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Abstract—As industrial control systems become
increasingly connected, the threat of cyberattacks
grows in turn. Classical IT reactions that prioritize
confidentiality, like network isolation, cannot be applied
as they lead to a loss of availability, hence an
issue of safety criticality. This work proposes a
reconfiguration-based reaction to attacks, migrating
control programs away from compromised components.
This reconfiguration is carried out by a controller
which solves a constraint programming (CP) problem
whenever a compromised device is detected. This
controller is automatically generated based on a model
of IEC 62443 compliant systems. This approach is
tested both on generated models of arbitrary size and
to control a set of real Programmable Logic Controller
(PLC) overseeing a small-scale training factory.

I. Introduction
A. Cybersecurity concerns in ICS

Industrial control systems (ICS) consist of an
interconnection of hardware and software components
controlling a physical industrial process. This is usually
orchestrated by a network of Programmable Logic
Controller (PLC), rugged computers commonly used
in the industry. For historical reasons, these systems
communicate internally using mostly insecure protocols,
such as Modbus, and for a long time this was not an issue
as accessing the system required physical on-site presence.
However, ICS nowadays are increasingly connected,
and this has lead to the rise of security concerns and
cyberattacks [1]. In turn, due to high profile attacks,
especially Stuxnet in 2010, awareness of these issues has
spread, and research about attack detection, prevention
or reaction in ICS is a hot topic. Compared to traditional
IT systems, Operational technology (OT) ones have
different security priorities. Using the terms of the
CIA (Confidentiality, Integrity, Availability) triad, while
traditional information systems focus on confidentiality,
ICS put availability of the system above everything else.
Indeed, as a physical process is involved, a lapse in its
control can cause dramatic results, both financial, if
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the attacker manages to break key components, and
potentially life threatening. To avoid such loss of control,
whenever an attack is detected, the system should act in
order to contain it and restore the affected functions.

B. Reconfiguration
In this paper, we focus on the reaction to attacks on

ICS. Specifically, we design systems able to reconfigure
themselves while under attack. In the event that a
component is compromised, the first reaction would be
to isolate it. For ICS, as seen before, this would cause
major safety issues, as a part of the process would become
uncontrolled. Capitalizing on the increased virtualization
of ICS [2], we argue that it is possible to migrate the tasks
running on said component to another one. Thus, our goal
is to design a reconfiguration controller, started whenever
an intrusion is detected, able to find a new configuration by
migrating tasks while maintaining as much functionality
as possible.

C. Related works
While reconfiguration is not commonly used specifically

in ICS security, numerous works apply such techniques
to attain specific goals in cyberphysical systems. We
will give an overview in increasing order of similarity
with our subject. Systems can be repeatedly switched
between multiple configurations as a moving target defense
( [3]–[5]), aiming to prevent attackers from gaining and
exploiting knowledge about the control scheme topology.
Reconfiguration is also used to recover from fault in smart
grids, for instance by advising new power lines to deploy
[6] or by redistributing control functions over the system
to deal with perturbations [7]. Another classical answer
to compromised components is to isolate them from the
network [8], by rerouting the communication flows. Do
note that each functionality running on the system must
still be maintained. Finally, control reconfiguration in
response to attacks has been studied on car systems [5],
using predefined backup controllers.

In our case, finding new configuration is modeled as
an integer linear programming (ILP) problem, which can
also be seen as a constraint programming (CP) problem,
with our main decision variables being the task/device



allocations. This is a natural way of expressing optimal
resource placement under constraints in general. These
methods have been employed recently to distribute control
functions to servers in a smart grid [7], or in a completely
different context to allocate legends to digital highway
signs, regulating traffic in response to an accident [9].

II. Resilience via reconfiguration
A. IEC 62443 Configuration model

The first step in our approach is to develop a model for
security of the ICS. We rely on latest cybersecurity IEC
standard.

1) IEC 62443 standard: A standard was recently
developed to create a security oriented technical
specification for industrial automation and control
systems, titled IEC 62443. We will only present the
first part, which is relevant for this paper [10]. This
first document contains the definitions of terms and
abbreviations used in the rest of the standard, a
description of the current situation in ICS and overall
trends, OT cybersecurity concepts, and several models
used to represent industrial control systems. We are
mostly interested in these models, as we will use them to
describe instances of ICS.

