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Our question was: Are soil data good predictors 
for archaeological predictive models?

Fig.1: Study area with samples location and survey sites   

•	Soils have been analyzed with classical wet chemistry methods, and additio-
nal data were predicted from the mid-infrared spectra (MIR).

•	Maps of soil properties (Fig. 2) were predicted from environmental data (pre-
cipitation, temperature...). Soil Quality Ranking index (SQR) was then compu-
ted based on HAZELTON and MURPHY (2016).

•	APM models based on a machine learning, Random Forest model (RF) and 
a statistical model,  Generalized Linear Model (GLM). We used 10 predictors 
and the 7 additional soil data maps (Fig. 3) in 4 K-fold. 

Fig.2: Maps of different soil informations
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Area size Archaeological 
sites

Samples 
number

Predictors 
tested

800 km2 336 101 53

•	Based on the concept of „ResourceComplexes“ and „ResourceCultures“ 
(SCHADE et al. 2021), we aim to investigate the links between communities 
and their living environment and mobility from the Bronze Age until the Sas-
sanian period. 

•	An intensive survey was conducted in the Selevani plain from 2013 to 2019 
(SCONZO in press), that led to the discovery of 340 new sites and features 
dating from the Palaeolithic to the Late Islamic period. During the summer 
2022 we collected samples from 101 locations (Fig. 1). Only top-soil samp-
les were used for this study. 

•	Archaeological predictive models (APM,YAWORSKY et al., 2020) are a po-
werful tools for understanding the distribution of settlements toward time and 
space. We aimed to try different models based on several soil properties and 

3. RESULTS

Fig.4 : Archaeological prediction rate maps: RF (left), GLM (right)

•	The six soils properties have a strong correlation among themselves. Accor-
ding to the correlation matrix, 19 values are over the threshold of 0.65.

•	For the GLM model (Fig.3b, Fig.4b), carbon total (Ct) and water vapor from 
Sentinel 2 B9 band are the two main contributors to the model (Fig.5a).

•	In the RF model (Fig.3a, Fig.4a), calcium carbonate equivalent (CCE) and, 
again, the water vapor band from sentinel 2 are the two most significant pre-
dictors. However, total nitrogen (Nt) and silt content are also important con-
tributors (Fig.5b).

•	For the two models, SQR was never identified as a major predictor.
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Fig.5 : Evalutation on the contribution of each predictor in the GLM model (left) and RF model (right)

•	Individually soil properties are valuable predictors for APM, specialy Ct and 
CCE. 

•	Simple soil rating indices like SQR do not contribute to the APM significant-
ly. One reason can be its narrow range that does not describe the regional 
high resolution of soil properties in our study area adequalty.

•	Futur work will focus on improving the models and testing others'.
•	Establishing a link between the variables of the models and their uses by 

past communities.
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Fig.3 : Archaeological binary prediction maps: RF (left), GLM (right)
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