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Abstract

Millisecond pulsars (MSPs) are abundant in globular clusters (GCs), which offer favorable environments for their
creation. While the advent of recent, powerful facilities led to a rapid increase in MSP discoveries in GCs through
pulsation searches, detection biases persist. In this work, we investigate the ability of current and future detections
in GCs to constrain the parameters of the MSP population in GCs through a careful study of their luminosity
function. Parameters of interest are the number of MSPs hosted by a GC, as well as the mean and the width of their
luminosity function, which are typically affected by large uncertainties. While, as we show, likelihood-based
studies can lead to ill-behaved posteriors on the size of the MSP population, we introduce a novel, likelihood-free
analysis, based on marginal neural ratio estimation, which consistently produces well-behaved posteriors. We
focus on the GC Terzan 5 (or Ter 5), which currently counts 48 detected MSPs. We find that 158 104

294
-
+ MSPs should

be hosted in this GC, but the uncertainty on this number remains large. We explore the performance of our new
method on simulated Terzan 5-like data sets mimicking possible future observational outcomes. We find that
significant improvement on the posteriors can be obtained by adding a reliable measurement of the diffuse radio
emission of the GC to the analysis or by improving the detection threshold of current radio pulsation surveys by at
least a factor of 2.

Unified Astronomy Thesaurus concepts: Millisecond pulsars (1062); Radio pulsars (1353); Bayes' Theorem
(1924); Computational methods (1965); GPU computing (1969)

1. Introduction

Globular clusters (GCs) contain about half of the known
population of Galactic millisecond pulsars (MSPs; Smith et al.
2023). Recently, the number of MSPs detected in GCs has risen
rapidly thanks to new and powerful radio facilities like
MeerKAT (Ridolfi et al. 2021, 2022) and FAST (Pan et al.
2021). Undoubtedly, MSPs are efficiently produced in GCs,
which inform us about their possible formation channels. In
addition, GCs have peculiar properties, namely a high stellar
density and a profusion of old stars, which could enhance MSP
formation (Ye et al. 2019). Some formation scenarios suggest
that MSPs are old pulsars spun up through accretion in binary
systems, while others favor former white dwarfs having
undergone accretion-induced collapse. These different forma-
tion channels for MSPs also impact their abundances.
However, to date, the number of MSPs in GCs remains highly
uncertain. An alternative way to tackle the problem of their
abundance is to study the luminosity function of MSPs in GCs,
which is also impacted by their formation history.

The observation of MSPs in GCs, as well as elsewhere in the
Galaxy, suffers from several biases. Brighter MSPs are easier to
detect, and the period, dispersion, scattering or scintillation of
their pulsed emission also impact their detection (Dai et al.
2017). As a result, data only reveal the most luminous sources,

likely in an incomplete fashion. Nonetheless, as the perfor-
mance of radio instruments and their associated data sets
improve, it will become easier to accurately extrapolate the
luminosity function below the sensitivity of the observations.
Several works have investigated the luminosity function of

MSPs in GCs in the past. Bagchi et al. (2011) used data from
85 MSPs in 10 GCs and, assuming a common luminosity
function for all GCs, found that a log-normal distribution
provides statistically better agreement with the data than the
other distributions they tested. Their analysis relied on a
comparison of Monte Carlo simulated MSP luminosities with
observed ones by performing Kolmogorov–Smirnov and χ2

tests. The analysis of Bagchi et al. (2011) relies on approximate
Bayesian computation (ABC; Sisson et al. 2018), although the
authors do not refer explicitly to this methodology. ABC
tackles inference problems without a likelihood and estimates
parameters by measuring a defined distance between simulated
and real data. ABC belongs to the larger category of
simulation-based inference (SBI; Cranmer et al. 2020), which
has also been dubbed likelihood-free inference, as it does not
rely on an explicit likelihood but on a data simulator instead.
More recently, Chennamangalam et al. (2013) presented a
likelihood-based Bayesian inference of the parameters of the
MSP luminosity function, assuming again a log-normal
distribution. Unlike Bagchi et al. (2011), each GC was treated
independently from the others, ultimately producing different
luminosity functions.
Since the publication of these studies, new MSP detections

have been reported, and over the last decade inference
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techniques have evolved. In particular, ongoing efforts at the
intersection of machine learning and SBI have produced new
tools (Cranmer et al. 2020) that have not yet been applied to the
problem tackled by Bagchi et al. (2011) and Chennamangalam
et al. (2013). The goal of this paper is to develop an up-to-date
method to robustly determine the number of MSPs in GCs,
along with its uncertainty, from individual detections using
recently acquired data sets, and a new analysis framework:
marginal neural ratio estimation (MNRE). Traditional inference
methods, like the one mentioned above, produce a full,
multidimensional, joint posterior, which is often not what one
actually wants to study. Instead, marginalized and two-
dimensional joint posteriors for specific parameters of interest
are usually more interesting. Therefore, a large amount of
computational time may be spent on solving the full problem
while the scientific interest rather lies on a small subset of
parameters. Marginal inference estimates the marginal poster-
iors of interest directly. The goals of the present work are to
investigate the performance of SBI in comparison with
traditional likelihood-based Bayesian analysis techniques
applied to the same physical problem. Our target is to infer
from synthetic radio MSP populations what quantities are
essential to robustly constrain the population parameters in
GCs and what properties help to obtain narrower, and yet well-
behaved, posteriors of the inferred parameters.

In Section 2, we present the data sets, real and simulated,
used in our analysis. Section 3 is dedicated to a discussion of
the Bayesian analysis of Chennamangalam et al. (2013). In
Sections 4 and 5, we present our SBI framework and its results.
Discussion and conclusions are presented in Sections 6 and 7,
respectively.

2. Data Set

2.1. Real Data Set

The basis for a statistical analysis of the intrinsic MSP
population luminosity function is the measurement of the flux
density, S, of a large sample of MSPs in GCs.

2.1.1. Pulsar Detection

In general, detection of pulsars relies on the measurement of a
pulsed emission, not always but usually in the radio domain. A
well-identified pulsation period is the key point of a detection,
while a flux measurement is not essential and requires calibration
beforehand. Indeed, when radio telescopes are used for pulsation
searches, they record the relative intensity of the sky in the entire
field of view of the telescope at a high sampling frequency. As a
result, pulsars may lack absolute flux measurements despite their
detection, and absolute flux measurements can vary from one
instrument to another (see, e.g., the factor ∼2 difference in the
fluxes of Terzan 5 pulsars quoted by Bagchi et al. 2011 and
Chennamangalam et al. 2013). Finally, as pulsation searches
only record one-pixel images of the sky, the exact position of a
pulsar cannot be deduced from a single observation, but requires
tracking over several months. Hence, it is not always possible to
associate a pulsar with a source seen in a radio image.

To be detected, the flux of a pulsar must lie above a certain
flux threshold, which, in general, depends on the conditions
along the line of sight as well as the radio telescope used for the
observation. This threshold can be quantitatively stated via the
radiometer equation (Dewey et al. 1985), which also depends

on the pulsation period P of the pulsar:

( ) ( )S P
w

P w
, 1th

obs

obs
µ

-

where wobs is the observed width of the pulse. A generic feature
of the radiometer equation is that it predicts no universal
detection threshold but a period dependence which flattens out
toward long periods. Another parameter that strongly impacts
the detection threshold is the column density of free electrons,
ordinarily referred to as the dispersion measure, which
increases the value of wobs. For these reasons, an ideal pulsar
data set for statistical analyses should ideally come from
observations made with a single instrument in a unique
configuration, for which both new discoveries and redetections
(of known objects) should be reported. Despite ongoing efforts
to collect data toward GCs through uniform, large surveys (see,
e.g., Ridolfi et al. 2021, a census made with MeerKAT), to the
best of our knowledge, a publicly available extended list of (re)
detected pulsars in GCs quoting fluxes and telescopes'
observing parameters does not exist. In what follows, we will
therefore focus on a single GC, Terzan 5, for which recent,
uniform flux measurements have been released.

