿 to maximise the

efficiency of the solver, leaving only two parameters: (i) the weight

Γ =
𝜌ℎ2𝑔𝐿3

𝐷
, and (ii) Poisson’s ratio 𝜈 . The gravity acceleration vec-

tor is written g = −𝑔 e𝑔 , with e𝑔 a unit vector along the vertical

direction.

Clamped-free Scenario. We consider a ribbon of length 𝐿 = 1,

width𝑤 = 0.1, bending rigidity 𝐷 = 1, Poisson’s ratio 𝜈 = 0.35, and

weight Γ = 3. The vertical direction is set such that e𝑔 = e𝑧 , and the

ribbon is clamped with a tilt of 0.2 radians in the (e𝑦, e𝑧) plane, with
horizontal direction d1 (0) = e𝑥 . The warmstart for the minimisation
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Fig. 5. Efficiency of the mixed and chained models in the Clamped-free scenario of Section 5.6. Computation times are reported and linear and cubic
interpolations are shown. The ribbon is hanged under gravity, with a clamping orientation tilted with regard to the gravity vector (inset figure, yellow arrow
indicates vertical direction). The mixed model is more efficient when the number of elements is greater than 20 and follows a linear time cost. The chained
model is valuable when no more than 20 elements are used, but its time cost increases rapidly, following a cubic trend.

procedure is chosen to be an almost flat ribbon 𝜅 (𝑠) = 10
−5𝑠 + 10

−4
,

𝜂 (𝑠) = 10
−5𝑠 + 10

−4
. We measure the computing time for Ipopt to

converge when using 10, 20, 40 and 100 elements, for both Sadowsky

and Wunderlich energies. The equilibrium is shown in the inset of

Figure 5.

The results displayed in Figure 5 match the expected costs, cubic

for the chained model and linear for the mixed model, and show

that in this example the energy used has little influence on the

computation time. The larger number of degrees of freedom of the

mixed model causes a larger prefactor in its computation time, and

consequently, for a small number of elements, here less than 20, the

chained model appears to be faster. However, beyond 20 elements,

the mixed model clearly offers better performance.

Clamped-clamped Scenario. We now consider a ribbon of length

𝐿 = 1, width 𝑤 = 0.01, bending rigidity 𝐷 = 1, Poisson’s ratio

𝜈 = 0.5, and weight Γ = 1. We fix the gravity direction such that

e𝑔 = e𝑧 and clamp the ribbon vertically at one end and horizontally

at the other. Distance between clamping points is set to 0.95. The

warmstart is here also an almost flat ribbon : 𝜅 (𝑠) = 10
−4𝑠 + 10

−3
,

𝜂 (𝑠) = 10
−4𝑠 + 10

−3
. We use Sadowsky and Wunderlich energies,

and compute the equilibrium with 10, 20 and 40 elements. The

equilibrium is shown in the inset of Figure 6.

Computation times are displayed in Figure 6. Even with 1000 iter-

ations (i.e. roughly 1000 seconds), the solver does not converge with

the chained model. The mixed model converges in a few seconds

and shows little dependency on the number of elements, although

it is about one order of magnitude longer than in the Clamped-free

Scenario. Note that the warmstart configuration does not respect

the end clamp, which is rotated by an angle of
𝜋
2
radian with regard

to the 𝑠 = 0 clamp. This scenario shows that clamping the end of a

ribbon is not a trivial task.

6 VERIFICATION AND VALIDATION
So far we have built an efficient numerical model for a developable

(inextensible) ribbon, which turns out to be an order of magnitude

faster compared to the chained model of Charrondière et al. [2020],

while maintaining the same level of accuracy. In addition, unlike the

latter model, ours can be easily coupled to bilateral and unilateral

constraints, which widens the range of scenarios one can simulate.

These novel possibilities open the doors for an insightful evaluation

of our numerical model, relying upon the simulation of demanding

scenarios.

The rest of the paper is aimed at evaluating our model meticu-

lously under two different angles, following the early distinction

made in software reliability [Boehm 1981; Pham 2006]:

• Numerical verification: are we building the numerics right?

That is, given a reduced physical model for an inextensible rib-

bon (Sadowsky or Wunderlich), how well does our numerical

model solve these equations? How accurate is it? How much

computational time does it require to reach a given accuracy?

How does it compare to alternative numerical methods for

solving the Sadowsky and Wunderlich equations, in terms of

accuracy and efficiency?

• Physical validation: are we building numerics for the right

physical model? That is, given our goal to predict the me-

chanics of real strip-like objects for designing purposes, how

relevant is the reduced, inextensible ribbon model we are

building upon? How realistic is it? What is its validity range?

How does it compare to alternate physical models, like thin

plates or thin rods?

To answer these fundamental questions, we propose in the fol-

lowing to compare our numerical model to theoretical, numerical,

and experimental predictions, on a set of challenging scenarios.
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Fig. 6. Efficiency of the chained and mixed models in the Clamped-clamped Scenario of Section 5.6. The chained model always fails with status «Restoration
failed» for Wunderlich energy, or reaches the maximum number of iterations (1000) for Sadowsky energy. This demonstrates the usefulness of the mixed
model, which converges within a few seconds. Inset figure: yellow arrow indicates vertical direction, while the red, green, blue arrows indicate the orientations
at the clamps, showing that one quarter of a turn of end-rotation has been applied on the left clamp.

Comparison benchmark. Our numerical model comprises so far

two different variants: Merci-Sadowsky, which simulates the stat-

ics of Sadowsky ribbons, limited to small widths only, andMerci-

Wunderlich, which uses the (extended) Wunderlich energy, suit-

able for small to large widths.

To verify and validate our numerical model (the two variants

Merci-Sadowsky andMerci-Wunderlich), we compare it against

several reference – analytical or numerical –models in the following:

• MAE: the analytic, Matched Asymptotic Expansion intro-

duced in [Audoly and van der Heijden 2022] in the limit case

of a vanishing width,𝑤 → 0;

• Sadowsky (shooting): a shooting technique for the Sadowsky

ribbon (implemented in Mathematica), based on the works

of [Neukirch and Audoly 2021] and [Kumar et al. 2021];

• Wunderlich (shooting): a shooting technique for the Wun-

derlich ribbon, that we specifically developed for this paper

using the continuation software Auto (see details in Appen-

dix B).

• DER-Wunderlich: a free implementation of the Wunderlich

model based on the Discrete Elastic Rod model [Korner et al.

2021], available at https://data.caltech.edu/records/2147.

• FEniCS-Shell: a 2D plate model, relying on Naghdi’s nonlin-

ear shell theory [Naghdi 1963], and implemented in the free

FEniCS finite elements suite [Habera et al. 2018; Hale et al.

2018].

The first three methods, based on asymptotic expansions or shoot-

ing techniques, are highly popular in Physics, and will serve in

the remainder of the paper as reference models for verifying the
accuracy of our approach in challenging scenarios. In contrast, DER-

Wunderlich, which relies on a popular position-based algorithm

of Computer Graphics, will be used to showcase the computational
advantage of our mixed approach combining curvature-based ele-

ments with position-based joints. Finally, FEniCS-Shell will serve

as a reference implementation of a more general, 2D mechanical

model, for validating the reduced physics upon which our numerical

model is based.

Our validation and verification study is conducted on three dis-

tinct scenarios: 1/ The Möbius band (Section 7), 2/ The buckling

of a 2D confined ribbon (Section 8), and 3/ The Lateral Buckling

test (Section 9). Each case is analysed physically and numerically

in depth. These three sections can be read in any order, as they are

pretty independent of each other. The reader who is pressed for time

might even skip the first two ones and jump directly to Section 9

which leverages yet another (slightly extensible) physical model for

the ribbon.

7 THE MÖBIUS BAND SCENARIO: ACCURACY
AT A COMPETITIVE COST

A popular test case from physics and mechanics, for which multi-

ple theoretical and numerical results have been derived based on the

theory of developable ribbons – Sadowsky and Wunderlich – is the

Möbius band, illustrated in Figure 7, see e.g. [Fosdick and Fried 2015].
Though simple in appearance (everyone can make a Möbius band

by twisting a paper strip and gluing its extremities), this scenario is

actually extremely challenging to simulate due to the presence of a

singularity point at the surface of the ribbon [Bartels and Hornung

2015]. This singularity fails to be captured using the Kirchhoff rod

theory, which highlights a major difference between ribbon and rod

models’ predictions [Huang et al. 2020; Kumar et al. 2020]. A second

interesting point is that a developable solution for a Möbius strip

mathematically exists for a large range of widths, more precisely as

long as the width of the ribbon does not exceed
𝐿√
3

[Schwarz 1990].