In the standard’s system model, the plant is divided
in zones. The components within a zone can be physical
devices, informational assets, or applications. Applications
need to be run on a compatible device in the same zone.
A zone can be physical if the assets share a physical
location, or it can be a purely virtual construct. A zone
can be considered trusted or untrusted (if it connects to
the outside, typically). We will assume that components
sharing a zone can communicate freely within the zone’s
bounds. Each communication between two zones must
pass through conduits.

The mentioned security requirements are a vector of
seven numbers, ranging each from 0 (no protection) to
4 (protection against attackers with extensive resources
and knowledge) and corresponding to foundational
requirements: Access Control, Use Control, Data Integrity,
Data Confidentiality, Restricted Data Flow, Timely
Response and Resource Availability. This can be
understood as a refinement of the CIA triad for ICS.

Conduits are technically zones, set of components
sharing a needed security level vector, only wholly
dedicated to communications. They are defined by the
zones they link. They can be contained within a zone,
and cannot contain subzones. A conduit may also include
a set of channels, indicating the specific communication
links between components. They are compared to cables
(channels) within a pipe (conduit) in the standard.
Channels are defined by the set of components they
link. Conduits can be considered trusted/untrusted
by the zones they connect, if their security level is
sufficient/insufficient compared to the zone’s target level.
For now, this has no bearing on the reconfiguration.

For zones and conduits to reach their target security
level, the passive capability of their components may not
be enough. In this case, countermeasures are added to raise
the achieved security level. Those can be technical (devices
or software), administrative (usage policies) or physical
(locked areas).

2) Reconfiguration problem and hypotheses: Our first
working assumption is that the system under control
is compliant with IEC 62443, and thus organized in
zones that contains applications and devices. We suppose
that the attacker will try to compromise host devices or
applications, thus components like remote Input/Output
units that do not execute arbitrary code will not be
considered for attacks. Whenever a device or application
is compromised, it will be isolated and the remaining
applications will be redistributed on the rest of the system
to maintain as much availability as possible. In the default
behavior, stopped applications cannot be restarted by this
reconfiguration process, as a restarting with default values
could lead to hazardous situations. We also assume that,
for now, devices can’t be moved to a different zone by the
controller. In the case of a fully virtual ICS, this hypothesis
could be relaxed.

3) System model: We developed a model that describes
the parts of IEC-62443 compliant plants that are relevant
to the task migration.

The model consists of a set of zones Z (which includes
conduits), a set of applications A and a set of devices D.
To express meaningful constraints to the reconfiguration,
several properties were added to applications and devices.
Applications have a size property while devices have
a capacity, the maximum total size of applications it
can run. This represents a limitation, CPU or storage
size needed/available for instance. Applications also have
a score formula, that determine how much abstract
“gain” the application give when executed, taking into
account which device it runs on. They also have set of
other components (device sand applications) they need
to communicate with in order to be executed, and this
communication may only pass through, at most, one
conduit. In a formal manner, an instance of our model
consists of a tuple of three sets (Z, A, D), along with the
following functions:
• adj : Z → 2Z , with adj(z) the set of all zones

adjacent to z, meaning z itself and any zone connected
through one conduit.

• dep : A→ 2A, with dep(a) the set of all applications
that a needs to communicate with.

• dev : Z → 2D, with dev(z) the set of all devices in
zone z.

• on : A→ D, with on(a) the device currently running
application a.

• size : A→ N, with size(a) the size of application a.
• cap : D → N, with cap(d) the capacity of device d.
• loc : D → Z, with loc(d) the zone d resides in.



• score : A × D → N, with score(a, d) the score
obtained by application a running on device d.

• comp : A → 2D, with comp(a) the set of all
devices that can run application a, taking every static
constraint into account.

