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Viewpoint 

ABSTRACT  The eight biological hallmarks of health that 
we initially postulated (Cell. 2021 Jan 7;184(1):33-63) 
include features of spatial compartmentalization (in-
tegrity of barriers, containment of local perturbations), 
maintenance of homeostasis over time (recycling & 
turnover, integration of circuitries, rhythmic oscilla-
tions) and an array of adequate responses to stress 
(homeostatic resilience, hormetic regulation, repair & 
regeneration). These hallmarks affect all eight somatic 
strata of the human body (molecules, organelles, cells, 
supracellular units, organs, organ systems, systemic 
circuitries and meta-organism). Here we postulate that 
mental and socioeconomic factors must be added to 
this 8x8 matrix as an additional hallmark of health 
(“psychosocial adaptation”) and as an additional stra-
tum (“psychosocial interactions”), hence building a 9x9 
matrix. Potentially, perturbation of each of the somatic 
hallmarks and strata affects psychosocial factors and 
vice versa. Finally, we discuss the (patho)physiological 
bases of these interactions and their implications for 
mental health improvement.  
 

 
The missing hallmark of health: psychosocial adaptation 

 

Carlos López-Otín1,2,3,* and Guido Kroemer1,4,5,* 
1 Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, In-
serm U1138, Institut Universitaire de France, Paris, France. 
2 Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain. 
3 Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo. 
4 Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France. 
5 Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. 
* Corresponding Authors:  
Carlos López-Otín, Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne 
Université, In- serm U1138, Institut Universitaire de France, Paris, France; E-mail: clo@uniovi.es 

Guido Kroemer, Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne 
Université, Inserm U1138, Institut Universitaire de France, Paris, France; E-mail: kroemer@orange.fr 
 
 

 

 
 

INTRODUCTION 
The comprehension of health –defined in a positive fashion 
rather than as the absence of disease– requires a theory. 
We recently launched the bases of such a health theory by 
enumerating the fundamental biological characteristics or 
“hallmarks” of healthy organisms [1]. We concluded that 
the hallmarks of health include features of spatial com-
partmentalization (Hallmark 1: integrity of internal and 
external barriers; Hallmark 2: containment of local pertur-
bations), maintenance of homeostasis over time (Hallmark 
3: recycling & turnover of building blocks of biological sys-

tems; Hallmark 4: integration of circuitries; Hallmark 5: 
rhythmic oscillations with supra-, circa- and infradian peri-
odicity), and adequate responses to stress (Hallmark 6: 
homeostatic resilience; Hallmark 7: hormetic regulation; 
Hallmark 8: repair & regeneration) (Box1). We postulated 
that these eight hallmarks affected the organism through 
all eight organizational strata of the body including mole-
cules, organelles, cells, supracellular units, organs, organ 
systems, systemic circuitries, and the meta-organism or 
holobiont [1].  
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Abbreviations: 
Arc – activity-regulated cytoskeleton-associated protein; ASD – au-
tistic spectrum disorders; BBB – blood-brain barrier; BD – bipolar 
disorder; C4A – component 4A; CLDN5 – claudin-5; CNS – central 
nervous system; CSF1R – colony stimulating factor 1 receptor; DDR 
– DNA damage response; DISC1 – disrupted-in-SCZ-1; EBP1 – 
ErbB3-binding protein 1; FMRP1 – fragile X mental retardation 
protein 1; FOXO1 – forkhead box protein O1; GSK-3α – glycogen 
synthase kinase 3α; HDAC1 – histone deacetylase 1; HPA – hypo-
thalamic pituitary adrenal; IL6 – interleukin-6; iPSC – induced plu-
ripotent stem cell; MDD – major depressive disorder; mtDNA – mi-
tochondrial DNA; NLGN3 – neuroligin-3; NPY – neuropeptide Y; 
ROS – reactive oxygen species; S1PR3 – sphingosine-1-phosphate 
receptor 3; SAM – sympathetic-adrenal medullary; SCZ – schizo-
phrenia; Tac2 – tachykinin 2; WHO – world health organization. 
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In retrospect, we consider that our theory of health 
should incorporate one additional hallmark and one essen-
tial stratum, both of which are related to the psychosocial 
dimension of the human being. We postulate herein a 
ninth hallmark that we refer to as “psychosocial adaptation” 
(Fig. 1), as well as a ninth organizational stratum (“psycho-
social interactions”), hence extending the biologi-
cal/somatic 8x8 matrix to a larger 9x9 matrix (Fig. 2). In this 
article, we first define the ninth hallmark and evoke the 
impact of each of the eight biological hallmarks on mental 
health. Next, we show that perturbation of each of the 
somatic hallmarks and strata may affect psychosocial fac-
tors and vice versa. Finally, we discuss the 
(patho)physiological bases of these interactions and their 
potential applications for the improvement of mental 
health. 
 

PSYCHOSOCIAL ADAPTATION AS AN ESSENTIAL HALL-
MARK OF HEALTH 
According to the World Health Organization (WHO), “men-
tal health is a state of mental well-being that enables peo-
ple to cope with the stresses of life, realize their abilities, 
learn well and work well, and contribute to their communi-
ty”. In this sense, mental health is a larger concept than the 
mere absence of psychiatric disease. Currently, the classifi-
cation of mental disorders presents several challenges in-
cluding genetic overlaps between different conditions such 
as autistic spectrum disorders (ASD), major depressive dis-
order (MDD), bipolar disorder (BD) and schizophrenia (SCZ) 
[2, 3]. Such overlaps also involve alterations in brain anat-
omy, perturbations in gene expression signatures, symp-
tomatic changes in mood and social behavior, and thera-

peutic responses to psychotropic drugs [4, 5]. In view of 
these uncertainties, the negative definition of mental 
health as the absence of mental disease appears imprecise.  

The concept of “psychosocial adaptation” refers to the 
permanent tension between the individual and its social 
and socioeconomic context, which accompanies our per-
sonal trajectory from birth to death. This conflict has to be 
permanently resolved by adaptations that optimize the 
individual’s capacity to cope with frustrations, to deal with 
the absence of positive social relationships, to avoid acci-
dents and personal demolition, to successfully compete for 
resources and to contribute to the collective success of the 
social groups, while proactively taking the correct decisions 
[6]. Maladaptive reactions subvert subjective wellbeing 
and endanger the position and even the survival of the 
individual in the socioeconomic system [6], although some-
times the majority may take wrong decisions e.g. in a mass 
formation/mass psychosis situation. Our definition of psy-
chosocial adaptation is not only circumscribed to the inner 
state of the individual and to the stressors that influence it. 
Previous studies have shown that positive social relation-
ships are essential regulators of human physiology both in 
early and later life, as illustrated by works on maternal 
separation or maternal immune activation [7], and on in-
terventions against the epidemic of loneliness [8]. Thus, 
psychosocial adaptation and development is not simply 
about the absence of social problems, but also requires the 
presence of stable and positive social interactions which 
represent critical sources of resilience to life stress [9–12]. 
Importantly, even extreme adversity does not necessarily 
undermine mental health [13]. While some individuals 
declare long-lasting mental problems after adverse experi-

BOX 1 | The molecular and cellular hallmarks of health 

Three years ago, we tentatively launched the modern bases of a theoretical explanation of health in which we didactically 
enumerated the fundamental biological characteristics or “hallmarks” of healthy organisms (López-Otín & Kroemer, Hall-
marks of Health, Cell 2021). To qualify as a “hallmark” of health, we postulated that a process would have to fulfil three 
basic criteria, namely (i) invariably manifest in the context of sustained health, (ii) inexorably cause the loss of the healthy 
state, if perturbed or disrupted, and (iii) vigorously maintain or improve health, if experimentally accentuated or restored. 
When applying these stringent criteria, we finally defined eight molecular and cellular hallmarks of health classified in 
three categories: 

A. Spatial compartmentalization  

Hallmark 1: integrity of internal and external biological barriers 
Hallmark 2: containment of local perturbations in space and time 

B. Maintenance of homeostasis over time  

Hallmark 3: recycling and turnover of all major building blocks of biological systems 
Hallmark 4: integration of molecular, cellular, and long-distance communication circuits 
Hallmark 5: rhythmic oscillations with supra-, circa- and infradian periodicity 

C. Adequate responses to stress  

Hallmark 6: homeostatic resilience to maintain multiple biological parameters at adequate levels 
Hallmark 7: hormetic regulation to acquire resilience against toxins and other stressors 
Hallmark 8: repair and regeneration methods to sense and respond to the multiple body damages  
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ences, others manage to cope with these events and main-
tain the state of “psychosocial adaptation”. This capacity is 
determined by genetic and non-genetic factors, as demon-
strated by twin studies [14] and experiments on inbred 
mice [15], that have revealed interindividual differences 
between susceptibility and resistance/resilience to mental 
disease. 
 
Social Stress Models in Rodents 
A prototypic model of psychosocial stress in mice consists 
in the exposure of male mice to repeated aggression by 
male mice from an intruder strain (Fig. 3A). This model of 
chronic social defeat promotes behavioral alterations cou-
pled to an activation of the sympathetic-adrenal medullary 
(SAM) and hypothalamic pituitary adrenal (HPA) axes, 
which culminates with an increase in circulating catechol-
amines and glucocorticoids, and pro-inflammatory reac-
tions that contribute to the behavioral phenotype due to 
neuroinflammation (Fig. 3B) [16]. Models of acute stress 
including tube restrains, cage switching, and short-term 
social isolation cause an increase in circulating interleukin-
6 (IL6) levels secondary to SAM activation (Fig. 3B). Then, 
IL6 stimulates hepatic gluconeogenesis and hyperglycemia 
to fuel the “fight or flight” response, but also increases the 
susceptibility to inflammation [17]. In yet another model of 

chronic isolation stress, HPA-independent brain-wide up-
regulation of tachykinin 2 (Tac2), a neuropeptide previous-
ly implicated in fear memory consolidation, induces en-
hanced aggression and other behavioral changes, which 
has suggested a role for Tac2 as an important mediator of 
the effects of chronic social isolation stress [18]. Social 
status among male mice can be studied in the dominance 
tube test (Fig. 3A) [19]. After repeated “forced loss” proce-
dures (based on an experimental design in which a domi-
nant mouse is repeatedly forced to back down and lose to 
a subordinate in the social hierarchy) the formerly domi-
nant mouse loses its social rank and develops a depressive-
like behavior coupled to activation of the lateral habenula. 
Likewise, loss of social status rather than a stable low rank 
constitutes a risk factor of MDD in primates including hu-
mans [20].   