As such, the Möbius band represents a relevant – both demanding

and useful – test for the numerical verification of our developable

solver. It should be noted that a recent experimental work [Kumar
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Fig. 7. Möbius solution obtained with Merci-Wunderlich for the nor-
malised width 𝑤

𝐿
= 0.1, and the constraints 𝜂 (0) = 0 = 𝜂 (𝐿) . The singular

point 𝑠 = 𝑠∗ lies at the origin of the cartesian frame. The mesh has been
refined so that the increment of the function 𝜂 (𝑠) in any element is not
too large, eventually leading to a total number of 169 elements of unequal
lengths. The elements are colored alternatively in red and blue, revealing
the rulings that lie at the border between two elements.

et al. 2021], based on an accurate stereo-vision technique for captur-

ing the geometry of a Möbius strip, has confirmed the observations

predicted by the developable ribbon theories for moderate to large

widths, hence highlighting some physical validity of these mod-

els. Evaluating our numerical approach against the Möbius band

scenario can thus, to some extent, also be viewed akin to physical
validation, at least in the range of moderate to large widths.

7.1 Singularity
The difficulty of simulating a Möbius band with the Wunderlich

model stems from the singularity occurring in the flat zone of the

configuration, at 𝑠 = 𝑠∗, where the curvature vanishes and changes

sign [Starostin and van der Heijden 2007]. It is noteworthy that

such a singularity does not exist with the Kirchhoff rod model [Ma-

hadevan and Keller 1993]. This singularity is surrounded by a small

region where both 𝜅 (𝑠) and 𝜂 (𝑠) vary sharply. The value of the

derivative 𝜂 ′(𝑠) is regularised by the 𝐿𝑜𝑔 term in the Wunderlich

energy, which diverges as 𝑤 𝜂 ′(𝑠) → ±2. At the singular point

𝑠 = 𝑠∗, and for any width𝑤 value, the solution nevertheless achieves

𝑤 𝜂 ′(𝑠∗) = ±2 [Audoly and van der Heijden 2022], making numeri-

cal computation difficult. Note that the Wunderlich energy remains

finite because 𝜅 (𝑠∗) = 0 and 𝜅2 (𝑠)𝜓 (𝑤𝜂 ′(𝑠)) → 0 at the singular

point. This difficulty makes ODE or shooting-based approaches inef-

fective in finding solutions with small values of𝑤 , or having the so-

lution going through the singular point: such numerical approaches

only compute half the Möbius solution, stopping at the singular

point [Moore and Healey 2019; Starostin and van der Heijden 2007,

2015]. Additionally, it is noteworthy that ad-hoc regularisations

have been used to smooth the singularity out [Moore and Healey

2019], hence altering the solution close to 𝑠∗.
Similarly to the chained model [Charrondière et al. 2020, Section

5.4], our approach is capable of going through singular points. In

particular, we show here that it can perfectly cope with the Möbius

Algorithm 1: Computation of a Möbius ribbon with Merci

1 InitialiseRibbon(𝐿 = 1,𝑤 = 0.01, 𝐷 = 1, Γ = 0, 𝑝 = 65);
2 for 𝑖 de 1 à 𝑝 do
3 InitialiseElement

(
𝑖 , 𝐿 (𝑖) = 1

𝑝 , 𝑎 (𝑖) = 0, 𝑏 (𝑖) =

2𝜋 , 𝑐 (𝑖) = 0, 𝑑 (𝑖) = 0

)
;

4 F0 ←
©«
0 0 1

1 0 0

0 1 0

ª®¬;
5 p

0
←

(
0 0 0

)
;

6 ConstrainRulesatClamping(𝜂 (0, 𝐿) = 0);

7 for 𝜃 from 0 to 𝜋 by increment of 𝜋
5
do

8 M ← ©«
0 0 1

cos(𝜃 ) − sin(𝜃 ) 0

sin(𝜃 ) cos(𝜃 ) 0

ª®¬;
9 FixBothEndClamping(p

0
, F0, p0

,M);

10 CallIpopt();

11 ReMesh();

12 CallIpopt();

singularity, and we use MAE, i.e. the asymptotic limit (𝑤 → 0)
of Audoly and van der Heijden [2022], to verify our results.

7.2 Simulation protocol
We build the Möbius solution following the procedure described in

Algorithm 1. The problem is nondimensionalised by setting the total

contour length of the ribbon 𝐿 = 1 and the bending rigidity 𝐷 = 1, a

choice which can be made without loss of generality (see [Romero

et al. 2021] for more information on nondimensionalisation). We

start with a limited number 𝑝 = 65 of elements (line 1) and refine

the mesh later (line 11). The remeshing, which simply consists in

adding or removing elements based on the gradient of the solution,

brings up the number of elements typically between 𝑝 = 150 to

𝑝 = 200. We initialise the ribbon with an untwisted and circular

shape (lines 2-3). The 𝑠 = 0 end is clamped at the origin with the

material frame aligned with the axes of the reference frame (lines

4-5). The 𝑠 = 1 end is also clamped at the origin, and its material

frame is gradually rotated (lines 7-10). After each rotation step, the

minimisation routine is called (line 10). Please note that we constrain

the rulings at the clamps, 𝑠 = 0, 𝐿 to be aligned with the clamps, i.e.

orthogonal to the tangent. This constraint reads 𝜂 (0) = 0 = 𝜂 (𝐿)
and ensures that the section of the ribbon is flat when entering the

clamp (line 6). In Appendix C we show other ways to constrain the

function 𝜂 (𝑠) at boundary points 𝑠 = 0, 𝐿.

We have run this algorithm withMerci-Wunderlich for several

width values and observed a 100% convergence success, each step

requiring around 20 to 40 iterations in Ipopt and the whole process

taking about a minute on a standard laptop. It is also possible to

obtain the Möbius configuration without the rotation procedure

if one warm-starts the minimisation procedure with 𝜅 (𝑠) = 2𝜋

and 𝜏 (𝑠) = cos 2𝜋 𝑠 , a process that we call Merci-Wunderlich-

OneShot (see supplementary material). Figure 7 shows a converged
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Fig. 8. Parametric plot of the first half of theMöbius solution computed with
Merci-Wunderlich for different width values. We also show the Sadowsky
(shooting) solution in brown (Merci-Sadowsky giving exactly the same
result) and inner layer of MAE in pink, illustrating the convergence of our
Merci-Wunderlich code as 𝑤 → 0.

Möbius configuration with 𝑤 = 0.08 and a refined mesh near the

singular point.

-0.5 0.5 1.0
η

-6

-4

-2

2

w η ' or η '

MAE
Sadowsky (shooting)
MERCI -Wunderlich w=0.1
MERCI -Wunderlich w=0.01
MERCI -Wunderlich w=0.001

Fig. 9. First half of the Möbius solution computed withMerci-Wunderlich
for different width values. We also show the Sadowsky (shooting) solution
in brown (Merci-Sadowsky giving exactly the same result) and inner layer
of the Matched Asymptotic Expansion (MAE) in pink. The vertical axis plots
𝜂′ (𝑠) when 𝜂′ (𝑠) < 0 and 𝑤𝜂′ (𝑠) when 𝜂′ (𝑠) > 0.

7.3 Accuracy results
We now make a few remarks about these Möbius solutions. As

explained in [Freddi et al. 2016; Neukirch and Audoly 2021] the

ribbon solutions must have |𝜂 (𝑠) | < 1, ∀𝑠 , and this is what we find

here, see Figures 8 and 9. For all width values considered, we find

that𝑤 𝜂 ′ = ±2 at the singular point, see Figure 9. We also find that

as 𝑤 → 0, the solution approaches the asymptotic solution MAE

presented in [Audoly and van der Heijden 2022]. More precisely,

Figure 9 shows only half (𝑠 ∈ [0, 1

2
]) of the Möbius solution with

the vertical axis plotting 𝜂 ′(𝑠) when 𝜂 ′(𝑠) < 0 and plotting𝑤 𝜂 ′(𝑠)
when 𝜂 ′(𝑠) > 0. This choice clearly illustrates the two regions in

the Möbius solution when𝑤 → 0: (i) the Sadowsky solution for the

outer region (far from the singularity) in which 𝜂 ′(𝑠) < 0, and (ii)

the asymptotic expansion solution (see Appendix B and [Audoly and

van der Heijden 2022]) for the inner region (around the singularity)

in which 𝜂 (𝑠) increases quickly from 0, with |𝜂 ′(𝑠) | ≫ 1. We define

10-4 0.001 0.010 0.100
w/L

0.001

0.010

0.100

1

Δs*

Shooting -Wunderlich

MERCI -Wunderlich

'' y = 7.5 x ''

Fig. 10. Size Δ𝑠★ of the singular region, where the orientation of the rulings
quickly varies (i.e. the inner layer in the Matched Asymptotic Expansion
(MAE) calculations). The red line, 𝑦 = 7.5𝑥 , approximately fits the asymp-
tote of the Wunderlich curve as 𝑤 → 0.

the size Δ𝑠★ of the singular region as twice the arc length spent

above the horizontal axis in Figure 9. This corresponds to all the

points where

(
𝜂 ′(𝑠) > 0 and 𝑠 < 1

2

) ⋃ (
𝜂 ′(𝑠) < 0 and 𝑠 > 1

2

)
. The

dependence of Δ𝑠★ on the width 𝑤 is plotted in Figure 10. Please

note that the clamping constraints on the position, frame, and 𝜂,

may be removed and replaced by periodic constraints, as we will

see in Section 7.5.

