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Abstract—In this paper we propose a joint Point Process and
CNN based method for object detection in satellite imagery.
The Point Process allows building a lightweight interaction
model, while the CNN allows to efficiently extract meaningful
information from the image in a context where interaction priors
can complement the limited visual information. More specifically,
we present matching parameter estimation and result scoring
procedures, that allow to take into account object interaction.
The method provides good results on benchmark data, along
with a degree of interpretability of the output. The code will be
available at github.com/Ayana-Inria/

Index Terms—Object Detection, Point Process, Convolutional
Neural Network, Energy Based Model, Remote Sensing

I. INTRODUCTION

For over 20 years of study [1] small object detection in
optical satellite images has remained challenging; objects of
interest are only few pixels large (thus lack visual informa-
tion), and the dense scattering of objects increases the diffi-
culty of separating instances (introducing interactions between
neighboring objects). In this paper, we aim at extracting the ge-
ometrical configuration of vehicles in images with resolutions
around 0.5 m, while leveraging the priors on object interaction
to compensate for the lack of visual information.

Most Convolutional Neural Network (CNN) based ap-
proaches utilize anchor proposals [2], [3] or heatmaps [4]
to locate objects; failing to consider interactions other than
through a post-processing step. Approaches such as [5] model
interactions through a cascade of Transformers, at a great
complexity cost.

On the other hand, Point Process (PP) [6] methods allow
building lightweight interaction models and jointly solve for
the local and interaction contribution of a detection. The
previous approaches applied to microscopy [7] or remote
sensing data [8], [9] rely on contrast measures to assert the
correspondence of points with the image; those fail when
objects and backgrounds are varied.

With our proposed approach, we leverage the feature ex-
traction capabilities of CNN within the PP framework as
introduced in our previous works [10]. More specifically in
this paper, we focus on the scoring for the output detection
that takes into account interactions (while CNN approaches
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score objects independently, and previous PP methods use no
score, simply computing precision and recall from the output
as is). This score has good properties regarding the parameter
optimization method utilized, and allows for interpretable
results.

II. POINT PROCESS

Point Processes consider configurations of points (a finite
non-ordered set y of elements of S ×M) as realizations of
a random variable Φ in the set of all possible configurations
Y =

⋃∞
n=0(S ×M)n (with an arbitrary amount of points).

Space S corresponds to the image space, and M to the mark
space. A mark can be any random variable from the radius of
a circle to a discrete categorization of the object. In our case, a
point y ∈ Y is composed of coordinates yi, yj in S, and three
marks that describe a rectangle : width ya, length yb and angle
yα. We denote n(y) the number of points in a configuration
y. As the number of points is an unknown of the problem,
Point Processes require specific sampling procedures we will
detail later.

A. Point Process density

The law of the random variable is defined by its density h
relative to the uniform Point Process [6]. The density derives
from an energy U , through a Gibbs density :

h(y|X) =
1

Z
exp(−U(y,X, θ)), (1)

with Z an intractable normalizing constant. The energy mea-
sures the compatibility between the image X and the configu-
ration y for a given set of parameters θ; the lower the energy
the higher the compatibility (see Energy Based Models [11]).

B. Papangelou conditional intensity

The reference Poisson Point Process has an intensity λ
that is either constant or depends on the location1. The
density in (1) implies the intensity is now a function of the
location and neighborhood of a point. Thus, the Papangelou
conditional intensity λ(·; ·) [6] associated to a Point Process
Φ, is introduced as:

λ(y;y)dy = p (NΦ(dy) = 1|Φ ∩ (dy)c = y ∩ (dy)c) , (2)

1For any compact A ⊆ S, E[n(Φ)] = λ|A| if λ is constant.
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i.e. the infinitesimal probability to find a point in region dy
around y ∈ S, given the configuration y outside dy (i.e. (dy)c).
This conditional density is what allows modeling interaction
between points of the PP.

When y ∈ y, the Papangelou conditional intensity can be
computed from the energy function U as:

λ(y;y \ {y}) = h(y|X)

h(y \ {y}|X)

= exp (U(y \ {y},X, θ)− U(y,X, θ)) .

(3)

III. ENERGY MODEL

We define our energy function in (1) as a sum of energy
terms Ve (e ∈ ξ, the set of energy terms) for each point y in
the configuration:

U(y,X, θ) =
∑
y∈y

∑
e∈ξ

weVe(y,X,N y
y , θ)︸ ︷︷ ︸

=V (y,X,Ny
y ,θ)

. (4)

The weight parameters we ∈ θ encode the relative importance
of each energy term. We distinguish between two kinds of
energy terms: data terms, written Ve(y,X, θ), that measure the
compatibility of a point against the image; and prior terms,
written Ve(y,N y

y , θ), that measure the coherence of a point
itself or against its neighborhood N y

y . The energy of a point
is denoted V (y, . . . ).

