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NONPARAMETRIC ESTIMATION FOR ADDITIVE CONCURRENT

REGRESSION MODELS

E. BRUNEL(1), F. COMTE(2), C. DUVAL(3)

Abstract. We consider an additive functional regression model where the responses are N
i.i.d. one-dimensional processes (Yi(t), i = 1, . . . , N) and the K explanatory random processes
Xi,j(t) for j = 1, . . . ,K are observed for t ∈ [0, τ ], τ being �xed. The coe�cients in the model
are K unknown functions t 7→ bj(t) for j = 1, . . . ,K and we build nonparametric least squares
estimators under several general settings of explanatory processes, for example, continuous or
inhomogeneous counting processes. We bound a mean-square type risk of the estimators from
which rates of convergence are deduced. Optimality of the rates is established. An adaptive
procedure is then taylored and proved to lead to relevant anisotropic model selection, simulta-
neously for all functions. Numerical illustrations and a real data example show the practical
interest of the theoretical strategy. June 4, 2024

Keywords and phrases: Adaptive estimation. Continuous observation. Functional data. Least
squares estimator. Nonparametric regression function estimation. Projection method.

1. Introduction

Everybody knows everything about the linear regression model. A natural setting extending
it, is when the variable Yi to be explained as well as the explanatory variables (Xi,j)1≤j≤K for
individuals i = 1, . . . , N are no longer real valued but all random functions of time. In other
words, the observations become N independent paths of K random processes over some time
interval [0, τ ], τ being �xed. The �xed coe�cients of the regression model can be modelled as
deterministic functions of time, for which nonparametric estimation can be conducted in the
spirit of the least-squares paradigm. Formally, we consider the functional regression model

(1) Yi(t) =

K∑
j=1

bj(t)Xi,j(t) + σ(t,Xi(t))εi(t), t ∈ [0, τ ], i = 1, . . . , N,

For i = 1, . . . , N , the processes (εi(t))t∈[0,τ ] are centered, independent and identically distributed

in i, with E(ε2
1(t)) = 1; the processes (Xi(t) =

(
Xi,1(t) . . . Xi,K(t)

)
)t∈[0,τ ] are i.i.d. and

independent of the (εi(t))t∈[0,τ ]. The integer K is assumed to be �xed, small compared to N ,
and known; it is the number of explanatory variables. The homoskedastic case where σ(t,x) = σ
is a natural particular case. The functions b1(t), . . . , bK(t) are deterministic, unknown and to be
estimated.

These models, known as concurrent regression models, are described and studied from numer-
ical point of view, in Chapter 14 of Ramsay and Silverman (2005), [25]. They are also de�ned as
varying-coe�cient linear models, and they have received a lot of attention in the past two decades.
Various �elds of applications are targeted; survival analysis (see Teodorescu et al. (2010),[26], Li
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et al. (2016), [22]), functional linear regression for longitudinal data or repeated measurements
(see Yao et al. (2005a, b), [28]-[29], Huang et al. (2002), [19]), or nonparametric regression in
varying-coe�cient models (see Eubank et al. (2004), [12], Fan et al. (2003), [13]), more recently
functional ridge regression (see Manrique et al. (2018), [24]), and functional regression for non
euclidean responses such as fRMI signals (see Bhattacharjee and Müller (2022), [2]), hypothesis
testing or variable selection in time-varying coe�cient models (see Ghosal and Maity (2022a,b),
[15]-[16]), or non linear time series modelling in econometrics (see Li et al. (2020), [21]).

The context the nearest of ours is the model studied in Manrique et al. (2018), [24]: they
consider Model (1) in the particular setting where K = 1 and Xi,1 being a centered process.
They propose a functional ridge regression estimator of the function b1 and obtain consistency
and rates of convergence results under general assumptions allowing for non compact support
and non continuous explanatory variable (their condition A5a seems even to ask for speci�cally
low regularity). However, these conditions are technical, di�cult to interpret and generalize, and
the optimality of the procedure is rather uncertain.

Chagny et al. (2023), [6] consider a functional linear model formulated as an inverse problem
where taking a Dirac function as kernel of their slope operator matches our model for K = 1.
Their one dimensional explanatory process X is supposed to admit a Karhunen-Loeve decompo-
sition and to satisfy technical assumptions (see their assumptions A2 to A6, for instance ful�lled
by gaussian processes). Their estimation strategy consists in estimating the eigenvalues and
eigenfunctions of the decomposition, which is quite di�erent from our methodology where the
estimation basis is user-chosen. We have in common with their approach, the least-square con-
trast paradigm to build projection estimators. A novelty of our strategy is to exploit tools from
statistical inference for stochastic processes, see Comte and Genon-Catalot (2024), [8], rather
than those standardly used in functional data analysis.

We highlight the following contributions of this work:

(1) We take advantage of methods usually dedicated for statistical inference for stochastic
processes (speci�cally for SDEs) and adapt them to functional data analysis.

(2) We consider a compact support setting which allows to handle simply general and di�er-
ent types of explanatory processes, which can be continuous or not.

(3) We propose direct and simultaneous estimation of K functions, with a simple and fast
estimation method, including anisotropic model selection.

(4) We obtain rates of convergence proved to be optimal.
(5) We emphasize that, thanks to the additive feature of the model, we do not face any curse

of dimensionality. The theoretical global rate is related to the smallest regularity among
those of the functions bk, k = 1, . . . ,K. Though, numerical experiments show that the
estimation algorithm chooses di�erent orders of developments for each of the functions.

Let us describe more precisely the content of the paper. We build a nonparametric estimator
of the K-dimensional function t ∈ [0,+∞) 7→ (bj(t), j = 1, . . . ,K) ∈ RK from the continuous
time observation of the N sample paths of the (Yi(t))t∈[0,τ ] and (Xi,j(t))t∈[0,τ ],1≤j≤K , through-
out a �xed time interval [0, τ ]. The asymptotic framework is N → +∞ and τ �xed. For
m = (m1, . . . ,mK) ∈ NK , we consider a space Sm = Sm1 × . . .×SmK de�ned as a product of K
�nite-dimensional subspaces of L2([0, τ ]) with respective dimensions mj . For each m, we de�ne
simultaneously projection estimators of all the functions bj , j = 1, . . . ,K. The estimators are
de�ned, the required assumptions are stated and explained in Section 2. The rates of the esti-
mators and their optimality on regularity spaces is established in Section 3. The prediction risk
is also studied. In Section 4, we show that the estimator can be seen as minimizing a projection
contrast, in a least-squares spirit �tted to the context. This allows us to propose a model selection
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device and to de�ne a data-driven choice of m, when σ(t,x) is assumed to be uniformly bounded.
The resulting estimator is proved to be adaptive, in the sense that it reaches an automatic and
non-asymptotic squared bias-variance compromise. Simulation experiments presented in Section
5 show that the method is simple to implement, and provides well-performing estimators, relying
on fast numerical procedures. A real data example relying on a recent electricity data set is
given. The proofs of the main results are given in Section 6. The proofs of the technical and
auxiliary results are deferred to Supplementary Material.

Notation. We end this section with some of the main notations used in the article. For A a
matrix, we denote by AT the transpose of A and by ‖A‖op the operator norm of A, that is the
square root of the largest eigenvalue of AAT . If A is a square matrix, Tr(A) denotes the trace of
A and if A is symmetric, ‖A‖op = sup{|λi|} where λi are the eigenvalues of A. If, in addition, A
is invertible, ‖A−1‖op = 1/min{|λi|}.
For h ∈ L2

τ = L2([0, τ ]), we denote by ‖h‖ = (
∫ τ

0 h
2(t)dt)1/2 its L2-norm and ‖x‖2,r denotes the

Euclidian norm of the vector x = (x1, . . . , xr)
T of Rr. For h(t) = (h1(t), h2(t), . . . , hK(t))T and

g(t) = (g1(t), . . . , gK(t))T elements of (L2
τ )K = L2

τ ×· · ·×L2
τ , we set ‖h‖ = (

∑K
k=1

∫ τ
0 h

2
k(t)dt)

1/2

and 〈h,g〉 =
∑K

k=1

∫ τ
0 hk(t)gk(t)dt for respectively the L

2-norm and the scalar product of (L2
τ )K .

Denote by Xi(t) = (Xi,j(t))1≤j≤K a K × 1 vector and Y(t) = (Yi(t))1≤i≤N a N × 1 vector.
With these notations, Model (1) can be written for b(t) = (bj(t))1≤j≤K ,

(2) Yi(t) = b(t)TXi(t) + σ(t,Xi(t))εi(t), t ∈ [0, τ ], i = 1, . . . , N.

We also introduce two speci�c semi-norms, that are norms under assumption (AS) considered
below. We introduce for N ≥ 1 and t ∈ [0, τ ], the K × K nonnegative symmetric matrices
ΓN (t),Γ(t) given by:

(3) ΓN (t) =

(
1

N

N∑
i=1

Xi,j(t)Xi,k(t)

)
1≤j,k≤K

, Γ(t) = (E [X1,j(t)X1,k(t)])1≤j,k≤K .

Note that Γ(t) = E[ΓN (t)] = E[X1(t)TX1(t)]. For h = (h1, . . . , hK)T ∈ (L2
τ )K , we set

(4) ‖h‖2N =

∫ τ

0
h(t)TΓN (t)h(t)dt, ‖h‖2Γ =

∫ τ

0
h(t)TΓ(t)h(t)dt.

It is easy to see that ‖.‖N and ‖.‖Γ are semi-norms. We show further that they are norms if
ΓN (t) and Γ(t) are invertible for all t ∈ [0, τ ]. Then, the associated scalar products, for vector
functions g = (g1, . . . , gK)T and h = (h1, . . . , hK)T , are

〈g,h〉N =

∫ τ

0
g(t)TΓN (t)h(t)dt, 〈g,h〉Γ =

∫ τ

0
g(t)TΓ(t)h(t)dt.

2. Definition of estimators of bj, for j = 1, . . . ,K

2.1. Projection estimator. Consider (ϕj , j ≥ 1) a basis of L2
τ composed of measurable func-

tions of L2
τ such that

∫ τ
0 ϕ

2
j (x)dx ≤ 1. Note that this is not necessarily an orthonormal basis. Let

Sm be the subspace linearly spanned by (ϕj , 1 ≤ j ≤ m). We build estimators of (b1, . . . , bK) on
Sm1 × · · · × SmK := Sm, with m = (m1, . . . ,mK). This is equivalent to estimate the coe�cients

β̂j,k of each bk in the basis. Set

(5) b̂m(t) = (̂b1(t), . . . , b̂K(t))T where b̂k(t) =

mk∑
j=1

β̂k,jϕj(t),
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such that B̂m = (β̂1,1, . . . , β̂1,m1 , β̂2,1, . . . , β̂2,m2, . . . , β̂K,1, . . . , β̂K,mK )T is solution of

Ψ̂mB̂m = V̂m, with V̂m = (V̂1,m1T, . . . , V̂
T
K,mK

)T ,

and V̂j,mj are mj × 1 vectors, j = 1, . . . ,K, given by

V̂j,mj =

(
1

N

∫ τ

0
ϕp(t)

N∑
i=1

Xi,j(t)Yi(t)dt

)T
1≤p≤mj

.

Moreover, for

(6) |m| := m1 + · · ·+mK ,

Ψ̂m is the |m| × |m| symmetric matrix with blocks Ψ̂mj ,mk of size mj ×mk:

(7) Ψ̂m =

 Ψ̂m1,m1 . . . Ψ̂m1,mK
...

...

Ψ̂mK ,m1 . . . Ψ̂mK ,mK

, Ψ̂mj ,mk =

(∫ τ

0
ϕp(t)ϕq(t) [ΓN (t)]j,k dt

)
1 ≤ p ≤ mj

1 ≤ q ≤ mk

.

We also de�ne the a.s. limit of Ψ̂m, Ψm = E[Ψ̂m]:

Ψm = (Ψmj ,mk)1≤j,k≤K , Ψmj ,mk =

(∫ τ

0
ϕp(t)ϕq(t) [Γ(t)]j,k dt

)
1 ≤ p ≤ mj

1 ≤ q ≤ mk

.

And we denote by Θm =
(
Θmj ,mk

)
1≤j,k≤K the |m| × |m| symmetric matrix built similarly to

Ψm, but given by the blocks mj ×mk

(8)

Θmj ,mk =

(∫ τ

0

∫ τ

0
ϕp(t)ϕq(s)E [X1,j(t)X1,k(s)σ(t,X1(t))σ(s,X1(s))]E[ε1(t)ε1(s)]dtds

)
1 ≤ p ≤ mj ,
1 ≤ q ≤ mk

.

We explain in Section 4.2 why B̂m is a least-squares estimator. Then, if the matrix Ψ̂m is
invertible, the estimator (5) can be computed from the coe�cients:

(9) B̂m = Ψ̂−1
m V̂m.

For the estimator to be well de�ned, conditions ensuring that Ψ̂m is invertible and that ΓN (t)
and Γ(t) are positive de�nite are needed, see Assumption (AS) below. Moreover for the study
of the theoretical properties we consider a truncated version as follows. For constants c1, c2 > 0
that can take any value, set

(10) ΛN = {∀t ∈ [0, τ ], ‖ΓN (t)−1‖op ≤ c1N
c2}.

Using (10), we de�ne the trimmed estimator:

(11) b̃m = b̂m1ΛN .

To study the risk of the estimator with respect to ‖.‖N and ‖.‖Γ−norms, we set Assumption
(AX,p), ensuring that these two norms are equivalent with probability near of 1. The next
subsections are devoted to the presentation of these assumptions.
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2.2. Identi�ability assumption. Recall de�nitions (3) of Γ(t) and ΓN (t). Assumption (AS)
below transforms all semi-norms into norms.

(AS) (i) ∀t ∈ [0, τ ], the matrix Γ(t) is invertible with

(12) fΓ := sup
t∈[0,τ ]

‖Γ(t)−1‖op < +∞.