7.4 Performance comparison with DER
In Section 5.6 we have already demonstrated the computational

advantage of our mixed curvature-position formulation over a fully

reduced (purely curvature-based) formulation. Now we wish to

assess how our mixed formulation compares to a more classical,

position-based approach where the centreline is modelled explic-

itly by a dense set of nodes. We especially focus on the popular

Discrete Elastic Rod (DER) model [Bergou et al. 2010], which has

recently been extended to a position-based discrete Wunderlich

model [Huang et al. 2022; Korner et al. 2021] and numerically veri-

fied against the Möbius band scenario.

In the followingwe thoroughly compare our approachwith such a

DER-like ribbon model on the Möbius test, in terms of accuracy and

efficiency. In our comparison we use the reference C++ implementa-

tion of Korner et al. [2021]’s model, named DER-Wunderlich here-

after, which is publicly available at https://data.caltech.edu/records/2147.
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Similarly to our Merci algorithm, DER-Wunderlich solves the

static ribbon problem by minimising the Wunderlich energy under

kinematic constraints using a second order method leveraging the

Hessian of the energy. However, due to their very different choice

of degrees of freedom (nodal positions, twist angles, and discrete

𝜂 over the centreline), their constraints are aimed at enforcing the

inextensibility of the centreline as well as the developability of the

mid-surface. Instead, recall that in our case, inextensibility and de-

velopability are intrinsically taken into account over each element

by our specific choice of degrees of freedom. Our sole constraints

are aimed at gluing elements together and enforcing material frames

to lie in SO3. Another difference lies in the choice of the optimisa-

tion solver. Theirs is based on Sequential Quadratic Programming

(in-house implementation based on sparse linear algebra), which

approximates the dual unconstrained problem as a sequence of

quadratic objectives. In contrast, ours relies on the Interior Point

method (Ipopt implementation), which constructs a sequence of

approximated dual unconstrained problems with barrier functions.

That said, both solvers structurally resemble each other in the sense

that they boil down to iterations over Newton-Raphson steps con-

structed from the factorisation of a banded Hessian.

Fig. 11. Resulting shape of the Möbius ribbon, computed with eitherMerci-
Wunderlich (blue/red coloured elements) or DER-Wunderlich (white rul-
ings), for the same time budget (𝑡 = 3.8 s) on the same machine. The lim-
ited precision that is affordable by DER-Wunderlich (𝜀𝑝 = 5.10

−2 against
𝜀𝑝 = 6.10

−4 for Merci-Wunderlich) yields a clear visual shift of the geom-
etry of the ribbon. When increasing the resolution of DER-Wunderlich,
the resulting shape ends up converging towards the Merci shape, although
at a much higher cost (bottom-right inset: 100 elements for both models,
DER-Wunderlich is now 6.7 times more costly, albeit 25 times less accurate,
thanMerci for the prediction of the ruling angles).

We run Merci-Wunderlich following both Algorithm 1 and its

one-shot variant Merci-Wunderlich-OneShot (see supplemen-

tary material). We run DER-Wunderlich on the original Möbius

Python script used to produce the results of Korner et al. [2021,

Figure 5.4], and for the sake of fairness we made a few straightfor-

ward optimisations (such as reducing the number of unnecessary

iterations) so as to improve its overall efficiency. In supplemen-

tary material we distribute the input files and/or scripts used for

our Möbius comparison, for both Merci-Wunderlich and DER-

Wunderlich. Our tests were all run on the same standard laptop

featuring a 64-bit, 3GHz, processor.

Our target test consists of a Möbius band of length 𝐿 = 1 and

width𝑤 = 0.1 (see Figure 7), a scenario which falls in the range of ex-

amples studied in [Korner et al. 2021]. We focus on the 𝜂 (𝑠) solution
recovered byMerci-Wunderlich and DER-Wunderlich. Using

Autowith extreme spatial refinement (700 discretisation points), we

first compute a reference solution for 𝜂 (𝑠), noted 𝜂★(𝑠). As the result
of a converging process combined to spatial interpolation, this refer-

ence solution can be safely considered to be very close to the exact

solution at any point 𝑠 ∈ [0, 1]. We then compare this reference

𝜂★(𝑠) with the discrete output 𝜂𝑝 (𝑠𝑖 ) of Merci-Wunderlich (re-

spectively of DER-Wunderlich), produced at discrete arc lengths

𝑠𝑖 , 𝑖 ∈ {1..𝑝} for a given number 𝑝 of elements. While 𝑝 is varied

(from 𝑝 = 10 to 𝑝 = 250), the accuracy 𝜀𝑝 is computed as the dis-

crete 𝐿1-norm of the difference between 𝜂★ and each approximation

𝜂𝑝 , 𝜀𝑝 = 1

𝑝

∑𝑝

𝑖=1
|𝜂★(𝑠𝑖 ) − 𝜂𝑝 (𝑠𝑖 ) |. Accuracy and timing results for

Merci-Wunderlich and DER-Wunderlich are presented in Fig-

ure 12. The shapes of the resulting Möbius ribbons obtained for

the same time budget of a few seconds are visually compared in

Figure 11.

As expected from a curvature-based formulation, and already

demonstrated in [Casati and Bertails-Descoubes 2013, Fig. 9] when

comparing super-clothoids to DER, we observe in Figure 12(a) a supe-
rior convergence order (quadratic instead of linear) for our curvature-
based ribbon model compared to DER-Wunderlich.

In addition to this higher-order accuracy, it is noteworthy in Fig-

ure 12(b) that our Merci-Wunderlich code is significantly more
efficient thanDER-Wunderlich for any spatial resolution 𝑝 . Several

factors explain this computational gain. First, as already showcased

in Section 5.6, one key result of our Merci approach is precisely to

improve considerably the complexity of original chained curvature-

based models, thanks to a mixed curvature/position-based formu-

lation. Similarly to Figure 5, the slope of Merci-Wunderlich in

Figure 12(b) is no longer cubic but turns out to be almost linear
6
w.r.t.

the resolution 𝑝 – due to a Hessian that is banded instead of dense. A

similar order is found for DER-Wunderlich. Second, it is notewor-

thy that theMerci-Wunderlich curve is substantially shifted below

the DER-Wunderlich curve, corresponding to a steady ×10 speed

gain. This difference is amplified again (around×2.5) when using our

so-called Merci-Wunderlich-OneShot algorithm, which cleverly

warmstarts the problem (see supplementary material). By examining

carefully Korner et al. [2021]’s algorithm, we have noted that their

overall complexity scales roughly as (𝑁1 + 𝑁2 + 𝑁3) 𝑝 where 𝑝 is

the number of elements, and 𝑁𝑖 the number of iterations required at

the 𝑖th step of the algorithm. The first and second steps are common

to our method: they consist in increasing the ribbon curvature to

form a circle and twist both ends, respectively. However, we remark

that DER-Wunderlich requires regularising the problem to help

continuation, by adding a small term proportional to 𝜂 ′′(𝑠). This
term is eventually removed to obtain the final solution. In addition,

for DER-Wunderlich to achieve the equilibrium of moderately

wide ribbons (
𝑤
𝐿

> 0.05, which is our case here), the width𝑤 needs

to be set to a thinner value and then progressively increased. These

6
As the resolution 𝑝 exceeds 50, we note thatMerci rather scales as 𝑝𝑞 with 𝑞 ≈ 1.5

for Merci-Wunderlich and 𝑞 ≈ 1.25 for Merci-Wunderlich-OneShot. This is

explained by the slightly higher number of inner iterations requested for Ipopt to

converge at large 𝑝 . We note a similar behaviour for DER-Wunderlich, with 𝑞 ≈ 1.75.
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Fig. 12. Comparison betweenMerci-Wunderlich and DER-Wunderlich on the Möbius test, in terms of accuracy and efficiency. Left (log-log scale): Resulting
accuracy 𝜀𝑝 of the Möbius band reached for 𝑝 elements, function of the length 1

𝑝
of each element. Middle (log-log scale): Computational time for reaching the

Möbius band configuration, function of the number 𝑝 of elements. Right (log-log scale): Cross-referencing the two left plots, one obtains the computational
time required to achieve a given accuracy 𝜀 (regardless of 𝑝), for each tested algorithm.

two simplifications of the numerical problem are at the origin of a

third continuation step, whose goal is to remove progressively such

approximations. For each algorithm, we set each 𝑁𝑖 at its minimal

possible value to ensure proper achievement of the Möbius band

configuration. These values, which are almost independent of the

number 𝑝 of elements, are very different depending on the algorithm

used, as summarised in Table 1. In particular, our algorithm requires

much less iterations for the two first steps than DER-Wunderlich.