As an example, we will give the tuple corresponding to
the system illustrated in Figure 1. Scores, size and capacity
are not defined in the illustration. We will suppose that
each application has a size of 1, each device a capacity of
2, except d4 which has a capacity of 0. Applications get a
score of 3 on their original device, 2 on others.
• Z = {z1, z2, z3, z4, z5}
• D = {d1, d2, d3, d4}
• A = {a1, a2}

We will also give the functions’ graphs for this instance:
• adj = {z1 7→ {z1, z2, z3, z4, z5}, z2 7→ {z1, z2, z4},

z3 7→ {z1, z3, z5}, z4 7→ {z1, z2, z4}, z5 7→ {z1, z3, z5}}
• dep = {a1 7→ d3, a2 7→ a1}
• dev = {z1 7→ {d1}, . . . , z4 7→ {d4}, z5 7→ ∅}
• on = {a1 7→ d1, a2 7→ d2}
• size = {a1 7→ 1, a2 7→ 1}
• cap = {d1 7→ 2, d2 7→ 2, d3 7→ 2, d4 7→ 0}
• loc = {d1 7→ z1, d2 7→ z2, d3 7→ z3, d4 7→ z4}
• score = {((a1, d1), 3), ((a1, d 6= d1), 2),

((a2, d2), 3), ((a2, d 6= d2), 2)}
• comp = {(a1, {d1, d3}), (a2, {d1, d2, d3})}

device d1 app a1

device d4

device d3 device d2 app a2

Zone z1

Conduit z4

Zone z3 Zone z2

Conduit z5

Fig. 1. Simple example of a system divided in zones. Arrows represent
dependencies, dotted lines represent current execution location.

Such models are used as input in the reconfiguration
process, representing the initial configuration. It is
modified whenever a device is detected as changed,
by removing from D the compromised component, and
from A any application that needed to communicate
with it (or with another application removed this way,
recursively). Afterwards, the reconfiguration in itself takes
place, derived from the current model.

B. Optimization program
The reconfiguration process is modeled as an

optimization problem, and managed by an integer

linear program (ILP) / constraint program (CP) (The
equations can be expressed in both paradigms). The
goal is to find a new valid configuration, maximizing the
overall application scores.

Three sets of boolean decision variables are created for
the program, with the following meanings:
• runa,d : The application a run on device d.
• nonea : True if application a is not running on any

device.
• ina,z : The application a is within zone z.
The objective of this optimization problem is to

maximize the sum of all applications’ scores.

Maximize
(∑

a∈A

∑
d∈D

score(a, d).runa,d

)
(1)

This objective is maximized under the following
constraints. A given application a may only run on
at most one compatible device, and if it is not attributed,
nonea is set to true.

nonea +
∑

d∈comp(a)

runa,d = 1 ∀a ∈ A (2)

Devices cannot run more applications than it’s capacity
allows. ∑

a∈A

(runa,d ∗ size(a)) ≤ cap(d) ∀d ∈ D (3)

Equation (4) express that an application is in a zone, if
it executes on a device that is within the zone.ina,z −

∑
d∈dev(z)

runa,d

 = 0 ∀a ∈ A,∀z ∈ Z (4)

Two applications that need to communicate cannot be
attributed to zones that are not adjacent.

ina,z + ina2,z2 ≤ 1 ∀a ∈ A,∀a2 ∈ dep(a),
∀z ∈ Z,∀z2 ∈ (Z\adj(z))

(5)

If an application a has to communicate with another
application a2, and a2 is not running, a needs to be
stopped as well.

nonea − nonea2 ≥ 0 ∀a ∈ A,∀a2 ∈ dep(a) (6)

If we note n the number of applications, m the number
of devices and p the number of zones in the studied system,
the program will contain at most 1+n+m+np+p2n2 +n2

constraints (with each of these 6 numbers the maximum
amount of constraints corresponding to the respective
equation), so creating this program has a complexity of
O(m + n2p2).

Once this program is solved, the model is updated again
based on the resulting decision variable values. For each



application a, if nonea is true, a is removed from the set
of applications A. If nonea is false, on(a) is set to d, with
d the only device for which runa,d is true.

III. Experimental setup
A. Training factory setup

Fig. 2. Training factory setup

In order to have a physical use case, a Fischertechnik
training factory1 was mounted. It imitates the way a plant
operates, and is separated in four different modules. One
of them manages the input/output of the system, and the
gripper that moves resources across modules. Resources
are colored items that can be sorted using color sensors.
The other modules manage the raw resource storage, the
processing unit and the sorter, respectively.