(ii) ∀t ∈ [0, τ ], ∀N ≥ 1, ΓN (t) is a.s. invertible.

Comments on (AS).
• Under (AS), ‖h‖2Γ = 0 (resp. ‖h‖2N = 0) implies that h(t)TΓ(t)h(t) = 0, for almost all t in
[0, τ ] (resp. h(t)TΓN (t)h(t) = 0, a.s. for almost all t in [0, τ ]). Therefore, if Γ(t) (resp. ΓN (t))
is invertible for all t ∈ [0, τ ], we get h ≡ 0 in (L2

τ )K . It is easy to check that if (AS) (i) were not
satis�ed, it would be possible to express one X1,j0(t) as a linear combination of the others and
it would not be possible to estimate separately the function bj0 . Under (AS) (i), the X1,j(t) are
a.s. linearly independent.
• As ΓN (t) converges a.s. to Γ(t) as N tends to in�nity, if Γ(t) is invertible, ΓN (t) is invertible,
at least for N large enough. Hence (AS)(i) ensures (AS)(ii) for N large enough.
• Condition (12) is a uniform lower bound on the compact [0, τ ] on the smallest eigenvalue of
Γ(t) and is not very strong under regularity assumptions on the processes. Indeed, if t 7→ Γ(t)
is continuous as Γ(t) is symmetric, positive and with real entries, Kato (1995), [20], Theorem
5.2 ensures that its K eigenfunctions are continuous implying that the smallest one is uniformly
bounded away from 0 over [0, τ ].

The link between (AS) and the invertibility of the matrix Ψ̂m, required by (9), is given by the

following equality: for x ∈ R|m|,

xT Ψ̂mx =

∫ τ

0
h(t)TΓN (t)h(t) dt = ‖h‖2N , xTΨmx =

∫ τ

0
h(t)TΓ(t)h(t) dt = ‖h‖2Γ

where h = (h1, . . . , hK)T and hj(t) =
∑mj

k=1 xm1+···+mj−1+kϕk(t), and the Proposition:

Proposition 1. Under (AS), the matrices Ψ̂m and Ψm are symmetric positive de�nite. Morover,
for all m, |m| ≤ N , it holds ‖Ψ−1

m ‖op ≤ fΓ .

By Proposition 1, the bound on ‖Γ(t)−1‖op assumed by (AS)(i) implies a bound on ‖Ψ−1
m ‖op;

the same properties hold for their empirical counterparts with large probability for N large
enough, but handling this properly for any N is possible for the truncated version (11) of the
estimator (5).

2.3. Equivalence of norms and admissible explanatory processes. Consider the following
assumption:

(AX,p) (a) There exists p ≥ 1, such that Gpp := maxj=1,...,K supt∈[0,τ ] E[|X1,j |p(t)] < +∞.

(b) Suppose either
(i). the X1,j(t), j = 1, . . . ,K, are continuous processes such that, for all r > 1 such
that 2r ≤ p, there exists a positive constant B(r, τ) such that ∀s, t ∈ [0, τ ], with
|t− s| ≤ 1,

(13) E[|X1(t)−X1(s)|2r] ≤ B(r, τ)|t− s|r.

or
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(ii). For all j = 1, . . . ,K, the X1,j(t) have independent increments and there exist
Aj(t) such that Xi,j(t)−Aj(t) is a centered square integrable martingale, where the
function Aj is deterministic and satis�es

(14) max
1≤j≤K

sup
t∈[0,τ ]

|Aj(t)| := Lτ < +∞.

Under Assumption (AX,p)(a), the norm ‖.‖Γ can be compared to the L2-norm as stated now.

Proposition 2. Assume (AX,p)(a) with p = 2, let h ∈ (L2
τ )K , it holds that ‖h‖2Γ ≤ KG2

2‖h‖2.
Additionally under (AS), it holds ‖h‖2 ≤ fΓ‖h‖2Γ.

As a consequence, Assumptions (AS) and (AX,p)(a) for p = 2 ensure that the norms ‖.‖ and
‖.‖Γ are equivalent for vector functions in RK .

The second assumption (AX,p)(b) related to the explanatory processes allows two classes of
continuous time processes, which may be continuous or not.

We emphasize that Assumption (AX,p)(b) requires that all the Xi,j for 1 ≤ j ≤ K are of type

(i) or they are all of type (ii). Under Assumption (AX,p), we get E
[
supt∈[0,τ ] |X1,j(t)|p

]
< +∞:

in case (i), it is a consequence of the Garsia Rodemich Rumsey Lemma [14] (a version of the
Kolmogorov method) as stated in Jourdain and Pagès (2023), [18], see Lemma 6 in the proofs;
in case (ii), it follows from the Doob maximal inequality for martingales.

Examples of processes satisfying (AX,p).
• Assumptions of type (i) are ful�lled by di�usion processes under regularity condition on the
functional coe�cients of the equation, or by classes of continuous Gaussian processes. More
precisely, if Xi,j is solution of dX1,j(t) = aj(X1,j(t))dt+ sj(X1,j(t))dW1,j(t), X1,j(0) = η1,j with
aj and sj continuously di�erentiable on R and η1,j admitting moments of any order, then it
ful�lls (AX,p)(a) and (AX,p)(b)(i) for any p ≥ 1, see Gloter (2000), [17].

For continuous Gaussian processes, an example is X1,j(t) = λj cos(a1,jt)ξ1,j + µj sin(a2,jt)ξ2,j

for ξ1,j and ξ2,j independent N (0, 1). Such a process ful�lls (AX,p)(a) and (AX,p)(b)(i) for
any p ≥ 1. We may also consider an explanatory process X1,j(t) de�ned by a more general
Karhunen-Loève decomposition.
• Counting processes may also be a natural idea as a choice of explanatory variables. Examples
of processes ful�lling (AX,p)(b)(ii) are given by inhomogeneous Poisson processes with intensity
λj(.). Continuous di�usion processes with a deterministic drift a such as X1,j(t) = xj,0 +∫ t

0 aj(u)du+
∫ t

0 sj(s,X1,j(s))dW1,j(s) also �t to the condition. These two types of examples can
be mixed in case (AX,p)(b)(ii). They ful�ll (AX,p)(a) for any p ≥ 1, if the intensity λj is bounded
on [0, τ ] in the inhomogeneous Poisson process case and if the functions aj and sj are continuous
(or simply bounded) on [0, τ ] in the di�usion case.

These assumptions ensure that the empirical norm and its theoretical counterpart are equiv-
alent for functions of (L2

τ )K with large probability.

Proposition 3. Suppose that (AS), and (AX,p) for p ≥ 2 are satis�ed, then it holds for some
positive constant C that

P
({
∀h ∈ (L2

τ )K ,
1

2
‖h‖2Γ ≤ ‖h‖2N ≤

3

2
‖h‖2Γ

}c)
≤ CN−p/2.

2.4. Additional assumptions. We set the following natural condition on the functions bk,
k = 1, . . . ,K:
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(Ab) The functions bk : R+ → R, k = 1, . . . ,K, are measurable, and bounded on [0, τ ] by a
constant cb (and thus belong to L2

τ ).

Finally, an assumption on the basis is required.

(Aϕ) ∃ω > 0, ∃cϕ > 0 such that L(Sm) := supt∈[0,τ ]

∑m
j=1 ϕ

2
j (t) ≤ cϕmω, ∀m ≥ 1.

If the basis is orthonormal, the quantity L(Sm) was proved in Lemma 1 in Birgé and Massart
(1998), [4], to be equal to L(Sm) = suph1∈Sm,‖h1‖=1 supt∈[0,τ ] h

2
1(t) where ‖h1‖2 =

∫ τ
0 h

2
1(t)dt.

Assumption (Aϕ) holds for several classical bases of L2
τ , with ω = 1 for the trigonometric basis

on [0, τ ], ω = 2 for the Legendre basis on [0, τ ] and ω = 1/2 for the Hermite basis or ω = 1 for
the Laguerre basis (see e.g. Comte and Marie (2023) [10]). The �rst two bases are orthonormal
on [0, τ ] but the last one is not. We give more precise examples in Section 5.

3. Study of estimators of bj, for j = 1, . . . ,K.

3.1. Risk bound on b̃m. In what follows, we de�ne the risk of our estimator as the expectation

of the empirical squared norm ‖b̃N − b‖2N or the weighted squared norm ‖b̃N − b‖2Γ. These
de�nitions of the risk are classically used for regression, see e.g. Baraud (2002), [1].

Theorem 1. Assume that (AS), (AX,p), (Ab) and (Aϕ) hold and that m satis�es |m| ≤ N ,
where |m| is given in (6). Assume moreover that

(15) sup
t∈[0,τ ]

E[ε4(t)] := c2
ε < +∞ and M2

σ := sup
j=1,...,K

sup
t∈[0,τ ]

E[X4
1,j(t)σ

4(t,X1(t))] < +∞.

The estimator b̃m of b(t) = (b1(t), . . . , bK(t))T satis�es, for c and c′ generic constants:
• for p ≥ (2c2 + 1 + ω ∨ 1) ∨ 4, with c2 de�ned in (10),

(16) E[‖b̃m − b‖2N ] ≤ inf
h∈Sm

‖h− b‖2Γ + 2
Tr(Ψ−1

m Θm)

N
+

c

N
,

• for p ≥ (4c2 + 4 + ω) ∨ 8,

(17) E[‖b̃m − b‖2Γ] ≤ 5 inf
h∈Sm

‖h− b‖2Γ + 4
Tr(Ψ−1

m Θm)

N
+
c′

N
.

Moreover, it holds that

(18) Tr(Ψ−1
m Θm) ≤ τ fΓcεMσ

{
|m| ∧

(
cϕτ

K∑
j=1

mω
j

)}
.

We obtain a standard squared-bias variance decomposition, where (18) implies that the order
of the variance is |m|/N if ω ≥ 1, if ω < 1, this order can be improved.

To conclude this section, we connect the popular risk of prediction and the integrated Γ-
risk which is controlled in Theorem 1. Consider XN+1 a new observation, independent from

(Yj ,Xj)1≤j≤N , for which YN+1, unobserved, is predicted by ŶN+1 = b̃TmXN+1.

Proposition 4. Under the Assumptions of Theorem 1, it holds that

E
[∫ τ

0

(
YN+1(t)− b̃Tm(t)XN+1(t)

)2
dt

]
= E‖b̃m − b‖2Γ + E

[∫ τ

0
σ2(t,XN+1(t))dt

]
.

Therefore, the prediction error can be controlled by the estimation error on b up to a constant
term: the variance of the noise term. Proposition 4 explains why the prediction error may remain
large if σ takes large values, see the real data example in Section 5.4.
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3.2. Upper and lower bounds on rates. To evaluate rates of convergence, we must assess
the L2-norm of the estimator's bias within some regularity subspaces of L2

τ . Such assessments
are standard in nonparametric statistics, for functions bj belonging to Sobolev spaces associated
with the chosen basis.

Proposition 5. Assume that for all j ∈ {1, . . . ,K}, the function bj belongs to a regularity space

such that infh∈Sm ‖bj−h‖2 ≤ Rjm−2sj . Choosemj = O(N1/(2sj+1)) and set s(1) = minj=1,...,K sj.
Then, under the assumptions of Theorem 1 with ω = 1, for some positive constant C it holds

E[‖b̃m − b‖2Γ] ≤ C N−2s(1)/(2s(1)+1).

Thus, our method has the advantage of estimating all functions simultaneously and of reaching
the rate corresponding to the estimation of one function with regularity s(1), without any curse
of dimensionality. The rate corresponds to the smallest regularity.

Establishing the optimality of the rate in Proposition 5 requires additional assumptions on the
model. First, we need to specify the regularity classes in which optimality is studied.Therefore,
we now assume that (ϕj)j≥0 is an orthonormal basis of L2

τ , and de�ne the regularity space

W (s, L) = {f =
∑
j≥0

θjϕj , such that ∀J ≥ 1,
∑
j≥J

θ2
j ≤ L2J−2s}.

Note that if bj ∈W (sj , Lj), j ∈ {1, . . . ,K}, it holds that ‖bj−bm‖2 ≤ L2
jm
−2sj and the assump-

tion on the function bj of Proposition 5 is ful�lled. The fact that b belongs to W (s, L) is related
to its regularity. For instance, for the trigonometric basis and s integer, see Tsybakov (2009)
[27](see De�nition 1.12 therein, and the sequel); this means that b is s times di�erentiable. This
holds also for the Legendre basis, see Efromovich (1999) [11], Section 2.6. These two bases are
orthonormal on a compact support and satisfy (Aϕ) with ω = 1 and ω = 2 respectively.

Second, to establish the lower bound result, we rely on the method of Tsybakov (2009) [27]
based on the construction of many hypotheses. To that end, one needs to compute the distribu-
tion of (X(t), Y b(t) = b(t)X(t) + σ(t)ε(t))t∈[0,τ ]. Since the rate of convergence is determined by
the smallest regularity, we study a lower bound result for K = 1 and then derive the result for
K ≥ 1. A case where it is possible to specify this distribution is when the process ε is a centered
Gaussian process; then, the Cameron Martin theorem (see Chagny et al. (2022) [6] Theorem 4,
see also Lifshits (2012) [23]) can be applied. We prove the following lower bound.

Theorem 2. Let (ϕj)j≥0 be an orthonormal basis of L2
τ , s and L be positive constants. Assume

that (AS) and (AX,p)(a) for p = 2 hold. Let ε be a centered Gaussian process such that E[ε2(t)] =
1, ∀t ∈ [0, τ ] and σ a bounded positive function. Denote by Σσε the covariance operator of
the process (σ(t)ε(t))t∈[0,τ ], satisfying ‖Σ−1

σε ‖op ≤ cσε < ∞ for some constant cσε and for all

bk ∈ W (sk, Lk) that 〈bkX1k,Σ
−1
σε bX1k〉 < ∞, 1 ≤ k ≤ K. Then, it holds for some positive

constant c, that

(19) inf
b̂=(̂b1,...,̂bK)

sup
bk∈W (sk,Lk),k=1,...,K

E[‖b̂− b‖2Γ] ≥ cN
−

2s(1)
2s(1)+1 , s(1) = min

1≤k≤K
sk.