Moreover, as it does not require any regularisation nor any artificial

ribbon thinning, the third step is bypassed. Remarking that each

iteration takes approximately the same time for both methods, we

conclude that the extra cost of DER-Wunderlich mainly comes

from these extra continuation steps necessary to achieve the Möbius

band configuration.

Möbius algorithm 𝑁1 𝑁2 𝑁3

DER-Wunderlich [Korner et al. 2021] 7 35 30

Merci-Wunderlich (Algorithm 1) 1 5 0

Merci-Wunderlich-OneShot (Supp. mat.) 0 1 0

Table 1. Number of continuation iterations required for each step of the
Möbius algorithm: 1/ curvature increase from flat to circular, 2/ twist of both
ends, and 3/ removal of energy regularisation and artificial ribbon thinning.

All in all, as shown in Figure 12(c), because our method takes a

mixed approach between curvature-based and position-based mod-

els, it offers a highly competitive alternative to DER-Wunderlich in

terms of accuracy vs. cost. Our model does not only yield a correct

visual geometry much faster than DER-Wunderlich, as illustrated

in Figure 11, but it also proves able to reach very high accuracies

(𝜀𝑝 < 10
−3
) that remain inaccessible for DER-Wunderlich.

7.5 Extension to contact under gravity
At this stage, we are convinced that our model is able to solve the

Wunderlich model in a very accurate, fast, and robust way. With

this calibration at hand, we go one step further by adding gravity

and contact to the Möbius band.

We stress that doing such a challenging experiment would be

extremely difficult if not impossible with shooting codes of the

Fig. 13. (Left) the heavy Möbius ribbon stands up on a plane, or (right) the
ribbon falls on its side, both solutions being stable. Parameters are Γ = 0.1

and 𝑤
𝐿

= 0.01.

literature, including the ones that we have included in our bench-

mark (Sadowsky (shooting) andWunderlich (shooting)). With our

Merci code, this experiment is simple to perform and only takes a

few seconds to be computed (see also the script in the supplementary

material).

We assume theMöbius ribbon to rest on a rigid planar support, the

direction of gravity being normal to the plane. Thanks to our numer-

ical model, we find out that two possible configurations exist: (i) the

ribbon stands up, or (ii) the ribbon falls on its side. To compute these

configurations, we start with the weightless Möbius solution ob-

tained in previous Section and add the planar obstacle with the help

of an inequality constraint, see Section 5.5. The clamping conditions

(21)-(22) with r
clamp

= p
0
= r

clamp’
andR

clamp
·F0 = 0 = R

clamp’
·F0

(see Algorithm 1) are removed and replaced by cyclic conditions (23).

Finally, to kill the translational invariance, we add the condition

that the center of mass of the ribbon lies on an axis defined with the

normal to the plane support and the origin of the global frame. We

do not kill the rotation invariance and therefore the configurations

shown in Figure 13 can be freely rotated around the vertical axis.

We keep the condition 𝜂 (0) = 0 = 𝜂 (𝐿) in order to kill the invari-

ance 𝑠 → 𝑠 + Δ𝑠 (though convergence was also achieved with the

condition 𝜂 (0) = −𝜂 (𝐿)), hence the singular point stays at 𝑠 = 0. We

obtain two kinds of local minima (i.e. stable equilibria) of the energy,
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see Figure 13 and the supplementary material. The standing-up con-

figuration has its singular point lying at the top of the configuration,

and we stress that this configuration seems to exist and be stable for

a wide range of widths𝑤 and weight Γ values, see Figure 14 where

we plotted the height of the solution as a function of the weight

Γ. It seems that the standing-up configuration is stabilised from

20 40 60 80 100 120 140
Γ

0.05

0.10

0.15

0.20

0.25

H

MERCI -Wunderlich

Fig. 14. Height of the Möbius configuration as a function of the weight Γ,
for 𝑤

𝐿
= 0.025.

side tilt by the 4 contact points on the edge of the ribbon, and from

rolling by the following argument. In the continuous limit (with

infinitely small elements), the Möbius configuration is in contact

with the plane along the ruling at the bottom point, 𝑠 = 𝐿/2, which
means that it could roll in the direction perpendicular to this ruling.

Rolling is energetically favorable if it lowers the center of mass in

the gravity field. To test this, we have to compute the curvature 𝜅⊥

of the ribbon surface in the direction perpendicular to the ruling

(please note that the curvature in the direction of the ruling is zero

by definition). In the (d1, d3) frame, the curvature matrix is given

by [Dias and Audoly 2015],(
𝜅 −𝜂 𝜅
−𝜂 𝜅 𝜂2 𝜅

)
(d1,d3)

. (26)

If we rotate this matrix by an angle 𝜃 = arctan𝜂 we obtain(
𝜅 (1 + 𝜂2) 0

0 0

)
(ruling⊥,ruling)

(27)

Hence we have 𝜅⊥ = 𝜅 (1 + 𝜂2). We note 𝐻CoM the distance from

the plane to the center of mass, and have the condition that if

𝜅⊥ > 1/𝐻CoM, the ribbon spontaneously rolls. We plot 𝜅⊥ and

1/𝐻CoM as functions of Γ in Figure 15 and see that this condition is

never reached. By warm-starting the min-search procedure, we can

nevertheless obtain configurations where the ribbon lies on its side

with two contact regions, see Figure 13-right. Finally, we note that

for width values𝑤 < 0.1 the width only plays a minor role here, as

it does not change the stability property of the solution and only

slightly changes the curve 𝐻 (Γ).
Of course our contacting Möbius experiment would deserve to be

fully validated on experiments and/or theory – which, to the best

of our knowledge, do not exist currently. That said, this numerical

experiment illustrates the capacity of our numerical model to help

investigate new and challenging scenarios. In the following, we
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Γ
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Fig. 15. Is theMöbius ribbon going to roll? Comparison between the distance
of the center of mass from the plane, 𝐻CoM, and the curvature 𝜅⊥ of the
ribbon surface in the direction perpendicular to the ruling at the contact
point with the support. (𝑤

𝐿
= 0.025)

𝐹

𝐻𝐿 (1 − Δ)
𝑠 = 0 𝑠 = 𝐿

𝜃

e𝑥

e𝑦

Fig. 16. Setup for the confined ribbon buckling experiment. A ribbon is
clamped at both extremities (𝑠 = 0 and 𝑠 = 𝐿) on a first plate, lying at
𝑦 = 0. As the distance 𝐿 (1 − Δ) between the two clamps is less than 𝐿, the
ribbon buckles. A second plate, at 𝑦 = 𝐻 , constrains the vertical span of the
buckled configuration and generate folds. The total vertical compression
force applied on the upper plate is noted 𝐹 .

specifically verify and validate our code on one of the few well-

studied experiments involving an elastic ribbon and contact: the

confined ribbon buckling experiment [Roman and Pocheau 1999],

exhibiting a complex cascade of (2D) folds.

8 THE (2D) CONFINED RIBBON EXPERIMENT:
CAPTURE OF SUBTLE BUCKLING CASCADES

We consider a planar experiment where the ribbon is forced to

buckle between two rigid planes, see Figure 16. Due to its resem-

blance with the Euler Buckling experiment (a straight planar rod

compressed at both ends), this experiment has been coined Con-
strained Euler Buckling [Domokos et al. 1997]. It was extensively

studied by Roman and Pocheau [1999] who proposed a classification

for the possible configurations and examined their self-similarity

properties [Pocheau and Roman 2004; Roman and Pocheau 2002].

More recently, this problem has been reopened in the perspective

of the wrinkling of confined elastic structures [Tzokova 2020]. Con-

fined buckling of plates and cables has numerous industrial appli-

cations, for example oil-drilling [Miller et al. 2015; Thompson et al.

2012] or thin-walled or lightweight structures for civil engineering

[Bradshaw et al. 2002].
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Fig. 17. Different configurations for the confined ribbon experiment simu-
lated with our Merci code. From top to bottom: vertically unconstrained
planar Elastica (Δ = 0.2 and 𝐻 = 0.3), planar contact with 𝑛 = 1 (Δ = 0.2

and 𝐻 = 0.2), hanging fold with 𝑛 = 2 (Δ = 0.2 and 𝐻 = 0.15), planar
contact with 𝑛 = 2 (Δ = 0.2 and𝐻 = 0.1), and a 3D configuration exhibiting
twist and singular points at which |𝑤𝜂′ (𝑠) | = 2 (Δ = 0.3 and 𝐻 = 0.1). We
use 𝑤

𝐿
= 1/20, and we work with the Wunderlich model without constrain-

ing 𝜂 at the clamps. Note that a small amount of self-weight 𝑀𝑔 is used,
such that Γ = 𝑀𝑔/(𝐷𝑤/𝐿2) = 10.

Here, based on the Roman and Pocheau [2002] scaling, we derive

specifically a semi-analytical model for the fold cascade, so as to

validate our numerical model precisely.