2.1.2. Terzan 5

Terzan 5, or Ter 5, is the GC with the largest number of
identified pulsars, including 49 with detected radio pulsations.9

Forty-eight of these have a period P� 30 ms and are therefore
considered MSPs in the context of our work. The remaining
pulsar, Terzan 5 J, has a period P; 80 ms. The decade-old
analysis of Chennamangalam et al. (2013) included 25 Terzan
5 pulsars (24 MSPs + Terzan 5 J) all with flux measurements.
As the author noted, 34 pulsars were known at the time, but
sources without flux measurements were excluded from the
analysis.
Martsen et al. (2022) provided the most up-to-date flux and

spectral index measurements of pulsars in Terzan 5. They
identified 32 sources in archival data of the Green Bank
Telescope (GBT), at 1.4 and 2 GHz, and computed their spectral
indices, assuming power-law spectra. Ten additional fluxes were
recorded with MeerKAT at 1284MHz (Padmanabh et al. 2024).
Thanks to the spectral index measurements, one can rescale the
fluxes of Martsen et al. (2022) at the MeerKAT observing
frequency. The final data set thus contains 42 pulsars with flux
measurements, and seven pulsars without. This data set is
incomplete, as not all of the sources detected in Terzan 5 have a
flux measurement. When applying our MNRE framework to Ter
5, we will treat the Ter 5 data set without Terzan 5 J. Appendix A
provides the flux densities used throughout this study.
Martsen et al. (2022) concluded that a dozen to more than a

hundred additional pulsars are still to be discovered in Terzan
5. These subthreshold sources should contribute, at least
partially, to the residual diffuse radio emission of Terzan 5, i.e.,
the total radio emission of the cluster minus the radio fluxes
from the resolved point-like sources (and any other source of
radio emission in the GC). Except for early observational
results (Fruchter & Goss 2000)—most likely limited by the
resolution of the instruments at that time—there are no recent,
comparable assessments of the overall diffuse radio emission

9 https://www3.mpifr-bonn.mpg.de/staff/pfreire/GCpsr.html

2

The Astrophysical Journal, 974:144 (21pp), 2024 October 10 Berteaud et al.

https://www3.mpifr-bonn.mpg.de/staff/pfreire/GCpsr.html


from known Galactic GCs. Yet, this quantity, as we will see in
what follows, can constrain the cumulative emission from
subthreshold MSPs, and thus may help to narrow down the
posterior distribution of the total number of sources in a GC.

2.2. Mock Data Set

Our ultimate goal is to infer the luminosity function of MSPs
in GCs. To this end, we assume that the log10 of the (pseudo-)
luminosity L of MSPs in GCs follows a normal distribution, as
suggested by previous studies (Bagchi et al. 2011; Chenna-
mangalam et al. 2013):

⎜ ⎟
⎛
⎝

⎡
⎣

⎤
⎦

⎞
⎠

( ( ))
( )

( )f L
L

log
1

2
exp

1

2

log
. 210

10
2

ps
m

s
= -

-

L is expressed in millijanskys times square kiloparsec in
Equation (2) and throughout this study. μ and σ are the mean
and the width (i.e., the parameters to infer) of the luminosity
function. Given the GC distance, fluxes are shifted according to

( ) ( ) ( ) ( )S L dlog log 2 log . 3i i10 10 10= -

Si and Li are, respectively, the flux density and luminosity of
pulsar i, and d is the distance to the cluster. d is expressed in
kiloparsec and Si in millijansky. We can define a probability
density function ( ( ))g Slog10 that gives the probability of a
pulsar in the cluster to have a flux S. Unlike f, this function is
not unique and varies from one GC to another.

Considering N the total size of the MSP population in the
cluster, we simulate the MSP population in the cluster by
drawing N mock values of ( )Llog10 from Equation (2), and then
we use Equation (3) to obtain, in turn, N mock values of

( )Slog10 . Next, we identify the mock fluxes larger than a certain
detection threshold value Sth,i and tag them as detectable. Sth,i
may be different for each MSP (and is generally dependent on
the cluster), and varies according to the radiometer equation. In
the following, we consider two cases:

1. We assume that the detection threshold is cluster but not
MSP dependent, as assumed by Bagchi et al. (2011) and
Chennamangalam et al. (2013).

2. We mimic the effect of the radiometer equation by
randomly drawing Sth,i from a half-normal distribution
with mean value Sth,∞ representing the threshold for long-
period pulsars. The width of the half-normal is taken to be
σth= Sth,∞ such that larger detection thresholds are
possible, accounting for possible systematical errors in
the determination of the flux threshold from the radiometer
equation, and mimicking an MSP-dependent threshold.

For a cluster, the number of detectable mock MSPs is
Ndetected� N. MSPs below the (case-by-case) threshold are counted
as subthreshold sources and their cumulative flux Ssub is computed.
Together with the flux of detectable MSPs, Sdet, Ssub is responsible
for the MSP radio emission of the cluster, SMSP, which is at most
equal to the total radio emission of the cluster, Stot:

( )

S S S S S

S S . 4
i

i

S S i
i

S S i
i

tot MSP det sub

, ,i ith th

å

å å

= = +

= +
<





In ideal cases, the value of each Si� Sth,i should be known.
However, as mentioned in Section 2.1.1, this might not always

be the case, and may potentially hamper our ability to infer the
posterior distributions of the MSP population. To resemble
actual data, we introduce a parameter, pfluxless, which represents
the proportion of MSPs for which we have a detection but no
flux measurement. pfluxless= 1−m/Ndetected� 1, where m is
the number of detected MSPs which have a flux measurement.
In our simulation, we guarantee that the fraction of fluxless
MSPs matches the one in real data. Finally, we define

( )S S S , 5
m

idiff tot å= -

which corresponds to the diffuse radio flux of the GC. Sdiff may
originate also from sources other than MSPs so that
Sdiff− Ssub� 0. The diffuse flux measurement is nothing but
an upper limit on the total flux from the unresolved part of the
GC’s MSP population.
Our mock data set realizations are based on the Terzan 5

best-fit results of Chennamangalam et al. (2013), as we detail
below.

3. Bayesian Analysis

3.1. Framework

Our Bayesian analysis relies on the framework described in
Chennamangalam et al. (2013), which is briefly summarized
here. Let M be our model, θ its parameters, and D the data.
Then, according to Bayes’ theorem:

( ∣ ) ( ∣ ) ( ∣ ) ( )P D M D M p M, , , 6q q qµ

where P(θ|D, M) is the posterior distribution of the parameters
given the data and the model, ( ∣ ) D M,q is the likelihood of
the data given the parameters and the model, and p(θ|M) is the
prior distribution of the parameters given the model. The
proportionality sign accounts for the evidence p(D) that divides
the right-hand side of the equation, which, as a constant, can be
ignored here. The likelihood ( ∣ ) D M,q , associated with a
given cluster, takes contributions from the following three
independent likelihoods:

1. The likelihood of having a set of pulsars with fluxes {Si},
computed as the product of the ( ( ))g Slog .i10

2. The likelihood of observing Ndetected (or m) pulsars in a
cluster with N pulsars, computed as a binomial
distribution.

3. The likelihood of observing a total flux Stot, which has a
Gaussian distribution around N〈S〉, where 〈S〉 is the
average MSP flux in the cluster. Here, as done in
Chennamangalam et al. (2013), we assume Stot= SMSP.