 
Social and Socioeconomic Determinants of Health in Hu-
mans 
Social stress increases the probability of developing multi-
ple somatic and psychiatric diseases [6, 21]. Similarly, per-
ceived social isolation correlates with enhanced severity of 
symptoms after viral immune challenge, inflammatory re-
actions, mental and physical morbidity, as well as with 
higher mortality rates [22]. Conversely, individuals exhibit-

FIGURE 1: The psychosocial adaptation as a new hallmark of health. The scheme represents the links between psychosocial adaptation and 
the eight previously proposed hallmarks of health: integrity of barriers, containment of local perturbations, recycling & turnover, integration of 
circuitries, rhythmic oscillations, homeostatic resilience, hormetic regulation, and repair & regeneration. These hallmarks are grouped into 
three categories: spatial compartmentalization, maintenance of homeostasis over time, and adequate responses to stress. 



C. López-Otín and G. Kroemer (2024)  Psychosocial adaptation and health 

 
 

OPEN ACCESS | www.cell-stress.com 24 Cell Stress | Vol. 8 

ing a high degree of social integration are afflicted by a 
relatively low morbimortality [23]. Differences in socioeco-
nomic status may translate in discrepancies of a decade or 
more of disability-free life expectancy, coupled to a reduc-
tion of the prevalence of most major diseases in favor of 
the rich [6]. Similarly, the poor are more likely than the 
affluent to experience MDD and anxiety disorders [24]. The 
reasons for this association are multifold with higher 
chances of early life adverse events, hardship-induced 
stress, poor nutrition, less exercise, higher exposure to 
tobacco, alcohol and drug abuse, environmental pollution, 
extreme temperatures, violence and crime, as well as 
shame, emotional abuse, bullying, discrimination and isola-
tion. In addition, poor somatic and mental health may pre-
dispose to low socioeconomic status through a “poverty 
trap” mechanism that includes reduced cognitive functions, 
lack of motivation and fatigue, as well as poor economic 
choices, suggesting a bilateral relationship between poor 
mental health and low socioeconomic status [24].  

The temporal order of events observed in patients as 
well as preclinical experimentation suggest that prevalent 
characteristics linked to low socioeconomic status may 
contribute to mental illness, as documented for obesity, 
which is associated with reduced cognitive functions in 
adults [25] and suppresses neurogenesis and causes anxie-
ty in mice, as well as increased susceptibility to several 

mental pathologies including depression, psychosis, anxie-
ty, and eating disorders in human [24, 26]. Most current 
evidence, in particular that drawn from animal models, 
support the “social causation” hypothesis, meaning that 
social interactions directly affect health outcomes [6].  

 
Psychosocial Adaptation for the Improvement of Health 
Loss of psychosocial adaptation often occurs as a correlate 
of deteriorating health conditions and interventions favor-
ing this adaptation improve health outcomes in clinical 
trials [27–30]. Further, psychosocial interventions increase 
stress resilience [31] and improve the recovery from de-
pression [32]. Several studies have suggested that inhibi-
tion of stress mediators such as inflammatory cytokines, 
glucocorticoids and catecholamines elicited by social stress 
can mediate effects on psychiatric diseases [33–37], while 
other works have shown that the presence of mental dis-
orders amplifies morbidity or mortality due to somatic 
disease [38]. Accordingly, treatment of mental disorders 
with psychotropic drugs does not only reduce psychiatric 
symptoms, but also mitigates excessive somatic morbimor-
tality [39].   

In summary, the enfeeblement of somatic health im-
pacts psychosocial adaptation and vice versa. Emerging 
evidence suggests that treatments designed to enhance 
psychosocial adaptation, to improve stress management, 

FIGURE 2: Square matrix representing the relationships between health hallmarks and body strata. The 9x9 matrix depicts the bidirectional 
connections between the nine hallmarks of health and the nine organizational strata of the human body. The relationships between psychoso-
cial adaptation and psychosocial interactions are specifically enhanced. 
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or to provide adequate psychopharmacological care, may 
have a positive impact on health outcomes. Based on this 
information, we aimed to unveil the connections between 
psychosocial adaptation and somatic hallmarks of health.  

 

HALLMARK 1: INTEGRITY OF BARRIERS  
The first hallmark of health consists in the integrity of bio-
logical barriers [1]. Such barriers must maintain strict com-
partmentalization to ensure the functional organization of 
the organism, but allow for the controlled exchange of 
solutes, electrolytes, soluble factors and mobile cells to 
sustain health. Here, we will examine how mental disor-
ders compromise the integrity of barriers and how this 
integrity may impact psychosocial parameters (Fig. 4).  

 
Mitochondrial Integrity 
Mitochondrial structure determined by fusion/fission 
events as well as the expression of bioenergetically rele-
vant pumps and enzymes determine the propensity of mi-
tochondria to undergo permeabilization and hence to re-
lease pro-inflammmatory and pro-apoptotic molecules into 
the cytosol of stressed cells. Mitochondrial DNA (mtDNA) 
alterations are associated with human ASD [40] and au-
tism-like phenotypes in mice [41]. Induced pluripotent 
stem cell (iPSC)-derived neural precursors from BD patients 
present a mitochondrial defect which can be reversed by 

lithium [42]. MDD has been associated with increased cir-
culating levels of acylcarnitines – suggesting a defect in 

mitochondrial -oxidation – [43] and of cell-free mtDNA 
derived from mitochondrial membrane permeabilization 
[44]. Notably, the 22q11.2 deletion syndrome, which often 
includes facets of ASD and SCZ [45], leads to mitochondrial 
disruption in mouse cortical neurons [46]. iPSC-derived 
neurons from 22q11.2-deleted patients with signs of SCZ 
manifest a defect in oxidative phosphorylation [47], while 
transplantation of normal mitochondria into the prefrontal 
cortex of adolescent rats suppresses SCZ phenotypes in-
duced by maternal immune activation [48], further sup-
porting the relationship between SCZ and mitochondrial 
dysfunction.   
 
Cellular Integrity 
In a mouse model of depression induced by chronic mild 
stress, astrocytic pyroptosis (an inflammatory form of cell 
death triggered by microbial infections and host factors) 
may contribute to this condition since knockout of pro-
pyroptotic genes alleviates depression-like behavior [49]. 
Cell-free genomic DNA is increased in plasma from SCZ 
patients, supporting the possibility of increased cell death 
[50]. Brain-derived cell-free DNA, detected via epigenetic 
markers, is increased in SCZ patients with first psychotic 
episodes [51]. This may represent a sign of enhanced cell 

FIGURE 3: Mouse models of psychosocial stress and response pathways resulting in psychosocial adaptation. (A) Prototypic models of psy-
chosocial stress in mice include chronic social defeat and dominance tube test models, as well as models of acute stress such as tube restrains, 
cage switching and short-term social isolation. (B) Different stressors including psychosocial stress promote a compendium of physiological and 
behavioral alterations coupled to activation of the sympathetic-adrenal medullary (SAM) and the hypothalamic pituitary adrenal (HPA) axes, as 
well as additional pathways which need to be further characterized. Deconvoluting the molecular pathways linking social stress to compro-
mised mental and physical health may lead to the introduction of intervention strategies for improving psychosocial adaptation to stress. 
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death by plasma membrane permeabilization, reduced 
clearance of dead cells, or deficient retention of cellular 
debris by the blood-brain barrier (BBB) in the central nerv-
ous system (CNS) from these patients. However, the litera-
ture on excessive cell death in mental disease is scarce, 
thus pointing to a higher importance of BBB integrity.  
 
Blood-Brain Barrier Integrity 
BBB assures the exclusion of mobile immune cells and pro-
inflammatory factors, the transport mechanisms from the 
periphery into the brain and the active export of toxic me-
tabolites and waste products from the brain [52]. Endothe-
lial cells, which form the first barrier between blood and 
the brain, are connected by tight junction proteins such as 
claudin-5 (CLDN5). The local abundance of this protein is 
often a proxy to assess BBB intactness, which is perturbed 
in aging and psychiatric diseases [52]. Notably, the 
22q11.2-deletion syndrome causes CLDN5 haploinsuffi-
ciency and leads to reduced CLDN5 levels in endothelial 
cells. In parietal lobes from non-syndromic SCZ patients, 
CLDN5 is discontinuously expressed in the BBB [53], while 
reduced expression of CLDN5 in the hippocampus of MDD 
or SCZ patients correlates with early onset and prolonged 
duration of disease [54]. Importantly, CLDN5 expression in 
specific brain areas correlates with susceptibility or re-
sistance to stress-induced disorders [55, 56], supporting 
the implication of the CLDN5-dependent BBB integrity in 
mental health maintenance. Accordingly, chronic social 
defeat stress in mice causes Cldn5 downregulation in the 
nucleus accumbens with loss of BBB integrity [57]. This 

process is mediated by activation of TNF/NFB signaling 
and histone deacetylase 1 (HDAC1, that catalyzes the 
deacetylation of lysine residues of core histones), and by 
upregulation of the transcription factor forkhead box pro-
tein O1 (FOXO1) [58]. Of note, HDAC1 and FOXO1 are up-
regulated in the nucleus accumbens from untreated MDD 
patients, while CLDN5 is downregulated [58]. Similarly, 
female MDD patients who died from suicide present down-

regulation of CLDN5 in the prefrontal cortex [55]. Gain- and 
loss-of-function experiments in mice have provided causal 
support to the idea that BBB permeabilization is broadly 
neuropathogenic [55–57, 59]. Moreover, subtle alterations 
in BBB function that affect specific transport systems have 
been detected in neuropsychiatric patients [60, 61]. 
 