8.1 Semi-analytical solution
We consider a ribbon of length 𝐿, width 𝑤 , flexural rigidity 𝐷 ,

clamped at both extremities 𝑠 = 0 and 𝑠 = 𝐿. The distance between

the two clamps is 𝐿 (1−Δ). The ribbon is also confined between two

horizontal walls separated by a distance 𝐻 , see figure 16. Through

non-dimensionalisation, we use 𝐿 as unit length and 𝐷𝑤/𝐿2
as unit

force, that is we set (with no loss of generality) 𝐿 = 1 and 𝐷𝑤 = 1 in

the code. We fix the value of Δ (in the interval 0.05 ≤ Δ ≤ 0.3) and

gradually decrease 𝐻 . If 𝐻 > 𝐻0 (Δ) the upper plate is too high to

generate any contact. We compute the value 𝐻0 (Δ) from the planar

Elastica solution [Bigoni 2012; Love 1944]

𝐻0 (Δ)
𝐿

=

√
𝑚

𝐾 (𝑚) , (28)

Fig. 18. We retrieve the Spiral configuration recently characterised exper-
imentally by Deboeuf et al. [2024] in the confined ribbon experiment, for
𝐻
𝐿

= 0.22 and Δ = 0.4.

where 𝐾 (𝑚) =
∫ 𝜋/2
0
(1 − 𝑚 sin

2 𝜃 )−
1

2 𝑑𝜃 is the complete elliptic

integral of the first kind, see supplementary material. We find the

modulus𝑚 by numerically inverting

Δ = 2

(
1 − 𝐸 (𝑚)

𝐾 (𝑚)

)
, (29)

where 𝐸 (𝑚) =
∫ 𝜋/2
0
(1 −𝑚 sin

2 𝜃 )
1

2 𝑑𝜃 is the complete elliptic inte-

gral of the second kind. In the range Δ ≤ 0.3, we find that a good

interpolation of 𝐻0 (Δ) is given by

𝐻0 (Δ)
𝐿
≃ 2

𝜋

√
Δ − 0.2Δ1.5

. (30)

8.2 Validation results
As shown in Figure 17 and in our accompanying video, when 𝐻 is

decreased to values smaller than𝐻0 (Δ), contact arises. First, contact
occurs only along a ruling (i.e. for an isolated value of 𝑠), a situation

which has been called lineic contact by Roman and Pocheau [2002].

As we go on decreasing 𝐻 , the contact force 𝐹 , from the upper wall

to the ribbon, increases. When 𝐻 reaches a threshold value, the

contact region extends and planar contact appears (i.e. for values
of 𝑠 inside an interval). As 𝐻 is further lowered, a snap instability

is reached where the contact force drops abruptly and a new fold

appears, hanging between the two walls. For these hanging fold
configurations, the contact force decreases as 𝐻 is lowered. The

contact force eventually reaches zero when the lowest point of the

fold touches the lower wall. We are now back with a lineic contact

situation, but with 3 isolated 𝑠 values for which contact occurs.

This scenario repeats itself with ribbon configurations comprising

more and more waves, as described in [Roman and Pocheau 2002].

We define the number 𝑛 ≥ 1 of waves as half the number of isolated

inflexional points along the ribbon, 𝑛 = #{𝑠𝑖 } such that 𝜅 (𝑠𝑖 ) = 0

and 𝜅 (𝑠) ≠ 0 for 𝑠 near 𝑠𝑖 . We remark that depending on
𝑤
𝐿
,
𝐻
𝐿
, and

Δ, 3D solutions with twist might pop up, see the last configuration

in Figure 17. Due to the presence of hysteresis, there are possibly

multiple stable equilibrium solutions existing for the same values

of
𝐻
𝐿
and Δ. Additionally, for large Δ value (typically Δ > 0.3) we

found S-shaped solutions, see Figure 18. These solutions have been

reported experimentally by Deboeuf et al. [2024] and called Spiral
configurations, see also [Chai 2006].

Contact is treated with inequality constraints (𝑦 ≥ 0 and 𝑦 ≤ 𝐻 )
in our numerical setup and the total vertical compression force 𝐹 is
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Fig. 19. Total vertical compression force 𝐹 for Δ = 0.2 and decreasing height
𝐻 values. The number 𝑛 of folds is used to rescale the vertical axis and
the height 𝐻0 of the first contact is used to rescale the horizontal axis.
The agreement between our semi-analytical solution (solid line) and our
numerical results (dots) is excellent.

extracted as the sum of the active Lagrange multipliers associated

with the constraint 𝑦 ≤ 𝐻 . The force 𝐹 depends on 𝑛, 𝐻
𝐿
, and Δ. To

validate our numerical results, we compare the computed values of

the force 𝐹 against our analytical model in Figure 19, for Δ = 0.2 and

for up to 𝑛 = 7 folds. We observe an excellent agreement between

the two.

In addition, we show in Appendix A how the curves for the lineic

and planar contact can be rescaled to a single (yet approximate)

master curve given by

𝐹

𝐻0 (10𝑛)3
= 9

(
1 − 𝑛 𝐻

𝐻0

)
− 39

(
1 − 𝑛 𝐻

𝐻0

)
2

+ 92

(
1 − 𝑛 𝐻

𝐻0

)
3

(31)

valid for all 𝑛, Δ, and 𝐻
𝐿
, thereby generalizing the scaling introduced

by Roman and Pocheau [1999].

9 EXTENSION TO QUASI-DEVELOPABLE RIBBONS
The different models considered so far (Sadowsky, Wunderlich)

make the assumption that the surface of the ribbon does not extend

nor compress, being hence restricted to a developable surface since

the initial configuration is planar (rectangular). While for some

scenarios, this inextensible assumption has been shown to correctly

describe the physics of the ribbon [Kumar et al. 2021, 2020], in some

other cases extensibility plays a key role in the deformation of the

ribbon [Audoly and Neukirch 2021; Romero et al. 2021]. Examples

where the ribbon is not a developable surface include the twisted

straight ribbon [Audoly and Neukirch 2021; Chopin et al. 2015],

or the lateral buckling experiment [Michell 1899; Reissner 1989;

Romero et al. 2021] for which Sadowsky and Wunderlich models

both fail to predict the correct buckling threshold.

9.1 Validation failure
The chained Wunderlich ribbon model of Charrondière et al. [2020]

has already been shown to fail to capture the correct threshold of

the lateral buckling instability in [Romero et al. 2021, Figure 9(a)].

Of course switching to a mixed formulation does not change this

fundamental modelling issue: we confirm and reproduce this failure

with ourMerci-Wunderlich code in Figure 20, top panel.

This section is dedicated to the enhancement of the underlying

physical ribbon model in Merci, in order to fix the buckling thresh-

old issue and increase the applicability range of our simulator. To this

aim we devise a new numerical scheme to implement and integrate

the extensible ribbon model [Audoly and Neukirch 2021] – called

hereafter Merci-Ribext – in our Merci code. We compare this

extension on the lateral buckling experiment against our two devel-

opable ribbon variants Merci-Sadowsky and Merci-Wunderlich,

and to the 2D plate model FEniCS-Shell.

9.2 Implementation of the RibExt energy inMerci
Recall that the RibExt energy is provided in Section 4.2. The numer-

ical evaluation of the function 𝝓 (𝑥), given in Equation (8b), suffers

from catastrophic cancellation when |𝑥 | is smaller than 0.01. We

therefore opt for the use of a Padé approximant to replace 𝝓 in the

code, with 𝝓
pade
(𝑥) = 𝐴(𝑥)/𝐵(𝑥), 𝑑𝑒𝑔(𝐴) = 𝑑𝑒𝑔(𝐵) = 4 𝑖 , and 𝑖 a

strictly positive integer, see Section E or Appendix B of [Audoly and

Neukirch 2021]. For 𝑖 = 1, 𝝓
pade
(𝑥) = 𝑥4/(180+𝑥4) yields the same

ribbon energy as in [Sano and Wada 2019], but the results presented

here have been computed with 𝑖 = 3.

Another issue with the RibExtmodel is the difficulty to integrate

(8a) (as well as its gradient and its Hessian) in closed form. We

therefore integrate it numerically through the trapezoidal ruling,

each element being regularly partitioned into 2
𝑘
subintervals, to

obtain the approximation 𝑎𝑘 ≃ 𝐸R . We select the integer 𝑘 through

an incremental test: we first evaluate 𝑎4 and 𝑎5 then, as long as

|𝑎𝑘+1 − 𝑎𝑘 | > 𝜖 , we increment 𝑘 . To avoid lengthy computations,

we restrict to 𝑘 ≤ 24. For performance, 𝑎𝑘+1 reuses the computation

of 𝑎𝑘 , allowing to compute 𝑎1, · · · , 𝑎𝑘 with 2
𝑘
evaluations of the

integrand of 𝐸R . This procedure works in general, even if in some

cases the result may be non-accurate due to some specificity of the

integrand. Also, the computation cost can sometimes increase due

to a potentially high number of evaluations (2
24 ∼ 10

7
).