Our luminosity model then has five parameters: θ= {N, μ,
σ, Sth, d}. We adopt uniform priors for the first four parameters.
A Gaussian prior is chosen for d, reflecting the idea that the
distance to the GC is already known with some uncertainty. All
priors are independent and similar to the ones used by
Chennamangalam et al. (2013). Table 1 summarizes the prior
sampling and ranges. Focusing on Terzan 5, the maximal
number of MSPs in the cluster is set to 500, and the mean and
the width of the distance prior are 5.5 and 0.9 kpc, respectively,
according to the result of Ortolani et al. (2007).
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3.2. Results

We perform Bayesian analysis using PyMultiNest, a
Bayesian inference tool written for Python (Buchner et al.
2014), which samples the parameter space using a Monte Carlo
algorithm based on nested sampling. While this method
samples parameter space more efficiently compared to other
methods, the computation time still increases with the number
of live points nlp, i.e., the size of the set of samples drawn from
each prior. To identify the number of live points needed for our
analysis, we first reproduce the results of Chennamangalam
et al. (2013). We strictly follow their analysis framework,
summarized in Section 3.1, and apply it to the Terzan 5 pulsar
sample; see Section 2.1.2. For a meaningful comparison, we
used the fluxes of the 25 Terzan 5 MSPs in Table 1 of
Chennamangalam et al. (2013). We conclude that a number of
live points nlp∼ 1000 suits our analysis. Our posteriors, shown
in Figure 1, clearly illustrate that N, μ, and σ are degenerate to
some extent, as already noted by Chennamangalam et al.
(2013).

The 95% credible interval on N obtained through the
likelihood-based analysis is not significantly narrower than the
prior chosen for the parameter (e.g., 32–452 versus 25–500).
This can indicate that the data are not informative enough to
constrain the luminosity function and the size of the MSP
population in Terzan 5.
This hypothesis can be tested by assessing the coverage of

the credible intervals: In case of correct coverage, the x%
credible interval of a parameter should contain the true
parameter value in x% percent of the cases. If the x% credible
region contains the true parameter value in y% percent of the
cases, where y> x, the credible interval is too wide and it is
said to be conservative. On the other hand, if y< x, the interval
is too narrow and it is said to be overconfident. Our goal in this
section is to assess the quality of the coverage obtained with the
Bayesian analysis, which ultimately informs us about the
correctness of the statistical inference. If the data are genuinely
not informative enough to constrain the number of MSPs in
Terzan 5, we should find x; y for all values of x. We simulate
500 mock data sets according to Section 2.2 using as true
parameters of the model some of the results obtained by
Chennamangalam et al. (2013) for Terzan 5. Namely, we
assume N= 142, μ=−1.2, and σ= 1.0. The sensitivity
threshold is set to Sth= 0.02 mJy and the distance to
d= 5.5 kpc. Ndetected varies from one simulation to another.
Finally, as in Chennamangalam et al. (2013), we have
pfluxless= 0, i.e., m=Ndetected. We apply the Bayesian analysis
streamlined in Section 3 to the mock data sets and use the
posteriors of N to assess the coverage of this parameter. We
build a symmetric interval around the median Nmed of the
posterior distribution P(N) such that the integral of the posterior
from the lower bound of the interval Nlow to the median equals
the integral of the posterior from the median to the upper bound
of the interval Nhigh. We start from Nlow=Nhigh= Nmed and
increase the size of the interval until Nlow= 142 or Nhigh= 142.
We compute

( )

∣ ( ) ( )∣ ( )

x P N dN

C C N

100

200 142 , 7
N

N

med

low

high

ò= ´

= ´ -

where C is the cumulative distribution function associated with
P(N). When the true value is close to (far from) the median
value, x takes a low (high) value. By definition, x cannot be
larger than 100. If xk is the value that x takes in simulation k, y
takes the values yk, computed as the percentage of values of y
among all simulations that verify y� yk. Hence, the yk reflect
the cumulative distribution of the xk. The values taken by x and

Table 1
Summary of the Applied Prior Ranges for the Bayesian Analysis (Section 3) and the swyft Simulator (Section 4) of the GC MSP Population

Bayesian swyft

Parameter Sampling Prior Range Sampling Prior Range Physical Prior Range
(1) (2) (3) (4) (5) (6)

N Uniform [ ]N N,detected max Log-uniform [ ]Nlog , 2.710 detected [ ]N , 500detected

μ Uniform [ ]2.0, 0.5- Uniform [ ]2.0, 0.5- [ ]10, 3162 μJy
σ Uniform [ ]0.2, 1.4 Uniform [ ]0.2, 1.4 L
d Normal L L L L
Sth,∞ Uniform [ ( )]S0, min i Log-uniform [ ]0.5, 1.6 [ ]3, 40 μJy

Note. The priors used in the Bayesian analysis are the ones used by Chennamangalam et al. (2013). The sixth column states the prior ranges of the fifth column in
physical units, while the fifth column is the numerical input for the respective probability distribution functions.

Figure 1. Reproduction of the likelihood-based analysis results of Chenna-
mangalam et al. (2013) for Terzan 5. The top row shows the marginal
probability density functions (PDFs) in orange and the median and its 95%
error in green for each parameter. The position of the samples in each two-
dimensional parameter space are also shown (second to last rows).
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y are converted from percentage to significance level, which is
the inverse of the error function of the percentage divided by a
square root of 2. This conversion is convenient for plotting and
interpreting the coverage. A perfectly calibrated posterior
follows a diagonal in the space of NOMINAL versus EMPIRI-
CALLY derived coverage. While this coverage test is indicative
of ill-calibrated posteriors that necessitate a redesign of the
inference pipeline, a positive outcome for this test does not
imply that the obtained posterior distributions are optimal given
the available statistical power of the data set.

Our results, shown in Figure 2, indicate that the posteriors of
N tend to be too conservative. For all of them, the true value of
N= 142 falls within the 92.7% credible interval (1.79
confidence level), while this should only happen for 92.7%,
i.e., 463, of them. The coverage at higher confidence level
cannot be estimated because the true value never falls within
the 99% credible interval but outside of the 92.7% confidence
interval. Therefore, a different analysis can obtain narrower
posteriors with the actual data, while still being statistically
correct. We note that the general aspect of the coverage may
depend on the values chosen for the true parameters. What our
results tell us is, should the actual parameters of Terzan 5 be the
one we chose (see also Section 5), there is a high chance that
the Bayesian analysis would yield posteriors that are too wide
for the number of sources in the cluster.

4. Swyft Implementation on MNRE

Marginal (neural) ratio estimation focuses on the likelihood-
to-evidence ratio, which, according to Bayes’ theorem, equals
the posterior-to-prior ratio:

( ) ( ∣ )
( )

( ∣ )
( ∣ )

( )
( ) ( )

( )


r D M

D M

p D

p D M

p M
p D

p D p

, ,
, ,

,
. 8

q q q
q

q
q

= =

=

Let us now define a binary variable Y, such that Y= 1 when
pairs (D, θ) are jointly drawn from p(D, θ), and Y= 0 when

pairs are marginally drawn from p(D)p(θ). One can show that
training a binary classifier ff for Y is equivalent to learning the
ratio r(θ, D, M).
We rely on a specific implementation of MNRE: swyft.

This is a simulation-based inference tool that uses MNRE
methods, i.e., its classifier ff uses a neural network and learns
from mock data produced by a simulator (Miller et al. 2021,
2022). swyft has been proven to be efficient at inferring
cosmological parameters from cosmic microwave background
measurements with posterior convergence achieved using
orders of magnitude fewer calls than Markov Chain Monte
Carlo methods (Cole et al. 2022). More recently, Anau Montel
et al. (2023) showed that the estimation of the warm dark
matter mass from strong lensing images could also benefit from
MNRE. Our swyft-based code, described in Sections 4.1 and
4.2, is publicly available online (Berteaud et al. 2024).10

