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Abstract—Cache-based Covert Channels are a significant 
threat for the security of systems built around a CPU. We 
evaluated a countermeasure taking advantage of a secured bus 
added in the CPU core with very little intrusiveness at the 
system level. This bus is used to bypass the data cache and other 
leaking elements when memory accesses are related to sensitive 
data or functions. We show on the NEORV32 CPU core that 
hardware overheads are negligible and a comparison with the 
use of the fence.t instruction illustrates noticeable gains in terms 
of secured execution speed. 
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I. INTRODUCTION

In the last decades, and especially since the hype created 
by the publication of Spectre and Meltdown in 2018, a lot of 
work has been dedicated to demonstrating and countering so-
called micro-architectural attacks in CPU-based systems [1-
2]. Such attacks are implemented by software but take 
advantage of hardware mechanisms to recover sensitive data 
manipulated by a target victim. They mostly leverage the 
resources implemented for fast memory access, speculation or 
Out-of-Order execution. In this short paper, we will focus on 
attacks exploiting the timing differences between a hit and a 
miss when accessing data in L1-D cache. This is the root of 
several Covert Channels [3], used as a final step in many 
micro-architectural attacks. 

We evaluate here the efficiency of a countermeasure based 
on a secured bus added in the CPU core to bypass shared 
micro-architectural resources when critical data memory 
accesses occur [4]. We consider as an example a widely used 
Covert Channel technique called Prime+Probe (P+P), with the 
same threat model as in [5], but the studied protection may be 
used against other similar exploits. We have chosen the 
NEORV32 CPU included in [6] as the experimental vehicle, 
especially for its small footprint. We expect larger CPU cores 
to exhibit smaller hardware overhead percentages. 

Major related points in the state-of-the-art are recalled in 
Section II. Our countermeasure principles and the main test 
vehicle characteristics are summarized in Sections III and IV. 
The implementation is briefly described in section V and 
results are discussed in section VI. 

II. RELATED STATE-OF-THE-ART

The studied countermeasure is designed to bypass the 
resources that can be exploited by variants of micro-
architectural attacks such as the MDS attacks [7] and Covert 
Channels including Prime+Probe, but also e.g., Flush+Reload 
or Flush+Flush that provide more precise outcomes but 
require satisfying stronger hypotheses. The P+P Covert 
Channel used in this study consists in three distinct phases. 

First, the Spy process initializes the whole L1-D with its own 
data (Prime phase). Then, the target application runs time-
sharing the cache with the Spy and we assume as in [6] the 
worst case of a victim that is infected by a Trojan, actively 
trying to transfer some secret by evicting lines in the data 
cache. These evictions can e.g., encode a piece of data as being 
the number of evicted lines. After the application resumes, the 
Spy process tries to recover the transmitted secret by accessing 
the L1-D as during the Prime phase, identifying the number of 
lines evicted by the victim thanks to the longer access time 
required in case of miss. 

Protections can be based either on hardware modifications 
or on software-controlled operations. Pure hardware 
protections can quickly become expensive in terms of 
resources but pure software approaches have limited 
possibilities and most often a large impact on the 
performance-oriented optimizations. In [5], the fence.t 
instruction was proposed to reset all leaking resources to a 
state that is independent of previous execution history, 
including invalidating the L1-D lines. This implies some 
hardware modifications to implement the new instruction, 
requires executing the instruction after each sensitive 
computation and before the context switch, but also reduces 
the time penalty of the reset compared to a pure software 
approach, while allowing access to all leaking resources. With 
this approach, the Spy can only record cache misses and is not 
able to recover any secret. However, all data are erased 
(sensitive or not), even in the case there was no ongoing 
attack. Processes running in the same time frame than the 
protected application can therefore suffer a noticeable slow-
down due to the systematic invalidations. 

III. COUNTERMEASURE: PRINCIPLES AND MAIN ADVANTAGE

The proposed approach also takes advantage of custom
instructions, but does not reset any resource. Instead, a secured 
bus is added in the CPU core to bypass all leaking resources, 
including L1-D, only when sensitive information is 
concerned. This bus is activated through custom Load/Store 
instructions LOAD_SEC and STORE_SEC so that the L1-D 
contents is not modified during the execution of a sensitive 
process and thus in case of attack the Spy cannot exploit any 
timing difference to recover a secret. The other processes, 
when activated again, can benefit from the data previously in 
the cache if not modified in the meantime by a Prime phase. 