The Cameron Martin theorem imposes a restriction on the set of admissible shifts bX, this is
why the constraint 〈bX,Σ−1

σε bX〉 < ∞ appears. In the following Corollary we provide examples
where these conditions are met provided that bX is of class C2 for all b ∈W (s, L).

Corollary 1. Let τ = 1, s ≥ 2 and L be positive constants. Assume (AS) and (AX,p)(a) for p =

2. De�ne either (σ1(t), ε1(t)) = (
√
t+ 1,

√
t+ 1

−1
W (t + 1)) or (σ2(t), ε2(t)) = (1, e−t/2W (et)),

for t ∈ [0, 1] and W a standard Brownian motion. Suppose, for k ∈ {1, . . . ,K}, X1k is C
2([0, 1]).
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Then, it holds for some positive constant c that inf
b̂

supbk∈W (sk,Lk) E[‖b̂− b‖2Γ] ≥ cN
−

2s(1)
2s(1)+1 with

s(1) = min1≤k≤K sk.

As a consequence, the rates obtained when using the trigonometric or Legendre basis on [0, 1]
are minimax optimal.

4. Model selection

The choices proposed above for m are asymptotic and depend on unknown regularity param-
eters. So, they cannot be implemented. This is why we propose a data driven model selection
device. This de�nes a new estimator, for which we prove a non asymptotic risk bound. A
preliminary step, is to show that the estimator de�ned in (9) is a minimum contrast estimator.

4.1. Estimation contrast. For i = 1, . . . , N , (Yi(t),Xi(t))0≤t≤τ from Model (2) and h element
of (L2

τ )K , consider the contrast

UN (h) =
1

N

∫ τ

0

N∑
i=1

[
h(t)TXi(t)

]2
dt− 2

N

N∑
i=1

∫ τ

0
Yi(t)

[
h(t)TXi(t)

]
dt

= ‖h‖2N −
2

N

∫ τ

0
h(t)TX(t)TY(t)dt,= ‖h‖2N − 2〈h,b〉N − 2νN (h)(20)

where X(t) = (Xi,j(t))1≤i≤N,1≤j≤K is a N ×K matrix and νN (h) is a centered empirical process
de�ned by

(21) νN (h) =
1

N

N∑
i=1

∫ τ

0

[
h(t)TXi(t)

]
σ(t,Xi(t)) εi(t)dt.

This requires that the processes Yi(t) and Xi(t) are a.s. measurable as functions of t so that the
integrals are well-de�ned.

The projection estimator of b(t) = (b1(t), . . . , bK(t))T on Sm is given by

(22) b̂m(t) = (̂b1(t), . . . , b̂K(t))T , b̂m = arg min
h∈Sm

UN (h).

Standard computations setting the gradient of the least squares contrast to zero, allow to check

that B̂m = (β̂1,1, . . . , β̂1,m1 , β̂2,1, . . . , β̂2,m2, . . . , β̂K,1, . . . , β̂K,mK )T de�ned in (9) minimizes (20).
To understand why UN (h) provides an estimator of b(t), let us compute its expectation:

E[UN (h)] = E[‖h‖2N ]− 2

N
E

[∫ τ

0

N∑
i=1

K∑
k=1

hk(t)Xi,k(t)

K∑
k′=1

bk′(t)Xi,k′(t)dt

]

= ‖h‖2Γ − 2E

[∫ τ

0

K∑
k=1

hk(t)X1,k(t)

K∑
k′=1

bk′(t)X1,k′(t)dt

]
= ‖h‖2Γ − 2〈h,b〉Γ = ‖h− b‖2Γ − ‖b‖2Γ.

Obviously, since under (AS), ‖.‖Γ is a norm, E[UN (h)] is minimal if hj = bj for j = 1, . . . ,K.

4.2. Model selection procedure. As usual for least squares estimators, it holds that UN (b̂m) =

−‖b̂m‖2N . This quantity provides an estimate of the bias up to a term not depending on m, as

‖b− b̂m‖2N = ‖b‖2N − ‖b̂m‖2N .
For the variance term, a simpler value of the constant in (18) can be given under an additional

assumption.
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(Aσ) Suppose that supt∈[0,τ ],x∈RK σ
2(t, x) := ‖σ‖2∞ < +∞.

Corollary 2. If σ satis�es (Aσ), then Tr(Ψ−1
m Θm) ≤ τ‖σ‖2∞|m|.

We take this bound as an estimate of the variance, assuming that ω = 1 in Assumption (Aϕ).
This explains why we select

(23) m̂ ∈ arg min
m∈MN

[
UN (b̂m) + pen(m)

]
, pen(m) = κ‖σ‖2∞

|m|
N

,

where we consider the collection of models de�ned by

(24) MN =
{
m ∈ {1, . . . , N}K , ∀i ∈ {1, . . . ,K}, mi ≤ N

}
.

Note that the collection imposes |m| ≤ KN instead of N previously, in order to have a nesting
space, that is a space containing any space of the collection:

∀i ∈ {1, . . . ,K}, ∀mi ≤ N, Sm1 × · · · × SmK ⊂ SN × · · · × SN := SN .

Finally, we consider the estimator

b̃ = b̂m̂1ΛN ,

where ΛN is de�ned by (10).

Theorem 3. Assume that (AS), (AX,p), (Ab), (Aϕ) with ω = 1 and (Aσ) hold, and that

sup
t∈[0,τ ]

E[ε6(t)] < +∞.

Consider the estimator b̃ of b with any m̂ de�ned by (23). Then, there exists a numerical
constant κ0 such for all κ ≥ κ0, it holds, for p ≥ (2c2 + 2) ∨ 6,

(25) E
[
‖b̃− b‖2N

]
≤ 4 inf

m∈MN

(
inf

h=(h1,...,hK)T∈Sm

‖h− b‖2Γ + κ‖σ‖2∞
|m|
N

)
+
C

N
,

and for p ≥ (4c2 + 5) ∨ 8,

(26) E
[
‖b̃− b‖2Γ

]
≤ C1 inf

m∈MN

(
inf

h=(h1,...,hK)T∈Sm

‖h− b‖2Γ + κ‖σ‖2∞
|m|
N

)
+
C ′

N
,

where C1 is a numerical constant, C and C ′ are constants depending on K,G, ‖σ‖∞.

The term ‖σ‖∞ is unknown, it is replaced by an estimator in the numerical experiments: the

supremum over t of the least squares residuals, N−1
∑N

i=1[Yi(t)− b̃mN (t)TXi(t)]
2 where b̃mN is

an estimator of b computed on a �xed and large enough space of the collection.
Inequality (25) means that a squared bias/variance compromise is automatically obtained for

the �nal estimator, the bound is non asymptotic. Asymptotically, when b belongs to a regularity
space as described in Section 3.2, the rate given in Proposition 5 is automatically reached by the
estimator.

It also follows from Theorem 3 that, for any function b, there exists a numerical (universal)
constant κ0 such that the inequality holds for all κ ≥ κ0. The numerical value of κ0 = 24 is
found in the proofs, but it is too large in practice. For numerical implementation of the adaptive
estimator, it is standard to start by preliminary simulations to obtain a relevant value for κ.
Once the value of κ is chosen, it is �xed once and for all. See Baudry et al. (2012) [3] for the
general methods of practical calibration.
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5. Simulation and real data

5.1. Bases. We consider three bases.

[T] We denote by T the trigonometric basis called "half-trigonometric" system, namely the
cosine basis de�ned by

ϕ0,τ (x) =
√

1/τ1[0,τ ](t), ϕj,τ (t) =
√

2/τ cos(πjt/τ)1[0,τ ](t), j = 1, . . . ,m− 1,

see Efromovich (1999, p.46), [11]. It is clearly an orthonormal basis such that L
(
S

[T ]
m

)
≤

2/τ m.
[H] We denote by H the Hermite basis, composed of Hermite functions hj given by, for j ≥ 0:

(27) hj(x) = cjHj(x)e−x
2/2, cj =

(
2jj!
√
π
)−1/2

, Hj(x) = (−1)jex
2 dj

dxj
(e−x

2
).

The sequence (hj , j ≥ 0) is an orthonormal basis of L2(R) and satis�es L
(
S

[H]
m

)
≤ C
√
m,

see Lemma 1 in Comte and Lacour (2023), [9].
[L] We denote by L the Laguerre basis (see Comte and Genon-Catalot (2018), [7]) de�ned

by

(28) `j(t) =
√

2Lj(2t)e
−t1t≥0, j ≥ 0, Lj(t) =

j∑
k=0

(−1)k
(
j

k

)
tk

k!
.

The sequence (`j , j ≥ 0) is an orthonormal basis of L2(R+) and satis�es L
(
S

[L]
m

)
≤ 2m.

The basis T is well-suited to our compactly-supported setting and is the most natural choice.
We also consider the two bases L and H, which are not orthonormal on [0, τ ], but which often
work well while being parsimonious: few coe�cients lead to a good estimation.
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Figure 1. Estimation of b1 left and b2 right, with basis T (�rst line) and basis H

(second line) for 25 paths. WASE 0.0031 for T and 0.0671 for H basis.

5.2. An example with K = 2. To start with, we reproduce the example of "setting 1"
proposed by Manrique et al. (2018), [24]. They consider K = 2, X1(t) = 1 and X2(t) =

µX(t) +
∑10

j=1 ρjξi,jφj(t) where µX(t) = t + sin(t), for j ≥ 1, φj(t) =
√

2 sin((j − 1/2)πt), ρj =
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1/((j−1/2)π), and the ξi,j are i.i.d. and N (0, 1). The functions are b1(t) = (t−0.25)21[0.25,1](t)
and

b2(t) =

(
− 2

0.152
(t− 0.45)2 + 2

)
1[0.3,0.6](t) +

(
− 1

0.152
(t− 0.85)2 + 2

)
1[0.7,1](t).

The noise is σ(t)ε(t) = cε
∑20

j=11 ρjξi,jφj(t) where cε ≈ 7 is chosen such that we have a similar

signal to noise ratio of 2 as de�ned in Manrique et al. (2018), [24]. We compute the following
weighted average squared error

WASE :=
1

2τ

[∫ τ
0 (̂b1(t)− b1(t))2dt

range2(b1)
+

∫ τ
0 (̂b2(t)− b2(t))2dt

range2(b2)

]
over 500 repetitions for N = 70 and discrete observations tj at 100 equispaced points in [0, 1].
The results are displayed in Table 1. The trigonometric basis T with our method performs much
better than Manrique et al.'s proposal, but the Hermite H basis fails probably because of the
lack of regularity of the functions under estimation. The mean of selected dimensions is 3 for b1
in both bases, and for b2, 15 with the trigonometric basis and 8 for the Hermite basis. The true
value of the in�nite norm of σ(t) is used in the penalty, and the constant κ is set to 0.2 for both
bases.

Manrique et al. Basis T Basis H
WASE 0.0150 0.0032 0.0642
std 0.0097 0.0015 0.0088

Table 1. Comparison of two bases to Manrique et al. (2018)'s [24] results, 500 repetitions.

Figure 1 is an illustration of the quality of the results and their stability: 25 estimators of
each functions are given for both bases together with the true curves. Clearly, the main problem
for both bases is to recover the zero part at the beginning of the interval for the function b2,
otherwise, their performances are quite convincing. The estimator proposed by Manrique et
al. (2018), [24] does not have this problem, but clearly fails to estimate b1 (see their Fig.1 p.997).
The number of observed paths N = 70 for each experiment is not very large, compared with the
asymptotics.

5.3. Simulation experiments for K = 3. We conducted simulation experiments in the case
K = 3 with X1(t) = 1, X2(t) a Poisson process with parameter λ = 0.5 and X3(t) and σ(t)ε(t)
as the X2(t) of Manrique et al. (2018), [24], described above, with here cε = 7. We considered
the functions

(29) b1(t) = cos(2.8πt), b2(t) = 0.25 exp(−t/3)− 2 exp(−2t), b3(t) = 2t2.

The idea was to choose an "easy to estimate" function for basis T (b1) and an easy function as
well for basis L (b2), associated with explanatory variables of di�erent types (constant, counting
process, regular Gaussian process).

The term ‖σ‖∞ is replaced by an estimator de�ned as residual least squares associated with

an estimate of the function bi for i = 1, 2, 3, b̂mi where mi = min([
√
N/3], 5). The Xi,j(t) are

sampled at times tk = kτ/n, with τ = 1 and n = 100, k = 1, . . . , 100. The penalty constants
are calibrated to κT = 0.25 for basis T and to κL = 0.125 for basis L. The maximal dimensions
considered in each collection are 12 for T and 10 for L. Larger values of these maximal dimensions
have been tested, but they are never selected by the algorithm, and such restrictions make the
computations much faster.
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Figure 2. Case 1. Estimation of b1 left, b2 middle and b3 right, with basis T (�rst

line) and basis L (second line) for 25 paths. 100×MISE(b1, b2, b3), (0.284, 0.006, 0.134)

for T and (0.748, 0.001,0.032) for L. Mean of the selected dimensions (5.6, 3.6, 5.5) for

T and (6,0, 2.0, 4.0) for L.
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Figure 3. Case 2 (permuted). Estimation of b1 left, b2 middle and b3 right, with basis

T (�rst line) and basis L (second line) for 25 paths. 100×MISE(b1, b2, b3), (0.295, 0.003,

0.137) for T and (11.00, 0.001,0.124) for L. Mean of the selected dimensions (5.9, 4.5,

5.6) for T and (5,0, 2.4, 6.0) for L.