4.1. Simulator

In the framework of SBI, we are not bound to limit the
number of model parameters and construct a likelihood
function in the first place. In particular, the inclusion of
nuisance parameters is facilitated. Hence, we extend the mock
data generation outlined in Section 2.2 to profit from the
capabilities of SBI. Our swyft radio MSP simulator generates
mock data for a single GC. The baseline simulator depends on
the parameters described in Section 2.2, whose priors are varied
as reported in Table 1. We adopt a varying flux threshold,
implemented as a nuisance parameter, which mimics an MSP-
dependent threshold.
Simulator. This simulator yields a catalog of detected MSPs

as well as the additional cumulative flux of the population too
dim to be resolved individually. The information about the flux
of each detected source is stored in an array, sorted in
descending order. The length of the array is set to a fixed
number (the upper bound of the prior on N). Array entries
without a detected source are assigned the fill value “−1.” As
we can have pfluxless≠ 0, the flux value is replaced by the fill
value “−1” for above-threshold, fluxless sources. We empha-
size that all detected sources, including the fluxless ones, are
assumed to be above the flux detection threshold, and
vice versa. The simulator generates a second array that states
Ndetected subtracted by the cumulative sum of detected sources.
Prior choices. We aim to infer the posterior distributions for

the model parameters based on the set of priors summarized in
Table 1. These priors are slightly wider than what was used in
Chennamangalam et al. (2013) and in Section 3 except for the
prior on σ, which we adopt from this earlier work. Previous
scans of the luminosity functions’ parameter ranges seem to
support this prior range (Bagchi et al. 2011). We note that our
objective is to infer information from simulated data so that we
are rather agnostic about the frequency at which we sample the
luminosity function and at which we define the detection
threshold. Note that, in contrast to Section 3, we use a log-
uniform prior on the number of MSPs N. We made this change
to more evenly sample the larger range of up to 3000 sources
instead of 500. When we later analyze the real sample of
Terzan 5 (see Section 5.2), we will adopt the same prior
definition.

Figure 2. Coverage (blue line) of N obtained from the application of the
Bayesian analysis to 500 mock data sets (N = 142, μ = −1.2, and σ = 1.0).
Ideally, the coverage line should follow the green dashed diagonal line. Here,
the plot tells us that the method produces conservative results, i.e., that the
posteriors are too wide. The red lines illustrate that the 68% (1σ) confidence
interval contains the true value in more than 68% of the cases.
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4.2. Architecture

As described in Section 4, the parameter inference in neural
ratio estimation relies on training a classifier ff that allows for
discriminating samples drawn from a joint or a marginal
probability distribution. This classifier is a neural network in
the case of swyft. Hence, design decisions for the network are
heavily influencing the robustness, performance, and quality of
the inference. We have to choose a network architecture that is
suitable for the problem at hand and adequate for the data
format generated by the simulator, which itself is motivated by
the structure of real observations of radio MSPs. In our case,
we obtain a catalog of detected sources represented by a two-
dimensional array as detailed in Section 4.1; in abstract terms, a
matrix with a certain number of rows and columns.

Inference network architecture. This data structure allows us
to resort to network architectures typically employed in image
processing. To increase the flexibility of the network, we
choose the deep neural network architecture of the ResNet
(He et al. 2015), which has been used in the somewhat similar
context of source detection in gamma-ray data of the Fermi
Large Area Telescope (Anau Montel & Weniger 2022;
Horangic et al. 2023). In particular, we utilize the ResNet
implementation natively provided in swyft. Each column of
the data array is first passed through a normalizing layer and
afterwards processed by a dedicated ResNet (with different
structural properties) that takes one-dimensional vectors as
input. The chosen ResNet hyperparameters appear in Table 2.
In Figure 3, we provide a visualization of the ResNetʼs core
structure. The output vectors of each ResNet are concatenated
to a single vector, which is subsequently passed to the default
ratio estimator implementation of swyft. Thus, the initial data
processing with ResNets compresses the data and generates a
summary statistic learned and optimized during the network’s
training.

Swyft hyperparameter settings. Besides the structural hyper-
parameters of the ResNet, training and inference with the
MNRE algorithm of swyft requires the specification of
further parameters. A summary of the parameter choices is
provided in Table 2. A subset of the stated parameters controls
the training procedure; the sample size refers to the total
number of simulated radio MSP populations for the training.
This sample is split into a subset used for training (70%) and a
validation data set (30%) used to evaluate the performance of
the trained network on data it has not seen during the training
iterations. Both data sets are fed into the network in batches of
64 samples. The network training is performed with the Adam
optimizer in, at most, 100 epochs starting with an initial
learning rate of 8.5× 10−4. This learning rate may decrease
during the training if after five consecutive epochs (learning
ratio schedule patience) no improvement in the training loss
was achieved. In this case, the current learning rate is reduced
by 30%. If 20 consecutive epochs did not result in an
improvement in the training loss (early stopping patience), the
training terminates immediately. Lastly, we allow for noise
resampling during the training process. The idea is to
regenerate the noise in the data while keeping the training
samples the same. In practice, the noise is represented by the
set of detected sources without flux measurements. For each
sample, we repeat per epoch the selection of MSPs that are
listed with a flux value as the simulator has stored the full
catalog of detected sources with their original randomly drawn
fluxes. This procedure effectively enhances the number of
training samples since the data set never looks like the one used
in the previous epoch. It has been shown that noise resampling
is a crucial way to prevent overfitting the training data and it
stabilizes the shape of the posterior distributions (Alvey et al.
2023a, 2023b).
Including diffuse flux measurements. Motivated by the

approach in Chennamangalam et al. (2013), we prepare an
extension of the basic formalism outlined above. We aim to
explore the impact of an additional diffuse radio flux
measurement Sdiff by extending the simulator: We create a
third column of the generated catalog that utilizes the already
computed cumulative flux of subthreshold sources Ssub. All
rows with no entry or a subthreshold source are assigned the
value Stot− Ssub. Subsequently, following the ordering of flux
in the first column, this value is decremented by the flux of the
respective detected MSP. Sources without a flux measurement
are included with zero flux.
Swyft hyperparameters with diffuse flux. This scenario does

not require much tuning of the hyperparameters chosen in the
baseline setup, but we must add a third ResNet that accepts
the list of fluxes describing diffuse and resolved contributions.
The selected parameters are stated in the third column of
Table 2.

5. Swyft Results

Now that we have established the simulator of radio MSPs as
well as the inference approach, we aim to study the
performance of the method and the properties we are able to
extract given a realization of synthetic target data. The idea is to
choose the underlying model parameters to well represent what
an observationally obtained radio MSP catalog looks like.

Table 2
Summary of Network Architecture and swyft Hyperparameters Used in This

Work, as Outlined in Section 4.2

Hyperparameter
Value (w/o Dif-

fuse Flux)
Value (w Dif-
fuse Flux)

ResNet: # input features (500/500) (500/500/500)
ResNet: # output features (32/16) (32/16/32)
ResNet: # hidden features (128/128) (128/128/128)
ResNet: # blocks (2/4) (2/4/5)

Sample size 105

Training-to-validation ratio 70:30
Training/validation

batch size
64/64

Optimizer Adam
Initial learning rate 8.5 × 10−4

Learning rate scheduler ReduceLROnPlateau
Learning ratio schedule

decay factor
0.3

Learning ratio schedule
patience

5

Maximal number of training
epochs

100

Early stopping patience 20
Noise resampling true

Note. For the ResNet hyperparameters, the numbers in parentheses denote the
values selected for each data column.
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5.1. Mock Data

We examine two distinct mock MSP populations. First, we
make the direct connection to the Bayesian analysis of
Section 3.2 and adopt the same defining population parameters.

Then, we turn toward a mock data definition that is oriented
closer to the current observational data for Ter 5. The latter case
serves as a testing ground to explore the capabilities of our
simulator and SBI. We investigate different scenarios for the

Figure 3. Flow chart of the ResNet implementation used in this work to generate summary statistics for the swyft log-ratio estimator. Left: the general structure of
a block “ResBlock” of the ResNet used as the core ingredient to the overall ResNet layout. The operation Add performs an element-wise binary addition on a
vector of a given size. MatMul refers to a matrix multiplication based on the dimensions specified in the box. Unsqueeze and squeeze augment or reduce the
dimension of the input vector. Relu is the standard activation function known as a rectified linear function, ( )y xmax 0,= , applied element-wise to an input vector.
Right: full structure of a ResNet defined with two “ResBlocks” following the hyperparameters listed in Table 2 for the case without Sdiff summarizing the
information in the list of detected MSP fluxes. The operations Sub and Div perform the normalization of the input flux vector via subtraction of the mean and division
by the total flux. The other ResNet structures are similar in shape with altered numbers of “ResBlocks” and input and output features.
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parameters impacting the quality of the inference, i.e., the
percentage of detected sources without flux measurements,
pfluxless, the availability of diffuse measurements, and the
detection threshold at large periods, Sth,∞. For what follows,
the swyft analysis is entirely based on the simulator described
in Section 4.1 with priors stated in Table 1 and the inference
architecture of Section 4.2 adhering to the specifications in
Table 2.