Choroid Plexus Barrier Integrity 
The choroid plexus vascular barrier, which separates blood 
from cerebrospinal fluid, is usually permeable to molecules 
of up to 70 kDa, yet closes upon induction of intestinal 
inflammation due to sealing of the fenestration of endo-
thelial cells. Genetically-driven closure of the choroid plex-
us induces anxiety-like behavior that was also observed in 
intestinal inflammation, suggesting a pathogenic role for 
these alterations that potentially link inflammatory bowel 
disease and psychosocial disturbances [62]. In both MDD 
and psychosis patients, the choroid plexus is enlarged 
compared to healthy controls, and this finding correlates 
with signs of neuroinflammation [63]. Moreover, the cho-
roid plexus is histologically altered in SCZ patients [64]. 
However, it remains to be determined whether these mac-
ro- and microscopic alterations reflect changes in barrier 
function.  
 
Intestinal Barrier Integrity 
The gut vascular barrier protects from external insults 
through a multilayered structure that evolves in coopera-
tion with the local microbiota. Numerous studies have sug-
gested that general features of the unhealthy gut microbi-
ota (dysbiosis) are non-specifically associated with multiple 
distinct disease states ranging through the entire spectrum 
of pathologies including oncological, metabolic, cardiovas-
cular, and neuropsychiatric diseases. Hence, gut health is a 
common trait of general health.  Accordingly, breaches in 
the mucus layer and the enterocyte epithelium [65] can 
lead to the translocation of microbes or microbe-derived 
molecules into the host, elicitation of inflammatory signals, 

FIGURE 4: Psychosocial dimension of health hallmarks implicated in spatial compartmentalization. Links between psychosocial adaptation 
and the mechanisms responsible for the integrity of biological barriers and the containment of local perturbations. 
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and trafficking of gut-resident immune cells to other or-
gans [66, 67]. Accordingly, “leaky gut” may trigger or mod-
ulate distinct diseases including mental disorders [66]. Psy-
chological stress causing the activation of HPA or SAM im-
pacts the gut. Thus, HPA-elicited chronic elevations in glu-
cocorticoids have multiple effects on the gut due to the 
expansion of an inflammatory subset of enteric glia and the 
inhibition of acetylcholine responses by enteric neurons 
causing intestinal dysmotility [68]. In contrast, SAM activa-
tion accounts for a “stress ileopathy” with consequent 
shifts in the microbiota [69]. Reciprocally, the microbiota 
participates in HPA modulation, because its depletion ex-
acerbates HPA activation in response to moderate stress 
[70]. Moreover, elevated levels of biomarkers of intestinal 
barrier permeability have been detected in patients with 
mood disorders [71]. Interestingly, fecal microbiota trans-
plantation from MDD patients into rats induces a depres-
sive-like phenotype [72], while lithium administration sig-
nificantly increases species richness and diversity in the rat 
gut, likely contributing to the beneficial effects of this drug 
[73]. In mice, maternal immune activation or infection dur-
ing pregnancy induces the differentiation of IL17–
producing TH17 lymphocytes in the gut. IL17 then crosses 
the placental barrier and affects the fetal CNS, resulting in 
ASD-like behavior [74]. In this model, gavage with Lactoba-
cillus reuteri corrects social impairments by signaling across 
the microbiota-gut-brain axis through vagal neurons [75]. 
In ASD patients, major shifts in the intestinal microbiota 
have been detected, but many of them are likely caused by 
altered food preferences of these patients [76]. Nonethe-
less, preclinical experimentation in mice indicates that bac-
terial L-tyrosine metabolites can induce anxiety-like behav-
ior [77]. Moreover, an oral small-molecule sequestrant 
with affinity for microbiota metabolites mitigates anxiety 
and irritability in adolescents with ASD [78]. Altogether, it 
appears that some microbial metabolites (psychobiotics) 
can induce systemic effects on mental health. Such effects 
can be negative, as illustrated for ASD, but can also be pos-
itive, as exemplified by the microbiota-derived endocanna-
binoids that increase the motivation for physical exercise 
[79]. 
 
Skin Barrier Integrity 
The common manifestation of atopic dermatitis or psoria-
sis -two conditions with compromised skin barrier integri-
ty- and different mental disorders might reflect common 
genetic causes simultaneously affecting the two tissues of 
ectodermal origin, skin and brain [80]. Independently of 
this speculative explanation, eczema and related atopic 
diseases are associated with more severe ASD manifesta-
tions. Hence, a hypothetical “skin-brain axis” has been 
proposed in which dermal inflammation would trigger 
mental disorders. Supporting this conjecture, experimental 
induction of dermatitis in mice increased anxiety- and de-
pressive-like behaviors, along with elevated serum corti-
costerone levels [81]. More convincingly, in clinical trials, 
anti-IL17A [82] and anti-IL4R [83] antibodies which target 
inflammatory signaling in the skin, reduced psoriatic le-

sions and atopic dermatitis, respectively, as they simulta-
neously mitigated anxiety and depression.  
 

HALLMARK 2: CONTAINMENT OF LOCAL PERTURBA-
TIONS 
Perturbations due to endogenous alterations, infectious 
agents and mechanical, chemical, physical or emotional 
trauma can cause focal damage to tissues and compromise 
barriers. Failure to confine such perturbations, avoiding 
their spread to a systemic level and their perpetuation, is 
intrinsically pathogenic. Hence, the containment of local 
perturbations is essential for the maintenance of somatic 
and mental health (Fig. 4). This is particularly well docu-
mented for inflammation, usually a local phenomenon that 
resolves. However, inflammation becomes broadly patho-
genic if it acquires a system-wide, chronic dimension [1].  
 
Self-limited Inflammation 
Neuroinflammation is linked to systemic inflammation and 
likely contributes to the pathogenesis of mental disorders 
[84]. Orthopedic surgery performed in older adults often 
induces delirium as a result of systemic inflammation spur-
ring neuroinflammation. Postoperative delirium can be 
reduced in patients by the α2-adrenergic receptor agonist 
dexmedetomidine [85] and in mice by inhibition of micro-

gliosis by -3 fatty acids or resolvins [86]. CNS-specific in-
flammation due to autoimmunity or stroke can trigger 
MDD. Thus, relapsing multiple sclerosis is associated with 
depression that responds to fingolimod [87], an immuno-

suppressor which is also active against SCZ [88]. Anti-TNF-
based treatments mitigate depressive symptoms in rheu-
matic diseases patients [89]. Likewise, intracerebroventric-

ular infusions of anti-TNF antibody or several resolvins 
produce antidepressant-like effects in rodent models [90], 

while in MDD patients, oral supplementation with the -3 
fatty acid eicosapentaenoic acid induces clinical responses 
associated with elevated plasma concentrations of pro-
resolving lipid mediators [91]. These findings support the 
possibility to intervene on neuroinflammation in mental 
disorders. If inflammation resolves in a timely fashion after 
an acute phase, it facilitates tissue repair [92]. In the CNS, 
such repair reactions allow to restore BBB integrity and 
axon remyelination which are essential for the mainte-
nance of CNS function.  
 
Repair of the Blood-Brain Barrier 
BBB permeabilization can be repaired through a process 
that involves the contribution of endothelial cells, pericytes, 
astrocytes and fibroblasts. BBB repair slows with aging [93], 
and can be stimulated by CNS-targeted gene therapy with 
engineered Wnt ligands [94] or by intracerebroventricular 
administration of protease inhibitors [95]. Traumatic brain 
injury in mice induces BBB permeabilization and axonal 
degeneration leading to progressive neurological and men-
tal deficits. These long-term consequences of brain trauma 
can be prevented by activation of NAD+ biosynthesis by 
P7C3, an activator of NAMPT, and the NAD+ precursor nico-
tinamide riboside improved depressive- and anxiety-like 
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behaviors in rats exposed to mild stress [96]. Similarly, 
nicotinamide, another NAD+ precursor, mitigates BBB 
damage and psychosis in rats chronically exposed to keta-
mine [97]. These observations suggest the use of NAD+ 
precursors in neuropsychiatric diseases linked to BBB per-
meabilization. 
 
CNS Remyelination 
Human SCZ is accompanied by reduced myelination of the 
medial frontal regions. In rodents, demyelination resulting 
in SCZ-like behaviors can be induced by administration of 
cuprizone, a copper chelator that paradoxically increases 
copper concentrations in the brain [98]. Remyelination can 
occur spontaneously after cuprizone withdrawal but is 
enhanced by some antipsychotics and by the histamine 
receptor H1 antagonist clemastine [98]. Of note, clemas-
tine can reduce depressive-like behaviors in mice exposed 
to social defeat stress [99]. Interestingly, clemastine has 
other pharmacological effects (e.g., anticholinergic) that 
increase the activity of histone methyltransferases and 
may also contribute to the behavioral benefits of this drug. 
Clemastine and sobetirom - another promyelinating drug - 
also promote functional recovery in an ASD mouse model 
[100]. Multiple remyelination-inducing drugs are being 
developed, mostly for multiple sclerosis treatment, and it 
will be interesting to learn whether they mediate positive 
effects on patients with mental disorders [101]. 
 
Synaptic Pruning 
Synaptic pruning is a fundamental neurodevelopmental 
process in which excess or weak synapses are eliminated to 
optimize neural circuitry [102]. Synaptic pruning also plays 
a crucial role in shaping circuits involved in learning and 
memory [103]. Both excessive and deficient synaptic prun-
ing might contribute to mental disorder pathogenesis. De-
ficient pruning mechanisms during early brain develop-
ment may result in atypical neural connectivity patterns, 
linked to the social and behavioral deficits observed in ASD 
patients. As compared to neurotypical controls, the frontal, 
temporal and parietal lobes from these patients exhibit 
increased synapse density, suggesting an underpruning 
phenotype [104]. Abnormalities in synaptic pruning have 
also been implicated in SCZ pathogenesis, which is associ-
ated with synaptic alterations suggestive of overpruning 
[105]. Dysregulated synaptic pruning during adolescence 
may underlie these structural changes and contribute to 
the cognitive deficits observed in SCZ [106]. Accordingly, 
SCZ is linked to allelic variants of the complement compo-
nent 4A (C4A) locus that enhance C4a protein production, 
while overexpression of human C4A in mice causes exces-
sive pruning in the cortex associated to SCZ-like behaviors 
[107].  
 