The MISE for the estimators is here computed as follows:

(30) MISE(b`) =
1

J

J∑
j=1

τ

n

n∑
j=1

[̂b
(j)
`,m̂`

(jτ/n)− b`(jτ/n)]2

where b̂
(j)
`,m̂`

is the adaptive estimator of b` for the jth simulated path, ` = 1, 2, 3.
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Function N = 50 N = 200 N = 1000
Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

MISE 1.678 2.063 0.274 0.323 0.074 0.092
b1 std 0.11 5.15 0.10 0.18 0.02 0.03

dim 4 4.4 5.7 6.0 7.9 8.2
MISE 0.029 0.015 0.007 .003 .003 .002

b2 std 0.03 0.01 .006 .002 .0008 .001
dim 2 2.9 3.5 4.2 4.1 4.8
MISE 1.115 0.596 0.144 0.123 0.046 0.043

b3 std 0.22 0.17 0.06 0.06 0.01 0.01
dim 3 3.7 5.6 5.9 8.1 8.4

Table 2. Results for the two cases for basis T, 200 repetitions. 100×MISE is computed

from (30) as well as 100×std. dim is the mean of selected dimensions.

Function N = 50 N = 200 N = 1000
Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

MISE 3.577 51.6 0.749 10.6 0.044 2.47
b1 std 0.09 37.9 0.02 5.07 0.003 0.54

dim 5.0 4.0 6.0 5.0 7.0 6.0
MISE 0.046 0.002 .0015 .0009 .0002 .0001

b2 std 0.58 0.001 .0009 .0007 .0004 .0001
dim 2.0 2.9 2.1 2.4 2.9 3.1
MISE 0.949 0.109 0.044 0.141 0.022 0.013

b3 std 0.31 0.10 0.04 0.05 0.015 0.006
dim 3.0 4.0 4.0 6.0 4.0 6.4

Table 3. Results for Cases 1 and 2 for basis L, 200 repetitions. 100×MISE is computed

from (30) as well as 100×std. dim is the mean of selected dimensions.

To test the stability of the estimation with respect to the type of the covariates, we make a
permutation of the explanatory variables and consider as "Case 2" the same model and noise
with leading part b1X2 + b2X3 + b3X1. In comparison, we design as "Case 1" the initial b1X1 +
b2X2+b3X3. The signal to noise ratio is computed here as the standard deviation of the observed
Y divided by the standard deviation of the noise, and ranges between 2 and 3.

Figures 2 and 3 present 25 estimated curves compared to the true ones for the three functions,
for N = 200, in Case 1 for Figure 2 and Case 2 for Figure 3. The main problem when permuting
the explanatory is for the estimation of b1 in basis L for Case 2: here, b1 is associated to the
Poisson explanatory variable, this seems to increase the error. This is illustrated by the �rst plot
on the second line of Figure 3: the general form of the curve is well reconstructed, but a slight
bias appears. Globally, the method works very well for these regular functions.

Tables 2 and 3 present numerical results for di�erent sample sizes N = 50, 200 and 1000, in
cases 1 and 2 for the basis T (Table 2) and basis L (Table 3), and for J = 200 repetitions. As
expected, the error decreases when N increases; moreover, the selected dimensions have not the
same order for each function (the selection is adaptive to anisotropy) and increase with N . Basis
L gives good results, except in the case mentioned above, but basis T seems more relevant in
this problem and more stable when permuting explanatory variables. However, comparing the
18 scores in term of MISEs, L wins 10 times and T 8 times.
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Clearly, many additional experiments may be driven, by changing the functions bj , the noise
level cε, or the noise type (Brownian type as in the lower bound Corollary 1). We do not pretend
to be exhaustive, but the method is simple to implement, performs rapidly and gives globally
very good results.

5.4. Real data. We are examining the electricity usage patterns of household appliances in a
low-energy house situated in Stambrudge, Belgium. The home is equipped with sensors that mea-
sure temperature and humidity at various locations indoors and outdoors. The dataset under in-
vestigation is publicly accessible via the UCI Machine Learning Repository (https://archive.ics.uci.edu/).
It encompasses recordings of 18 variables every 10 minutes, spanning from January 11th, 2016,
at 5 pm to May 27th, 2016, at 6 pm. This dataset forms a multidimensional time series, with
each dimension corresponding to one of the 18 variables. The original dataset was completed
with other weather parameters from a nearby weather station that we do not consider here.

The focus is on the appliances energy consumption (in Wh) plotted in Figure 4, as it represents
the main contributor to overall energy usage. We transform this time series into a functional
sample by segmenting it on a daily basis and take it as the functional response variable Yi(t)
where i = 1, . . . , N (N = 137 days) and t = 1, . . . , 144 discretized measurements over each day
(24 hours), see Figure 5 (left).

This dataset has been �rst analyzed by Candanedo et al (2017),[5]. Chagny et al. (2022),
[6] investigated this data and seek to predict the logarithm of the energy consumption Yi(t) for
a given day i by choosing as a predictor the prior day's energy consumption Yi−1(t), resulting
in an auroregresssive model of order 1. Our approach is di�erent since we want to explore the
explicative functional variables available in the dataset. Following the statistical analysis of
Candanedo et al. (2017),[5], we choose to apply our model by taking two explicative functional
variables. First, the discrete variable "lights" giving the energy consumption of lights in the
house has been shown to be a good predictor of room occupancy and it is the most correlated
with the energy consumptions of appliances. We also choose the temperature outside the house
T6 which is one of the 18 continuous variables in the dataset giving conditions in the house. Pairs
plot in Figure 5 (right) show the relationship between the energy consumption of appliances with
lights and temperature outside T6. The correlation between the appliances energy consumption
and both lights and T6 are respectively 0.20 and 0.12. The lower the lighting consumption, the
lower the consumption of appliances decreases. The appliances consumption pro�le is highly
variable as seen in Figure 5 with periods of almost constant demand followed by high spikes.

We kept 19,728 out of 19,735 observations in order to have 137 full days with 144 measures
per day. The interval [0, τ ] with τ = 1 stands for one day and is discretized by taking ∆ = 1/144.

We also add a constant level function X1(t) = 100 in the model. We split the data into the
�rst 136 days to estimate the coe�cients and we kept the data of the 137th day to predict the
appliances energy consumption.

The estimated coe�cient functions of the model b1, b2, b3 associated with X1(t) = 100, X2(t)
Temperature outside and X3(t) lights over the �rst 136 days are given in Figure 6. The coe�cient
functions b2 and b3 (respectively middle and right) are in accordance with the expected shape.
The coe�cient peaks correspond to times of the day when the occupants of the house are notably
present in the evening and in the morning.

We also compute for each basis B, the global vector of residuals of size 19, 728× 1:

∆Y (B) := vec

(
(Yi(tj)−

3∑
k=1

bk(tj)Xi,k(tj))1≤i≤136,1≤j≤144

)
.

https://archive.ics.uci.edu/
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Figure 4. Appliances energy consumption measurements (in Wh) from the 11th Jan-

uary 2016 at 5 pm to the 27th May 2016 at 6 pm.

Figure 5. Appliances energy consumption data. Left : functional measurement data

per day (N = 137 curves, mean curve in bold). Right : pairs plot showing relationships

between the energy consumption of appliances (response Y ) with the temperature outside

T6 (X2) and lights (X3).

For the bases B=H, L or T (Hermite, Laguerre or Trigonometric), we �nd the following empir-

ical residual mean and variances: ∆Y (H) = −2.325.10−7, ∆Y (L) = −3.559.10−9, ∆Y (T ) =
−2.38.10−14 and Var(∆Y (H)) = 8.6.103, Var(∆Y (L)) = 8.6.103, Var(∆Y (T )) = 8.8.103.

The large variance of the residuals is related to large σ, see Proposition 4 and here it is clear
that the high spikes in the energy consumption result in high value of σ. The same phenomena
has been observed in the prediction made by Chagny et al. (2022) [6] with their autoregressive
model.

Lastly, we compare in Figure 7 the mean curve of Y over the 136 days of estimation to the
prediction using the 144 values of the X137,k(tj), j = 1, . . . , 144 on day 137. We can see that the
global shape of the curves are not so far. Our forecast captures the consumption trend quite well,
but do not allow us to detect the brutal high spikes, which is not surprising. Even estimating σ
as a function, would not necessarily help for such prediction.
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Figure 6. Electricity data. Estimation of b1 left, b2 middle and b3 right, with basis L

(�rst line) and basis H (second line). Selected dimensions are (8,5,5) and (8,5,4).

0 50 100 150
40

60

80

100

120

140

160

180

200

220

Figure 7. Comparison of the mean (black curve) of electricity appliance over 136

days to the prediction on the 137th day: with Hermite (magenta), Laguerre (cyan) and

Trigonometric (green) estimators of bj , j = 1, 2, 3.

6. Proofs

6.1. Proof of Theorem 1. We start with some preliminaries.

6.1.1. General orthogonal projection w.r.t. 〈., .〉N . To study the risk of b̃m, we need to have an
adequate expression of the orthogonal projection of b with respect to 〈., .〉N . Let

Φm1+···+mj−1+k = (0, . . . , 0︸ ︷︷ ︸
j−1

, ϕk, 0, . . . , 0︸ ︷︷ ︸
K−j

)T , k = 1, . . . ,mj , j = 1, . . . ,K.
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The functions (Φj , j = 1, . . . , |m|) constitute an orthonormal system of (L2
τ )K with respect to

the scalar product 〈h,h?〉 =
∫ τ

0

∑K
j=1 hj(t)h

?
j (t) dt and generate a space S|m| (isomorphic to Sm)

with dimension |m| = m1 + · · ·+mK . An element h = (h1, . . . , hK)T of S|m| can be written as

h(t) =

|m|∑
i=1

aiΦi = (

m1∑
i=1

aiϕi,

m2∑
i=1

am1+i ϕi, . . . ,

mK∑
i=1

am1+...+mK−1+i ϕi)
T .

We have:

Ψ̂m = (〈Φj ,Φ`〉N )0≤j,`≤|m| .

Indeed, if, for 1 ≤ j ≤ mk and 1 ≤ ` ≤ mk′ , m1 + . . . + mk−1 + j ≤ m1 + · · · + mk and

m1 + . . .+mk′−1 + ` ≤ m1 · · ·+mk′ , 〈Φj ,Φ`〉N = Ψ̂mkmk′ .
The orthogonal projection πmb of b on S|m| with respect to the scalar product 〈., .〉N is

characterized by πmb− b ⊥ Φj , j = 1, . . . |m|. This yields

(31) πmb =

|m|∑
j=1

βjΦj where (βj)1≤j≤|m| = Ψ̂−1
m (〈b,Φj〉N )1≤j≤|m|

The vector V̂m = (V̂ T
1,m1

, . . . , V̂ T
K,mK

)T can be written as

(32) V̂m = (〈b,Φj〉N )0≤j≤|m| + Wm, Wm :=
1

N

(∫ τ

0
Φj(t)

TMN (t)dt

)
0≤j≤|m|

.

where MN (t) =

(
N∑
i=1

Xi,j(t)σ(t,Xi(t))εi(t)

)
1≤j≤K

. Note that, recalling the de�nition of Θm

given in (8), we have

(33) E[WmWT
m] =

1

N
Θm,

The matrix Θm is symmetric and nonnegative as, using hj(t) =
∑mj

p=1 xj,pϕp(t), we get that

xτΘmx = E
[∫ τ

0

∑K
j=1 hj(t)X1,j(t))σ(t,X1(t))ε1(t) dt

]2
≥ 0.

We state the following Lemma, proved in Comte and Genon-Catalot (2024, Lemma 6.2) [8].

Lemma 1. Assume (AX,p) and (AS). De�ne the set

(34) Ωm :=

{∣∣∣∣‖h‖2N‖h‖2Γ
− 1

∣∣∣∣ ≤ 1

2
,∀h ∈ Sm

}
.

where the empirical norm ‖.‖N and the ‖ · ‖Γ-norm are equivalent for elements of Sm. We have
ON ⊂ Ωm for all m, and

(35) Ωm =
{
‖Ψ−1/2

m Ψ̂mΨ
−1/2
m − Id|m|‖op ≤ 1/2

}
.

We also recall the following proposition, proved in Comte and Genon-Catalot (2024, [8], Propo-

sition 3.4), which shows that ΛN has large probability and guarantees a rough bound on ‖Ψ̂−1
m ‖op.

Proposition 6. Assume that (AS), (AX,p)(a) for p ≥ 2 are ful�lled. Then, there exists a

constant c0 > 0 depending on K, fΓ (see (12)) and p, such that P(ΛcN ) ≤ c0N
−p/2. Moreover,

on ΛN , it holds that ∀m, ‖Ψ̂−1
m ‖op ≤ c1N

c2 .

We prove Inequality (16), proof of Inequality (17) is deferred to the Supplementary Material.
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6.1.2. Proof of inequality (16). We write,

‖b̃m − b‖2N = ‖b̂m − b‖2N1ΛN + ‖b‖2N1ΛcN

= ‖b̂m − b‖2N1ΛN∩ON + ‖b̂m − b‖2N1ΛN∩OcN + ‖b‖2N1ΛcN
:= T1 + T2 + T3.(36)

• Consider the term T3 = ‖b‖2N1ΛcN
where ‖b‖2N = 1

N

∑N
i=1

∫ τ
0

(∑K
j=1 bj(t)Xi,j(t))

)2
dt.We have

E[T3] ≤ E1/2[‖b‖4N ]P1/2(ΛcN ). Thus, it holds that

E[‖b‖4N ] ≤ τ

∫ τ

0

 K∑
j=1

b2j (t)

2

E

 K∑
j=1

X2
1,j(t)

2 dt
≤ Kτ

∫ τ

0

 K∑
j=1

b2j (t)

2

dt
K∑
j=1

E

[
sup
t∈[0,τ ]

X4
1,j(t)

]
:= cK(τ).

Then, Proposition 6 implies E[T3] ≤ CN−p0/2 ≤ C
N for p0 ≥ 2, i.e. p = 2p0 ≥ 4.

• Let us now study of T1 = ‖b̂m − b‖2N1ΛN∩ON . We can write:

(37) ‖b̂m − b‖2N = ‖b̂m − πmb‖2N + ‖πmb− b‖2N = ‖b̂m − πmb‖2N + inf
h∈Sm

‖b− h‖2N .