The control program is divided in four parts
corresponding to each module, and each PLC is able to
reconfigure itself and migrate its program’s state to other
devices when instructed to by a Modbus command. The
four PLC have the full control code loaded, with each
part active on at most one PLC at a time. The sensors
and actuators are delegated to remote terminal units
(RTU). These RTU do not run any control program,
and we will assume that they can’t be compromised by
a distant attacker. The setup is illustrated in Figure 2.
Due to the dynamics of the physical process carried out
by the factory, the control system’s cycle time should be
low, and thus was set to 10ms.
B. Model and reconfiguration details

The system is split in four zones, corresponding to the
modules. Each contains one RTU, the PLC that initially

1https://www.fischertechnik.de/en/products/
industry-and-universities/training-models/
554868-training-factory-industry-4-0-24v

Fig. 3. Zone/conduit layout. Conduits shown with solid lines,
applications dependencies with dotted lines.

run the module’s control program, and the program itself.
The vacuum gripper should be able to communicate
with every other programs, and the multiprocessing
station should communicate with the sorting station.
Additionally, the gripper program must access the sorting
station RTU to read specific values. In our model, the
conduits are therefore defined based on these initial needs,
leading to the layout found in Figure 3. It is assumed that
no communication may cross over more than one conduit.
We chose to give every zone the same security level, as
the number of possible reconfiguration is already small.
Due to the strict timing constraints, migrating tasks away
from the zone they control is discouraged. This translates
to lower application scores on PLCs that are not the
original location, and encourage fast reconfiguration. In
this example, we state that each PLC may only execute
up to two applications due to application size constraints.
C. Reconfiguration controller

The reconfiguration controller takes as input the system
description to initialize the current configuration. The
controller reacts whenever a device is compromised,
marking it as such and starting the reconfiguration. A
new constraint program is created as defined before,
removing compromised devices and applications that
needs to communicate with them, and aiming to find a new
configuration with maximal score. This new CP is then
solved using the OR-Tools CP solver [11]. The resulting
values gives, for each application that was not stopped
beforehand, whether it is now stopped (nonea), and if
it still runs, which device executes it (the only device d
such that runa,d is true). The new allocation of tasks
is computed, and a message is sent to the old and new
location to reflect this change. On the other hand, if the
application was stopped, a Modbus message is sent to
every PLC, halting any remaining parts of the process that
interacts with it. Note that halting an application means
putting the controlled process in a safe mode.
D. Experimental protocol

We are mainly interested in the measurement of the
time elapsed between the attack being signaled and the



reconfiguration controller output. Any other non-temporal
criterion should be able to be integrated in the score
calculation, and the time elapsed between the attack and
its detection is IDS dependent. The reconfiguration can be
divided in two phases: solving the CP, and communicating
the new solution to the set of PLC.

The controller is run on a DELL precision 7770 laptop,
with 128GB of RAM and a i9-12950HX CPU with up
to date drivers as of January 2024. Other non-essential
applications are stopped. The solver libraries for CP are
loaded prior to measurements.

On the other hand, the PLCs and RTU controlling the
training factory are powered on, and connected to the
controller through a switch, as seen in the setup in Figure
2.

The following is repeated N=200 times:
• Define a random PLC as attacked, and start the timer
• Launch the CP solver to get a configuration without

this PLC.
• Get the time elapsed since the timer started to

measure the reconfiguration computation time.
• Communicate the new configuration to the PLCs

using an implementation of the Modbus TCP
protocol.

• Get the time elapsed since the timer started, to get
the total reconfiguration time.

• The controller sends a signal to each PLC to reset the
programs to their initial locations.

We also wanted to measure the reconfiguration’s
performance on larger systems. To do so, we created
random instances of varying size (from n=4 to 64 zones,
growing in increments of 4, with each zone containing
2 devices and 4 applications). The zones are connected
by conduits in a tree-like fashion, as illustrated in
Figure 4, roughly imitating a SCADA layout. To further
imitate such systems, in every zone, initially, one of
the applications needs to communicate with the other 3
within its zone and with one of the program within the
parent zone. The security levels and applications scores are
randomly generated, with the score for a given application
maximized if it runs on the device it started in, minimized
if it runs on one in a different zone. Device scan only
run two applications, so every reconfiguration will lead to
stopping at least two applications. For every n tested, 10
different systems were generated.