HALLMARK 3: RECYCLING AND TURNOVER 
Many of the building blocks of the organisms undergo 
spontaneous or stress-induced alterations that must be 
counterbalanced by their constant dismantling and rebuild-
ing. Recycling and turnover hence are critical for the 
maintenance of the healthy state, as this is particular well 

documented for protein homeostasis (proteostasis), au-
tophagy and cell replacement [1]. Alterations in these pro-
cesses are also associated with mental illnesses (Fig. 5). 
 
Proteostasis 
Aberrant proteostasis is a hallmark of aging and neuro-
degenerative diseases [108, 109]. Proteostasis alterations 
in neuropsychiatric disorders do not result in massive neu-
ronal death, but in diverse loss- and gain-of-function 
events converging in the disruption of synaptic and neural 
functions [110–112]. Specific proteases and E3 ubiquitin 
ligases are mutated in hereditary mental and neurodevel-
opmental disorders [113–117]. Conversely, loss of ErbB3-
binding protein 1 (EBP1, a signaling molecule which is mu-
tated in some SCZ patients) causes upregulation of the E3 
ubiquitin ligase Fbxw7 and an SCZ-like behavior in mice 
[118]. Moreover, in fragile X syndrome – a leading mono-
genic cause of autism – loss of Fragile X Mental Retardation 
protein 1 (FMRP1) impairs proteostasis. This deficiency can 
be mitigated in mice by administration of proteasome in-
hibitors, which also attenuate hyperexcitability in response 
to auditory stimulation [119]. These findings point to the 
causal involvement of specific alterations of proteostasis in 
neuropsychiatric diseases.  
 

Mitophagy 
Mitochondrion-specific autophagy (mitophagy) involves 
several genes/proteins that mark dysfunctional mitochon-
dria for autophagic destruction and hence serve as “au-
tophagy adaptors” – such as PARK and PINK – that are mu-
tated in Parkinson’s disease patients [120]. Of note, Parkin-
son’s disease is not limited to motor deficits, but is usually 
preceded and accompanied by neuropsychiatric alterations 
and cognitive impairment [121]. Disrupted-in-SCZ-1 (DISC1) 
– the mutation of which causes behavioral abnormalities – 
has been identified as a mitophagy receptor [122]. Defec-
tive mitophagy might also contribute to MDD-associated 
mitochondrial dysfunction [123]. In contrast, excessive 
Pink- and Park-dependent mitophagy in the basolateral 
amygdala from mice has been proposed to mediate dis-
proportionate elimination of mitochondria in chronic social 
defeat stress, facilitating anxiety and aversive social behav-
ior [124]. Hence, both deficient and excessive mitophagy 
may contribute to the pathogenesis of mental disorders.  
 

Autophagy 
Macroautophagy (to which we refer to as autophagy) can 
be activated in all relevant cell types of the CNS [125]. Neu-
ron-specific knockout of the essential autophagy gene Atg5 
results in increased excitatory neurotransmission [126]. 
Autophagy also contributes to synaptic remodeling, for 
instance in long-term synaptic depression induced by 
NMDAR activation [127]. In microglia, knockout of another 
essential autophagy gene, Atg7, impairs synaptic pruning 
and elicits ASD-like behaviors [128]. Moreover, genetic 
defects in specific autophagy genes cause neuropsychiatric 
disorders [125, 129, 130]. Tsc2+/- mice -which manifest 
constitutive overactivation of nutrient sensor mTorc1 and 
tonic inhibition of autophagy- exhibit ASD-like features 
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[131]. Similarly, valproic acid administration to mice and 
vitamin B6 deficiency in rats are associated with autism-
like behavior that can be reversed by mTorc1 inhibition 
with rapamycin [132, 133]. Obesity activates mTORC1 in 
microglia and astrocytes with disabled autophagy, while 
rapamycin treatment restores autophagy and reduces de-
pressive and anxiety-like behaviors [134]. Autophagy inhi-
bition caused by obesity might explain the link between 
excessive adiposity and ASD, MDD or SCZ [135, 136], but 
the observations suggesting that fasting may improve MDD 
must be replicated in large randomized studies [137]. 
These findings suggest that mTORC1 is hyperactivated in 
neuropsychiatric diseases, but there are exceptions to this 
rule. Thus, mTORC1 hypoactivity in the prefrontal cortex 
from men with BD and psychosis is pathogenic [138]. Ac-
cordingly, the antidepressant actions of ketamine depend 
on the neural activation of mTORC1 and its downstream 
effectors [139]. Moreover, systemic Gdf11 injection into 
aged mice alleviates depression-like symptoms through 
mTorc1 activation in hippocampal neurons [140]. Likewise,  
some of the neuroprotective mechanisms induced by lithi-
um in BD and other neuropsychiatric conditions may be 
related to autophagy regulation, although the underlying 
mechanisms are still unclear.  

Common antidepressants induce autophagy in circulat-
ing leukocytes from MDD patients [141]. as well as in 
mouse hippocampal neurons secondary to the accumula-
tion of ceramide in the endoplasmic reticulum and sphin-

gomyelin in lysosomes and Golgi apparatus [142]. Direct 
inhibition of sphingomyelin synthase with D609 enhances 
accumulation of ceramide and activation of autophagy, 
and reduces stress-induced MDD. Moreover, mice lacking 
acidic sphingomyelinase – which converts sphingomyelin 
into ceramide – exhibit depressive behavior, while the an-
tidepressant effects of amitriptyline and D609 are abol-
ished by the autophagy inhibitor spautin [142]. These find-
ings suggest that antidepressants may exert some of their 
beneficial effects through the enhancement of autophagic 
flux.   
 

Cell Replacement 
Cell death requires a local response for efficient corpse 
removal by phagocytes, and for replacing the missing cell 
or palliating its absence. Neuronal cell death triggers an 
orchestrated reaction by astrocytes and microglia, which 
engulf dendritic arbors, and the soma from neurons, re-
spectively [143]. In the CNS, different cell types undergo 
replacement at rather different rates. While most neurons 
are post-mitotic cells that should finish their existence 
when their host dies, there is evidence for postnatal neu-
rogenesis in some human brain areas, and impaired neuro-
genesis has been involved in the pathogenesis of several 
neuropsychiatric conditions (see Hallmark 8).  

Ablation of brain astrocytes can induce a compensatory 
proliferation of neighboring juxtavascular astrocytes [144]. 
Nerve growth factor receptor (p75NTR)-dependent astro-
cyte proliferation has also been observed after brain injury 

FIGURE 5: Psychosocial dimension of the hallmarks of health involved in maintenance of homeostasis. Interconnectivity between psychoso-
cial adaptation and mechanisms of recycling and turnover in tissues and cells, crosstalk among different circuitries (cell-tissue-organ-system), 
and their synchronization with circadian, infradian or ultradian rhythmic oscillations. 
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[145]. In contrast, astrocyte-specific knockout of Soc2 in-
terferes with astrocyte proliferation and improves recovery 
from traumatic brain injury, yet causes a hyperactivi-
ty/hyperexcitability phenotype [146]. Hence, the role of 
astrocyte proliferation and differentiation in brain health 
requires further investigation. Microglial progenitor cells 
formed in the embryonic yolk sac enter the CNS before the 
BBB forms and then constitute a self-renewing population 
without further contribution by the hematopoietic system 
[147]. With age, microglia is characterized by an increase in 
senescent cells coupled to the activation of the pro-
inflammatory senescence-associated secretory phenotype. 
Chemogenetic ablation and systemic senolysis of such se-
nescent microglial cells improves cognition in aged mice 
[93], while forced turnover of microglia following colony 
stimulating factor 1 receptor (CSF1R) inhibition improves 
recovery from traumatic brain injury at the inflammatory 
and neuropsychiatric levels [148]. These results suggest 
that strategies for increasing microglial renewal might be 
useful for intervening on neuropsychiatric diseases.   
 

HALLMARK 4: INTEGRATION OF CIRCUITRIES 
The organism – including the nervous system – is built in a 
way that molecular, intracellular, extracellular and long-
distance neuroendocrine communication systems consti-
tute interwoven circuitries, favoring integration [1]. We 
posit that loss of integration is invariably pathogenic, in-
cluding at the psychosocial level (Fig. 5).  
 
The Synapse 
Numerous genes whose mutations or variations are in-
volved in mental diseases encode proteins acting at the 
level of synapses [149]. Such genes may also be modulated 
epigenetically by early-life experiences, environmental 
factors and stress [149]. A few examples underscore the 
implication of synaptic alterations in mental disorders. A 
mutation in the cell adhesion protein neuroligin-3 (NLGN3) 
linked to ASD induces an enhancement in excitatory synap-
tic transmission [150], while loss of synapses in SCZ dis-
rupts pyramidal neuron function in the cortex to elicit cog-
nitive symptoms and disinhibits mesostriatal projections to 
promote dopamine overactivity and psychosis [106]. In 
response to prolonged stress, prefrontal cortex and hippo-
campus undergo dendritic retraction and spine loss, while 
other regions including amygdala and lateral habenula 
manifest elevated spine density and potentiated activity 
[151]. Clinically active antidepressants reverse the effects 
of stress and depression on synapse function, augmenting 
neurotransmission, boosting plasticity, and favoring synap-
togenesis [151].  
 
Neuroplasticity 
CNS is endowed with an unmatched capacity to simultane-
ously capture sensory, emotional and cognitive inputs and 
to stock, encrypt, retrieve and utilize information through 
an integrative learning process compatible with creativity, 
imagination and improvisation [152]. Neuroplasticity is 
achieved by a combination of three mechanisms. First, 
synaptic plasticity is shaped by coordinated neuronal activ-

ity, reinvigorating the strength and efficiency of synaptic 
connections by long-term potentiation or attenuating their 
function by long-term depression [153]. Second, structural 
plasticity involves reorganization of interneuronal connec-
tions by the pruning of dendritic spines [154]. Third, neu-
rogenesis facilitates the generation of new neurons in spe-
cific brain regions. Beyond its role in neurodevelopment 
and the acquisition of specific talents, neuroplasticity is 
crucial in the brain’s adaptive capacity to reorganize and 
compensate for deficits caused by stroke, trauma or senso-
ry deprivation. Neuroplasticity can also be maladaptive in 
specific neurological conditions such as phantom limb sen-
sations, chronic pain, hyperactivity and addiction. Mala-
daptive neuroplasticity can be tackled by several strategies 
including transcranial stimulation methods and biofeed-
back techniques [155]. In addition, ketamine and psyche-
delics may mediate their antidepressant effects by stimu-
lating neuroplasticity [156].  
 