On the one hand, we have b̂m =
∑|m|

j=1[B̂m]jΦj with B̂T
m = (β̂1,1, . . . , β̂1,m1 , . . . , . . . , β̂K,mK ) =

Ψ̂−1
m V̂m. On the other hand, πmb =

∑|m|
j=1 βjΦj where (see (31)) Bm = (β1, . . . , β|m|)

T =

Ψ̂−1
m (〈Φj , b〉N )1≤j≤|m|.

Hence, by (32), B̂m −Bm = Ψ̂−1
m Wm and using that if h =

∑|m|
j=1 xjΦj then ‖h‖2N = xT Ψ̂mx

with our standard notation,

‖b̂m − πmb‖2N = (Wm)T Ψ̂−1
m Ψ̂mΨ̂−1

m Wm = (Wm)T Ψ̂−1
m Wm.(38)

Recall that by Lemma 1, ON ⊂ Ωm. On Ωm =
{
‖Ψ−1/2

m Ψ̂mΨ
−1/2
m − Id|m|‖op ≤ 1/2

}
, all the

eigenvalues of Ψ
−1/2
m Ψ̂mΨ

−1/2
m belong to [1/2, 3/2] and so all the eigenvalues of Ψ

1/2
m Ψ̂−1

m Ψ
1/2
m

belong to [2/3, 2]. Thus, we write

(Wm)T Ψ̂−1
m Wm 1ON = (Wm)TΨ

−1/2
m Ψ

1/2
m Ψ̂−1

m Ψ
1/2
m Ψ

−1/2
m Wm 1ON

≤ 2(Wm)TΨ−1
m Wm 1ON .(39)

Therefore , by using equality (33), and in particular E
[
[Wm]j [Wm]k

]
= [Θm]j,k, we get

E
[
‖b̂m − πmb‖2N1ON∩ΛN

]
≤ 2E

 ∑
1≤j,k≤M

[Wm]j [Wm]k[Ψ
−1
m ]j,k


=

2

N

∑
1≤j,k≤M

[Ψ−1
m ]j,k[Θm]j,k =

2

N
Tr[Ψ−1

m Θm],(40)

So we obtain:

E[T1] ≤ E[ inf
h∈Sm

‖b− h‖2N ] +
2

N
Tr[Ψ−1

m Θm] ≤ inf
h∈Sm

‖b− h‖2Γ +
2

N
Tr[Ψ−1

m Θm],

where the second term of the right-hand-side (rhs) above is the variance term appearing in (16).
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• Finally, let us study of T2 = ‖b̂m−b‖2N1ΛN∩OcN . We have T2 ≤ (‖b̂m−πmb‖2N+‖b‖2N )1ΛN∩OcN .
Using (38) yields

(41) T2 ≤ (WT
mΨ̂−1

m Wm + ‖b‖2N )1ΛN∩OcN .

By Proposition 6 about ΛN and the Cauchy-Schwarz inequality, we get,

(42) E[T2] ≤
(

2c1N
c2E1/2[(WT

mWm)2] + E1/2[‖b‖4N ])
)
P1/2(OcN ).

We have already seen that E[‖b‖4N ] ≤ cK(τ). For the term E[(WT
mWm)2], we prove the following:

Lemma 2. Under the Assumption of Theorem 1, with Wm de�ned in (32), we have, for some
constant c? := c(τ,Mσ, cε, cϕ), that E[(WT

mWm)2] ≤ c?(1 ∨Nω−1).

Plugging the result of Lemma 2 in (42) allows to conclude, with the bound in Proposition 3,

that, for all m satisfying |m| ≤ N , E[T2] ≤ CN c2−p/2+(ω−1)+/2 ≤ CN−1, for p ≥ 2c2 + 1 +ω ∨ 1.
Joining the bounds for the expectations of T1, T2, T3 gives Inequality (16) by choosing p ≥
2c2 + 1 + ω ∨ 1 and p ≥ 4.

6.1.3. Bound on Tr[Ψ−1
m Θm]. As Ψ−1

m and Θm are symmetric and nonnegative, we apply:

Lemma 3. Let A,B be two symmetric nonnegative d×d matrices. Then, Tr(AB) ≤ ‖A‖opTr(B).

We get Tr[Ψ−1
m Θm] ≤ ‖Ψ−1

m ‖opTr[Θm] ≤ fΓ
∑K

j=1 Tr[Θmjmj ] where

Tr[Θmjmj ] =

mj∑
p=1

∫ τ

0

∫ τ

0
ϕp(t)ϕp(s)E[X1,j(t)X1,j(s)σ(t,X1(t))σ(s,X1(s))]c(s, t)dsdt

≤ c

mj∑
j=1

(∫ τ

0
|ϕp(t)|E1/2[X2

1,j(t)σ
2(t,X1(t))]dt

)2

≤ cε τ (mj ∧ τL(Smj )) sup
1≤j≤K

sup
t∈[0,τ ]

E[X2
1,j(t)σ

2(t,X1(t))].

Therefore, using Assumption (Aϕ),

Tr[Ψ−1
m Θm] ≤ fΓc sup

j=1,...,K
sup
t∈[0,τ ]

E[X2
1,j(t)σ

2(t,X1(t))]

|m| ∧ (cϕτ
K∑
j=1

mω
j )

 .

This leads to Inequality (18), using (15). Inequality (17) is given in Supplementary Material, to
complete the proof of Theorem 1. 2

6.2. Proof of Theorem 2. Without loss of generality suppose that s1 ≤ sk for all k ∈
{2, . . . ,K}. First for all b and b̂ it holds, using Proposition 2, that

‖b̂− b‖2Γ ≥
1

fΓ
‖b̂− b‖2 ≥ 1

fΓ
‖b̂1 − b1‖2 ≥

1

fΓG2
21

‖b̂1 − b1‖2Γ1
,

where G2
21 := supt∈[0,τ ] E[X2

11(t)] and ‖u‖2Γ1
=
∫ τ

0 u
2(t)E[X2

1 (t)]dt. Therefore, to establish the
result, it is enough to prove that, for C > 0,

(43) inf
b̂1

sup
b1∈W (s1,L1)

E[‖b̂1 − b1‖2Γ1
] ≥ CN−2s1/(2s1+1).

In the sequel for sake of readability we drop the dependency in the index 1 for the function b
and the regularity s.
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Following Theorem 2.7 in Tsybakov (2009) [27], the lower bound is established by considering a
decision problem between an increasing number Q+1 of competing functions b0, . . . , bQ contained
in W (s, L) for some positive constants s, L. The following two conditions must be satis�ed

(i) ‖bq − bq′‖2Γ1
≥ dN−

2s
2s+1 , ∀ 0 ≤ q < q′ ≤ Q for some positive constant d,

(ii) 1
Q

Q∑
q=1

KL(P⊗Nq ,P⊗N0 ) ≤ κ logQ, for some 0 < κ < 1/8,

where Pq denotes the distribution of (X(t), Y q(t))t∈[0,τ ], where Y
q(t) := bq(t)X(t) +σ(t)ε(t) and

KL is the Kullback Leibler divergence.

Consider b0 = 0 which belongs to the class W (s, L) and the functions bq = δM−γ
M∑
j=1

θq,jϕj ,

for some δ > 0 , γ > 0 andM > 0 that will be speci�ed below and θq = (θq,1, . . . , θq,M ) ∈ {0, 1}M .
To ensure that the functions bq belong to W (s, L) for 1 ≤ q ≤ Q we choose (δ, γ,M) such that

δ2M−2γ
M∑
j=2

j2sθ2
q,j ≤ δ2M−2γ

M∑
j=2

j2s ≤ δ2M2s+1−2γ ≤ L2, for γ ≥ s+ 1
2 and 0 < δ ≤ L.

Note that this implies that δ2M−2γ
∑

J≤j≤M θ2
q,j ≤ L2J−2s and thus bq ∈W (s, L).

Next we show a Lemma that implies point (i) above.

Lemma 4. Suppose (AS) and letM ≥ 8, there exist Q ≥ 2M/8 elements {θ1, . . . , θQ} of {0, 1}M ,

θ0 = (0, . . . , 0), such that it holds ‖bq − bq′‖2Γ1
≥ 1

8

δ2

fΓ
M−2γ+1, ∀0 ≤ q < q′ ≤ Q.

Proof of Lemma 4. Let θq, θq′ ∈ {0, 1}Q, we compute

‖bq − bq′‖2Γ1
=

∫ τ

0
δ2M−2γ

 M∑
j=1

(θq,j − θ′q,j)ϕj(x)

2

E[X(t)2]dx ≥ δ2

fΓ
M−2γρ(θq, θq′)

where we used (AS) (for K = 1 it holds Γ1(t) = E[X2
11(t)]) and where ρ denotes the Hamming

distance de�ned by ρ(θq, θq′) =
∑M

j=1 1θq,j 6=θq′,j . Next the Varshamov-Gilbert bound (see Lemma

2.9 in Tsybakov (2009) [27]) ensures that for M ≥ 8 there exist Q ≥ 2M/8 elements {θ0, . . . , θQ}
of {0, 1}M such that ρ(θq, θq′) ≥ M/8 for all 0 ≤ q < q′ ≤ Q with θ0 = (0, . . . , 0). This leads to
the desired result. �

Now, we show a Lemma that enables to establish point (ii) above.

Lemma 5. Let θ ∈ {0, 1}M , suppose that (AX,p) holds with p = 2 and σε as in Theorem 2.
Then, it holds that

KL(P⊗Nq ,P⊗N0 ) ≤ δ2c2
σε

N

2
G2

2M
−2γ+1.

Proof of Lemma 5. To establish this result we rely on the properties of the Kullback Leibler di-
vergence and the Cameron Martin theorem (Chagny et al. [6] Theorem 4, see also Lifshits (2012)
[23]). Consider the Hilbert space (L2

τ , 〈., .〉, ‖.‖) and σε a centered Gaussian random process with
distribution P0 and covariance operator Σσε satisfying the assumptions of the Theorem. Con-
sider the subset HP = {h ∈ L2

τ , 〈h,Σ−1
σε h〉 <∞}, for all h ∈ HP it holds that the distribution of

σε+ h is absolutely continuous with respect to P0 and its density is given by

dPh
dP0

(x) = exp

(
〈x,Σ−1

σε h〉 −
1

2
〈h,Σ−1

σε h〉
)
.
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It allows to write for 1 ≤ q ≤ Q and bq using that bqX ∈ HP , conditioning on X, that

KL(P⊗Nq ,P⊗N0 ) = N KL(Pq,P0) = N

∫
log

(
dPq
dP0

)
dPq = N

∫ ∫
log

(
dPY q |X
dPY 0|X

)
dPY q |XdPX

= NEX
[
Eε
[
〈Y q,Σ−1

σε bqX〉 −
1

2
‖Σ−1/2

σε bqX‖2
]]

= NEX
[
〈bqX,Σ−1

σε bqX〉 −
1

2
〈bqX,Σ−1

σε bqX〉
]

=
N

2
EX
[
〈bqX,Σ−1

σε bqX〉
]

≤ N

2
‖Σ−1

σε ‖op‖bq‖2Γ ≤
N

2
‖Σ−1

σε ‖op sup
t∈[0,1]

E[X(t)2]‖bq‖2,

where we used (AX,p) for p = 2 and ‖Σ−1
σε ‖op < c2σε. Using that ‖bq‖2 ≤ δ2M−2γ+1 we get the

desired result. �

Take γ = s + 1
2 , which ensures that bq belongs to W (s, L) and M = N

1
2γ . This leads to

‖bq − bq′‖2Γ ≥ dN−
2s

2s+1 with Lemma 4, for some positive constant d. Moreover, using that for

M ≥ 8, Q ≥ 2M/8 it holds that NM−2γ+1 = M ≤ 8
log 2 logQ. Injecting this in Lemma 5 and

taking δ2 <
(
(log 2(25c2

σεG
2
2)−1) ∧ π2s

L

)
, allows to write

1

Q

Q∑
q=1

KL(P⊗Nq ,P⊗N0 ) ≤ κ logQ

for some κ ∈ (0, 1
8). Applying Theorem 2.7 in Tsybakov (2009) [27] implies, for some positive

constant c, inf b̂ supb∈W (s,L) E
[
‖b̂− b‖2Γ1

]
≥ cN−

2s
2s+1 , and completes the proof. 2

6.3. Proof of Corollary 1. All we need to check is that σ1ε1 (resp. σ2ε2) satis�es the as-
sumptions of Theorem 2. The fact that ε1 (resp. ε2) is a centered Gaussian process such that
E[ε2

1(t)] = 1 (resp. E[ε2
2(t)] = 1) for all t ∈ [0, 1] is easily checked. Similarly observe that σ1

(resp. σ2) are bounded on [0, 1]. Next we identify the operators Σσ1ε1 and Σ−1
σ1ε1 (resp. Σσ2ε2

and Σ−1
σ2ε2) de�ned by ∀f, g ∈ L2([0, 1])

Cov(〈f, σ1ε1〉, 〈g, σ1ε1〉) = 〈f,Σσ1ε1g〉.

Simple computations lead to, for all t ∈ [0, 1],

Σσ1ε1g(t) =

∫ 1

0
g(s)(s ∧ t+ 1)ds, (resp. Σσ2ε2g(t) =

∫ 1

0
g(s)e−

|t−s|
2 ds.)

To compute its inverse we observe that di�erentiating twice in t the latter leads to

g =
1

4
Σσ1ε1g − (Σσ1ε1g)′′ =

(
1

4
I −D2

)
Σσ1ε1g

(resp. g = −(Σσ2ε2g)′′ = −D2(Σσ2ε2g)),

where D2 : g 7→ g′′ and I is the identity. It follows that Σ−1
σ1ε1 = 1

4I −D2 (resp. Σ−1
σ2ε2 = −D2).