9.3 Lateral torsional buckling scenario
We choose the lateral torsional buckling (LTB) problem as a test

experiment to validate the RibExt model and its implementation

in Merci. We consider a thin plate (length 𝐿, width𝑤 , thickness ℎ)

clamped at one edge and subject to its own weight. The clamp

orientation is chosen in such a way that gravity is acting against the

strong flexural rigidity of the plate so that the sagging cantilever

geometry is not produced, see Figure 23. We choose 𝐿 as unit length

and 𝐷/𝐿 as unit force. This choice is translated by setting 𝐿 = 1

and 𝐷 = 1 in the codes. We fix Poisson’s ratio 𝜈 = 0.35 and the

thickness
ℎ
𝐿
= 10

−3
, a value small enough to have negligible shear

strain through the thickness of the plate.
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Fig. 20. Results for theMerci code on the LTB test. This test, introduced in [Romero et al. 2021], studies the threshold between (unbuckled) 2D configurations
and (buckled) 3D configurations. The reference curve is drawn black and we colorcode 2D configurations in red and 3D configurations in blue. The left column
reports runs where the clamp constraint 𝜂 (0) = 0 has not been enforced. OurMerci-Ribext implementation, with 𝜂 (0) = 0, successfully passes this 3D test.
(Note that all six cases have been performed with the constraint |𝑤𝜂′ (𝑠) | ≤ 2 ∀𝑠 on).

9.4 Comparison results
We vary the width

𝑤
𝐿
and the non-dimensionalised weight of the

plate

Γ =
Mass𝑔

𝐷𝑤/𝐿2
=
𝜌𝑔ℎ𝑤𝐿

𝐷𝑤/𝐿2
. (32)

When noweight is present (Γ = 0), the plate lies flat, alignedwith the

clamp direction. As the weight Γ is increased, the plate stays planar

and only slightly sags: the curvature energy remains zero, 𝐸𝑏𝑒𝑛𝑑 = 0,

but a small amount of extension energy 𝐸𝑒𝑥𝑡 is now present, yielding

the ratio 𝐸𝑒𝑥𝑡/(𝐸𝑒𝑥𝑡 +𝐸𝑏𝑒𝑛𝑑 ) = 1. As the weight exceeds a threshold

value, Γ > Γ∗ ( 𝑤
𝐿
, 𝜈), the plate buckles on its left (or right) side and
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Fig. 21. Contour plot of the energy ratio 𝐸𝑒𝑥𝑡 /(𝐸𝑒𝑥𝑡 + 𝐸𝑏𝑒𝑛𝑑 ) computed
with the FEniCS-Shell code. Before buckling (under the black curve), only
stretching is present. After buckling (above the black curve) there are large
parts of the diagram where the extension energy is at least 5% of the total
deformation energy.

curvature arises. In Figure 21 we show a contour plot of the energy

ratio 𝐸𝑒𝑥𝑡/(𝐸𝑒𝑥𝑡+𝐸𝑏𝑒𝑛𝑑 ), computedwith our reference code FEniCS-

Shell, in the plane ( 𝑤
𝐿
, Γ). We see that, above the frontier curve

Γ∗ ( 𝑤
𝐿
, 𝜈), there is a non-negligible region of parameters where the

extension energy plays an important role. This frontier curve has

been used in [Romero et al. 2021] to test numerical models of plates,

and it was shown that Sadowsky and Wunderlich implementations

in Merci failed to accurately reproduce the frontier curve. This

failure may have two origins: Sadowsky and Wunderlich theories

(i) are 1D models and hence by nature cannot thoroughly reproduce

this 2D plate test, and (ii) do not allow any stretching of the surface

of the ribbonwhereas Figure 21makes it clear that there is stretching

in the system, even for large width values (
𝑤
𝐿
≃ 1). The RibExt

model is also a 1D model, but its energy is computed so as to take

stretching of the surface of the ribbon into account, and we will see

that it behaves much better in the LTB test.
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Fig. 22. Lateral Torsional Buckling bifurcation curve with 𝜈 = 0.35, 𝑤
𝐿

= 0.1,
and ℎ

𝐿
= 0.001. Note that in the Merci-Sadowsky and Merci-Wunderlich

codes, the constraints 𝜂 (0) = 0 and |𝑤𝜂′ | ≤ 2 have been applied. We also
plot in purple the ratio of extension energy computed with the FEniCS-Shell
code.

First, in Figure 22 we plot the end displacement of the structure

as function of the weight Γ, for 𝑤
𝐿
= 0.1. In what follows, we stress

that we have imposed the constraints 𝜂 (0) = 0 and |𝑤𝜂 ′(𝑠) | ≤ 2

for all three ribbon models (the version of Figure 22 without the

constraint 𝜂 (0) = 0 can be found in the supplementary material).

The constraint 𝜂 (0) = 0 aligns the rulings of the ribbon surface

with the clamp at 𝑠 = 0 and the constraint |𝑤𝜂 ′(𝑠) | ≤ 2 prevents

the rulings to intersect on the surface and to create a singularity.

Additionally, we show in Appendix D that just as in the Möbius

experiment, the constraint 𝜂 (0) = 0 give birth to a boundary layer

where 𝜂 (𝑠) varies rapidly in theWunderlich model. Compared to the

FEniCS-Shell output, we see that both Sadowsky and Wunderlich

models miss the buckling threshold, but recover a fairly good be-

haviour at large Γ. Moreover we notice that the discrepancy of these

two inextensible models takes place when the extension energy is

present in the system, and that the the RibExt model, accordingly,

reproduces fairly well the bifurcation curve of the FEniCS-Shell

code, see also a comparison of the deformed shapes for the value

Γ = 20 in Figure 23. Please note that here a small value of
𝑤
𝐿
has

been chosen, and that for larger values (e.g.
𝑤
𝐿
= 0.4 in Appendix

F) the agreement between RibExt and the FEniCS-Shell code is

not as good. Figure 22 also contains the bifurcation curve for the

Kirchhoff rod model, which bifurcates too early.

Fig. 23. Equilibrium configurations for the LTB test with Γ = 20, 𝑤
𝐿

=

0.1, ℎ
𝐿

= 0.001. While the Sadowsky and Wunderlich models predict an
unbuckled shape, the Kirchhoff model predicts a deformation which is
too large. Only the RibExt model correctly approximates the reference
deformation given by the FEniCS-Shell code.

In order to test more thoroughly the three ribbon models (Sad-

owsky,Wunderlich, andRibExt), we follow the validation procedure

introduced in [Romero et al. 2021]. This procedure aims at verifying

if a code correctly detects the lateral torsional buckling threshold.

Results are shown in Figure 20 where the planar/spatial attribute

of the equilibrium shape is color-coded. The color change (i.e. the

2D→ 3D bifurcation) should happen at the black line which is the

reference curve provided in [Romero et al. 2021]. We see that if

the constraint 𝜂 (0) = 0 is not enforced, the buckling thresholds

computed by the three models virtually does not vary with
𝑤
𝐿
and

does not match the reference curve. Once the constraint is enabled,
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a variation fo the buckling threshold appears, but only the RibExt

model reasonably matches the reference curve.

10 CONCLUSION
Our reduced numerical ribbon model appears as a fast, accurate

and robust model for computing the static equilibrium of a thin

elastic ribbon possibly subject to various constraints. As such, it

offers an interesting alternative for computing the statics of per-

fectly inextensible surfaces, compared to a rod model, which fails to

preserve inextensibility of the carried surface, or to a shell simulator,

which becomes overly costly when the thickness vanishes. We also

confirm that, in certain setups, physical narrow ribbons experience

stretching deformation and we show that our numerical model is

able to deal with these difficult cases. In the future, an interesting

research path would be to investigate how to extend our model to

deformations going beyond the Wunderlich constraint, that is in-

volving kinks, sharp folds and even fracture, which naturally emerge

in very thin surfaces like crumpled paper.
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A FORCE CURVES IN THE CONFINED RIBBON
BUCKLING EXPERIMENT

For the lineic and planar contact configurations only, we present

here the numerical data for the total vertical compression force 𝐹

as a function of the height 𝐻 . As explained in [Roman and Pocheau

2002], for each Δ value, these curves collapse if the number𝑛 of folds

is used to rescale both the horizontal and vertical axes: for example

the data of Figure 19 is collapsed in the curve labelled Δ = 0.2 in

Figure 24.

We also present in Figure 25 a re-scaling of the axes for which

the data of Figure 24 approximately follows a single master curve,

valid for all Δ, given by Equation (31).