Neuroendocrine Circuitries and Interoception  
The nervous and endocrine systems are linked through 
intricate bidirectional interactions. Starting by neural in-
puts, these circuitries involve SAM and HPA, but also thy-
roid and sex hormones, and the pro-social hormone oxyto-
cin [157, 158]. Conversely, stress hormones, classical hor-
mones produced by endocrine organs and a long list of 
“tissue hormones” impact the CNS. These tissue hormones 
include adiponectin, which has neuroprotective effects but 
also increases susceptibility to social stress;[159]. diaze-
pam-binding inhibitor, which stimulates central appetite 
centers but may also cause depression-like behavior [160]. 
and glucagon-like peptide-1, which induces satiety but may 
also attenuate depression [161]. These examples illustrate 
a constant neuroendocrine communication between CNS 
and the endocrine system that allows for the coordination 
of mental and bodily functions.  

Interoception permanently informs the brain on multi-
ple physiological parameters to generate a representation 
of the internal state of the organism and to facilitate ade-
quate reactive or proactive control [162]. Cardiac and gas-
tric interoception involves parasympathetic and sympa-
thetic signals, as well as subcortical relay nuclei including 
the nucleus tractus solitarius and parabrachial nucleus 
[163]. Dysfunctional interoception may compromise men-
tal health and participate in the pathogenesis of anxiety 
and mood and eating disorders [164]. Of note, optogenet-
ically induced extreme tachycardia causes anxiety in mice 
via activation of the posterior insular cortex [165], demon-
strating that peripheral organs responding to stress may 
control the affective behavioral state, hence closing an 
anxiogenic feedforward loop [165]. The disruption of such 
a malicious circuitry may contribute to the anxiolytic and 
antidepressant effects of calcium channel blockers and -
adrenergic receptor antagonists used for the treatment of 
tachycardia and hypertension [166].  
 
Neuroimmune Circuitries 
Cytokines released by immune cells in response to patho-
gens may act as interoceptive signals since they transmit 
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signals across BBB, including stimulation of the afferent 
(sensory) vagus nerve. This elicits a reciprocal response via 
HPA. In addition, the CNS can stimulate the efferent vagus 
nerve of the parasympathetic nervous system to exert a 
systemic anti-inflammatory effect termed as the “inflam-
matory reflex”. Signals communicated via the vagus and 
splenic nerves cause T cells to produce acetylcholine that 
acts on macrophages to dampen inflammation [167]. Dis-
ruption and mimicry of this reflex may exacerbate or sup-
press inflammation and depression [167]. Genetic models 
of immunodeficiency have supported the link between the 
cellular immune system and anxiety-like behaviors [168]. T 
cells can affect behavior in multiple ways. For example, 
adoptive transfer of CD4+ T lymphocytes from stressed 
mice to non-stressed recipients induces anxiety-like behav-
ior [169]. In the chronic social defeat model, susceptible 
mice manifest the depletion of Lactobacillus johnsonii from 
their gut microbiota coupled to an increase in the frequen-

cy of IL17-producing  T cells in the colonic lamina propria, 
as well as in the meninges. In this model, supplementation 

with L. johnsonii or depletion of  T cells suppresses social 
avoidance [170]. Collectively, these observations suggest 
the existence of multiple yet-to-be-discovered circuitries 
connecting the brain to the peripheral immune system.  
 

HALLMARK 5: RHYTHMIC OSCILLATIONS  
Biological clocks establish the rhythms of life that orches-
trate the complex mechanisms underlying organismal ho-
meostasis, including those necessary for the maintenance 
of mental health [171]. The central component of this syn-
chronization system is a circadian clock located in the su-
prachiasmatic nucleus of the hypothalamus. These neural 
pacemakers receive information on light cues from photo-
receptive retinal cells and specialized retinal ganglion cells, 
and then confer circadian rhythmicity to the myriad of pe-
ripheral clocks present in the diverse body tissues [172]. 
Circadian oscillations are molecularly driven by intricate 
transcriptional-translational feedback loops involving the 
transcriptional activators BMAL1 and CLOCK, which trans-
activate the genes encoding cryptochromes CRY1 and CRY2, 
and the transcriptional repressors PER1 to PER3, which in 
turn inhibit BMAL1 and CLOCK expression [172]. Disruption 
of circadian rhythms due to alterations in core clock genes 
or to lifestyle changes is responsible for a variety of human 
pathologies -including sleep disorders, neurodevelopmen-
tal conditions, and neurodegenerative processes- which 
compromise mental health and interfere with social rela-
tionships [173]  (Fig. 5). 
 
Sleep Disorders 
Circadian misalignment of environmental cues with the 
endogenous clock program due to artificial lighting, shift 
work or jet travel causes sleep disorders and is broadly 
pathogenic. Blue light that is continuously emitted by elec-
tronic devices used in daily life shifts the phase of neuronal 
and peripheral-tissue clocks [174]. Likewise, work sched-
uled during normal sleep time or frequent traveling across 
time zones desynchronizes sleep-wake rhythms from the 

light-dark natural cycle and leads to excessive sleepiness or 
insomnia. Additionally, intrinsic alterations of circadian 
function result in heritable early or late chronotypes char-
acterized by an extremely advanced or delayed onset of 
sleep, which may impact on physical and cognitive perfor-
mance, but also on mood status and social interactions 
[175]. Sleep disturbances together with inadequate eating 
schedules contribute to misalign clocks in metabolic organs, 
leading to obesity and other metabolic disorders, which in 
turn amplify mental perturbations. The early identification 
of individuals with extreme chronotypes, which are at risk 
of sleep dysfunctions, as well as behavioral and pharmaco-
logical interventions can reinforce circadian rhythmicity 
and improve the control of sleep-wake cycles [176].  

The relevance of sleep timing and chronotypes for the 
maintenance of mental health has grown in the context of 
“social jetlag” [177]. This term defines the discrepancy 
between biological time, dictated by internal circadian 
clocks, and social time, determined by social activities. 
Epidemiological studies have identified associations be-
tween social jetlag and the prevalence and clinical onset of 
diverse disorders, ranging from depression to metabolic 
dysfunction and reduced cognition [178-180]. Accordingly, 
the social zeitgeber theory proposes that disruption in the 
timing of daily social routines increases the risk for mood 
disorders and exacerbates BD [181]. Hence, social jetlag 
may be considered as a public health risk.    
 
Neurodevelopmental and Neuropsychiatric Diseases 
Circadian clock disruption has been detected in psychiatric 
disorders characterized by temporal or seasonal changes 
[182]. Such disorders are commonly associated with altera-
tions in different biological rhythms, including those con-
trolling the sleep-wake cycle, cortisol and melatonin pro-
duction, blood pressure, and circadian variations in the 
expression of clock genes and their transcriptional targets. 
Such changes occur across a large spectrum of neuropsy-
chiatric disorders, likely contributing to their overlapping 
symptoms [183]. Genetic studies have identified circadian 
clock gene variants associated to mood disorders, although 
data are not univocal, probably due to the variability of 
environmental influences in diverse study populations 
[173]. Neuroimaging analysis has suggested that infradian 
fluctuations in the sensorimotor network and in subcortical 
5-hydroxytryptamine projection regions explain the sea-
sonality of psychiatric diseases [184]. Neurodevelopmental 
syndromes such as Prader-Willi syndrome are also associ-
ated with dysfunctional circadian rhythms [185], while 
studies with mutant mice deficient in clock genes have 
confirmed that the circadian clock modulates mood-
related behaviors [186, 187]. Several molecular pathways 
(i.e., the HPA axis and monoaminergic neurotransmission) 
are involved in the circadian clock disruption observed in 
SCZ and mood disorders in preclinical models [188–190]. 
Substance abuse disorders are also associated with desyn-
chronization of circadian rhythms occurring during the 
transition from recreational consumption to addictive be-
havior [191]. This process involves the activation of the 
dopamine D2 receptor, which then triggers a regulatory 
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circuit that finally leads to the activation of the PPARγ nu-
clear receptor. Interestingly, administration of pioglitazone, 
a specific PPARγ agonist to D2r-deficient mice restores 
adequate rhythms of circadian genes [191], pointing to 
new opportunities for the treatment of drug addiction dis-
orders.  
 
 
Neurodegenerative Diseases 
Experimental jet lag in mice inhibits adult neurogenesis 
and causes cognitive impairments [192]. The circadian 
clock is functionally disrupted in patients with different 
neurodegenerative disorders, such as Alzheimer’s, Hun-
tington’s and Parkinson’s diseases, which in turn are linked 
to deficient adult neurogenesis. Mammalian clock genes 
participate in the control of neurogenesis by restricting the 
expansion of rapidly dividing neural precursors and by reg-
ulating the entry of quiescent neural stem cells into the cell 
cycle. Circadian rhythms in neural stem cells are regulated 
by glucocorticoids through a balanced action on mineralo-
corticoid and glucocorticoid receptors. Mice deficient in 
clock genes lack the circadian gating of cell cycle and lose 
diurnal rhythmicity [192]. Likewise, patients with neuro-
degenerative diseases often exhibit a severe reduction in 
the robustness of the circadian clock that results in pro-
found disturbances of sleep–wake cycles [193]. Moreover, 
polymorphisms in clock genes have been associated with 
an increased risk of Alzheimer’s or Parkinson’s disease, 
while preclinical and clinical data have correlated circadian 
disruption with the accumulation of neurotoxic proteins 
and neurodegeneration itself [173, 182]. Finally, the lack of 
appropriate light-dark cues, the presence of irregular 
sleep-wake cycles and the functional deterioration of cir-
cadian clocks contribute to the “sundown syndrome” 
which is prevalent in people with dementia or neuro-
degenerative illnesses.  