Combined with the assumptions that X1k is of class C2([0, 1]) and that sk ≥ 2, implying that
bk ∈ W (sk, Lk) is of class C2([0, 1]) (see Proposition 1.14 of Tsybakov (2009) [27]), it ensures
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that 〈bkX1k,Σ
−1
σ1ε1bkX1k〉 <∞ (resp. 〈bkX1k,Σ

−1
σ2ε2bkX1k〉 <∞) for all bk ∈W (sk, Lk). Finally,

using De�nition 1.11 and Proposition 1.14 of Tsybakov (2009) [27] we get

‖Σ−1
σ1ε1‖op = sup

‖g‖=1
‖Σ−1

σ1ε1g‖ ≤
1

4
+ sup

‖g‖=1
g=bkX1k, bk∈W (sk,Lk)

‖g′′‖ ≤ 1

4
+ cLk,X1k

(resp. ‖Σ−1
σ2ε2‖op = sup

‖g‖=1
‖Σ−1

σ2ε2g‖ ≤ sup
‖g‖=1

g=bkX1k, bk∈W (sk,Lk)

‖g′′‖ ≤ cLk,X1k
),

where cLk,X1k
:= L2

k

(
supt∈[0,τ ] |X1k(t)|+2 supt∈[0,τ ] |X ′1k(t)|+supt∈[0,τ ] |X ′′1k(t)|

)
. This completes

the proof with cσ1ε1 := 1
4 + max1≤k≤K cLk,X1k

(resp. cσ2ε2 = max1≤k≤K cLk,X1k
). 2

Supplementary material contains the proofs of Propositions 1, 2, 3, 4 and 5, Inequality (17)
of Theorem 1, Lemma 2 and Theorem 3.
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7. Supplementary material

7.1. Proof of Proposition 1. The result follows from the following equalities.
For x = (x1,1, . . . , x1,m1 , x2,1 . . . , x2,m2 , . . . , xK,1, . . . , xK,mK )T ∈ R|m|, set for j = 1, . . . ,K,

hj(t) =
∑mj

p=1 xj,pϕp(t) and h = (h1, . . . , hK)T (see (4)). Then we have

xT Ψ̂mx =

∫ τ

0

1

N

N∑
i=1

 K∑
j=1

hj(t)Xi,j(t)

2

dt = ‖h‖2N ,

and xTΨmx = ‖h‖2Γ. Indeed, using the product of matrices by blocks and setting for j = 1, . . . , k,
xTj = (xj,1, . . . , xj,mj ), we get:

xT Ψ̂mx =
∑

1≤j,k≤K
xTj Ψ̂mj ,mkxk.

Using the de�nition of Ψ̂mj ,mk yields, for hj as de�ned above

xTj Ψ̂mj ,mkxk =

∫ τ

0
hj(t)hk(t)

1

N

N∑
i=1

Xi,j(t)Xi,k(t)dt.

Thus,

xT Ψ̂mx =
1

N

N∑
i=1

∫ τ

0

 K∑
j=1

hj(t)Xi,j(t)

2

dt =

∫ τ

0
h(t)TΓN (t)h(t)dt.

Now, xT Ψ̂mx = 0 implies that h(t)TΓN (t)h(t) = 0 a.e. on [0, τ ], by (AS). As, for all j, the
functions (ϕj , j = 1, . . . ,mj) are orthonormal on L2

τ , this implies that for all j, xj = 0, therefore,

x = 0. This shows that Ψ̂m is positive de�nite. The same holds for Ψm.
Moreover, the constraint of �niteness of fΓ de�ned by (12), implies the second result, it is

proved in Proposition 3.2 in Comte and Genon-Catalot (2024) [8]. 2

7.2. Proof of Proposition 2. It holds that

‖h‖2Γ =

∫ τ

0
h(t)TΓ(t)h(t)dt ≤ sup

t∈[0,τ ]
‖Γ(t)‖op‖h‖2.

As, under (AX,p), ‖Γ(t)‖op ≤ Tr(Γ(t)) =
∑K

j=1 E[X2
1,j(t)] ≤ KG2

2, we get the �rst result of

Proposition 2. Under (AS) we write, using that h = (h1, . . . , hK)T that

‖h‖2 =

∫ τ

0

K∑
j=1

hTj (t)S1/2(t)S−1(t)S1/2(t)hj(t)dt ≤ sup
t∈[0,τ ]

‖Γ(t)−1‖op‖h‖2Γ = fΓ‖h‖
2
Γ,

which completes the proof.

7.3. Proof of Proposition 3. De�ne the event:

(44) ON =

{
sup
t∈[0,τ ]

‖Γ(t)−1/2ΓN (t)Γ(t)−1/2 − IdK‖op ≤
1

2

}
.

To get the announced result, we prove in the next Section, that

(45) ON ⊂ {∀h ∈ (L2
τ )K , (1/2)‖h‖2Γ ≤ ‖h‖2N ≤ (3/2)‖h‖2Γ}.

Now, we prove that, for all p0 ≥ 1, P(OcN ) . N−p0 .
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Indeed, using (AS), recall that we have set fΓ := supt∈[0,τ ] ‖Γ(t)−1‖op (see (12)). We have

sup
t∈[0,τ ]

‖Γ(t)−1/2ΓN (t)Γ(t)−1/2 − IdK‖op ≤ sup
t∈[0,τ ]

‖Γ(t)−1‖op sup
t∈[0,τ ]

‖ΓN (t)− Γ(t)‖op

≤ fΓ sup
t∈[0,τ ]

√
Tr((ΓN (t)− Γ(t))2).

Then

Tr((ΓN (t)− Γ(t))2) =
∑

1≤j,k≤K

(
1

N

N∑
i=1

{Xi,j(t)Xi,k(t)− E[Xi,j(t)Xi,k(t)]}

)2

≤ K2 max
1≤j,k≤K

(
1

N

N∑
i=1

{Xi,j(t)Xi,k(t)− E[Xi,j(t)Xi,k(t)]}

)2

.

It follows that

P(OcN ) ≤ P

(
max

1≤j,k≤K
sup
t∈[0,τ ]

∣∣∣∣∣ 1

N

N∑
i=1

{Xi,j(t)Xi,k(t)− E[Xi,j(t)Xi,k(t)]}

∣∣∣∣∣ > 1

2KfΓ

)
,

≤
∑

1≤j,k≤K
P

(
sup
t∈[0,τ ]

∣∣∣∣∣ 1

N

N∑
i=1

{Xi,j(t)Xi,k(t)− E[Xi,j(t)Xi,k(t)]}

∣∣∣∣∣ > 1

2KfΓ

)
.

The result of Proposition 3 follows immediately from Lemma 6 below. 2

Lemma 6. Let p > 2 and assume that (AX,p) holds. Let j, k ∈ {1, . . . ,K}, then , there exists a
constant Cp,τ such that, for any constant aτ > 0,

P0 := P

(
sup
t∈[0,τ ]

∣∣∣∣∣ 1

N

N∑
i=1

(Xi,j(t)Xi,k(t)− E[Xi,j(t)Xi,k(t)])

∣∣∣∣∣ > aτ

)
≤ Cp,τa−pτ N−p/2.

7.4. Proof of Lemma 6. We distinguish the proof depending on the case considered in (AX,p).
We set p0 = p/2 and, for j, k ∈ {1, . . . ,K} �xed, de�ne

(46) Zj,kN (t) :=
1

N

N∑
i=1

[Xi,j(t)Xi,k(t)− E(Xi,j(t)Xi,k(t))].

•Case (i). We consider continuous processes (Xi,j)1≤i≤N,1≤j≤K satisfying (13). By Rosenthal
Inequality and (13), we obtain that there exists a > 1 and a constant c(p, τ) such that

∀N ≥ 1, ∀s, t ∈ [0, τ ], E[|Zj,kN (t)− Zj,kN (s)|p] ≤ c(p, τ)|t− s|a 1

Np/2
.

We state the version of The Garsia-Rodemich-Rumsey (1970/71) Lemma [14] given in Jourdain
and Pagès (2022), [18].

Lemma 7. Let (Y n
t )n≥1 be a sequence of continuous processes where the processes Y

n = (Y n
t )t∈[0,T ]

are de�ned on a probability space (Ω,A,P). Let p ≥ 1. Assume there exists a > 1, a sequence
(δn)n≥1 of positive real numbers converging to 0 and a real constant C > 0 such that

∀n ≥ 1,∀s, t ∈ [0, T ], E[|Y n
t − Y n

s |p] ≤ C|t− s|aδpn.

Then there exists a real constant Cp,T > 0 such that ∀n ≥ 1,E

[
sup
t∈[0,T ]

|Y n
t − Y n

0 |p
]
≤ Cp,T δpn.
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By Lemma 7, there exists a constant Cp,τ such that

∀N ≥ 1, E

[
sup
t∈[0,τ ]

|Zj,kN (t)− Zj,kN (0)|p
]
≤ Cp,τ

1

Np/2
.

Finally, by the Rosenthal Inequality and (AX,p)(a), we get

E[|Zj,kN (0)|p] ≤ C(p)N−p{NE[|X1,j(0)X1,k(0)|p] +Np/2[Var(X1,j(0)X1,k(0))]p/2}.

Therefore, there exists another constant Cp,τ ,

(47) E

[
sup
t∈[0,τ ]

|Zj,kN (t)|p
]
≤ Cp,τ

1

Np/2
.

Now by the Markov Inequality, P0 ≤ a−pτ Cp,τN
−p/2. 2

• Case (ii). We �rst recall Doob's maximal inequality for martingales: Let (Mt)t be a
martingale and p > 1, then it holds that

E

[
sup
t∈[0,τ ]

|Mt|p
]
≤
(

p

p− 1

)p
sup
t∈[0,τ ]

E[|Mt|p].(48)

Suppose thatXi,j(t), 1 ≤ j ≤ K, is such that it has moment of any order, independent increments
and there exist a continuous deterministic function Aj such that Xi,j(t) − Aj(t) is a centered
martingale. Consider the quantity, for 1 ≤ j, k ≤ K,

U j,k1 (t) = Xi,j(t)Xi,k(t)− E
[
Xi,j(t)Xi,k(t)

]
−Aj(t)

(
Xi,k(t)−Ak(t))−Ak(t)

(
Xi,j(t)−Aj(t)).

De�ne Ft the natural �ltration σ (Xi,j(s), s ≤ t, 1 ≤ j ≤ K, 1 ≤ i ≤ N), we show that U j,k1 is a
martingale. For that we compute for t, s ≥ 0

E[U j,k1 (t+ s)|Ft] = E[X1,j(t+ s)X1,k(t+ s)|Ft]− E
[
X1,j(t+ s)X1,k(t+ s)

]
−Aj(t+ s)

(
X1,k(t)−Ak(t))−Ak(t+ s)

(
X1,j(t)−Aj(t)).

We focus on the �rst term

E[X1,j(t+ s)X1,k(t+ s)|Ft] = E[(X1,j(t+ s)−X1,j(t))(X1,k(t+ s)−X1,k(t))|Ft]
+ E[X1,j(t)(X1,k(t+ s)−X1,k(t))|Ft] + E[X1,j(t+ s)X1,k(t)|Ft]
= E[(X1,j(t+ s)−X1,j(t))(X1,k(t+ s)−X1,k(t))]

+X1,j(t)E[(X1,k(t+ s)−X1,k(t))]

+X1,k(t)(E[X1,j(t+ s)−X1,j(t)] +X1,j(t))

= E
(
X1,j(t+ s)X1,k(t+ s)

)
+ (X1,j(t)−Aj(t))(Ak(t+ s)−Ak(t))

+ (X1,k(t)−Ak(t))(Aj(t+ s)−Aj(t))− E[X1,j(t)X1,k(t)] +X1,k(t)X1,j(t).

where we used the independence of the increments of X1,j . Plugging this in the latter expression

leads to E[U j,k1 (t+ s)|Ft] = U j,k1 (t). Therefore, Zj,kN given by (46) can be rewritten

Zj,kN (t) =
1

N

N∑
i=1

{
U j,ki (t) +Aj(t)

(
Xi,k(t)−Ak(t)

)
+Ak(t)

(
Xi,j(t)−Aj(t)

)}
= M j,k

1,N (t) +Aj(t)M
k
2,N (t) +Ak(t)M

j
2,N (t)
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with M j,k
1,N (t), Mk

2,N (t) centered martingales given by

M j,k
1,N (t) :=

1

N

N∑
i=1

U j,ki (t), Mk
2,N (t) :=

1

N

N∑
i=1

(
Xi,k(t)−Ak(t)

)
We apply Doob's maximal inequality (48) for p > 1, and Cp = 3p−1(p/p− 1)p

E

[
sup
t∈[0,τ ]

|Zj,kN (t)|p
]
≤ Cp

(
sup
t∈[0,τ ]

E[|M j,k
1,N (t)|p] + Lτ sup

t∈[0,τ ]
E[|Mk

2,N (t)|p] + Lτ sup
t∈[0,τ ]

E[|M j
2,N (t)|p]

)
.