B THE SHOOTING APPROACH
Variational approach. In this section, we show how to find equi-

librium solutions of elastic ribbons in the Wunderlich model, in a

shooting-based approach. We first show how to obtain differential

equations and then how to solve the associated boundary value

problem. We illustrate our approach with the Möbius configuration

but it can be applied to other setups. We start with the Wunder-

lich deformation energy density in the absence of natural normal
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Fig. 24. Vertical force 𝐹 on the cell with the scaling for both axes as intro-
duced by Roman and Pocheau [1999]. Dotted lines correspond to analytical
solutions of the planar Elastica with lineic and planar contact, and points
correspond to numerical Merci data.
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Fig. 25. Approximate collapse of the numerical data of Figure 24 for the
vertical compression force 𝐹 as a function of the height𝐻 of the cell, for Δ =

0.05, 0.1, 0.15, 0.20, 0.25, 0.3. The number 𝑛 of waves is such that 1 ≤ 𝑛 ≤ 9,
and 𝐻0 (Δ) is the vertical height of the cell at first contact, see Equation
(28). The red curve is given by (31).

curvature �̆�

𝑊𝑒 =
1

2

𝐷𝑤 𝜅2

(
1 + 𝜂2

)
2

𝜓 (𝑤 𝜂 ′) (33)

see Equation (6a) with �̆� = 0. We add the potential energy density

associated with the ribbon weight𝑊𝑔 = −𝜌 ℎ𝑤 r · g, where g is

the gravity vector, giving the direction and intensity of gravity. We

seek to extremise (we include unstable equilibrium solutions) the

total energy 𝐸W +𝐸𝐺 =
∫ 𝐿

0

(
𝑊𝑒 +𝑊𝑔

)
d𝑠 under several constraints.

These constraints typically comprise boundary conditions on the

position r and orientation of the material frame (d1, d2, d3), which

brings r, d1, d2, d3 into the variational approach. Consequently, we

have to consider additional relations (aka constraints) between these
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variables, namely

r′ = d3 (34a)

d1 · d2 = 0 d1 · d3 = 0 d2 · d3 = 0 (34b)

d1 · d1 = 1 d2 · d2 = 1 d3 · d3 = 1 (34c)

d′
2
· d3 = 𝜅1 d′

3
· d1 = 𝜅2 d′

1
· d2 = 𝜅3 (34d)

Equations (34d) are equivalent to the Darboux equations (2) where

we set 𝜅1 = 𝜅, 𝜅2 = 0, 𝜅3 = 𝜂𝜅, see Section 4.1. For each of these

constraints, we associate a Lagrange multiplier and work with the

Lagrangian L(𝜅, 𝜂, r, d1, d2, d3)
L =𝑊𝑒 (𝜅, 𝜂) +𝑊𝑔 (r) − 𝝀 · (d3 − r′)
− 𝜇1 (𝜅 − d′2 · d3) − 𝜇2 (0 − d′3 · d1) − 𝜇3 (𝜂 𝜅 − d′1 · d2)
− 𝜈12 d1 · d2 − 𝜈13 d1 · d3 − 𝜈23 d2 · d3

− 1

2

𝜖1 (d1 · d1 − 1) − 1

2

𝜖2 (d2 · d2 − 1) − 1

2

𝜖3 (d3 · d3 − 1)
(35)

Differential system of equilibrium equations. We work with non-

dimensionalised variables, that is in units where 𝐷 = 1 and 𝐿 = 1.

This nondimensionalisation introduces the rescaled weight Γ =

𝜌ℎ𝑔𝐿3/𝐷 , see [Romero et al. 2021] formore details.We then compute

the first variation of

∫ 𝐿

0
L d𝑠 and require that it vanishes for every

variation of the variables (𝜅, 𝜂, r, d1, d2, d3), see [Elettro et al. 2017]

for more details, which yields the differential system

𝝀′ = Γ g (36a)

𝜇 ′
1
= 𝜇2 𝜂 𝜅 + 𝝀 · d2 (36b)

𝜇 ′
2
= 𝜇3 𝜅 − 𝜇1 𝜂 𝜅 − 𝝀 · d1 (36c)

𝜇 ′
3
= −𝜇2 𝜅 (36d)

r′ = d3 (36e)

d′
1
= 𝜂 𝜅 d2 (36f)

d′
2
= 𝜅 d3 − 𝜂 𝜅 d1 (36g)

d′
3
= −𝜅 d2 (36h)

0 = 𝜅 [1 + 𝜂2]2𝜓 (𝑤𝜂 ′) − 𝜇1 − 𝜇3 𝜂 (36i)(
𝜅2 [1 + 𝜂2]2𝜓 (𝑤𝜂 ′)

) ′
= 4𝜅2 𝜂 (1 + 𝜂2)𝜓 − 2𝜇3 𝜅 (36j)

Equation (36i) is used to isolate 𝜅

𝜅 =
𝜇1 + 𝜇3 𝜂

[1 + 𝜂2]2𝜓 (𝑤𝜂 ′)
(37)

Equation (36j) is obtained after an integration by parts, which also

yields the following natural boundary condition

𝜅2 [1 + 𝜂2]2𝜓 (𝑤𝜂 ′)
��
𝑠=0,1

= 0 (38)

which has to be fulfilled whenever 𝜂 (0) or 𝜂 (1) is not prescribed. We

first factorise 𝜅 out of Equation (36j), and use (37) and its derivative

to rewrite (36j) in the form

2𝜂 (𝜇1 + 𝜇3𝜂)𝑤𝜂 ′
¤𝜓
𝜓
+ (1 + 𝜂2) (𝑤𝝀 · d1 − 𝜇3𝑤𝜂

′)
¤𝜓
𝜓

=

−2𝜇1𝜂 − 𝜇3𝜂
2 + 𝜇3 +

¥𝜓𝜓 − 2
¤𝜓2

2𝜓2
(𝜇1 + 𝜇3𝜂) (1 + 𝜂2)𝑤2𝜂 ′′ + 𝜖𝑟𝜂 ′′

(39)

where ( )′ ≡ 𝑑/𝑑𝑠 and ¤( ) ≡ 𝑑/𝑑 (𝑤𝜂 ′). Please note that, in the same

spirit as in [Moore and Healey 2019], we have added a regularisation

term 𝜖𝑟 𝜂
′′
. We use 0 < 𝜖𝑟 ≪ 1 in the continuation procedure to

go from the untwisted (𝐿𝑘 = 0) planar ring to the Möbius (𝐿𝑘 = 1

2
)

configuration (equivalent to the procedure described in Algorithm

1). We then set 𝜖𝑟 = 0 and vary the width 𝑤 to obtain Möbius

configurations for a wide range of width values (e.g. reaching values

𝑤 < 10
−4
).

With 𝜖𝑟 = 0, we write (39) as two first-order differential equations,

a form required by some ODE-based shooting solvers (e.g. AUTO

[Doedel et al. 1991])

𝜂 ′ =𝑑𝜂 (40a)

𝑑𝜂 ′ =
2

(1 + 𝜂2)𝑤2

[
𝑄𝑎 (2𝜇1𝜂 + 𝜇3𝜂

2 − 𝜇3) + 2𝜂𝑤 𝑑𝜂 𝑃𝑏+

(1 + 𝜂2) (𝑤 𝝀 · d1 − 𝜇3𝑤 𝑑𝜂) 𝑄𝑏

]
(40b)

with

𝑃𝑎 =
𝜓2

¥𝜓 𝜓 − 2
¤𝜓2

𝑃𝑏 =
𝜓 ¤𝜓
¥𝜓 𝜓 − 2

¤𝜓2

(41)

𝑄𝑎 =
𝑃𝑎

𝜇1 + 𝜇3 𝜂
𝑄𝑏 =

𝑃𝑏

𝜇1 + 𝜇3 𝜂
(42)

Please note that 𝑃𝑎 and 𝑃𝑏 remain bounded for −2 ≤ 𝑤𝜂 ′ ≤ +2 and

that 𝑃𝑎 = 0 = 𝑃𝑏 at singular points 𝑤𝜂 ′ = ±2. Nevertheless, as at

singular points 𝜂 = 0 = 𝜇1, we have to ascertain the behaviour of

𝑄𝑎 and 𝑄𝑏 at these points.
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Fig. 26. Comparison between Merci and AUTO for the computation of the
Möbius solution with the Wunderlich model.

Behaviour of Equations (39)-(40) at singular points. When the solu-

tion approaches the singularity𝑤𝜂 ′ = ±2, Equations (40) simplifies

to

𝑑2𝜂

𝑑𝜎2
= −2𝑀

1 − 𝜂2

1 + 𝜂2

[
𝑄𝑎 +𝑄𝑏

𝑑𝜂

𝑑𝜎

]
(43)

where 𝜎 = 𝑠/𝑤 is the rapidly variable of the inner layer of the

asymptotic expansion MAE introduced in [Audoly and van der

Heijden 2022] in the case 𝑤 ≪ 1, and where the approximations
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𝜇1 (𝑠) ≃ 0, 𝜇3 (𝑠) ≃ 𝑀 ≃ 19.7, and 𝑤 𝝀 · d1 ≃ 0 have been used.