All these circadian system-related alterations have 
been traditionally viewed as correlative rather than causal 
events, but recent studies indicate that signs of circadian 
disruption precede the manifestation of other clinical 
symptoms, reinforcing the idea that perturbation of biolog-
ical rhythms contribute to disease pathogenesis [194]. Ac-
cordingly, chronotherapeutic interventions aimed at resyn-
chronization of these rhythms have shown promising ef-
fects [183]. An illustrative example is the antidepressant 
agomelatine which directly targets the circadian system, 
acting as a melatonin-receptor agonist and also as a 5-
hydroxytryptamine 2B/2C receptors antagonist. 
Agomelatine resynchronizes disrupted circadian rhythms 
and improves sleep patterns in patients with autism, atten-
tion-deficit/hyperactivity disorder, anxiety, and depression 
[195]. Therefore, circadian medicine and chronotherapy – 
which target specific clock components while carefully 
timing the administration of drugs – may improve the clini-
cal outcome of psychiatric patients.  
 
 
 

HALLMARK 6: HOMEOSTATIC RESILIENCE  
Homeostatic regulation defines resilience and determines 
lifespan and healthspan by controlling and repairing inter-
nal damages, eliciting appropriate stress responses, mini-
mizing biological noise, and facilitating constant tissue re-
modeling [1]. Homeostatic resilience involves the participa-
tion of complex neural mechanisms, which act in concert 
with a variety of genetic, epigenetic, metabolic, endocrine, 
immunological and microbial processes. Deficiencies in any 
of these resilience mechanisms may contribute to the de-
velopment and progression of numerous human patholo-
gies, including mental disorders (Fig. 6).   
 
Neural Mechanisms  
Resilience results from adaptive changes in the functional 
activity of numerous brain circuits that control the psycho-
biological responses to acute or chronic stressors. These 
changes involve the participation of multiple hormones, 
neuropeptides, neurotransmitters, and their corresponding 
receptors and signaling pathways, which collectively elicit 
homeostatic responses to stress [196]. Acute actions of 
glucocorticoids are protective and elicit homeostatic resili-
ence responses, whereas chronic exposure to high gluco-
corticoid levels causes neural damage and debilitates men-
tal health [197]. Glucocorticoids function in close coordina-
tion with neurotransmitters and neurotrophic peptides to 
modulate stress resistance. Acute stressors increase the 
brain turnover of serotonin, a central component of the 
circuits that control mood and emotion. They also affect 
dopamine, which modulates reward and aversion, contrib-
utes to fear extinction and participates to stress resilience 
[198]. Neuropeptide Y (NPY) is another factor that induces 
anxiolytic effects under stressful conditions [199]. In pa-
tients with MDD or PTDS, plasma levels of NPY are reduced 
[200], again illustrating the diversity of neural mechanisms 
of homeostatic resilience.  
 
Neural-Non-Neural Crosstalk  
Homeostatic resilience is not only directly controlled by 
neuron-intrinsic mechanisms, but also involves non-
neuronal cells (i.e., glial, myeloid and endothelial cells) that 
interact within the CNS to modulate neural networks and 
control stress behaviors. Non-neuronal cells from limbic 
regions of brain can interact at synapses, the neurovascular 
unit, and other sites of cell-cell communication to mediate 
both the pro-resilient and deleterious effects of chronic 
stress [201]. These brain regions play critical roles in the 
regulation of mood and emotional states through a fertile 
crosstalk between neural and non-neural components. For 
example, in response to aversive or rewarding stimuli, the 
nucleus accumbens integrates dopaminergic projections 
from the ventral tegmental area and glutamatergic inputs 
from the hippocampus, prefrontal cortex, amygdala and 
thalamus, and then determines resilience to stress, as well 
as reward-driven learning and motivation [202]. Similarly, a 
stress-sensitive projection connecting basolateral amygda-
la and nucleus accumbens plays a critical role in executing 
disrupted reward behaviors provoked by early-life adversi-
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ty [203]. The correct function of the hippocampus-
amygdala complex and its interaction with the prefrontal 
cortex are also essential for resilience mechanisms aimed 
at the control of intrusive memories caused by trauma 
[204]. Likewise, stress and glucocorticoid release decrease 
adult neurogenesis at the dentate gyrus, and increasing 
neurogenesis in mice indeed promotes resilience to social 
defeat stress by inhibiting the activity of mature granule 
cells [205]. A specific circuit in the midbrain involving 
GABA-somatostatin producing cells detects stress and in-
duces restorative sleep [206], while overexpression of the 
zinc finger protein gene Zfp189 in the prefrontal cortex 
promotes behavioral resilience [207]. Also in this regard, 
Dong et al. have recently identified stress relief as a natural 
resilience mechanism against depression-like behaviors 
[208].  

Alterations in these communication systems contribute 
to stress-related disorders by compromising a broad range 
of processes such as adequate differentiation and matura-
tion of oligodendrocytes and astrocytes, limited trafficking 
of peripheral myeloid cells to the brain, maintenance of 
ionic and neurotransmitter homeostasis, proper dynamics 
at synapses and preservation of BBB integrity. Stress-
related signals such as oxidative reactions and cytokine 
signaling from the periphery may induce the loss of myelin 
in brain areas related to emotional regulation and execu-
tive function. Neurovascular adaptations, endocannabinoid 

signaling and the kynurenine pathway also contribute to 
modulate mood and stress responses [209–211].   
 
Immune System  
Psychosocial stress strongly influences immune function 
and modulates the participation of immune cells in home-
ostatic resilience mechanisms. Different brain regions and 
neural circuits control the body trafficking and functional 
role of leukocytes in response to stress [212]. Motor cir-
cuits trigger the rapid mobilization of bone marrow neu-
trophils to peripheral tissues through the participation of 
neutrophil-attracting chemokines, while the hypothalamus 
controls the egression of lymphocytes and monocytes from 
blood and secondary lymphoid organs to the bone marrow 
via glucocorticoid signaling. These stress-induced changes 
in leukocyte distribution throughout the body are linked to 
the development of several disorders including mental 
illnesses. Some patients with stress-related disorders ex-
hibit increased peripheral immune system activation and 
elevated levels of proinflammatory cytokines, which then 
activate the kynurenine pathway, depleting tryptophan 
and generating neuroactive catabolites that impinge on the 
main stress response pathways [211]. 

Chronic stress can also directly activate microglia and 
increase levels of several cytokines and chemokines 
through glucocorticoid and noradrenergic signaling or via 
the NLRP3 inflammasome. Notably, MDD exhibits signifi-
cant comorbidity with autoimmune disorders and other 

FIGURE 6: Psychosocial dimension of the hallmarks of health involved in responses to stress. Interactions between psychosocial adaptation 
and mechanisms of homeostatic resilience, hormetic regulation and repair and regeneration strategies aimed at achieving biological stability 
and maintenance of health, including mental health. 
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chronic inflammatory illnesses. Accordingly, anti-
inflammatory therapies elicit antidepressant effects in 
some patients [37]. Animal models of social stress have 
also shown important disturbances in peripheral myeloid 
cells, which are associated with activation of the innate 
immune system and relative suppression of the adaptive 
immune system [213]. Rodent studies of susceptibility to 
chronic stress are consistent with a pro-resilient neuropro-
tective effect of T cells. Immunization of rats with modified 
myelin basic protein before chronic mild stress induces 
autoreactive T cells and reduces depressive behaviors [214]. 
Resilience to stress can also be promoted by immunization 
against Mycobacterium [215], or by attenuation of inflam-
mation via sphingosine-1-phosphate receptor 3 (S1PR3) 
overexpression in the medial prefrontal cortex of rats [216]. 
Finally, clinical studies have confirmed that emotion regu-
lation strategies can attenuate inflammatory responses 
[217].   
 
Genetic Mechanisms 
Susceptibility or resilience to develop behavioral disorders 
in response to psychosocial stress is influenced by the in-
terplay between genetic predisposition and environmental 
factors. Genomic investigations identified pro-resilience 
variants in genes encoding modulators of the HPA stress 
response axis. Thus, a polymorphism in FKBP51 – a nega-
tive modulator of glucocorticoid signalling – is linked to 
susceptibility (AT allele) or resilience (CG allele) to stress-
related disorders. Pharmacological inhibition of FKBP51 
promotes hippocampal neurogenesis and resilience to 
chronic psychosocial stress in mice [218]. Additionally, pol-
ymorphisms in NPY, BDNF, COMT and SLC6A4 associated 
with deficient resilience increase the risk of mental illness 
[219]. Notably, the same genomic variants (i.e., polymor-
phisms at the regulatory region of the serotonin trans-
porter gene SLC6A4) that increase the risk of pathological 
responses to adversity may be beneficial in favorable envi-
ronments [220]. This “pleiotropic antagonism” reflects the 
fact that, depending on the context, the same genetic vari-
ant can have positive or negative consequences.  
 
Other Resilience Mechanisms 
The initial findings linking epigenetic alterations and MDD 
were based on the observation that loss or inhibition of 
histone deacetylases and demethylases in several brain 
regions has antidepressant-like effects in stressed rodents 
[221]. Moreover, glucocorticoids suppress DNA methyla-
tion and upregulate the expression of the stress-response 
gene Fkbp5 in mouse neuronal cells, thus generating a 
negative feedback loop that limits glucocorticoid signaling 
and may contribute to stress-related mental disorders 
[222]. Several miRNAs, such as miR-25-3p, are induced in 
mice exposed to social defeat stress. Selective elimination 
in peripheral leukocytes of the miRNA cluster containing 
miR-25-3p reduces inflammation and promotes behavioral 
resilience to psychosocial stress [223]. miR-135 is neces-
sary for maintaining intact serotonergic activity under 
normal conditions and confers resilience to social stress 
[224], whereas overexpression of miR-124 in hippocampal 

neurons enhances chronic stress resilience [225]. Likewise, 
systemic knockdown of miR-144-3p by subcutaneous ad-
ministration of a specific antagomir reduces the depres-
sion-related phenotype in stress-susceptible mice [226]. 
Together, these works reinforce the role of epigenetic 
mechanisms in inflammatory and behavioral responses to 
psychosocial stress. 

