
Secured Bus as a Countermeasure against Covert
Channels: NEORV32 Case Study

Régis Leveugle1, Nathan Hocquette2, Charles Labarre2, Romain Plumaugat2, Loic Tcharoukian2,Valentin Martinoli3, Yannick Teglia3
1 Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA, 38000 Grenoble, France, firstname.name@univ-grenoble-alpes.fr

2 Univ. Grenoble Alpes, Grenoble INP*, Phelma, 38000 Grenoble, France, firstname.name@grenoble-inp.org
3 Cybersecurity Hardware lab, Thales DIS, La Ciotat, France, firstname.name@thalesgroup.com

Abstract—Cache-based Covert Channels are a significant
threat for the security of systems built around a CPU. We
evaluated a countermeasure taking advantage of a secured bus
added in the CPU core with very little intrusiveness at the
system level. This bus is used to bypass the data cache and other
leaking elements when memory accesses are related to sensitive
data or functions. We show on the NEORV32 CPU core that
hardware overheads are negligible and a comparison with the
use of the fence.t instruction illustrates noticeable gains in terms
of secured execution speed.

Keywords—hardware security, countermeasure, covert
channels, secured bus

I. INTRODUCTION

In the last decades, and especially since the hype created
by the publication of Spectre and Meltdown in 2018, a lot of
work has been dedicated to demonstrating and countering so-
called micro-architectural attacks in CPU-based systems [1-
2]. Such attacks are implemented by software but take
advantage of hardware mechanisms to recover sensitive data
manipulated by a target victim. They mostly leverage the
resources implemented for fast memory access, speculation or
Out-of-Order execution. In this short paper, we will focus on
attacks exploiting the timing differences between a hit and a
miss when accessing data in L1-D cache. This is the root of
several Covert Channels [3], used as a final step in many
micro-architectural attacks.

We evaluate here the efficiency of a countermeasure based
on a secured bus added in the CPU core to bypass shared
micro-architectural resources when critical data memory
accesses occur [4]. We consider as an example a widely used
Covert Channel technique called Prime+Probe (P+P), with the
same threat model as in [5], but the studied protection may be
used against other similar exploits. We have chosen the
NEORV32 CPU included in [6] as the experimental vehicle,
especially for its small footprint. We expect larger CPU cores
to exhibit smaller hardware overhead percentages.

Major related points in the state-of-the-art are recalled in
Section II. Our countermeasure principles and the main test
vehicle characteristics are summarized in Sections III and IV.
The implementation is briefly described in section V and
results are discussed in section VI.

II. RELATED STATE-OF-THE-ART

The studied countermeasure is designed to bypass the
resources that can be exploited by variants of micro-
architectural attacks such as the MDS attacks [7] and Covert
Channels including Prime+Probe, but also e.g., Flush+Reload
or Flush+Flush that provide more precise outcomes but
require satisfying stronger hypotheses. The P+P Covert
Channel used in this study consists in three distinct phases.

First, the Spy process initializes the whole L1-D with its own
data (Prime phase). Then, the target application runs time-
sharing the cache with the Spy and we assume as in [6] the
worst case of a victim that is infected by a Trojan, actively
trying to transfer some secret by evicting lines in the data
cache. These evictions can e.g., encode a piece of data as being
the number of evicted lines. After the application resumes, the
Spy process tries to recover the transmitted secret by accessing
the L1-D as during the Prime phase, identifying the number of
lines evicted by the victim thanks to the longer access time
required in case of miss.

Protections can be based either on hardware modifications
or on software-controlled operations. Pure hardware
protections can quickly become expensive in terms of
resources but pure software approaches have limited
possibilities and most often a large impact on the
performance-oriented optimizations. In [5], the fence.t
instruction was proposed to reset all leaking resources to a
state that is independent of previous execution history,
including invalidating the L1-D lines. This implies some
hardware modifications to implement the new instruction,
requires executing the instruction after each sensitive
computation and before the context switch, but also reduces
the time penalty of the reset compared to a pure software
approach, while allowing access to all leaking resources. With
this approach, the Spy can only record cache misses and is not
able to recover any secret. However, all data are erased
(sensitive or not), even in the case there was no ongoing
attack. Processes running in the same time frame than the
protected application can therefore suffer a noticeable slow-
down due to the systematic invalidations.

III. COUNTERMEASURE: PRINCIPLES AND MAIN ADVANTAGE

The proposed approach also takes advantage of custom
instructions, but does not reset any resource. Instead, a secured
bus is added in the CPU core to bypass all leaking resources,
including L1-D, only when sensitive information is
concerned. This bus is activated through custom Load/Store
instructions LOAD_SEC and STORE_SEC so that the L1-D
contents is not modified during the execution of a sensitive
process and thus in case of attack the Spy cannot exploit any
timing difference to recover a secret. The other processes,
when activated again, can benefit from the data previously in
the cache if not modified in the meantime by a Prime phase.

Several possibilities of architectural modifications are
identified in [4], with different memory organizations. In
particular, the secured bus can be (1) directly connected
between the CPU pipeline and a second port of the main
memory, or (2) connected to a dedicated memory, avoiding
the dual port requirement for the main memory. In this work,
we focus on modifications having no impact on the system
architecture and connections outside the CPU+Cache area.