5.1.1. Mock Population Following Chennamangalam et al. (2013)

As a reminder, the MSP population in this case is characterized
by N= 142, μ=−1.2, σ= 1.0, Sth,∞= 0.02mJy, and
pfluxless= 0%. We generate 1000 realizations of this MSP
population and determine the mean expected number of detected
MSPs (while keeping the size of the population the same). We
obtain Ndetected= 17, which we fix as a hyperparameter of our
simulator.

We visualize the results of the parameter inference with
swyft in the left panel of Figure 4. The plot depicts the one-
dimensional marginal posterior distributions (blue line) for all
four model parameters with corresponding 1σ, 2σ, and 3σ
contours highlighted as shaded bands with decreasing opacity.
The injected parameter values are marked with red dashed
lines. The training and subsequent parameter estimation lasted
around 1.5 hr on a single NVIDIA A100 GPU. A direct
comparison with Figure 1 reveals a striking similarity of the
shape of the posterior distributions for N and μ and σ.
Ultimately, both methods produce almost the same qualitative
results, which is reassuring in the sense that the available
information is equally well translated into posterior distribu-
tions. The median and the 95% credible region of N are
reported in the first line of Table 3.

One may wonder how well the swyft posteriors express
constraints on the inferred parameters given the information in
the data sets. In particular, we are interested in the coverage of the
posterior distributions. Using our MSP population simulator, we
generate 1000 mock observations of our selected parameter tuple.
We infer with our trained network the posterior distributions for
each mock observation and count for how many observations the
credible intervals from [ ]x% 0, 1Î encompass the true value.
We provide the results of this coverage test in the right panel of
Figure 4. This derived coverage demonstrates that our
swyft setup produces reasonably calibrated posterior distribu-
tions for all parameters. Some of the coverage profiles are slightly
conservative, especially the inference on Sth,∞. However, this
parameter does not bear critical information about the MSP
population since it is technically known from the sample we use.
We emphasize that these coverage tests do not make any
statement about how well we have made use of the available
information in the data set but rather assess the validity of the

Figure 4. Left: complete set of one-dimensional marginal posterior distributions (blue curves) for the four parameters characterizing the radio MSP population model
similar to the one found in Chennamangalam et al. (2013) with parameters Ndetected = 17, N = 142, μ = −1.2, σ = 1.0, Sth,∞ = 0.02 mJy, and pfluxless = 0%. The
corresponding 1σ, 2σ, and 3σ contours are displayed as shaded bands in decreasing opacity. The vertical dashed red lines denote the true parameters of the target
observation. Right: swyft coverage results for the mock data set of the left panel. The horizontal axis states the nominal credibility interval (in significance) while the
vertical axis shows the empirically determined coverage. The dashed green line indicates perfect coverage while the solid blue line is the obtained average coverage;
the light blue band denotes the 68% containment band derived from 1000 simulations.

Table 3
Median and 95% Credible Interval of the Number of MSPs N Obtained through

the swyft Analysis Applied to Mock Data for Various Cases

Case Injected N Inferred N

(1) Ndetected = 17 142 62 44
298

-
+

(2) Ndetected = 40 200 135 86
279

-
+

(3) Ndetected = 40, extended prior 200 123 79
412

-
+

(4) Ndetected = 40, Sdiff = 2 mJy 200 168 78
200

-
+

(5) Ndetected = 36, pfluxless = 0% 200 124 86
313

-
+

(6) Ndetected = 40, pfluxless = 10% 200 133 86
277

-
+

(7) Ndetected = 34, Sdiff = 2 mJy, pfluxless = 10% 200 222 128
229

-
+

(8) Ndetected = 40, Sdiff = 2 mJy, pfluxless = 10% 200 185 94
240

-
+

(9) Ndetected = 51, Sdiff = 2 mJy, pfluxless = 10% 200 188 84
201

-
+
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posteriors with respect to the inference problem at hand. The
swyft coverage results are in stark contrast to those of the
Bayesian analysis in Figure 2. While we demonstrated that both
methods produce comparable posterior distributions, their
statistical calibration differs substantially. We find that the
swyft pipeline is a statistically more robust approach to infer the
properties of MSP populations in GCs.

Yet, the MSP population parameters chosen here do not
align well with our current knowledge of the MSP content of
Terzan 5 (see Section 2.1.2). To better assess the capabilities of
the swyft approach we switch to a mock data definition that
more closely resembles the real Ter 5 data set. In the following

section, we will describe and examine this baseline setup in
greater detail.

5.1.2. Baseline Case

Terzan 5 contains around 40 MSPs with measured fluxes. We
adopt this number as Ndetected in what follows. Because of this
large number of known MSPs, we increase the total size of our
mock MSP population to N= 200 while we keep the luminosity
parameters as in the previous section, that is, μ=−1.2 and
σ= 1.0. To achieve the targeted number of detected sources with
these parameters, we have to set the detection threshold to
Sth,∞= 9 μJy. This value is close to the lowest detected flux of
8 μJy of an MSP in Ter 5 (Padmanabh et al. 2024) at 1284MHz.
Our reported inference results refer to this frequency band, and
we notice that our choices for this baseline mock population are
reasonable and informed by observations. We start in an ideal
setting where all detected MSPs come with a secured flux
measurement (pfluxless= 0%). Finally, we do not include
information from the diffuse flux measurement. Our results for
this baseline case are illustrated in Figure 5 following the same
style as the left panel of Figure 4. The median and the 95%
credible intervals of N are reported in the second line of Table 3.
We show the coverage results for this case in Figure 10 of
Appendix B. All the following findings are accompanied by their
coverage reported in Appendix B.
We find that the injected values can be recovered with much

better precision than in the Chennamangalam et al. (2013)
setup; for all four parameters, we are able to recover well-
defined credible intervals and not mere upper limits as for the
number of sources N in Figure 4. The detection threshold is
reconstructed with the highest precision (and accuracy). This
result is very intuitive since the detection threshold is given by
the smallest number in the flux column of our synthetic
catalogs. We notice, however, that this parameter can already
be quite constrained by observations, especially in the case of a
uniform survey. More relevant are the MSP population
parameters. Here, we find that all injected parameter values
are recovered within the 1σ credible interval of the inferred
posteriors. Yet, the posteriors still allow for a wide range of
MSP population scenarios; in particular, there might be
50–400 MSPs in this mock population at the 2σ level. A
similar statement holds for the viable range of μ.
While our posterior distributions do not run against the prior

boundaries, it is interesting to check how robust these inference
results are against widening the original priors. As N is not
strictly constrained in this baseline setup, we launch an
alternative swyft run with a larger prior from 40 to 3000
sources while keeping the other priors the same. The median
and the 95% credible regions of N are reported in the third line
of Table 3. The results are shown in the left panel of Figure 16
of Appendix C. Inspection of obtained posterior distributions
does not reveal major changes to the results shown here in the
main text. They are, in fact, almost identical, so that we proceed
by only considering the prior definitions detailed in Table 1.

5.1.3. Impact of Diffuse Radio Emission

To include information about the diffuse radio flux, we
assume a value of Sdiff= 2 mJy that adds on top of the
cumulative flux of all detected MSPs, as per Equation (5). The
results of the parameter estimation are shown in Figure 6 and
the median and the 95% credible intervals of N are reported in

Figure 5. Same as Figure 4 for our baseline target mock observation with
parameters Ndetected = 40, N = 200, μ = −1.2, σ = 1.0, Sth,∞ = 9 μJy, and
pfluxless = 0%.

