
Supplemental Material

Direct measurement of the viscocapillary lift force near a liquid interface

Appendix A: Derivation of the equations

Here, we describe the calculation of the lift force. The
problem is that of a fixed sphere, immersed in a fluid
with viscosity η at a distance d from an interface with
a fluid of large viscosity η0 ≫ η. The lower fluid is in
contact with a plate. We use an orthonormal cartesian
frame (êx, êy, êz), where êi is the unit vector in the di-
rection i, with êz normal to the interface when it is not
deformed. The plate moves at velocity V f(ωt)êx. We
chose the origin of coordinates x = 0, y = 0 at the center
of the sphere, whereas z = 0 corresponds to the plane
containing the interface when it is not deformed. The
altitude of the surface of the sphere is

z = h0(x, y) = d+ r2/(2R), (A1)

with R the radius of the sphere, r = (x2 + y2)1/2 and
d is the minimal distance between the sphere and the
(undeformed) interface. The altitude of the interface is
z = −δ(x, y), so that the local distance between the
sphere and the interface is h = δ + h0. In the limit
ε = d/R ≪ 1, we analyse this problem using the stan-

dard scalings of lubrication theory. We define ℓ =
√
Rd

the characteristic length in the lateral direction, and we
use rescaled coordinates

X = x/ℓ, Y = y/ℓ, Z = z/d, (A2)

so that the equation for the upper surface is

Z = 1 +
1

2
(X2 + Y 2) ≡ H0(X,Y ), (A3)

and the lower surface is located at

Z = −∆ ≡ −δ/d. (A4)

We also define

H = H0 +∆. (A5)

Let us first describe the flow (ux, uy, uz), associated
with the pressure field p, generated by the motion of the
wall at velocity V . In lubrication theory we have the
scaling

ux = V UX(X,Y, Z), uy = V UY (X,Y, Z), (A6)

uz = V ε1/2UZ(X,Y, Z), p =
ηV ℓ

d2
P (X,Y ). (A7)

In terms of rescaled quantities, Stokes equation becomes

−∇∥P + ∂2
ZU∥ = 0, ∇∥U∥ + ∂ZUZ = 0, (A8)

where

U∥ = UX êx + UY êy, ∇∥ = êx∂X + êx∂Y . (A9)

Denoting U∗
∥ = U∥(Z = −∆) the value of the dimen-

sionless longitudinal velocity at the interface, and noting
that U∥ = 0 at the sphere’s surface Z = H0, we obtain:

U∥ =
H0 − Z

H
U∗

∥ + (∇∥P )
(Z +∆)(Z +∆−H)

2
.

(A10)

Inserting the above expression (A10) into the continuity
equation (A8) and integrating over Z ∈ [−∆;H0] leads
to∫ H0

−∆

dZ∇∥

[
H0 − Z

H
U∗

∥ + (∇∥P )
(Z +∆)(Z −H0)

2

]
+ UZ(H0)− UZ(−∆) = 0. (A11)

We can also write this expression as

∇∥

∫ H0

−∆

dZ

[
H0 − Z

H
U∗

∥ + (∇∥P )
(Z +∆)(Z −H0)

2

]
− (∇∥∆)U∗

∥ + UZ(H0)− UZ(−∆) = 0, (A12)

where we have compensated the fact of placing ∇∥ in
front of the integral by the first term on the second line
of the above equation. Noting that UZ(H0) = 0, and
performing the integrals over Z leads to

∇∥

[
H

2
U∗

∥ − (∇∥P )
H3

12

]
− (∇∥∆)U∗

∥ = UZ(−∆).

(A13)

Now let us find a kinematic condition for the verti-
cal flow at the interface UZ(−∆). The apparent vertical
velocity of the interface is

v = −∂tδ êz. (A14)

Let us write the normal vector n to the interface, pointing
upwards

n̂ = êz +
√
ε∇∥∆+O(ε). (A15)

The natural condition for the flow is the continuity of the
component of the velocity that is normal to the interface,
so

v · n̂ = (VU∗
∥ +

√
εV UZ(−∆) êz) · n̂. (A16)

The kinematic condition that sets the value of UZ(−∆)
then reads

UZ(−∆) +U∗
∥ · ∇∥∆ = −Ω∂τ∆, (A17)
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where we use the dimensionless time

τ = ωt, (A18)

and we have defined the dimensionless excitation fre-
quency,

Ω =
ωd

V
√
ε
=

ω
√
dR

V
. (A19)

Using the condition (A17), equation (A13) becomes

Ω∂τ∆ = ∇∥

[
H

2
U∗

∥ + (∇∥P )
H3

12

]
. (A20)

Next, we consider the Young-Laplace equation

P = − σd3

ηV ℓ3
∇2

∥∆ = − σd3/2

ηV R3/2
∇2

∥∆. (A21)

Note that here we have neglected the contribution of the
pressure variations in the lower fluid, this approximation
will be discussed in Section B.