* Institute of Engineering Univ. Grenoble Alpes

We therefore limit the additional bus to the transfers within
the processor chip. The leaky structures are bypassed without
any hardware modification nor flush of these resources (thus
avoiding performance penalty for non-secured operations).
The standard bus and the secured bus are multiplexed at the
periphery of the processor chip, allowing pin-level
compatibility between versions with and without the security
countermeasure and making the solution compatible with an
implementation on a standard FPGA-based board. The main
memory is not modified, but cache levels implemented
outside the processor chip should be prohibited to avoid last
level cache attacks.

Compared to the fence.t instruction, our solution can
noticeably reduce the performance penalty if the number of
critical data memory accesses to the same address remains
small. There is no time lost in invalidating the cache so the
penalty only comes from the systematic main memory
accesses when the same address is read several times during
the execution. For most sensitive data, it is possible to avoid
writing intermediate results directly in memory so in that case
the penalty is null, the first read and the last write being
anyway from or to the main memory. When writes are
unavoidable in memory, the penalty can remain small
compared to the number of main memory reads induced for
other processes by a systematic flush of the whole cache.

IV. CASE STUDY: NEORV32 CPU

The NEORV32 CPU [6] is an open-source RISC-V core,
part of a highly configurable microcontroller focusing on area
optimization and safety rather than computing speed. In
addition to its small footprint, this CPU has helpful
characteristics from a security point of view: careful
management of incorrect instructions, exceptions triggered in
case of unexpected situations, in-order, without speculative
executions, no shared internal buffer leaking critical
information and Write-Through coherency policy.

V. IMPLEMENTATION OF THE COUNTERMEASURE

The NEORV32 CPU has been modified to add the
LOAD_SEC and STORE_SEC instructions. The encoding
was chosen according to the custom0 and custom1 opcodes
defined in the RISC V ISA, leading to only one bit differing
from a standard Load or Store and full compatibility with the
different data formats (word, half, unsigned half, byte and
unsigned byte). All the non-regression tests available in the
NEORV32 repository have been run successfully.

The toolchain has been extended in two ways. First, a tool
called Secure Convert has been developed. It takes as inputs
an ELF file and a list of sensitive functions and automatically
converts the standard Load and Store opcodes to the secured
versions for the selected functions. Only compressed
instructions are not supported at that time. The standard tool
chain has also been updated to consider a "secure" attribute to
be added in sensitive function prototypes. This attribute is
recognized by gcc, gdb and objdump among others.

VI. RESULTS

A. CPU Overheads

The modified CPU description has first been synthesized
on an ASIC library to evaluate the overheads of the additional
instructions and bus. Results shown in Table I clearly
demonstrate the small impact of the proposed countermeasure.
The CPU and its caches have then been implemented in an

TABLE I. OVERHEADS

Artix-7 FPGA chip on a Basys 3 board. Table I shows the
overheads reported after placement and routing. As previously
mentioned, with the architectural choices made for the secured
bus implementation, no modification was required on the
board. As in the previous case, overheads are negligible and
the power consumption was even evaluated slightly better
with the secured bus due to some slight differences in routing.

B. Prime+Probe

Two bare-metal versions of the P+P attack have been
implemented with a pseudo-scheduling of the three phases.
They have been run with and without activation of the secured
bus. As expected, they recovered the encoded secret when the
secured bus was not used, but were otherwise unsuccessful.

C. Experimental Comparison with fence.t

In the NEORV32 CPU, L1-D is the only source of leakage
to bypass or reset. A Write-Through policy is used for Store
operations. It is generally preferred to Write-Back when
security is a concern and it is also the most favorable situation
for the fence.t approach, since there is no dirty state to write
back when invalidating the cache lines. The L1-D is small (8
lines of 64 bytes) and its full invalidation requires only 3
cycles. The main memory is very fast and a full line is read in
36 cycles. The difference in computation time has been
evaluated using the second version of the P+P attack, with no
other process involved and potentially impacted by the
invalidation. Despite these very favorable conditions, the
execution time overhead of fence.t was 2347 cycles while the
secured bus only induced a 289-cycle penalty, so 8x less.

VII. CONCLUSION AND PERSPECTIVES

This case study clearly shows the small overheads induced
by the proposed countermeasure even in a very small core and
the potential gains in performance compared to fence.t if
sensitive functions are repeatedly called. The approach can be
applied to any ISA allowing to define custom instructions and
any modifiable core. Further work includes implementing the
approach in more complex cores with more leaky resources.

REFERENCES
[1] D. A. Osvik, A. Shamir, E. Tromer,. "Cache attacks and

countermeasures: the case of AES,". In: Pointcheval, D. (eds) Topics
in Cryptology – CT-RSA 2006. Lecture Notes in Computer Science,
vol 3860. Springer, Berlin, Heidelberg.

[2] C. Canella et al., "A systematic evaluation of transient execution
attacks and defenses," 28th USENIX Conference on Security
Symposium (SEC'19),:August 2019, pp. 249–266

[3] Q. Ge, Y. Yarom, D. Cock, G. Heiser, "A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware,"
J Cryptogr Eng 8, 1–27 (2018)

[4] European Patent Application EP4276633, published on Nov. 15, 2023

[5] N. Wistoff et al., "Prevention of microarchitectural covert channels on
an open-source 64-bit RISC-V core," 4th Workshop on Computer
Architecture Research with RISC-V (CARRV), May 29, 2020

[6] https://github.com/stnolting/neorv32

[7] https://mdsattacks.com/

Synthesis on ASIC Library

Clock frequency Area Power

+0% +0.09% +0.2%

P&R on Artix-7 FPGA
Clock

frequency
Slices Slice LUTs

Slice
Registers

Power

+0% +2.9% +1.3% +0.4% -1.4%

