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1 INTRODUCTION

We gather here some additional computations and information.

2 MÖBIUS IN ONE SHOT

If the point 𝑠 = 0 is set at the singular point, we show in the LUA-interface script in the supplementary files that

the simple seed (aka warmstart) configuration

𝜅seed (𝑠) = 2𝜋 (1)

𝜂seed (𝑠) = cos (2𝜋 𝑠) (2)

is enough for Merci to converge within 30 Ipopt iterations to the Möbius solution in less than two seconds (100

segments,𝑤/𝐿 = 0.1), see Figure 1.

3 MÖBIUS WITH SINGULAR REGION IN THE MIDDLE

In the main text, we pointed out that the singular point (where𝑤 𝜂 ′ = ±2) is difficult to go through in shooting-

based models. Consequently, many numerical approaches use setups where the singular point of the Möbius

solution is at an edge of the integration interval. In this section, we place the singular point in the middle of the

integration interval and show that Merci does not suffer from the same drawback. Moreover, we demonstrate
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Fig. 1. Möbius solution (blue) and seed (red) with the singular point at the edge of the 𝑠 interval. Left: solution for 𝜅 (𝑠). Right:
solution for 𝜂 (𝑠). With 100 elements, the minimisation requires 30 Ipopt iterations and takes less than 2 seconds to converge.

the ease of use of Merci by showing that only a rough estimate of the solution for 𝜅 (𝑠) and 𝜂 (𝑠)is sufficient to

obtain convergence. We warm-start the minimisation procedure with

𝜅seed (𝑠) = −2𝜋 tanh (𝑐 [𝑠 − 1/2]) (3)

𝜂seed (𝑠) = tanh (𝑐 [𝑠 − 1/2]) cos (2𝜋 𝑠) (4)

and obtain the solution after a few dozen Ipopt iterations, see the LUA-interface script in the supplementary files.

We show in Figure 2 the functions 𝜅seed (𝑠), 𝜂seed (𝑠) together with the equilibrium solutions 𝜅 (𝑠) and 𝜂 (𝑠). We
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Fig. 2. Möbius solution (blue) and seed (red, with 𝑐 = 11 and 𝑤/𝐿 = 0.08) with the singular point in the middle of the

integration interval. Left: solution for 𝜅 (𝑠). Right: solution for 𝜂 (𝑠). With 95 elements, the minimisation requires 70 Ipopt

iterations and takes less than 3 seconds to converge.

show in Figure 3 the shape of the equilibrium solution with the singular point clearly visible.

4 APPROXIMATION OF THE HEIGHT OF THE PLANAR ELASTICA

The value 𝐻0 (Δ) is computed from the planar elastica solution [Bigoni 2012; Love 1944]

𝐻0 (Δ)
𝐿

=

√
𝑚

𝐾 (𝑚) (5)
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Fig. 3. Möbius solution (𝑤/𝐿 = 0.08) showing the material frame at 𝑠 = 0, and the rapidly varying rule orientation near the

singular point at 𝑠 = 1/2.

where 𝐾 (𝑚) =
∫ 𝜋/2
0

(1 −𝑚 sin
2 𝜃 )−1/2 𝑑𝜃 is the complete elliptic integral of the first kind and 𝑚 is found by

numerically inverting

Δ = 2

(
1 − 𝐸 (𝑚)

𝐾 (𝑚)

)
(6)

where 𝐸 (𝑚) =
∫ 𝜋/2
0

(1 −𝑚 sin
2 𝜃 )1/2 𝑑𝜃 is the complete elliptic integral of the second kind. In the range Δ ≤ 0.3,

a good interpolation of 𝐻0 (Δ) is given by

𝐻0 (Δ)
𝐿

≃ 2

𝜋

√
Δ − 0.2Δ1.5

. (7)

See also the supplementary Mathematica notebook.
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Fig. 4. Height 𝐻0 of the planar elastica as a function of the applied end-shortening Δ. Approximation, given by Eq. 7, and

exact value, given by Eq. 5.
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5 LATERAL TORSIONAL BUCKLING

To see the influence of the constraint 𝜂 (0) = 0, we deactivate it in Merci and plot the bifurcation curves of the

LTB test with the same parameter values as in main the paper, see Figure 5. Note that the buckling thresholds

are lower now (for all three Sadowsky, Wunderlich, and Ribext models). On the one hand, Merci-Ribext now

buckles exactly at the Kirchhoff threshold, Γ = 18.178(1 − 𝜈)
√
1 + 𝜈 . Indeed, at this point the function 𝝓 in the

Ribext model exactly vanishes, meaning that the Ribext energy matches the Kirchhoff energy for these parameter

values. On the other hand, without this constraint 𝜂 (0) = 0, we observe a less good agreement between the

Merci-Ribext curve and the reference FEniCS-Shell curve.
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Fig. 5. Lateral Torsional Buckling bifurcation curve with 𝜈 = 0.35,𝑤/𝐿 = 0.1, and ℎ/𝐿 = 0.001, but without the constraint

𝜂 (0) = 0 for the Ribext, Wunderlich, and Sadowsky models.

REFERENCES

Davide Bigoni. 2012. Nonlinear Solids Mechanics. Cambridge University Press, Cambridge, UK.

A. E. H. Love. 1944. A Treatise on the Mathematical Theory of Elasticity (4th ed.). Dover Publications, New York.

, Vol. 1, No. 1, Article . Publication date: May 2024.


	Abstract
	1 Introduction
	2 Möbius in one shot
	3 Möbius with singular region in the middle
	4 Approximation of the height of the planar elastica
	5 Lateral torsional buckling
	References