Next, Eq. (A21) suggests the definition of the dimen-
sionless softness parameter

κ =
ηV R3/2

σd3/2
, (A22)

so that the dimensionless equilibrium equation for the
lower interface reads

κ P +∇2
∥∆ = 0. (A23)

For simplicity, we will assume that the viscosity of the
lower fluid is high enough so that the velocity at the
interface is also the excitation velocity, so that

U∗
∥ = f(τ)êx. (A24)

This leads to

Ω∂τ∆ = ∇∥

[
H

2
f(τ)êx + (∇∥P )

H3

12

]
. (A25)

Finally, our goal is to calculate the lift force

F =

∫∫
dxdyp = F ∗

∫∫
dXdY P (X,Y ), (A26)

where

F ∗ = Rd
ηV ℓ

d2
= R3/2 ηV

d1/2
. (A27)

In summary, the lift force can be calculated by integrat-
ing Eq. (A26), after one has solved the partial differential
equations (A23) and (A25) for the pressure and deforma-
tion fields. To compare with the experimental data, we
chose to introduce another dimensionless parameter s as

s = Ωκ1/3 =
ω
√
dR

V
×
(
ηV R3/2

σd3/2

)1/3

=
ωR

V 2/3
×
( η

σ

)1/3

(A28)

which does not depend on d. Thus, the curves obtained
for F/F ∗ as a function of κ obtained by varying the gap
d correspond to constant values of s.

Appendix B: Discussion on the validity of
approximations

Let us discuss here the approximations. First, the
equality between the velocity of the fluid at the inter-
face and the excitation velocity is not exact, since the
upper fluid exerts non-uniform constraints on the lower
one. We estimate the characteristic stress as σxz ∼ ηV/d,
leading to a characteristic force scale ηV ℓ2/d. Hence the
characteristic variations of fluid velocities at the surface
are of the order of (ηV ℓ2/d)/(η0ℓ), which are small com-
pared to V at the condition

η0
η

√
d

R
≫ 1. (B1)

In an experiment where d varies, the inequality (B1) is
no longer satisfied when κ becomes of the order of κ∗

defined by

κ∗ =
ηV

σ

(
η0
η

)3

. (B2)

For small values of d, or for κ > κ∗, we may therefore
expect that the theory fails, possibly explaining why dy-
namic effects are not quantitatively captured by the the-
ory for finite values of κ.
Next, we have also neglected the pressure variation in

the lower fluid to write Eq. (A21). Considering that in
the lower fluid the only relevant length scale is ℓ, we
estimate that this pressure variation is of the order ∆p ∼
η0V

∗/ℓ, with V ∗ the characteristic deviation of velocity
at the interface (with respect to V ). If the condition (B1)
is satisfied, then V ∗ ∼ ηV ℓ/(dη0), leading to a pressure
variation in the lower fluid of the order ∆p ∼ ηV/d, which
is small compared with p ∼ ηV ℓ/d2 in the upper fluid. In

the opposite case where η0

η

√
d
R ≪ 1, we estimate V ∗ ∼

V , so that ∆p ∼ η0V/ℓ ≪ ηV/d is again small compared
to the pressure variations p ∼ ηV ℓ/d2 in the upper fluid.
In both cases, neglecting the pressure variations in the
lower fluid is therefore a valid approximation.
In conclusion, we expect our approximations to be

valid when the condition (B1) is realized, correspond-
ing to not-too-small distances d, or equivalently values of
κ that are small compared to κ∗.

Appendix C: Regime of small deformations in the
static case (Ω = 0)

Here we consider the static case, with Ω = 0 and f = 1
(constant velocity), in the regime κ ≪ 1 (strong surface
tension). We can analyse the problem by using a series
expansions

P = P0 + κP1 +O(κ2), ∆ = κ∆1 +O(κ2). (C1)
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At leading order, we obtain

∇∥

(
H3

0

12
(∇∥P0)

)
= −1

2
(∇∥H0)êx, (C2)

whose solution is just the pressure for the problem of a
sphere moving near a rigid plane [1]

P0 = 6ρ cos θ/(5H2
0 ), (C3)

where (ρ, θ) are polar coordinates, with X = ρ cos θ and
Y = ρ sin θ. Next,

P0 +∇2
∥∆1 = 0, (C4)

which admits the solution

∆1 =
6

5ρ
ln
(
1 + ρ2/2

)
cos θ. (C5)

Next, the equation for the pressure at next-to-leading
order reads

0 = êx · ∇∥
∆1

2
+∇∥

[
H3

0

12
∇∥P1 + 3

H2
0∆1

12
∇∥P0

]
. (C6)

Using polar coordinates (ρ, θ) this equation can be writ-
ten as

1

ρ

∂

∂ρ

ρH3
0

12
∂ρP1 +

1

ρ2
∂

∂θ

H3
0

12
∂θP1 = G, (C7)

with

G = −(cos θ∂ρ −
sin θ

ρ
∂θ)

∆1

2
− 1

4ρ

∂

∂ρ
ρH2

0∆1∂ρP0

− 1

4ρ2
∂

∂θ
H2

0∆1∂θP0.

(C8)

We can write

G(ρ, θ) = g0(ρ) + g2(ρ) cos(2θ). (C9)

We may therefore look for solutions under the form

P1(ρ, θ) = P̃1(ρ) + P̃2(ρ) cos(2θ). (C10)

The term P̃1 will be the only one to contribute to the lift
force, and it satisfies

1

ρ

∂

∂ρ
ρ
H3

0

12
∂ρP̃1 = g0. (C11)

This equation can be solved by requiring that P̃1 remains
finite at small ρ. We find

∂ρP̃1 =
576

(
ρ2 − 4

)
25 ρ (ρ2 + 2)

4 log
ρ2 + 2

2
. (C12)

The lift force then reads

F

F ∗ = 2πκ

∫ ∞

0

dρρP̃1 = −πκ

∫ ∞

0

dρρ2∂ρP̃1. (C13)

The result of this integration is

F

F ∗ ≃
κ→0

6πκ

25
, (C14)

as announced in the main text, see Eq. (5).
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