The bound of order N−p/2 follows by Rosenthal Inequality, Assumptions (14) and (AX,p)(a). 2

7.5. Proof of Inequality (45). We denote by Γ(t)1/2 a symmetric square root of Γ(t), invertible
under (AS). Let h ∈ (L2

τ )K such that ‖h‖2Γ =
∫ τ

0 h(t)TΓ(t)h(t)dt = 1. Then∣∣∣∣‖h‖2N‖h‖2Γ
− 1

∣∣∣∣ =
∣∣‖h‖2N − ‖h‖2Γ∣∣ =

∣∣∣∣∫ τ

0
h(t)T (ΓN (t)− Γ(t))h(t)dt

∣∣∣∣
=

∣∣∣∣∫ τ

0
h(t)TΓ(t)1/2(Γ(t)−1/2ΓN (t)Γ(t)−1/2 − IdK))Γ(t)1/2h(t)dt

∣∣∣∣
≤ sup

t∈[0,τ ]
‖Γ(t)−1/2ΓN (t)Γ(t)−1/2 − IdK‖op

∫ τ

0
|h(t)TΓ(t)h(t)|dt

= sup
t∈[0,τ ]

‖Γ(t)−1/2ΓN (t)Γ(t)−1/2 − IdK‖op,

using that ‖h‖Γ = 1. As a consequence supt∈[0,τ ] ‖Γ(t)−1/2ΓN (t)Γ(t)−1/2 − Id2‖op ≤ 1/2 implies

for all h ∈ (L2
τ )K ,

∣∣‖h‖2N/‖h‖2Γ − 1
∣∣ ≤ 1/2, which gives the result. 2

7.6. Proof of Lemma 2. We have

E
[(
WT

mWm

)2]
= E

 K∑
j=1

mj∑
k=0

(
1

N

∫ τ

0
ϕk(t)

N∑
i=1

Xi,j(t)σ(t,Xi(t))εi(t)dt

)2
2

≤ |m|
N4

K∑
j=1

mj∑
k=0

E

( N∑
i=1

∫ τ

0
ϕk(t)Xi,j(t)σ(t,Xi(t))εi(t)dt

)4


≤ C(4)|m|
N4

K∑
j=1

mj∑
k=0

(
NE

[(∫ τ

0
ϕk(t)X1,j(t)σ(t,X1(t))ε1(t)dt

)4
]

+N2

{
E

[(∫ τ

0
ϕk(t)X1,j(t)σ(t,X1(t))ε1(t)dt

)2
]}2


≤ C(4)|m|

N4

(
τ3cϕKN

2+ω max
1≤j≤K

sup
t∈[0,τ ]

E
[
X4

1,j(t)σ
4(t,X1(t))

]
sup
t∈[0,τ ]

E
[
ε4

1(t)
]

+|m|τN2

(
max

1≤j≤K
sup
t∈[0,τ ]

E
[
X2

1,j(t)σ
2(t,X1(t))

]
sup
t∈[0,τ ]

E
[
ε2

1(t)
])2

 .



CONCURRENT REGRESSION MODELS 29

where we use Rosenthal inequality with constant C(4) and Assumption (Aϕ) together with the
bounds ϕ2

k(t) ≤ L(Smj ) for 1 ≤ k ≤ mj , |m| ≤ N , so that

K∑
j=1

mj∑
k=0

∫ τ

0
ϕ4
k(t)dt ≤ |m|

K∑
j=1

L(Smj ) ≤ cϕ|m|
K∑
j=1

mω
j ≤ KcϕN1+ω.

Under condition (15) and |m| ≤ N , we obtain

E
[(
WT

mWm

)2] ≤ C(4)τM2
σ(τ3cϕc

2
εN

ω−1 + 1).

which gives an order O(Nω−1 ∨ 1) and completes the proof of Lemma 2. 2

7.7. Proof of inequality (17) of Theorem 1. Similarly to the previous bound, we write

‖b̃m − b‖2Γ = ‖b̂m − b‖2Γ1ΛN∩ON + ‖b̂m − b‖2Γ1ΛN∩OcN + ‖b‖2Γ1ΛcN
(49)

:= T ′1 + T ′2 + T ′3.

It is straightforward that E[T ′3] = ‖b‖2ΓP(ΛcN ) . 1/Np for all p > 1. Now we turn to T ′1. Let
bm,Γ be the orthogonal projection of b on Sm w.r.t. the Γ-norm.We have

‖b̂m − b‖2Γ1ON = ‖b̂m − bm,Γ‖2Γ1ON + ‖bm,Γ − b‖2Γ1ON
≤ ‖bm,Γ − b‖2Γ + 2‖b̂m − πmb‖2Γ1ON + 2‖bm,Γ − πmb‖2Γ1ON
≤ ‖bm,Γ − b‖2Γ + 4‖b̂m − πmb‖2N + 2‖bm,Γ − πmb‖2Γ1ON

Thus, we get

E[T ′1] ≤ ‖bm,Γ − b‖2Γ +
4

N
Tr[Ψ−1

m Θm] + 2E
[
‖bm,Γ − πmb‖2Γ1ON

]
.

Now, as bm,Γ and πmb belong to Sm,

E
[
‖bm,Γ − πmb‖2Γ1ON

]
≤ 2E

[
‖bm,Γ − πmb‖2N

]
= 2E

[
‖πm(b− bm,Γ)‖2N

]
≤ 2E

[
‖b− bm,Γ‖2N

]
= 2‖b− bm,Γ‖2Γ.

It follows that

E[T ′1] ≤ 5‖bm,Γ − b‖2Γ +
4

N
Tr[Ψ−1

m Θm].

Let us lastly consider T ′2 = ‖b̂m − b‖2Γ1ΛN∩OcN and write

T ′2 ≤ 2(‖b̂m‖2Γ + ‖b‖2Γ)1ΛN∩OcN := T ′2,1 + T ′2,2.

Clearly E[T ′2,2] ≤ ‖b‖2ΓP(OcN ) ≤ KG2
2‖b‖2N−p, by using Proposition 2. Analogously, it holds

that ‖b̂m‖2Γ ≤ KG2
2‖b̂m‖2. Now using formula (9), we get ‖b̂m‖2 = ‖B̂m‖22,|m| ≤ ‖Ψ̂

−1
m ‖2op‖V̂m‖22,|m|.

By Proposition 6, on ΛN , we have

‖Ψ̂−1
m ‖2op ≤ 4c1

2N2c2 .

As a consequence

(50) E[T ′2,1] ≤ 4c1
2N2c2E1/2[‖Vm‖42,|m|]P

1/2(OcN ).

By formula (32), we write

(51) ‖V̂m‖22,|m| ≤ 2

 |m|∑
j=1

〈b,Φj〉2N + ‖W‖22,|m|

 .
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By Lemma 2, we have a bound on E1/2[‖W‖42,|m|] . N
(ω−1)/2 ∨ 1 under (AX,p)(a). For the �rst

rhs term of (51), we �rst note that

‖ΓN (t)‖op ≤
1

N

N∑
i=1

‖Xi(t)Xi(t)
T ‖op =

1

N

N∑
i=1

K∑
j=1

X2
i,j(t)

and thus if (AX,p)(a) holds with p ≥ 8,

E[‖ΓN (t)‖4op] ≤ K4 max
j∈{1,...,K}

sup
t∈[0,τ ]

E[X8
1,j(t)] := c1(τ,K).

Then we get

E

 |m|∑
j=1

〈b,Φj〉2N

2 ≤ |m|E
 |m|∑
j=1

〈b,Φj〉4N


and

E
[
〈b,Φj〉4N

]
≤ E

[∫ τ

0
‖ΓN (t)‖op‖b(t)‖ ‖Φj(t)‖dt

]4

≤ τ3

∫ τ

0
E[‖ΓN (t)‖4op]‖b(t)‖4 ‖Φj(t)‖4dt

≤ τ3c1(τ,K)

(
sup
t∈[0,τ ]

K∑
k=1

b2k(t)

)2 ∫ τ

0
ϕ4
j (t)dt.

Thus,

(52) E

 |m|∑
j=1

〈b,Φj〉2N

2 ≤ cϕτ3c1(τ,K)

(
sup
t∈[0,τ ]

K∑
k=1

b2k(t)

)
N2+ω.

Plugging (52) into (50) yields

E[T ′2,1] . N2c2N1+ω/2P1/2(OcN ) . N2c2+1+ω/2−p/2.

This term is less than O(N−1) for p ≥ 4c2 + 4 + ω and p ≥ 8. The bounds on the expectations
of T ′1, T

′
2, T

′
3 yield (17). 2

7.8. Proof of Proposition 4. The computation is rather straightforward.

E
[∫ τ

0

(
YN+1(t)− b̃Tm(t)XN+1(t)

)2
dt

]
= E

[∫ τ

0

(
bT (t)XN+1(t)− b̃Tm(t)XN+1(t) + σ(t,XN+1(t))εN+1(t)

)2
dt

]
= E

[∫ τ

0

(
(b(t)− b̃m(t))TXN+1(t)

)2
dt

]
+ E

[∫ τ

0
σ2(t,XN+1(t))dt

]
:= I + II
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We compute term I. Denote FN (τ) the σ-�eld spanned by (Y1(t),X1(t), . . . , YN (t),XN (t))t∈[0,τ ],
it holds

I = E
[∫ τ

0
(b(t)− b̃m(t))T

(
XN+1(t)XN+1(t)T

)
(b(t)− b̃m(t))dt

]
= E

{
E
[∫ τ

0
(b(t)− b̃m(t))T

(
XN+1(t)XN+1(t)T

)
(b(t)− b̃m(t))dt

∣∣∣∣FN (τ)

]}
= E

[∫ τ

0
(b(t)− b̃m(t))TΓ(t)(b(t)− b̃m(t))dt

]
= E[‖b− b̃m‖2Γ].

Plugging the value of I in the �rst equality gives the result of Proposition 4. 2

7.9. Proof of Proposition 5. By Proposition 2, we have

inf
h=(h1,...,hK)T∈Sm

‖h− b‖2Γ ≤ KG2
2 inf
h∈Sm

‖h− b‖2 = KG2
2 inf
hj∈Smj ,j=1,...,K

K∑
j=1

‖hj − bj‖2

≤ KG2
2

K∑
j=1

Rjm
−2sj
j .

Next, we �nd, under the assumptions of Theorem 1 with ω = 1,

E[‖b̃m − b‖2Γ] ≤ 5KG2
2

K∑
j=1

Rjm
−2sj
j + 4τ fΓcεMσ(1 ∧ τcϕ)

m1 + · · ·+mK

N
+

c

N
.

Then chosing mj = CN1/(2sj+1) yields

E[‖b̃m − b‖2Γ] .
K∑
j=1

N−(2sj)/(2sj+1) = O(N−2s(1)/(2s(1)+1)). 2

7.10. Proof of Corollary 2. Now, let us prove that, if σ is bounded, then Tr[Ψ−1
m Θm] ≤

cτ |m| ‖σ‖2∞. We use the following trick: let u := (ui)1≤i≤|m| be a vector of i.i.d. centered
variables with unit variance, independent of (Xi(t))t∈[0,1],1≤i≤N and (εi(t))t∈[0,1],1≤i≤N , then for

any |m| × |m| matrix C, it holds that Tr(C) = E[uT Cu]. This implies that

Tr[Ψ−1
m Θm] = Tr[Ψ

−1/2
m ΘmΨ

−1/2
m ] = E

[
uTΨ

−1/2
m ΘmΨ

−1/2
m u

]
.
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Setting x = Ψ
−1/2
m u and E[ε(t)ε(s)] := c(t, s) yields

xTΘmx =
∑

1≤j,`≤K

∑
1 ≤ k ≤ mj

1 ≤ p ≤ m`

x
m1+···+mj−1+k

xm1+···+m`−1+p

∫ τ

0

∫ τ

0
ϕk(t)ϕp(s)E [X1,j(t))X1,`(s)]σ(t,X1(t))σ(s,X1(s))) c(s, t)dsdt

= Eu

∫ τ

0

 K∑
j=1

hj(t)X1,j(t)

σ(t,X1(t))ε1(t)

2

dt


≤ τEu

∫ τ

0

 K∑
j=1

hj(t)X1,j(t)

2

σ2(t,X1(t))ε2
1(t)dt


where hj(t) =

∑mj
k=1 xm1+···+mj−1+kϕk(t) and Eu[.] is the conditional expectation given u. Thus

we get

uTΨ
−1/2
m ΘmΨ

−1/2
m u = xTΘmx ≤ τ‖σ‖2∞

∫ τ

0
Eu

 K∑
j=1

hj(t)X1,j(t))

2 c(t, t)dt.
Noticing that∫ τ

0
Eu

 K∑
j=1

hj(t)X1,j(t)

2 dt = xTΨmx = uTΨ
−1/2
m ΨmΨ

−1/2
m u = ‖u‖22,|m|,

and c(t, t) = E[ε2(t)] = 1, we obtain, by taking expectation, as E[‖u‖22,|m|] = |m|,

Tr(Ψ−1
m Θm) = Tr[Ψ

−1/2
m ΘmΨ

−1/2
m ] = E

[
uTΨ

−1/2
m ΘmΨ

−1/2
m u

]
≤ τ‖σ‖2∞|m|.

Hence, the result. 2

7.11. Proof of Theorem 3. We start by proving (25). We write the decomposition

‖b̃− b‖2N = ‖b̂m̂ − b‖2N1ΛN + ‖b‖2N1ΛcN
.

The study of the last term is similar to the study of T3 , see (41)-(42), and yields

(53) E[‖b‖2N1ΛcN
] .

1

N

thanks to Proposition 6, P(ΛcN ) . 1/Np for any p > 2.

For the main term E[‖b̂m̂ − b‖2N1ΛN ], we recall that UN (b̂m) = −‖b̂m‖2N . By de�nition of

b̂m̂, we have for any m ∈MN , and any bm ∈ Sm,

UN (b̂m̂) + pen(m̂) ≤ UN (bm) + pen(m).

From (20), we have UN (h)−UN (h?) = ‖h−b‖2N −‖h?−b‖2N − 2νN (h−h?) with νN de�ned
by (21), and therefore for any m ∈MN , and any bm ∈ Sm, on ΛN

‖b̂m̂ − b‖2N ≤ ‖bm − b‖2N + pen(m) + 2νN (b̂m − bm)− pen(m̂).

Now we de�ne

Bm,m′ = {h ∈ Sm + Sm′ , ‖h‖Γ = 1}.
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We have

E[‖b̂m̂ − b‖2N1ΛN ] = E[‖b̂m̂ − b‖2N1ΛN∩ON ] + E[‖b̂m̂ − b‖2N1ΛN∩OcN ].

The term E[‖b̂m̂−b‖2N1ΛN∩OcN ] is studied analogously as the previous term T2, by noticing that

(54) E[(WT
mWm)2] ≤ E[(WT

NWN)2]

and the bound in Lemma 2 applies to the upper bound (as to any m) with constant multiplied
by K. Then using again that P(OcN ) ≤ c/Np under Assumption (AX,p)(a), we get

E[‖b̂m̂ − b‖2N1ΛN∩OcN ] ≤ C

N
,

for p ≥ 2c2 + 2.
Using that, on ON , ∀m,m′ ∈ {1, . . . , N}K , ∀h ∈ Sm + Sm′ , ‖h‖2Γ ≤ 2‖h‖2N , we obtain, on
ON ∩ ΛN , the following sequence of inequalities.