E. Preliminary results
The results obtained using the training factory are

shown in Figure 5. Two main information can be gathered
from these. Firstly, solving the constraint program was
always faster than applying the results. Each PLC
processes its instructions a cycle after they are received,
thus a delay of about 10ms is to be expected. As the
current implementation is not parallelized, the obtained
mean of 34ms is not suprising. As communication is a
low priority tasks for the PLC compared to local control, it

Fig. 4. Organization of the generated systems, with n zones, 2n
devices and 4n applications. The tree is filled from left to right,
breadth-first.

is sometimes postponed by a cycle, potentially explaining
the worst cases. Enhancing communications will be a
priority if we get a larger use case, as treating each of
them sequentially will considerably lengthen the control
delays. Secondly, the mean reaction time is less than a
PLC cycle time, while the worst lasted two cycle times.
Almost nothing can happen in such a short time, and if
the communication delays were improved, it’s almost as
fast as the PLC in the system can react anyway. Of course,
this level of speed is only attainable because the studied
ICS is very small.

min mean max
computation 3 8.1±0.31 20

communication 15 34.3±1.71 69
Fig. 5. Minimum, mean and maximum elapsed time (in ms) for the
reconfiguration on the training factory, using a sample size of N=200,
and a 95% confidence interval.

For larger generated systems, the results can be found
in Figure 6. Keep in mind that the graph follows a
logarithmic scale on the y axis. Here, the computation
times for small systems seems to be around 10ms,
which corroborates the results from the use case. While
generally the constraint satisfaction problem is NP-hard,
the performances observed here are not quite exponential,
thanks to the heuristics used by the solver. However,
the increase in computation time is still drastic, reaching
a hundred seconds with 256 applications, and for huge
systems the variance increases considerably.

This is an extreme case: in most actual ICS systems
applications cannot be redistributed to almost any parts
of the system and the ratio of zones to applications is much
lower. Still, this means that huge control systems cannot
be reconfigured quickly by solving such models at runtime,



Fig. 6. Graph showing the evolution of the CP solver resolution time
as a function of the number of applications in the system. The y-axis
follows a logarithmic scale. Each point is computed as a mean of 10
values, and a 95% confidence interval is provided.

and we will need to find alternatives for such cases. In
specific ICS managing a slow physical process, taking a
few seconds to compute a new configuration could be
acceptable, especially if the changes need to be validated
by a human operator.

IV. Conclusion and perspectives
In conclusion, we have:
• Devised a method to reconfigure IEC 62443

compliant ICS while under attack, using constraint
programming.

• Applied the technique to a physical use case, as well
as to generated models of varying size.

• Obtained preliminary results showing a promising
reconfiguration speed in small systems, and the
problem solved is still tractable even for much larger
setups.

As for perspectives, the reconfiguration process could be
improved in several manners. First of all, communicating
the new layouts using Modbus creates a huge vulnerability
in the system, as this protocol was not designed with
cybersecurity in mind. The OPC UA standard could
be used to design a more secure architecture. For the
configuration time to scale, it would also be necessary
to parallelize the controller’s network communications.
To study the effectiveness of our optimization programs
for large models representing systems with real time
constraints, we could also evaluate the quality of solutions
obtained while under a strict time limit. The metric
could be a score loss percentage when compared to the
optimal. Some other changes are considered to enhance
performances. The CP model could be updated instead of
recreating it for each step, even if the gain would probably
not change the time scale. Indeed, building the model is
at worst quadratic in the number of applications, while
solving it is exponential. We could try to compute all
different configurations offline, and store the computed

results, avoiding the solving cost at runtime. If an
hypothesis stipulates that the number of devices that
could be compromised at the same time is at most n,
the solver can be run statically on the model with all
combinations of 1 to n different devices removed. Some of
our hypothesis could also be relaxed: right now, stopped
applications cannot be restarted by the controller, as going
back to default values could be dangerous. In case it is
not, this restriction could be removed without changing
the CP model. On another hand, if the system’s network
architecture is virtual, we could also allow for devices
to be moved from one zone to another. However this
would drastically increase the number of constraints in the
program, as determining in which zone z an application
runs (equation 4) is much more costly when dev(z)
is not statically determined. Lastly, some models could
be divided in independent subsystems with their own
controllers. This would have a high impact on computation
times due to the potentially exponential complexity, and
could be used to apply a faster control in specific parts.
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