Hormonal and metabolic pathways also influence stress 
resilience, and patients with stress-induced psychiatric 
disorders exhibit metabolic phenotypes that substantially 
overlap with metabolic syndrome [227]. Glucocorticoids 
switch metabolism from anabolism to catabolism, thereby 
providing energy sources and building blocks for adequate 
stress responses. These glucocorticoid effects are modu-
lated by other hormones, such as leptin and ghrelin [228, 
229]. Somatostatin also contributes to resilience by reduc-
ing CRH release during chronic stress conditions. Sex hor-
mones have a strong impact on homeostatic resilience and 
explain, at least in part, the sexual dimorphism in the re-
sponsiveness to chronic stressors [230]. Finally, microbiota-
related mechanisms also contribute to stress resilience. 
The maintenance of a stable microbiota contributes pro-
tects from a variety of dysbiosis-related pathologies but is 
also critical for establishing the cognitive/emotional bal-
ance necessary to deal with psychosocial stress. In fact, 
alterations in the gut microbiota have been detected in a 
variety of mental disorders, such as MDD and ASD. The 
healthy microbiota contributes to homeostatic resilience 
against stress conditions through the production of biolog-
ically active metabolites impacting the microbiota-gut-
brain axis [231]. Diverse prebiotics, probiotics and postbi-
otics may increase the resilience of gut bacterial communi-
ties, although for most of the currently available products 
there is no clear evidence yet to support beneficial effects 
on mental health [232]. 

In summary, highly interconnected body communica-
tion systems are organized in a way that allows them to 
elaborate a rapid and efficient response to virtually any 
kind of perturbation. These responses mostly involve nega-
tive feedback loops and are ultimately responsible for 
maintaining homeostatic resilience. Unfortunately, a wide 
range of chronic or excessive stressors cause the failure of 
resilience mechanisms and promote neuropsychiatric de-
compensation. Further studies of the mechanisms underly-
ing homeostatic resilience and failure should help to design 
interventions that favor the maintenance of mental health.   
 

HALLMARK 7: HORMETIC REGULATION  
Hormesis is an evolutionary conserved phenomenon that 
leads to the development of acquired resilience against 
toxins and other stressors called hormetins [233]. Hormesis 
relies on biological processes in which low doses of poten-
tially harmful agents elicit a protective response that pre-
vents the organism from experiencing harm upon exposure 
to a higher dose of the same hormetins. Hormesis has 
been pinpointed in the context of mitochondrial function 
as “mitohormesis” to describe the beneficial effects of mild 
and transient mitochondrial stress on cells, tissues or or-
ganisms [234]. Mitohormesis inducers include physical 
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exercise, caloric restriction, intermittent fasting, and die-
tary phytochemicals or xenohormetins [235]. The benefi-
cial effect of hormesis may rely on direct short-range cyto-
protection through the induction of ROS, heat shock pro-
teins, thioredoxins and sirtuins, but may also involve long-
range intercellular communication events via neural cir-
cuits, endocrine signals, metabolic pathways, and immune 
or inflammatory responses [233]. Hormesis is also involved 
in the maintenance of mental and brain health (Fig. 6). 
 
Hormesis and Psychotropic Drugs 
The concept of hormesis may offer a useful framework to 
improve neurological performance and brain health [236]. 
Embryonic, adult and induced-pluripotent stem cells of 
different sources, including those of neural origin, exhibit 
hormetic responses to low doses of noxious chemicals, 
ionizing radiation and hypoxia with respect to their capaci-
ties to proliferate, differentiate and resist inflammatory 
conditions [237, 238]. Dietary supplements reputed to im-
prove human health, such as epigallocatechin-3-gallate and 
resveratrol, may also induce hormetic responses in neural 
stem cells [238], while lithium, a widely used drug for the 
treatment of BD and other mood-related disorders, elicits 
biphasic dose responses typical of hormesis [239]. 

Some neurotoxic agents induce reactive oxygen species 
(ROS) that at low levels activate hormetic responses in 
stressed neurons and induce the expression of genes – 
such as BCL2 and SOD2 – which protect against apoptosis 
and detoxify ROS, respectively. Downstream of ROS, tran-
scription factors – such as NRF2 – trigger efficient cytopro-
tective mechanisms [240]. The endogenous metabolite N-
acetyl-L-tyrosine (formed in response to stress from its 
precursor tyrosine) triggers a mitohormetic process that 
implies an elevation of ROS levels and a subsequent retro-
grade response activating the transcription factor FoxO, 
which in turn transactivates anti-oxidant genes and KEAP1 
to elicit neuroprotective mechanisms [241]. Atypical anti-
psychotic drugs may also act through hormetic mecha-
nisms and mediate neuroprotection through the induction 
of superoxide dismutase 1 and p75 neurotrophin receptor 
[242, 243]. Peripheral modulation of the antidepressant 

targets MAO-B and GABAAR by -carbolines induces 
mitohormesis and improves healthspan and lifespan in 
preclinical models [244]. These findings suggest that sever-
al classes of antipsychotic drugs elicit hormetic effects, 
although it is unclear whether this truly contributes to their 
mode of action.  
 
Hormesis and Mental Stress 
Mild and limited stress can result in a series of moderate 
cognitive benefits that facilitate the development of hu-
man resilience [245]. Accordingly, hormesis has been pro-
posed to play a positive role in cognitive processes and 
behavioral responses [246]. In favor of this interpretation, 
cortisol concentrations measured in adolescents were the 
lowest in individuals experiencing moderate socioeconom-
ic and psychosocial adversity, but higher in individuals re-
porting low or high adversity [247]. Moreover, low-to-

moderate stress perceived by young adults correlates with 
optimal cognitive performance and reduced psychopatho-
logical symptoms [248]. Thus, in a well-tempered/medium 
range, negative life experiences and perceived stress may 
have a beneficial effect.  

From an educational/psychological viewpoint, it ap-
pears important to change the valuation of stress by shift-
ing the overarching objective of stress regulation from 
avoiding and minimizing stress to accepting and utilizing 
stress to achieve enhancing outcomes [31]. The subjective 
appraisal of stress as negative (distress) versus positive 
(eustress) has a profound impact on its consequences, 
which can be detrimental versus hormetic, respectively. 
Indeed, negative beliefs about stress constitute an inde-
pendent risk factor for morbidity and mortality [249], in 
line with the well-established negative impact of pessi-
mism on life expectancy [250]. Several randomized studies 
with adolescent have proven that psychological training 
designed to improve the acceptance of stress reduced cor-
tisol levels and perceived anxiety [31]. Notably, improved 
stress management correlates with higher emotional intel-
ligence [251], while optimal stress responses may explain 
“post-traumatic growth”, a phenomenon allowing individ-
uals to develop increased skills and a deeper appreciation 
for life as a legacy of traumatic events [252]. 

In summary, the concept of hormesis has gained inter-
est in the field of neural functions. The use of hormetic 
preconditioning strategies can enhance the functional per-
formance of neural cells, including neural stem cells, with 
respect to their ability to improve metabolic functions and 
contribute to neuroplasticity, neurorepair or regeneration. 
Theoretically, knowledge on hormetic regulation may help 
to establish optimal schedules for administering drugs that 
favor brain health and cognitive performance.  
 

HALLMARK 8: REPAIR AND REGENERATION  
Organisms have developed complex mechanisms and sig-
naling pathways able to sense and efficiently respond to 
the myriad of lesions suffered by all organizational strata of 
the body, from molecules to the meta-organism, and to 
activate repair and regeneration mechanisms [172]. Insuf-
ficient repair and regeneration entails a broad range of 
pathological perturbations, including those causing neuro-
psychiatric disorders (Fig. 6).  
 
DNA Damage and Repair in Neural Systems 
Nuclear and mitochondrial DNA are constantly subjected 
to genotoxic stress by exogenous and endogenous chal-
lenges. This causes a wide spectrum of DNA lesions, which 
are repaired by a network of systems collectively known as 
the DNA damage response (DDR) [253]. The effectors of 
this response, such as TP53 and various immune cells, drive 
cellular senescence or apoptosis and contribute to main-
tain homeostasis. DDR also engages the cGAS/STING path-
way and stimulates a non-cell-autonomous response that 
facilitates homeostasis maintenance. However, deregulat-
ed DDR causes uncontrolled inflammation and tissue dam-
age, including in the CNS [254, 255]. Impaired DNA damage 
repair in concert with mitochondrial dysfunction is a com-



C. López-Otín and G. Kroemer (2024)  Psychosocial adaptation and health 

 
 

OPEN ACCESS | www.cell-stress.com 36 Cell Stress | Vol. 8 

mon feature of diverse psychiatric disorders [255, 256]. 
Elevated levels of oxidative DNA damage and altered DNA 
repair gene expression are found in GABAergic neurons in 
SCZ, while genomes from ASD patients are enriched for de 
novo mutations in genes expressed in striatal neurons 
[257]. Interestingly, selective serotonin reuptake inhibitors 
decrease the level of oxidative DNA damage in MDD pa-
tients [258]. Hence, it will be interesting to test pharmaco-
logical agents that stimulate oxidative DNA damage repair 
[259] in the context of neuropsychiatric disorders.  
 

Epigenetic Dynamics, Reprogramming and Mental Health 
Epigenetic factors contribute to the development and 
promotion of neurological and behavioral diseases [260]. 
The expression of the epigenetic reader BRD1 increases 
after periods of chronic stress, and Brd1+/- mice display 
cognitive deficits and behavioral phenotypes [261]. Chro-
matin profiling in neurons from SCZ patients has revealed 
aberrant roles for histone acetylation and BRD1 [262], 
while BRD1-interaction networks show enrichment for SCZ 
risk genes and enhanced binding to gene promoters asso-
ciated with brain development and mental disorders [261]. 
Besides histone modifications, DNA methylation studies in 
postmortem SCZ brains have identified multiple differen-
tially methylated sites between cases and controls. Genes 
in or near these sites tend to be involved in embryo devel-
opment, cell fate commitment or nervous system differen-
tiation, and are also modestly overrepresented in SCZ-
associated loci. MDD patients exhibit higher global DNA 
methylation rates than healthy controls and a significant 
correlation of gene methylation changes in the blood and 
in MDD-relevant brain areas such as the prefrontal cortex 
[263]. DNA methylation-based epigenetic clocks that re-
flect biological aging indicate that MDD patients undergo 
accelerated aging compared to non-depressed controls 
[264], while individuals with different behavioral disorders 
exhibit an accelerated pace of DNA-methylation [265]. 
Additionally, correlative studies have found significant 
ncRNA alterations during stress-induced responses and in 
patients with mood disorders. Knockout of the SCZ-related 
miR-501-3p gene in mice impairs sociability and memory 
by enhancing mGluR5-mediated glutamatergic transmis-
sion, while treatment of these mir-501-3p-null mice with 
negative allosteric modulators of mGluR5 or NMDA recep-
tor antagonists ameliorates their cognitive and behavioral 
deficiencies [266].  