‖b̂m̂ − b‖2N ≤ ‖bm − b‖2N + pen(m) +
1

8
‖b̂m̂ − bm‖2Γ

+8 sup
h∈Bm,m̂

ν2
N (h)− pen(m̂)

≤
(

1 +
1

2

)
‖bm − b‖2N + pen(m) +

1

2
‖b̂m̂ − b‖2N

+8

(
sup

h∈Bm,m̂

ν2
N (h)− p(m̂,m)

)
+

+ 8p(m̂,m)− pen(m̂),

where p(m̂,m) = κ?‖σ‖2∞(|m̂|+|m|)/N , where κ? is a numerical constant (see below). Choosing
κ0 ≥ 8κ? implies that 8p(m̂,m) ≤ pen(m̂) + pen(m). Therefore

E[‖b̂m̂ − b‖2N1ΛN∩ON ] ≤ 3‖bm − b‖2Γ + 4pen(m)

+16E

[
( sup
h∈Bm,m̂

ν2
N (h)− p(m̂,m))+1ΛN∩ON

]
.(55)

Now we use the following Lemma:

Lemma 8. Under the Assumptions of Theorem 3,

E

[(
sup

h∈Bm̂,m

ν2
N (h)− p(m̂,m)

)
+

1
Λ̂N∩ON

]
≤ C(τ, fΓ , ‖σ‖∞)

N

where p(m,m′) = 3‖σ‖2∞
|m|+|m′|

N and C(τ, fΓ , ‖σ‖∞) is a positive constant depending on τ, fΓ
and ‖σ‖∞.

Gathering Inequalities (53), (54), (55) ant the result of Lemma 8 yields Inequality (25) of
Theorem 3 with κ? = 3 and κ ≥ 24. 2

Proof of Inequality (26). First we write, as in the proof of Inequality (17),

‖b̃− b‖2Γ = ‖b̂m̂ − b‖2Γ1ΛN∩ON + ‖b̂m̂ − b‖2Γ1ΛN∩OcN + ‖b‖2Γ1ΛcN
(56)

:= T ′′1 + T ′′2 + T ′′3 .

The expectation of the last two terms is handled as in the proof of Inequality (17): the term T ′′3
is exactly the same as T ′3 and for T ′′2 , as the collection of models are such that all m′i are less
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than N , the m̂i must be bounded by N and the |m̂| by KN before taking expectations. These
two terms remain less than c/N .

For T ′′1 , we write that, for any m and any h ∈ Sm,

T ′′1 ≤ 2‖b̂m̂ − h‖2Γ1ΛN∩ON + ‖h− b‖2Γ1ΛN∩ON

≤ 4‖b̂m̂ − h‖2N1ΛN∩ON + ‖h− b‖2Γ1ΛN∩ON

≤ 8‖b̂m̂ − b‖2N1ΛN∩ON + 8‖b− h‖2N1ΛN∩ON + ‖h− b‖2Γ1ΛN∩ON .

Therefore we get, for any m and any h ∈ Sm,

E[‖b̃− b‖2Γ] ≤ 8E
[
‖b̂m̂ − b‖2N1ΛN∩ON

]
+ 10‖b− h‖2Γ +

C ′

N
.

Using inequality (25) for the �rst term and taking the in�mum over h ∈ Sm and over m yields
inequality (26). 2

7.12. Proof of Lemma 8. We decompose Zi(h) :=
∫ τ

0 h(t)TXi(t)σ(t,Xi(t))εi(t)dt into three
parts

Zi(h) = Z
(1)
i (h) + Z

(2)
i (h) + Z

(3)
i (h)

where for

ΩX
i (t) =

{
max

1≤j≤K
|Xi,j(t)| ≤ N1/4

}
, Ωε

i (t) =
{
|εi(t)| ≤ N1/4

}
we set 

Z
(1)
i (h) =

∫ τ
0 h(t)TXi(t)1ΩXi (t)σ(t,Xi(t))(εi(t)1Ωεi (t)

− E[εi(t)1Ωεi (t)
])dt

Z
(2)
i (h) =

∫ τ
0 h(t)TXi(t)1(ΩXi (t))cσ(t,Xi(t))(εi(t)1Ωεi (t)

− E[εi(t)1Ωεi (t)
])dt

Z
(3)
i (h) =

∫ τ
0 h(t)TXi(t)σ(t,Xi(t))(εi(t)1(Ωεi (t))

c − E[εi(t)1(Ωεi (t))
c ])dt

As a consequence,

νN (h) = νN,1(h) + νN,2(h) + νN,3(h) with νN,k(h) =
1

N

N∑
i=1

Z
(k)
i (h), k = 1, 2, 3.

The decomposition of Zi(h) gives:

E

[(
sup

h∈Bm̂,m

ν2
N (h)− p(m̂,m)

)
+

1
Λ̂N∩ON

]
≤ 3E

[(
sup

h∈Bm̂,m

ν2
N,1(h)− p(m̂,m)/3

)
+

]

+3E

[
sup

h∈Bm̂,m

ν2
N,2(h)

]
+ 3E

[
sup

h∈Bm̂,m

ν2
N,3(h)

]
:= T1 + T2 + T3.

We successively bound the three terms, the last two ones being similar.

• Bound on T1. We apply the following Talagrand inequality in the form given by Klein and
Rio (2005):

Theorem 4. Let N ∈ N∗ and F a countable class of measurable functions, and (Zi)i∈{1,··· ,N}
a sequence of real random variables. De�ne, for f ∈ F , νN (f) = 1

N

∑N
i=1(f(Zi) − E[f(Zi)]) a
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linear centered empirical process, and assume that there exist three positive constants M , H and
v such that :

sup
f∈F
‖f‖∞ ≤M, E[sup

f∈F
|νN (f)|] ≤ H and sup

f∈F

1

N

N∑
i=1

Var(f(Zi)) ≤ v.

Then for all α > 0,

E

[(
sup
f∈F
|νN (f)|2 − 2(1 + 2α)H2

)
+

]
≤ 4

b

(
v

N
e−bα

NH2

v +
49M2

bC(α)2N2
e−
√

2bC(α)
√
α

7
NH
M

)
,

where b = 1/6 and c(α) = (
√

1 + α− 1) ∧ 1.

First, recall that for m ∈MN , we have |m| ≤ KN .

E

[(
sup

h∈Bm̂,m

ν2
N,1(h)− p(m̂,m)

)
+

1
Λ̂N∩ON

]
≤

∑
m′∈MN

E

[(
sup

h∈Bm,m′
ν2
N,1(h)− p(m,m′)

)
+

]
,

we apply the Talagrand inequality to the process νN,1(h) for h ∈ Bm,m′ . Let us denote by
D(m,m′) the dimension of the space Sm + Sm′ , it holds D(m,m′) ≤ |m| + |m′|. Using the
isomorphism between Sm and S|m| through the basis functions Φj de�ned in Section 6.1.1, we

consider a family of D(m,m′) functions, say (Φ̄j)j=1,...,D(m,m′) which constitutes an orthonormal
basis of Sm + Sm′ for the scalar product 〈., .〉τ , obtained by Gram-Schmidt orthonormalisation

of a (L2
τ )K basis deduced from a sub-family of all Φj 's. Then, by writing h =

∑D(m,m′)
j=1 ājΦ̄j ,

we have

E

[
sup

h∈Bm,m′
|νN,1(h)|2

]
= E

 sup
h∈Bm,m′

[νN,1(

D(m,m′)∑
j=1

ājΦ̄j)]
2


≤

D(m,m′)∑
j=1

E
[
ν2
N,1(Φ̄j)

]
since

D(m,m′)∑
j=1

ā2
j = ‖h‖2τ = 1

=
1

N

D(m,m′)∑
j=1

Var

(∫ τ

0
Φ̄T
j (t)X1(t)1ΩX1 (t)σ(t,X1(t))(ε1(t)1Ωε1(t) − E[ε1(t)1Ωε1(t)])dt

)

≤ τ

N

D(m,m′)∑
j=1

E
[∫ τ

0
(Φ̄T

j (t)X1(t))21ΩX1 (t)σ
2(t,X1(t))(ε1(t)1Ωε1(t) − E[ε1(t)1Ωε1(t)])

2dt

]

≤ τ

N

D(m,m′)∑
j=1

‖Φ̄j‖2Γ‖σ‖2∞ = τ‖σ‖2∞
D(m,m′)

N
≤ τ‖σ‖2∞

|m|+ |m′|
N

:= H2.
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Next, using similar computations we control the term

sup
h∈Bm,m′

1

N

N∑
i=1

Var

(∫ τ

0
h(t)TXi(t)1ΩXi (t)σ(t,Xi(t))(εi(t)1Ωεi (t)

− E[εi(t)1Ωεi (t)
])dt

)

= sup
h∈Bm,m′

1

N

N∑
i=1

E
[∫ τ

0
h(t)TXi(t)1Ωi(X)σ(t,Xi(t))(εi(t)1Ωεi (t)

− E[εi(t)1Ωεi (t)
])dt

]2

≤ τ sup
h∈Bm,m′

E
[∫ τ

0
(h(t)TX1(t))21ΩX1 (t)σ

2(t,X1(t))(ε1(t)1Ωε1(t) − E[ε1(t)1Ωε1(t)])
2dt

]
≤ τ sup

h∈Bm,m′
‖h‖2Γ‖σ‖2∞ = τ‖σ‖2∞ := v.

Lastly, denoting by u(t) := ε1(t)1Ωε1(t) − E[ε1(t)1Ωε1(t)],

sup
h∈Bm,m′

sup
(x,u)∈(L2

τ )K×L2
τ

∣∣∣∣∫ τ

0
hT (t)x(t)1Ωx(t)σ(t, x(t))u(t)dt

∣∣∣∣2

≤ τ sup
h∈Bm,m′

sup
(x,u)∈(L2

τ )K×L2
τ

∫ τ

0

 K∑
j=1

hj(t)xj(t)1Ωx(t)σ(t, x(t))u(t)

2

dt

≤ Kτ
√
N ×

√
N‖σ‖2∞ sup

h∈Bm,m′

∫ τ

0

K∑
j=1

h2
j (t)dt ≤ τKN‖σ‖2∞fΓ := M2

using Proposition 2 and ‖h‖2Γ = 1.
We apply the Talagrand inequality given in Theorem 4 with M2 = τ fΓK‖σ‖2∞N , v = ‖σ‖2∞τ

and H2 = τ‖σ‖2∞(|m|+ |m′|)/N as follows

E

[(
sup

h∈Bm̂,m

ν2
N,1(h)− p(m̂,m)

)
+

1
Λ̂N∩ON

]
≤

∑
m′∈MN

E

(
sup

h∈Bm,m′
ν2
N,1(h)− p(m,m′)

)
+

≤
∑

m′∈MN

C1

N
e−C2

√
|m|+|m′| ≤ C

N
,

for some positive constant C and with p(m,m′) = 3‖σ‖2∞
|m|+|m′|

N , for α = 1/4.

• Now, we turn to the bound on T2. We prove that E
(

suph∈Bm̂,m
ν2
N,2(h)

)
≤ C/N . Recall

that for all m, Sm ⊂ SN.
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E

[
sup

h∈Bm̂,m

|νN,2(h)|2
[
≤ E

[
sup

h∈SN,‖h‖Γ=1
|νN,2(h)|2

]
= E

 sup
h∈SN,‖h‖Γ=1

[νN,2(

KN∑
j=1

ajΦj)]
2


= sup

h∈SN,‖h‖Γ=1
‖h‖2 E

KN∑
j=1

ν2
N,2(Φj)


≤ fΓ
N

KN∑
j=1

E
[∫ τ

0
(ΦT

j (t)X1(t))21Ωc1(X)σ
2(t,X1(t))(ε1(t)1Ωε1(t) − E[ε1(t)1Ωε1(t)])

2dt

]

≤ fΓ
N
τ‖σ‖2∞

|m|+|m̂|∑
j=1

E
[∫ τ

0
(ΦT

j (t)X1(t))21(ΩX1 (t))cdt

]
,

using that E[ε2
1(t)1Ωε1(t)] ≤ 1. Then as we can write

∑KN
j=1(ΦT

j (t)X1(t))2 =
∑K

j=1

∑N
k=1(ϕk(t)X1j(t))

2,
we get

E

[
sup

h∈Bm̂,m

|νN,2(h)|2
]
≤ fΓ

N
τ‖σ‖2∞

K∑
j=1

N∑
k=1

E
[∫ τ

0
(ϕk(t)X1j(t))

21(ΩX1 (t))cdt

]

≤ fΓ
N
τ‖σ‖2∞

K∑
j=1

E

[∫ τ

0

(
sup
t∈[0,τ ]

N∑
k=1

ϕ2
k(t)

)
X2

1j(t)1(ΩX1 (t))cdt

]

≤ fΓ
N
τ‖σ‖2∞L(SN )E

∫ τ

0

K∑
j=1

X2
1j(t)1∑K

j=1 X
2
1,j(t)>N

1/2 dt


≤ fΓ

N
τ2‖σ‖2∞cϕ(KN)

supt∈[0,τ ] E[(
∑K

j=1X
2
1j(t))

1+q]

N q/2

≤ fΓτ
2‖σ‖2∞cϕK2+q

max1≤j≤K supt∈[0,τ ] E[X2+2q
1j (t)]

N q/2
≤ C

N

as soon as q ≥ 2 and Assumption (AX,p)(a) holds for p ≥ 6.

• The bound on T3 is obtained in a similar way as the second one and is omitted. It requires
supt∈[0,τ ] E[ε6

1(t)] < +∞.
Gathering the three bounds gives the result of Lemma 8. 2
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