A. Interpreting CNN outputs as data terms
As in our previous work [10], we build data terms by

reinterpreting the outputs of a CNN as energies that can be
plugged into the energy model (4).

a) Position term: CNN based models such as [4] use
a heatmap to find object key points (in our case: centers).
Supposing that the CNN outputs a center probability map
as p(yi, yj |X) = σ(Ẑpos [yi, yj ]) where2 Ẑpos ∈ RH×W is
the output tensor for an input image of size (H,W, 3), we
reinterpret the output as an energy as follows:

Vpos(y,X, θ) = ln(1 + exp(−Ẑpos [yi, yj ] + tpos)), (5)

with tpos ∈ θ a threshold parameter.
b) Mark terms: Similarly, for each mark κ ∈ {a, b, α},

supposing we have a CNN trained to perform pixel classifi-
cation into nκ discrete classes for mark κ. The CNN model
provides the probability of the pixel at yi, yj to belong to class
ck (k = 1, . . . , nκ) as:

p (ck|yi, yj ,X) =
exp

(
Ẑ

yi,yj
κ [k]

)
∑nκ

k′=1 exp
(
Ẑ

yi,yj
κ [k′]

) , (6)

i.e. using the Softmax operation. Then, as in [12], we reinter-
pret the Softmax input as an energy:

Vκ(y,X) = −Ẑyi,yj
κ [cκ(yκ)] + ln

(
nκ∑
k=1

exp
(
Ẑyi,yj

κ [k]
))

,

(7)
where cκ(yκ) is the class corresponding to value yκ.

2With Ẑpos [yi, yj ] denoting the value of tensor Ẑpos at coordinates yi, yj .
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Fig. 1. Illustration of some energy priors.

B. Prior terms

To build the prior and interaction model we combine a
set of simple energy functions (that will form more complex
behaviors when combined in (4)). We illustrate some priors
used in Figure 1, with Ve(y) an energy term computed over
a single object y, and ve(y, u) an interaction energy between
objects y and u, aggregated for each y with a max or min over
its neighbors. Notations µe and te represent model parameters.
Further details can be found in [10].

C. Learning the energy model

To estimate the parameters θ of the energy model (4), we
aim to maximize the likelihood of parameters relative to the
annotated data D [11]. To bypass intractable integrals, [13]
propose the Contrastive Divergence approach: i.e., within a
stochastic gradient descent scheme, minimizing the loss:

L
(
θn,y

+,y−) = U(y+,X, θn)−U(y−,X, θn)+γRV , (8)

where RV is a regularization term that avoid exploding
energies (average of all V (y)), y+ is a configuration close
to ground truth, and y− ∼ exp(U(·,X, θn)). We detail the
procedure adapted from [14] to Point Processes in [10].

D. Sampling with Jump Diffusion

The Point Process is sampled by building a Markov chain
(yt)t=1,... which converges towards the stationary density h.

a) Birth and Death: Birth and Death moves [15] allow
adding and removing points. For our model we leverage the
precomputed tensors Ẑpos and Ẑ

yi,yj
κ to propose more relevant

points in space [10].
b) Diffusion: To modify the current configuration yt at a

fixed number of points, we leverage Diffusion dynamics [16]:

yt+1 ← yt +−β∇ytU(yt) +
√

2Ttwt, wt ∼ N (0, β), (9)

with Tt the temperature at time t and β the gradient step.
c) Simulated annealing: When looking for the best fitting

configuration for a given image X, i.e. the configuration that
minimizes the energy U , we use simulated annealing3: i.e. sim-
ulate a chain of stationary density h/Tt with Tt+1 = 0.998Tt.

3For a logarithmic temperature decrease the chain is proven to converge
towards the global minimum. Geometric decrease approximates the latter
while providing faster inference times.



IV. SCORING USING POINT INTERACTIONS

Classical CNN based object detection models for object
detection (such as [2], [4], [17]) yield a confidence score
s(y) ∈ R for each proposed object y in the image. This
confidence score is often interpreted, for each detection, as
proportional to the probability of proposed element y to be a
true positive, s(y) ∝ p(y|X). Applying a score (or confidence)
threshold ts gives a set of detections, for which metrics such
as precision and recall can be computed by matching the
detections with the ground truth. This allows adapting the
threshold according to the need of the application; i.e. some
applications may require few false positive (high precision)
while others require less missed detections (high recall). In
order to assess the performance independently of the threshold
selection, the Average Precision (AP) metric sums up the
performance of a model as the area under the precision-recall
curve.