Figure 6. Same as Figure 5 including information about the diffuse radio
emission in the simulator for which we assume Sdiff = 2 mJy and
pfluxless = 0%.
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the fourth line of Table 3. The corresponding coverage results
are shown in Figure 11 of Appendix B.

Compared to our baseline case (Section 5.1.2), adding
information about the diffuse emission significantly improves
the parameter estimation of the total number of sources N by
narrowing the 2σ credible interval to [ ]N 90, 370 ,~ while we
find [ ]N 66, 410~ without diffuse flux information. We notice
a similar striking impact on the precision of the detection
threshold’s posterior, which is much more peaked around the
injected value. The quality of the inference on the MSP
population’s luminosity function remains approximately the
same. From a physics perspective, these findings follow from
the fact that the assumed diffuse flux is (at least partially)
constituted by the subthreshold population, which we can
access this way.

5.1.4. Impact of Incomplete Flux Measurements

We investigate the impact of increasing pfluxless as follows:
Missing flux information for some detected pulsars implies that
the observational source catalog contains fewer sources with
complete data than what is expected on average for a given flux
threshold Sth,∞. We see this situation in the case of Terzan 5.
Therefore, we compare in Figure 7 (i) the inferred one-
dimensional marginal posterior distributions for a complete
catalog of our baseline mock target but assuming fewer
detected sources than possible, Ndetected= 36 (upper row), and
(ii) a case with Ndetected= 40 (lower panel) as expected on
average but including four sources, i.e., pfluxless= 10%, without
flux measurements. The corresponding coverage results are
shown in Figure 12 of Appendix B, and the median and the
95% interval credible region on N are reported in the fifth and
sixth lines of Table 3.

We observe that the quality of the inference overall improves
when including detected sources without derived fluxes. While
the total number of sources N is rather unconstrained in the
upper panel with pfluxless= 0%, we find a narrower prior in the
lower panel. The widths of the 1 and 2σ credible intervals are
not very different from Figure 5, where we assume a complete
catalog of 40 detected sources. This can be understood from the
setup of our training data since we generate a data column that

counts detected sources no matter the availability of a flux
measurement. A similar improvement is found for the two
parameters of the MSP population’s luminosity function, which
are slightly narrower and more centered on the injected value in
comparison with the upper row. However, the inferred
posterior of the detection threshold deteriorates to some degree
as it appears to be wider for the case of pfluxless= 10%, but the
difference is only marginal and, again, comparable to the
results shown earlier with full flux information. Therefore, we
conclude that adding detected sources irrespective of the
availability of an associated flux measurement is beneficial for
the ultimate inference.
Finally, we note that, since our method is based on the study

of the luminosity function of MSPs in GCs, it would not make
sense to apply our method to clusters where a majority of
pulsars lack flux measurements. In such cases, one could
decide to study the period distribution instead, which is beyond
the scope of this paper.

5.1.5. Prospects for Deeper Surveys

Future surveys will attain lower detection thresholds, which
will help us to better determine the MSP populations in GCs. To
understand how Sth,∞ affects the parameter estimation, we
assume a survey that measures the diffuse flux in the GC (again
Sdiff= 2 mJy in a scenario where still 10% of the MSPs are
reported without measured flux values). We consider three
detection thresholds, Sth,∞= 12 μJy (left column), Sth,∞= 9 μJy
(middle column), and Sth,∞= 6 μJy (right column), as shown in
terms of one-dimensional marginal posteriors in Figure 8 (the
corresponding coverage results are shown in Figure 13 of
Appendix B), and the median and the 95% credible region of N
are reported in lines seven to nine of Table 3. We show results
for Sth,∞= 12 μJy—which is worse than the assumed value of
our baseline mock setup—for pedagogical reasons to better
illustrate the evolution of the posteriors with decreasing
detection threshold. Since a given detection threshold uniquely
determines the mean number of detected MSPs, we adjust the
assumed value of Ndetected as described in Section 5.1.1.
Consequently, we find Ndetected= 34, 40, and 51 for the three
considered values of Sth,∞, respectively.

Figure 7. Impact of incomplete MSP flux measurements. Complete set of one-dimensional marginal posterior distributions adopting the color-coding of Figure 4
characterizing the radio MSP population model outlined in Section 4.1 characterized by N = 200, μ = −1.2, σ = 1.0, and Sth,∞ = 9 μJy. We contrast two cases:
(upper row) Ndetected = 36 and pfluxless = 0%, representing observational results with fewer MSPs than expected regarding the mean expectation of 〈Ndetected〉 = 40;
(lower row) Ndetected = 40 and pfluxless = 10%, illustrating a scenario where Ndetected = 〈Ndetected〉 but 10% of the MSPs lack a flux measurement.
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The most striking improvement is achieved when lowering
the detection threshold from 9 to 6 μJy, while the initial step
from 12 to 9 μJy does not have sizeable effects on the final
posteriors. In fact, the second step to 6 μJy adds 11 MSPs to the
source catalog, while the first step only adds six. We find that
the posterior distribution of N becomes much narrower
positioning the 2σ credible interval between 100 and
390 MSPs. Improving the detection threshold by a factor of
2 renders this parameter accessible in the posterior estimation
with a defined 68% and 90% credibility interval. This is a
natural consequence of slightly increasing the number of
detected sources because it increases the part of the luminosity
function accessible to the inference pipeline. Note that this
setup uses 10% of fluxless MSPs as well as the inclusion of a

measurement of the diffuse flux for the mock GC. The
inference on the remaining three parameters becomes better but
to a lesser extent. For completeness, we also considered a case
where all sources are above the threshold, i.e., detected. In this
case, the size of the MSP population, the mean and the width of
the luminosity function are recovered with small uncertainty.
The posteriors and corresponding coverage plots are shown in
Figure 14 of Appendix B.

5.2. Real Data: Terzan 5

Having tested the performance of the swyft implementa-
tion on purely simulated data, we now venture to apply the
approach to the available data for Terzan 5 presented in
Section 2.1.2. To show the evolution of the posterior

Figure 8. Comparison of the complete set of one-dimensional marginal posterior distributions (blue curves) for the four parameters characterizing the radio MSP
population model outlined in Section 4.1. In each panel we show varying minimal detection thresholds for large pulsation periods Sth,∞ and accordingly adjusting the
expected number of detected sources given the total number of MSPs. The stated values for Ndetected represent the mean expectation for the respective detection
threshold obtained from 1000 realizations. The inference has been performed on target mock observations with shared parameters pfluxless = 10%, N = 200, μ = −1.2,
σ = 1.0, and Sdiff = 2 mJy. The color-coding is as in Figure 5. Left column: Ndetected = 34, Sth,∞ = 12 μJy. Middle column: Ndetected = 40, Sth,∞ = 9 μJy. Right
column: Ndetected = 51, Sth,∞ = 6 μJy.
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distributions with the amount of available data, i.e., an
increasing number of detected sources with and without flux
measurement, we define three data sets: (i) the 31 MSPs

originally listed by Martsen et al. (2022), (ii) adding the 10
MSPs analyzed by MeerKAT, and (iii) using all 48 known
MSPs in Terzan 5, seven of them without flux measurements
(pfluxless≈ 14.6%). To ensure comparability to previous results
on mock data, we keep the prior distributions outlined in
Table 1. In particular, this implies [ ]N N , 500detectedÎ and

[ ]2.0, 0.5m Î - . This also allows us to easily compare the
swyft results with previous work in Chennamangalam et al.
(2013) and the application of our Bayesian approach in
Section 3.2. The results are displayed in Figure 9 and the
median and the 95% credible intervals of N, μ, and σ are
reported in Table 4. The corresponding coverage results are
shown in Figure 15 of Appendix B.