Collectively, these findings suggest that neuropsychiat-
ric disorders are linked to epigenetic alterations, opening 
new therapeutic strategies aiming at restoring the epige-
netic landscape [267]. Indeed, epigenomic editing at the 
enhancer region of the activity-regulated cytoskeleton-
associated protein  (Arc) gene in rats ameliorates adult 
anxiety and excessive drinking after adolescent alcohol 
exposure, a major risk factor for psychiatric disorders later 
in life. Conversely, dCas9-KRAB increases repressive his-
tone methylation at this genomic region, decreases Arc 
expression, produces anxiety and stimulates alcohol drink-
ing in control rats [268].  
 

Neural Regeneration and Mental Health 
Stem and progenitor cells can repair or regenerate dam-
aged tissues and hence favor adaptive and compensatory 
responses. Stem cells are also present in the mammalian 
brain, an organ long-time considered to be irreparable. 
Adult neurogenesis has been well characterized in the den-
tate gyrus of the rodent hippocampus and has important 
implications for regenerative medicine in humans, alt-
hough the possibility that this process is fully preserved in 
the adult human brain is still debated [269–272]. Neural 
stem cells can self-renew and generate terminally differen-
tiated neurons and glial cells. Due to their persistence 
throughout life, stem cells are particularly susceptible to 
biological and environmental stress, and decline in number 
and proliferative and differentiation capacity with age, 
compromising tissue repair and regenerative potential [108, 
109]. Several studies have suggested that psychosocial 
factors may contribute to stem cell loss [273]. Moreover, 
chemogenetic inhibition of neurogenesis in the ventral 
dentate gyrus promotes susceptibility to social defeat 
stress, while increasing neurogenesis confers resilience to 
chronic stress [205]. Notably, treatment with atypical anti-
psychotics increases hippocampal neurogenesis in adult 
mice [274]. In MDD patients, neurotrophic factors neces-
sary for neural stem cells niche maintenance are reduced, 
while low levels of neurotrophic factors have been associ-
ated with poor treatment responses and cognitive impair-
ment in MDD [275].  

Physical exercise and dietary interventions may also 
contribute to neurological repair. Several signaling circuits 
including glutamatergic, serotonergic, dopaminergic, ad-
renergic, neurotrophin-receptor and tropomyosin-related 
kinase B pathways have been implicated in the exercise-
stimulated enhancement of neurogenesis [276]. In addition, 
regulator of G protein signaling 6 stands out as a key medi-
ator of exercise-induced neurogenesis [277]. The admin-
istration of exerkines (molecules released in response to 
physical exercise) [278]. and exercise mimetics (com-
pounds that mimic the therapeutic effects of exercise) 
[279]. may represent emerging strategies for improving 
neurogenesis and synaptic plasticity [280]. Intermittent 
fasting enhances long-term memory consolidation, adult 
hippocampal neurogenesis, and expression of the longevity 
gene Klotho [281]. Consistent with this, low-dose injections 
of Klotho increase synaptic plasticity in mice and improve 
cognition in aged nonhuman primates [282]. Similarly, ca-
loric restriction and diets enriched with bioactive com-
pounds, such as polyunsaturated fatty acids and polyphe-
nols, improve neurogenesis, learning and memory perfor-
mance in neuropsychiatric diseases [283].  
 

Cognitive and Behavioral Flexibility 
Flexibility is substantially impaired across many mental 
disorders irrespective of the age of onset [284]. Neuroim-
aging, behavioral, genetic and pharmacological studies 
[285] have identified large functional brain networks that 
support flexibility. Serotonergic and dopaminergic signaling, 
as well as striatal cholinergic systems play important roles 
in flexible cognition and behavior. Reduced neurogenesis, 
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changes in dendritic morphology and density, and altera-
tions in growth factor and neurotransmitter levels contrib-
ute to the loss of neuroplasticity and functional connectivi-
ty underlying cognitive and behavioral inflexibility in mood-
related disorders [285]. Social isolation reinforces aging-
related behavioral inflexibility in aging-prone SAMP8 mice 
by promoting neuronal necroptosis (an alternative mode of 
regulated cell death mimicking features of apoptosis and 
necrosis) in basolateral amygdala, a critical brain region for 
behavioral flexibility [286]. This flexibility impairment can 
be reversed by the necroptosis inhibitor necrostatin-1s, 
and involves inhibition of glycogen synthase kinase 3α 
(GSK-3α), a central regulator of age-related pathologies in 
mice [286]. Interestingly, infusion of young cerebrospinal 
fluid into brains of aged mice restores oligodendrogenesis 
and memory through a process involving Fgf17, thereby 
offering new possibilities to enhance cognitive flexibility 
[287]. Of note, and in the context of tissue damage, 
preemptive immunity to the microbiota directly promotes 
neuron regeneration via IL-17A [288]. Other strategies to 
improve behavioral flexibility include antidepressant drugs, 
lifestyle interventions, enrichment of the particular social 
environment and different methods of cognitive training 
[289, 290]. 

CONCLUSIONS AND PERSPECTIVES   
To advance in the comprehension of human health, which 
does include essential mental facets, we have expanded 
our previous compendium of eight biological hallmarks [1] 
by adding a ninth determinant of health, psychosocial ad-
aptation. In addition, we have analyzed the psychosocial, 
mostly neuropsychiatric, implication of each of the eight 
somatic hallmarks, unveiling numerous connections be-
tween all somatic hallmarks and psychosocial factors. We 
have also identified links between mental health and all 
eight somatic strata of the human body, from individual 
molecules through cells and tissues to the meta-organism, 
in addition to the stratum encompassing psychosocial in-
teractions. Perturbations of each of these nine strata 
threaten mental health (Fig. 7).  

The inclusion of the psychosocial dimension as a fur-
ther hallmark of health is in accordance with earlier models 
of health and disease [291], and with current definitions 
and concepts of health and well-being [292]. Nevertheless, 
our work has tried to go beyond these studies by integrat-
ing psychosocial and biological determinants of health. We 
have shown that there are so many intricate links between 
the somatic and psychosocial hallmarks of health that the 
contours of physical and mental health dissipate. We posit 

 
FIGURE 7: Psychosocially relevant perturbations across health hallmarks and body strata. The nine hallmarks of health integrate and leverage 
the multifunctionality of each hierarchical stratum and orchestrate the complex interactions across the nine body strata encompassing the 
distinct molecular, organellar, cellular, supracellular, tissular, systemic, organismal, meta-organismal and psychosocial components. Examples 
of specific psychosocial dysfunctions or disorders affecting the nine different hallmarks and strata are shown to illustrate the multidimensional 
basis of health, including mental health. 
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that virtually any disease, even pathologies with an infec-
tious or mechanical cause have a major effect on the men-
tal state, while all major mental disorders compromise 
general health. This holistic view transcends the unidirec-
tional idea of “mens sana in corpore sano”, which correctly 
expresses the notion that physical fitness is required for 
mental agility but does not reflect the fact that, vice versa, 
psychosocial adaptation is indispensable for somatic health.  

The historical distinction between physical and mental 
diseases has been fueled by the apparent absence of a 
clear anatomopathological substrate of the latter. However, 
progress in ever more refined “omics” technologies yield-
ing a “brain atlas” [293], the incipient elucidation of the 
neural connectome [294], and the development of high-
resolution functional neuroimaging tools, has yielded 
quantitative measurements of CNS perturbations. Ulti-
mately, these objective measurements will create a mech-
anism-based classification of neuropsychiatric disorders 
and will drive the era of precision and preventive psychia-
try [295], which will have to be integrated with cultural-
ecosocial approaches aimed at person-centered mental 
health care [296]. The progress in analytical tools will be 
coupled to powerful experimental systems including multi-
plexed chemogenetic or optogenetic methods, and to the 
development of sophisticated iPSC-derived human cerebral 
organoids that are able to maturate and integrate with 
host circuits controlling behavior when implanted into ro-
dent brains [297]. Such experimental approaches will also 
be indispensable for structuring AI-based algorithms and 
hence for interpreting the accumulating big data generated 
by large-scale “omic” efforts as well as by the monitoring 
of human behavior, either by observation or by means of 
specific tests. Systematic approaches will also be necessary 
to quantify the exposome that, besides the totality of phys-
ical, chemical, dietary, microbial and toxicological insults, 
should also integrate psychological and social stressors. Of 
note, there is evidence of association between exposure to 
environmental pollutants and the incidence of dementia 
and behavioral disorders, again linking somatic to psycho-
social factors [24]. This question is of special concern in the 
context of the current climate change that is going to im-
pose grand challenges for future human health, including 
mental health [298]. We also need to better understanding 
how psychological, social and economic stress permeates 
the human body. Beyond the frequently evoked SAM and 
HPA axes, additional communication systems linking the 
CNS to the periphery are likely to play a major role in this 
process. The elucidation of these pathways might guide 
neuropsychiatric research from the current CNS-centric to 
a body-wide exploration. 

Today, around one billion people are affected by men-
tal disorders [299] and dramatically, close to one million 
individuals decide to take their own lives each year [300]. 
However, the relative investment in mental health services 
is under-dimensioned compared to physical health systems 
[24]. Over the last decades, the extraordinary progress of 
science and medicine has resulted in remarkable advances 
in the prevention or treatment of most human pathologies, 
but progress has been more limited with regard to psycho-

social health [155]. Several studies have provided evidence 
that certain psychosocial interventions improve physical 
health [27–30], but it is necessary to perform large-scale, 
long-term randomized clinical trials to assess the specific 
benefits provided by these interventions. Similarly, public 
campaigns to promote population health must expand 
their current focus on exercise, diet, environmental pollu-
tion, alcohol and drug abuse, and target additional lifestyle 
factors that favor psychosomatic health. Such neglected 
lifestyle factors are exemplified by the need of increased 
levels of social respect and education, the avoidance of 
digital addiction, the improvement of quantity and quality 
of sleep, the introduction of mind-body and stress man-
agement practices, and – utopically but necessarily – the 
reduction of violence and inequality.  
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