Previous Point Process approaches [7], [18], [19] only
compute simple metrics such as precision, recall or F1 score
for the configuration given by the sampling procedure, as no
score is associated to each object detection.

A. Papangelou intensity as score

With our PP approach, we propose to introduce a scoring
function, first to filter the detections given a confidence thresh-
old, second to be able to compare our method to others using
the widely used AP metric. Within the PP framework, the
probability of one proposed point being an object of interest
depends on the rest of the inferred configuration ŷ, thus the
scoring function reflects it: s(y|ŷ \ {y}) ∝ p(y|ŷ \ {y},X).
From (2) we have that the Papangelou conditional intensity is
proportional to the probability of finding a point y ∈ y in a
small neighborhood dy knowing the rest of the configuration
y\{y}. We propose to use the Papangelou conditional intensity
as a score :

s(y|y \ {y}) = λ(y;y \ {y}) (10)

B. Pruning sequence

However, the dependency of the score on the current con-
figuration yields a complication while computing the Average
Precision: when applying a threshold ts to prune the configu-
ration y into y′ ⊂ y, for any y ∈ y′, the score s(y|y \ {y})
may differ from s(y|y′ \ {y}). With a score of the form s(y),
that only depends on y and the image X — such as those
from classical CNN models — the score from one object after
pruning is unchanged.

In the PP case, we compute the scores by sequentially
removing the lowest scoring point until none is left; i.e., we
build a sequence of configurations y1 ⊃ y2 . . .yn(ŷ)−1 ⊃
yn(ŷ) ⊃ ∅, with y1 = ŷ, for n = 1, . . . , |ŷ|:

yn+1 = yn \ {yn}, yn = arg min
y∈yn

λ(y;yn \ {y}), (11)

s(yn|yn \ {yn}) = s(yn|yn+1) = λ(y;yn+1). (12)

Equation (11) provides a pruning order y1, . . . , yn(ŷ) of points
in ŷ. This ordering allows to plot the precision and recall

curve. Indeed, to trace a precision recall-curve, one only re-
quires the sequence of (Recall(ts),Precision(ts)) pairs, which
are obtained by sequentially pruning the lowest scoring points.
Equation (12) provides a score to each point yn.

C. Contrastive divergence loss and Papangelou intensity

On one hand the energy model is trained by minimizing the
loss function in (8) derived from the likelihood maximization
of the parameters regarding the annotated data. On the other
we evaluate the performance of the inferred configuration with
the scoring method in (12) sourced from the Papangelou inten-
sity. Here we show that while the two are derived differently,
minimization of the loss function leads to good properties on
the score function.

Here we consider a simplified loss with only the two energy
terms (as γ ≃ 0). Denoting the energy change induced by the
move from configuration y to x as ∆U(y → x) = U(x) −
U(y), we have :

L(θ,y+,y−) = ∆U(y− → y+). (13)

Similarly, the Papangelou intensity can be rewritten as such:

λ(u;y) = exp(∆U(y ∪ {u} → y)) (14)

a) Single point addition: Thus, for a simple negative
sample y− = y+ ∪ {u} in which we add a non-valid point u
to y+, we have:

L(θ,y+,y−) = log(λ(u;y+)). (15)

This leads into the expected behavior: minimizing the loss
L leads to minimizing the score of non-valid point u. The
same stands for the removal of a valid point y ∈ y+, and
maximizing its score.

b) Arbitrary sequence of moves: This is also valid for
the generic case where y− is generated from an arbitrary
sequence of additions or removal of points from y+ (a transla-
tion/rotation/scaling can be viewed as removal then addition).
This defines a sequence (yk)k=0,...,n of n configurations as:

∀k = 1, . . . , n, yk =

{
yk−1 \ {yk} if yk ∈ y+

yk−1 ∪ {yk} otherwise,
(16)

with y0 = y+, y− = yn, and yk elements of either S×M or
y+ Without loss of generality we can reorder the sequence to
match the pruning order defined in (11). The energy change
for one move is given as:

∆U(yk−1 → yk) =

{
log(λ(yk;yk−1 \ {yk})) if yk ∈ y+

− log(λ(yk;yk−1)) otherwise.
(17)

As we have (by definition) ∆U(x → x′′) = ∆U(x → x′) +
∆U(x′ → x′′), the loss is given as:

L =
∑

yk /∈y+

log(λ(yk;yk−1)︸ ︷︷ ︸
(a)

)−
∑

yk∈y+

log(λ(yk;yk−1 \ {yk})︸ ︷︷ ︸
(b)

).