Figure 9. Comparison of the complete set of one-dimensional marginal posterior distributions (blue curves) for the four parameters characterizing the radio MSP
population model outlined in Section 4.1 obtained for real MSP catalogs of Terzan 5 outlined in Section 2.1.2. We consider three data sets: (left column) original
sample of 31 MSPs with flux measurements (Martsen et al. 2022) rescaled to a frequency of 1284 MHz, (middle column) 41 MSPs with flux measurements
encompassing the Martsen et al. (2022) sample and 10 additional sources characterized by MeerKAT at the same frequency, and (right column) adding seven
additional sources to the sample without flux measurement (pfluxless ≈ 14.6%) to account for all sources currently known MSPs in Terzan 5. The dashed vertical green
lines for N, μ, and σ denote the inference results of Chennamangalam et al. (2013) while the respective line for Sth,∞ is the one we used. The inference has been
performed on a target mock observation without a diffuse measurement. The color-coding is as in Figure 5.

Table 4
Median and 95% Credible Interval of the Number of MSPs N, the Mean μ, and
the Width σ of the Luminosity Function Obtained through the swyft Analysis

Applied to Real Data for Various Cases

Case N μ σ

Ndetected = 31 126 89
320

-
+ −0.81 1.12

1.01
-
+ 1.01 0.40

0.35
-
+

Ndetected = 41 146 94
283

-
+ −1.05 0.89

0.99
-
+ 1.02 0.38

0.34
-
+

Ndetected = 48 158 104
294

-
+ −1.02 0.91

1.02
-
+ 1.00 0.39

0.36
-
+
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To facilitate the comparison with the results obtained by the
authors of Chennamangalam et al. (2013), we display their
inferred median parameters for Terzan 5 as dashed vertical green
lines. As concerns the posterior distribution for the total number
of MSPs in Terzan 5, we observe that increasing the sample
leads to a better definition of the posterior distribution, which
evolves from a rather broad posterior in case (i) to a well-defined
two-sided posterior in cases (ii) and (iii). This behavior follows
our inference findings on the baseline mock MSP population. In
data selection (iii), we obtain a 2σ credible interval of

[ ]N 54, 452Î . We want to emphasize here that with the stated
Ter 5 catalogs we are in a different situation than with our mock
data sets. It is not clear that the number of detected sources
associated with the assumed value of Sth,∞ (based on the lowest
flux value in the list of detected MSPs) is indeed the average
number of detected sources one would expect for the true
population parameters of Ter 5. It is much more likely that we
are always below the average expectations and much closer to
the scenario considered in the upper panel of Figure 7. The
quality of our inferred posteriors might suffer from a certain out-
of-domain effect regarding simulated training samples and
reality. Yet, the coverage of our swyft pipeline is well
calibrated (see Appendix B) so that the results presented here
are the best we are currently able to derive.

With respect to the sizable improvement from (i) to (ii), the
evolution of the posteriors for the parameters associated with
the luminosity function shows only a mild gain when going
from (ii) to (iii). Our posteriors are consistent with the results of
Chennamangalam et al. (2013). In this case, the inclusion of
fluxless MSPs is not as beneficial as having complete flux
information because it renders the inference on the detection
threshold less constraining. This effect we could also observe
in our study of the impact of pfluxless in Figure 7, where the
lower row shows a wider posterior for the detection threshold
than the corresponding upper row. We thus argue that
obtaining a complete assessment of radio fluxes is essential
to pinpoint the properties of the MSP population in Terzan 5
with swyft.

6. Discussion

The current limiting factor in our understanding of the
population of MSPs in GCs is the observational data. The
available MSP catalogs are limited by the performance of radio
instruments and by their nonuniformity. Unsurprisingly, our
ability to robustly infer the number of MSPs hosted by a cluster
will increase as the detection threshold of radio telescopes
decreases (Section 5.1.5). Not only an improved detection
threshold can improve the inference, but also a more systematic
measurement of pulsar fluxes. We showed that the fraction of
sources not having a flux measurement is a key element in the
inference pipeline both on mock and real data (Sections 5.1.4
and 5.2).

Moreover, as we have seen in Section 5.1.3, incorporating a
measurement of the diffuse radio emission can be a crucial
element of the parameter estimation. Terzan 5 can be found in
the NRAO VLA Sky Survey (NVSS; Condon et al. 1998)
catalog as NVSS 174804-244641, a source with a total flux
density of Stot= 3.4 mJy at 1.4 GHz. We note that Sdet, the sum
of all MSP fluxes measured in Terzan 5, is already larger than
3.4 mJy. This apparent inconsistency is probably partly due to
the fact that the position and the size of NVSS 174804-244641
do not exactly match those of Terzan 5 commonly assumed

today. We thus argue that new measurements of the total radio
emission of the GC will highly benefit the analysis of the
properties of its MSP population. Nonetheless, one has to keep
in mind that, while MSPs seem to be the main contributors to
the radio emission of GCs, other populations could contribute,
such as low-mass X-ray binaries and accreting stellar-mass
black holes (Urquhart et al. 2020). Finally, data of several GCs
could be combined, if the luminosity function is assumed to be
unique, as done by Bagchi et al. (2011). This will enable the
usage of an extended data set, if uniform and accessible. If the
detection threshold at large periods Sth,∞ does not vary too
much from one GC to the next, the luminosity of the dimmest
object in each cluster can fluctuate as their distance varies.
Therefore, each GC probes a different region of the luminosity
function. In the Bayesian analysis framework, each cluster has
its own independent likelihood j, and the total likelihood is
the product of all these likelihoods (see Appendix E for more
details). With swyft, only minor modifications of the
simulator will instead be necessary.
After the publication of Chennamangalam et al. (2013), stellar

data from the Gaia mission made it possible to derive a much
more precise distance measurement for Ter 5. While we kept for
the sake of comparability the distance of (5.5± 0.9) kpc
throughout our Bayesian and swyft applications, a better
distance characterization is given by d= (6.620± 0.150) kpc
in Baumgardt & Vasiliev (2021). These two measurements are
consistent, but the more recent one puts Ter 5 about 1 kpc farther
than we assume in our analyses. Yet, Equation (3) states that a
different distance translates to a mere shift of an MSP’s
luminosity. Therefore, we do not expect strong qualitative
differences in the inference results except for the mean μ of the
MSP luminosity function. To quantitatively probe the impact of
this updated distance to Ter 5, we inferred the posteriors for the
case of Ndetected= 32 within this setting. The results are shown in
Figure 17 (plus coverage) of Appendix D. As expected, the
inference results are slightly different from the ones visualized in
the corresponding plot in Figure 9 except for the results on μ.
Here, the posterior’s maximum is shifted to larger luminosities,
which is expected due to the increased distance of Ter 5
compared to Figure 9. We conclude that our results are robust
against a redefinition of the distance to a single GC and all plots
shown in the main text retain their validity.
An improvement of our work toward more realism lies in our

implementation of the detection threshold. While Chennaman-
galam et al. (2013) chose to work with an MSP-independent
threshold, we have implemented an MSP-dependent threshold
to mimic the radiometer equation. However, the variations
from one threshold to the next are random and do not depend
on specific parameters of the MSP. As noted above, we know
that these thresholds strongly depend on the pulsation period of
pulsars. Moreover, the luminosity of radio pulsars should also
depend on their period and period derivative (see, e.g.,
Bagchi 2013). Therefore, further studies could benefit from
and include a simulation of the pulsation period of MSPs and
its link with the radio emission. Theoretical works and
simulations could help in that respect to guarantee that the
inference is robust and correct.