Several possibilities of architectural modifications are 
identified in [4], with different memory organizations. In 
particular, the secured bus can be (1) directly connected 
between the CPU pipeline and a second port of the main 
memory, or (2) connected to a dedicated memory, avoiding 
the dual port requirement for the main memory. In this work, 
we focus on modifications having no impact on the system 
architecture and connections outside the CPU+Cache area. 
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We therefore limit the additional bus to the transfers within 
the processor chip. The leaky structures are bypassed without 
any hardware modification nor flush of these resources (thus 
avoiding performance penalty for non-secured operations). 
The standard bus and the secured bus are multiplexed at the 
periphery of the processor chip, allowing pin-level 
compatibility between versions with and without the security 
countermeasure and making the solution compatible with an 
implementation on a standard FPGA-based board. The main 
memory is not modified, but cache levels implemented 
outside the processor chip should be prohibited to avoid last 
level cache attacks. 

Compared to the fence.t instruction, our solution can 
noticeably reduce the performance penalty if the number of 
critical data memory accesses to the same address remains 
small. There is no time lost in invalidating the cache so the 
penalty only comes from the systematic main memory 
accesses when the same address is read several times during 
the execution. For most sensitive data, it is possible to avoid 
writing intermediate results directly in memory so in that case 
the penalty is null, the first read and the last write being 
anyway from or to the main memory. When writes are 
unavoidable in memory, the penalty can remain small 
compared to the number of main memory reads induced for 
other processes by a systematic flush of the whole cache. 

IV. CASE STUDY: NEORV32 CPU

The NEORV32 CPU [6] is an open-source RISC-V core, 
part of a highly configurable microcontroller focusing on area 
optimization and safety rather than computing speed. In 
addition to its small footprint, this CPU has helpful 
characteristics from a security point of view: careful 
management of incorrect instructions, exceptions triggered in 
case of unexpected situations, in-order, without speculative 
executions, no shared internal buffer leaking critical 
information and Write-Through coherency policy. 

V. IMPLEMENTATION OF THE COUNTERMEASURE

The NEORV32 CPU has been modified to add the 
LOAD_SEC and STORE_SEC instructions. The encoding 
was chosen according to the custom0 and custom1 opcodes 
defined in the RISC V ISA, leading to only one bit differing 
from a standard Load or Store and full compatibility with the 
different data formats (word, half, unsigned half, byte and 
unsigned byte). All the non-regression tests available in the 
NEORV32 repository have been run successfully. 

The toolchain has been extended in two ways. First, a tool 
called Secure Convert has been developed. It takes as inputs 
an ELF file and a list of sensitive functions and automatically 
converts the standard Load and Store opcodes to the secured 
versions for the selected functions. Only compressed 
instructions are not supported at that time. The standard tool 
chain has also been updated to consider a "secure" attribute to 
be added in sensitive function prototypes. This attribute is 
recognized by gcc, gdb and objdump among others. 

VI. RESULTS

A. CPU Overheads

The modified CPU description has first been synthesized
on an ASIC library to evaluate the overheads of the additional 
instructions and bus. Results shown in Table I clearly 
demonstrate the small impact of the proposed countermeasure. 
The CPU and  its caches  have then  been implemented  in an  

TABLE I. OVERHEADS 

Artix-7 FPGA chip on a Basys 3 board. Table I shows the 
overheads reported after placement and routing. As previously 
mentioned, with the architectural choices made for the secured 
bus implementation, no modification was required on the 
board. As in the previous case, overheads are negligible and 
the power consumption was even evaluated slightly better 
with the secured bus due to some slight differences in routing. 

B. Prime+Probe

Two bare-metal versions of the P+P attack have been
implemented with a pseudo-scheduling of the three phases. 
They have been run with and without activation of the secured 
bus. As expected, they recovered the encoded secret when the 
secured bus was not used, but were otherwise unsuccessful. 

C. Experimental Comparison with fence.t

In the NEORV32 CPU, L1-D is the only source of leakage 
to bypass or reset. A Write-Through policy is used for Store 
operations. It is generally preferred to Write-Back when 
security is a concern and it is also the most favorable situation 
for the fence.t approach, since there is no dirty state to write 
back when invalidating the cache lines. The L1-D is small (8 
lines of 64 bytes) and its full invalidation requires only 3 
cycles. The main memory is very fast and a full line is read in 
36 cycles. The difference in computation time has been 
evaluated using the second version of the P+P attack, with no 
other process involved and potentially impacted by the 
invalidation. Despite these very favorable conditions, the 
execution time overhead of fence.t was 2347 cycles while the 
secured bus only induced a 289-cycle penalty, so 8x less. 

VII. CONCLUSION AND PERSPECTIVES

This case study clearly shows the small overheads induced 
by the proposed countermeasure even in a very small core and 
the potential gains in performance compared to fence.t if 
sensitive functions are repeatedly called. The approach can be 
applied to any ISA allowing to define custom instructions and 
any modifiable core. Further work includes implementing the 
approach in more complex cores with more leaky resources. 
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