(18)
By ordering the yk,yk to match the pruning order in (11) each
λ(yk; . . . ) can be matched to their respective score:



• (18)(a) corresponds to non-valid points added to y+, their
score is minimized as the loss is decreased;

• (18)(b) corresponds to valid points removed from y+,
their score is increased as the loss is minimized.

Hereby we showed that minimization of the loss at a
configuration level leads to the expected results on object
scores.

D. Results interpretability

Due to the decomposition of the total energy into energy
terms introduced in (4), the object score can be decomposed
similarly:

s(y|y \ {y}) =
∏
e∈ξ

se(y|y \ {y}) (19)

with se(y|y \ {y}) = exp(we∆Ve(y→ y \ {y})), the Papan-
gelou intensity obtained by considering the single energy term
e. This allows viewing the contribution of each component.
Moreover, we propose grouping these contributions into the
data and prior contributions to respectively obtain sdata and
sprior such that the final score is a product of the two:
s(y|y \ {y}) = sdata(y)sprior (y|y \ {y}).

V. APPLICATION

A. Models

In this paper we show results on three CNN based models,
and our two PP models: CNN-PP♦ and CNN-PP⋆ correspond
to our PP+CNN model, while the first only estimates the
weights we through the estimation method (other parameters
set manually); CNN-LocalMax. only uses the CNN part of our
model with local maxima applied to extract object; BBA-Vec.
and YOLOV5-OBB correspond to [2] and [17]. We provide
further insights in the relative complexity of those models in
[20].

B. Results

a) Quantitative and qualitative evaluation on benchmark
data: We train and evaluate our models on the DOTA [21]
dataset, sub-sampled to a 0.5 m resolution (in order to match
satellite sensor specifications from Airbus). To assert the noise
resilience, we also evaluate the methods on the same data with
additive noise. For every model we compute the Average Pre-
cision (AP) in Table I: the increased performance from CNN-
LocalMax. to BBA-Vec. and CNN-PP⋆ shows the PP improves
results over the CNN alone. Some results on sample images
are shown in Fig. 3; it shows our CNN and PP combination
allows for regularization of the resulting configurations

TABLE I

Method APDOTA APDOTA+noise
BBA-Vec. 0.82 0.19
YOLOV5-OBB 0.86 0.10
CNN-LocalMax. 0.86 0.55
CNN-PP♦ 0.91 0.58
CNN-PP⋆ 0.92 0.62

PR on DOTA PR on DOTA+noise

Fig. 2. Precision Recall (PR) curves on DOTA and DOTA+noise evaluation
data, with each model colored as in Table I

b) Qualitative evaluation on ADS data: We evaluate the
methods on data provided by ADS, at a 0.5 m resolution.
As this data is not labeled, models are trained only on the
benchmark data presented above. Results are presented in Fig.
4; Qualitatively, our PP model is able to produce regular
configurations of vehicles, while missing fewer objects of
interest compared to BBA-Vec..

c) Inference interpretability: In Figure 5, we illustrate
how the two components of the score s can help analyze
the results: green objects correspond to detection with high
prior and data scores, while blue detection have a higher data
contribution. The few yellow detection correspond to objects
with low data score, often located on ambiguous locations.

VI. CONCLUSION

Here we propose a novel scoring method for our model that
utilizes Convolutional Neural Networks within a Point Process
framework. This score allows to measure the detection con-
fidence considering the object interactions. We show that, on
top of allowing regularization and robustness on the resulting
configuration of points, this enables some explainability of the
results through the decomposition of the model intro multiple
terms.
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[21] G.-S. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, M. Datcu,
M. Pelillo, and L. Zhang, “DOTA: A Large-Scale Dataset for Object
Detection in Aerial Images,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), Salt Lake
City, USA, Jun. 2018, pp. 3974–3983.


	Introduction
	Point Process
	Point Process density
	Papangelou conditional intensity

	Energy model
	Interpreting CNN outputs as data terms
	Prior terms
	Learning the energy model
	Sampling with Jump Diffusion

	Scoring using point interactions
	Papangelou intensity as score
	Pruning sequence
	Contrastive divergence loss and Papangelou intensity
	Results interpretability

	Application
	Models
	Results

	Conclusion
	References