Equation (43) can be integrated once

𝐻 =
1

2

(
𝜂

1 + 𝜂2

)
2

(
1

𝜓
+
¤𝜓
𝜓2

𝑑𝜂

𝑑𝜎

)
(44)

The constant 𝐻 is the Hamiltonian of the system, see [Starostin and

van der Heijden 2015], and the inner layer of the Möbius solution

corresponds to 𝐻 = 1/8.
Using (44), we compute that as we approach the singular point,

that is when𝑤𝜂 ′ = 2 − 𝜖 with 𝜖 → 0, we have

𝜂 ∼
√
𝜖 log(4/𝜖) → 0 𝜅 ∼

√
𝜖 → 0 (45a)

𝜓 ∼ log(4/𝜖) ¤𝜓 ∼ 1/𝜖 (45b)

¥𝜓 ∼ 1/𝜖2 𝑊𝑒 ∼ 𝜖 log(4/𝜖) → 0 (45c)

𝑄𝑎 ∼ 𝜖
√
𝜖 → 0 𝑄𝑏 ∼

√
𝜖

log(4/𝜖) → 0 (45d)

These asymptotic behaviours show that, at the singular point, the

differential system (40) behaves regularly and the elastic energy

density vanishes.

Implementation in the AUTO code. The function 𝜓 (𝑥) and its de-

rivative suffers from catastrophic cancellation in the series for the

two log terms when 𝑥 is near 0. As in [Moore and Healey 2019],

we replace 𝜓 (𝑥) by 𝜓10, its order 10 Taylor Expansion, whenever

|𝑥 | < 0.005. When 0.005 < |𝑥 | < 2, we use Equation (6b). Finally,

when 2 ≤ |𝑥 | we use

𝜓AUTO (𝑥) = 𝜓10 +
1

20

1

4 − 𝑥2
(46)

This ad-hoc continuation of the Wunderlich function 𝜓 is useful

during the Newton-Raphson procedure in which the AUTO code

tries to find a numerical solution to the boundary value problem.

For some Newton steps, the code might wander in the forbidden

region 2 ≤ |𝑥 | before converging inside the region |𝑥 | < 2. The

present continuation (46) renders the 2 < |𝑥 | region available and

hence prevents the Newton routine from crashing. It allowed us to

decrease the width parameter𝑤 to values lower than 10
−4

and verify

the convergence of the numerical solution toward the asymptotic

expansion (MAE) solution. Only at the singular point, the numerical

value of 𝑥 = 𝑤𝜂 ′ was sometimes found to be𝑤𝜂 ′ ≃ 2.006, slightly

over 2.

C DIFFERENT WAYS TO CONSTRAIN 𝜂 (𝑠)
Here we compare different ways to constrain the function 𝜂 (𝑠) at
𝑠 = 0, 𝐿. We choose 𝑠 = 0 to be the singular point, as in Section 7.

Due to the Möbius construction, when crossing the 𝑠 = 0 point, the

directors d1 and d2 are rotated by an angle 𝜋 around the director

d3, that is we have d1,2 (0) = −d1,2 (𝐿). At 𝑠 = 0, the moment and

hence the Darboux vector u(𝑠) are continuous. This implies that

𝜅 (0) = −𝜅 (𝐿) but 𝜏 (0) = 𝜏 (𝐿), and hence𝜂 (0) = −𝜂 (𝐿) (NB: 𝜏 = 𝜅 𝜂).
We runMerciwith (i) the constraint𝜂 (0) = −𝜂 (𝐿), (ii) the constraint
𝜂 (0) = 0 = 𝜂 (𝐿), (iii) no constraint. We find that the shape is

approximately the same in the three approaches, Figure 27, but that

a closer look at the singular region shows that in order to have a

continuous ribbon one should avoid the (i) approach, Figure 28.

Fig. 27. Three ways to constrain the function 𝜂 (𝑠) at 𝑠 = 0, 𝐿. The overall
shape is approximately the same. See Figure 28 for a zoom at the singular
point.

Fig. 28. Three ways to constrain the function 𝜂 (𝑠) at 𝑠 = 0, 𝐿. Zoom on the
singular point. From bottom to top: 𝜂 (0) = −𝜂 (𝐿) , 𝜂 (0) = 0 = 𝜂 (𝐿) , no
constraint.

D UNIVERSALITY OF THE WUNDERLICH BOUNDARY
LAYER

Here we compute the equilibrium solution of the clamped-free rib-

bon in the Lateral Torsional Buckling (LTB) experiment. We use

the Wunderlich model and enforce the 𝜂 (𝑠 = 0) = 0 constraint in

order to have a flat ribbon emerging from the clamp, see Section

9.3. At the buckling threshold, Γ = 21.5, the buckling mode in the

Sadowsky model is known to have 𝜂 (0) = 1 [Audoly and Neukirch

2021], and this property carries to post-buckled configurations, as

illustrated in Figure 29. Therefore the enforcement of the constraint

𝜂 (0) = 0 naturally creates a boundary layer near 𝑠 = 0 in which
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s

0.2

0.4

0.6

0.8

1.0

η

MAE

Sadowsky (shooting)

MERCI -Wunderlich w=0.1

Fig. 29. (blue) Plot of 𝜂 (𝑠) fromMerci for the buckled LTB solution with
Wunderlich model and constraint 𝜂 (0) = 0, with Γ = 30 and 𝑤 = 0.1. (pink)
The boundary layer solution from [Audoly and van der Heijden 2022], and
(brown) the Sadowsky solution.

the Wunderlich solution varies rapidly to (i) satisfy the condition

𝜂 (0) = 0 and (ii) stay as near as possible to the Sadowsky solution.

We define the extent of the boundary layer as 𝑠 ∈ (0,𝑠★) where 𝑠★ is

such that 𝜂 ′(𝑠★) = 0, and we see that 𝑠★ = 𝑂 ( 𝑤
𝐿
). For three distinct

values of the the width𝑤 , in Figure 30 we show a parametric plot

where the horizontal axis is 𝜂 (𝑠) and the vertical axis is𝑤 𝜂 ′(𝑠) for
𝑠 ∈ (0,𝑠★) and 𝜂 ′(𝑠) for 𝑠 ∈ (𝑠★,1). We see that for all values of

the width, the solution starts with 𝑤𝜂 ′(0) = 2 which renders the

logarithm term in Wunderlich energy singular, just as in the Möbius

solution. Figure 30 also illustrates that, as𝑤 becomes smaller, the

0.2 0.4 0.6 0.8 1.0
η

-3

-2

-1

1

2

w η ' or η '

MAE
Sadowsky (shooting)
MERCI -Wunderlich w=0.1
MERCI -Wunderlich w=0.01
MERCI -Wunderlich w=0.001

Fig. 30. Parametric plot of the buckled LTB solution with Γ = 30 and three
values of the width 𝑤. Boundary (inner) layer in pink, Sadowsky (outer)
solution in brown.

equilibrium solution tends toward the boundary layer solution com-

puted in [Audoly and van der Heijden 2022] for 𝑠 ∈ (0,𝑠★) and tends
toward the Sadowsky solution for 𝑠 ∈ (𝑠★,1).

E PADÉ APPROXIMANTS FOR THE RIBEXT ENERGY
The function 𝝓 (𝑥) introduced in Equation (8b) contains the term

cosh𝑥 − cos𝑥

sinh𝑥 + sin𝑥
(47)

for which we compute a (4𝑖 − 3, 4𝑖) Padé approximant, with 𝑖 a

strictly positive integer. The result is then injected in Equation (8b)

and we obtain

𝑖 = 1 : 𝝓
pade
(𝑥) = 𝑥4

180 + 𝑥4
(48a)

𝑖 = 2 : 𝝓
pade
(𝑥) = 108108𝑥4 + 19𝑥8

19459440 + 157860𝑥4 + 19𝑥8
(48b)

𝑖 = 3 : 𝝓
pade
(𝑥) = 𝑎𝑥4 + 𝑏𝑥8 + 1822309𝑥12

𝑐 + 𝑑𝑥4 + 𝑒𝑥8 + 1822309𝑥12
(48c)

𝑎 =342728148082320 , 𝑏 = 116476532172

𝑐 =61691066654817600 , 𝑑 = 510577415908560

𝑒 =140908262040

F LTB BIFURCATION CURVE FOR 𝑤
𝐿
= 0.4

We show here that for wide ribbons,
𝑤
𝐿

= 0.4, the agreement be-

tween the RibExt model and FEniCS-Shell data is not as good as

in the narrow case, see Figure 31.
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Fig. 31. Lateral Torsional Buckling bifurcation curve with 𝜈 = 0.35, 𝑤
𝐿

= 0.4,
and ℎ

𝐿
= 0.001. Note that in theMerci code the constraints 𝜂 (0) = 0 and

|𝑤𝜂′ | ≤ 2 have been applied.
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