7. Conclusions

The question of the number of MSPs in GCs has been
studied by different groups via their luminosity function, each
method producing different (but not incompatible) results. In
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this work, we tackled this problem through an analysis
framework which quickly developed in the last decade:
likelihood-free/simulation-based inference. Our method pro-
duces Bayesian posteriors which quantify the uncertainty on
various parameters of interest. While the method used by
Bagchi et al. (2011) could be interpreted as part of SBI, it does
not produce Bayesian posteriors. As for the work of
Chennamangalam et al. (2013), based on a Bayesian like-
lihood, we have shown in Section 3.2 that it likely produces
posteriors that are too conservative, indicating a poor
calibration of the statistical analysis. We therefore developed
a novel analysis pipeline based on swyft. We tested our
method on simulated data sets and we demonstrated that our
analysis consistently produces well-behaved posteriors. In the
mock data sets analysis, the best improvements are achieved
when the simulated data sets include a measurement of the
diffuse radio emission of the GC, or when we assume a
detection threshold at large periods of ∼6 μJy, that is, twice as
low as current surveys. Applied to real data of Terzan 5, our
analysis robustly hints at a population of more than 80 to less
than 350 MSPs (68% credible interval). Despite the well-
behaved posteriors, however, large uncertainties remain in the
determination of the 95% credible intervals of the number of
MSPs. On the other hand, our 95% credible intervals of the
width of the luminosity function remain very similar to those of
Chennamangalam et al. (2013), while the upper limit on the
mean of the luminosity function can be better determined.

Our results call for dedicated campaigns of flux measure-
ments of MSPs in GCs, as well as deep imaging observations
associated with a measurement of the GC diffuse radio
emission.
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Appendix A
Flux Data Set

In Table 5, we provide the data of the pulsars in Terzan 5
used in this work.

Appendix B
Collection of Coverage Results for All Scenarios

In this appendix, we collect and provide coverage results
(Figures 10–15) for all radio MSP population scenarios we
tested and performed inference on. The parameters of the MSP
scenario are stated in the respective plot’s caption.

Table 5
Flux Densities of Terzan 5 Pulsars Used in Our swyft Analysis

Pulsar S1284 S1400 S2000 α

(μJy) (μJy) (μJy)

A L 2700 1700 −1.31(15)
C L 1100 670 −1.4(2)
D L 71 45 −1.28(14)
E L 170 110 −1.16(13)
F L 55 35 −1.218(95)
G L 24 22 −0.26(11)
H L 39 24 −1.33(9)
I L 95 55 −1.53(11)
K L 66 39 −1.47(7)
L L 96 43 −2.26(7)
M L 140 91 −1.14(11)
N L 150 100 −1.02(11)
O L 310 160 −1.9(2)
Q L 56 36 −1.24(14)
R L 35 17 −2.07(14)
S L 20 14 −1.09(13)
T L 26 15 −1.61(9)
U L 30 12 −2.491(97)
V L 100 77 −0.86(7)
W L 54 31 −1.53(14)
X L 43 24 −1.63(7)
Y L 37 29 −0.76(12)
Z L 30 23 −0.7(2)
aa L 29 20 −1.00(14)
ab L 45 23 −1.83(12)
ac L 31 17 −1.67(15)
ae L 56 50 −0.3(2)
af L 33 22 −1.19(12)
ag L 16 9.2 −1.6(2)
ah L 14 7.1 −1.9(2)
ai L 33 28 −0.4(2)

ao 12 L L L
ap 15 L L L
au 12 L L L
ax 8 L L L
aq 17 L L L
ar 44 L L L
at 19 L L L
as 10 L L L
av 15 L L L
aw 10 L L L

Note. All data from the top section are from Martsen et al. (2022) and all data
from the bottom section are from Padmanabh et al. (2024).
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Figure 10. Same as the right panel of Figure 4 in the main text for the baseline
mock data setups characterized by Ndetected = 40, pfluxless = 0%, N = 200,
μ = −1.2, σ = 1.0, and Sth,∞ = 9 μJy with a prior range [ ]N N , 500detectedÎ
(see Figure 5 for the parameter inference).

Figure 11. Same as the right panel of Figure 4 in the main text for the baseline
mock data setups exploring the impact of adding a diffuse measurement for the
GC under scrutiny with results shown in Figure 6: Ndetected = 40, p¯uxless = 0%,
N = 200, μ = −1.2, σ = 1.0, and Sth,∞ = 9 μJy and Sdiff = 2 mJy.
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Figure 12. Same as the right panel of Figure 4 in the main text for the baseline mock data setups exploring the impact of having an MSP catalog lacking flux
information with results shown in Figure 7: (left) Ndetected = 36, pfluxless = 0%, N = 200, μ = −1.2, σ = 1.0, and Sth,∞ = 9 μJy; (right) Ndetected = 40, pfluxless = 10%,
N = 200, μ = −1.2, σ = 1.0, and Sth,∞ = 9 μJy.
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Figure 13. Same as the right panel of Figure 4 in the main text for the baseline mock data setups exploring the impact of lowering the detection threshold with results
shown in Figure 8: (upper left) Ndetected = 34, pfluxless = 10%, N = 200, μ = −1.2, σ = 1.0, and Sth,∞ = 12 μJy and Sdiff = 2 mJy; (upper right) Ndetected = 40,
pfluxless = 10%, N = 200, μ = −1.2, σ = 1.0, and Sth,∞ = 9 μJy and Sdiff = 2 mJy; and (bottom) Ndetected = 51, pfluxless = 10%, N = 200, μ = −1.2, σ = 1.0, and
Sth,∞ = 6 μJy and Sdiff = 2 mJy.
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Figure 14. Left: same as Figure 5 considering that all MSPs are above the sensitivity threshold, i.e., Ndetected = N = 200 and Sth,∞ = 10−8 μJy. The uncertainty on the
mean and width of the radio luminosity function is mostly related to the uncertainty on the distance to Terzan 5 assumed for the mock simulations. Right: coverage
plot for scenarios similar to the one considered in the left panel but with 200 � Ndetected = N � 500. The deviation from the diagonal in the number of sources is due to
the sharpness of the posterior. Moreover, being one-sided, it cannot be centered on the true value.
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Appendix C
Enlarging the Prior Range on the Total Number of

Millisecond Pulsars

In this appendix, we show the results of enlarging the prior
range of the swyft analysis of our baseline mock data set. We
increase the total numbers of sources from N= 500 to

N= 3000 while keeping the priors of all other parameters
identical to the default setup shown in Table 1. The posteriors
and the coverage for this case are displayed in Figure 16.

Figure 15. Same as the right panel of Figure 4 in the main text for the radio MSP population of Terzan 5 with (upper left) Ndetected = 32, pfluxless = 0%, and
Sth,∞ = 16.5 μJy; (upper right) Ndetected = 41, pfluxless = 0%, and Sth,∞ = 8 μJy; and (bottom) Ndetected = 48, pfluxless = 14.6%, and Sth,∞ = 8 μJy. See Figure 9 for the
parameter inference results.

19

The Astrophysical Journal, 974:144 (21pp), 2024 October 10 Berteaud et al.



Appendix D
Updating the Distance to Terzan 5

In this appendix, we show the results of changing the
distance to Ter 5 from 5.5 to 6.62 kpc as inferred from data sets
of the Gaia mission in Baumgardt & Vasiliev (2021). We

inspect the case of n= 32, that is, the Ter 5 GBT sample, where
we show the posteriors and the coverage for this case in
Figure 17.

Figure 16. Left: same as Figure 5 using a wider prior on N extending up to 3000 MSPs. Right: coverage plot for the scenario considered in the left panel.

Figure 17. Left: same as Figure 9 using the updated distance to Ter 5 of about 6.62 kpc and the GBT sample of Ndetected = 31. Right: coverage plot for the scenario
considered in the left panel.
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Appendix E
Multiple Clusters

In Sections 2.2 and 3.1, we introduced several quantities
related either to pulsars or to their host cluster, Terzan 5. In
order to extend our analysis to several clusters simultaneously,
one can use exponents to indicate cluster dependence. As an
example, Equation (3) becomes

( ) ( ) ( ) ( )S L dlog log 2 log . E1i
j

i
j j

10 10 10= -

If the luminosity function is assumed to be the same for all
clusters, and therefore that μ and σ are unique, Equation (2)
remains valid, and each new cluster only adds three new
parameters to the model: Nj, S j

th, and d j. Otherwise, f, μ, and σ

simply become f j, μ j, and σ j, and each new cluster only adds
five new parameters to the model. Equation (6) can be used in
both cases with ( ∣ ) D M,q computed as the product of
the ( ∣ ) D M,j j jq .
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