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Abstract—As the historically isolated industrial control
systems become increasingly connected, the threat posed
by cyberattacks soars. To remedy this issue, industrial
standards dedicated to the cybersecurity of ICS have been
developed in the last twenty years, namely the IEC 62443
series. These standards provide guidelines to the creation
and maintenance of a secure ICS, from the concept phase
to its eventual disposal. This standard notably assume a
specific Zone/Conduit model for systems, as a basis for
building the security program. This model currently lacks
computer-aided design tools, which are essential to the
adoption of a standard. In this paper, we will present a
domain specific modeling language, able to describe IEC
62443 compliant systems. Our main contributions are the
DSL’s syntax, which tries to formalize the informal model
found in the standard, and the validation rules applied
to it that ensure the described installations are secure by
design, according to a set of hypotheses.

I. INTRODUCTION

A. Industrial control systems

Industrial control systems (ICS) are networked sys-
tems composed of hardware and software components
that control a physical industrial process. Typically, ICS
are implemented by either Supervisory Control And Data
Acquisition (SCADA) systems, or Distributed Control
Systems (DCS). The physical processes’ control loops
are usually executed by Programmable Logic Controllers
(PLC), rugged computers commonly used in the indus-
try. In both SCADA and DCS, most of the control is
delegated to these PLC, and collected data is centralized
mostly to monitor the system. Typically, SCADA is
used when monitoring multiple geographically distant
plants, and DCS on critical plants that need real time
monitoring, but their functionalities tend to converge
nowadays.

B. Growing cybersecurity concerns

For historical reasons, these systems communicate
internally using mostly insecure protocols, such as Mod-
bus, and for a long time this was not an issue as
accessing the system required physical on-site presence.
However, ICS nowadays are increasingly connected, and
this has lead to the rise of security concerns and cyber-
attacks [McLaughlin et al.(2016)], including the well-
known Stuxnet worm in 2010. These high profile attacks
led to a growing awareness of these security issues, and
research about attack detection, prevention or mitigation
in ICS is now a hot topic. Compared to traditional Infor-
mation Technology (IT) systems, Operational technology
(OT) ones such as ICS have different security priorities.
In the CIA (Confidentiality, Integrity, Availability) triad,
ICS need availability first and foremost, rather than con-
fidentiality in typical IT systems. Indeed, as a physical
process is managed, a control loss can cause dramatic
results, both financial, if the attacker manages to break
key components, and potentially life threatening. To
avoid such loss of control, systems should be as resilient
to such attacks as possible, both by reducing the attack
surface using a secure architecture and by detecting and
reacting to security breaches.

C. Cybersecurity standards

The main standard concerning the security of infor-
mation systems is ISO/IEC 27001. It is widely adopted
across the industry, and tries to encompass all aspects
of information security, which naturally includes cyber-
security. This standard is associated with a certification,
which needs to be maintained by passing regular review
and audits proving that the security measures taken
evolve alongside the threat landscape. While most large
companies possess information systems that are critical
to their business, the certification is mostly used by pure
IT enterprises [Mirtsch et al.(2020)]. As for ICS, their



specificities evoked in the previous paragraph have led to
the creation of specific standards, derivative of ISO/IEC
27001.

IEC 62443 is such a set of standards dedicated to the
cybersecurity of Industrial Automation and Control Sys-
tems (IACS), which can be seen as a specialized expan-
sion of ISO/IEC 27001. The standards try to encompass
all possible components of IACS, including ICS, be they
SCADA or DCS, which entails PLCs, Remote terminal
units (RTU), sensors, actuators, monitoring/diagnostic
systems, Human-Machine interfaces (HMI), for example.
Guidelines are provided for the creation and maintenance
of secure ICS, ranging from the initial concept phase
up to their recycling or disposal. IEC 62443 employ
a specific Zone/Conduit model for ICS, which will be
described in more details in Section II.

As of now, there is a lack of tools dedicated to mod-
eling the architecture of IEC 62443 compliant systems
in their finished state, once the zone partitioning and
subsequent risk assessments are done. While this kind
of representation comes after the initial conception, and
therefore cannot be used in the design phase, it would
allow for easier, or even automated, modifications of the
architecture. This paper will showcase our contribution,
a domain specific modeling language (DSL) describing
instances of ICS in this standard’s Zone/Conduit model.
Section III will present this DSL’s conception and im-
plementation, while in Section IV an example ICS will
be described, and modeled using the DSL.

II. IEC 62443

As we aim to describe IEC 62443 compliant sys-
tems, we will mostly be interested in its first part, 1-
1 [IEC(2009)], that defines concepts and models used
in the rest of the standards. Part 3-2, which gives
requirement for the design and risk assessment phase of
an IACS creation, and Parts 3-3 and 4-2, which details
requirements pertaining to security levels, were also used
to further define the domain model the DSL describes,
and their relevant parts will thus be presented.

A. Part 1-1: Terminology, concepts and models

This first document contains the definitions of terms
and abbreviations used in the rest of the standard, a
description of the current situation in ICS and overall
trends, OT cybersecurity concepts, and several models
used to represent industrial control systems. General
guidelines are given for a Threat-risk assessment, in-
cluding lists of typical risks and threats. The standard
recommends a cyclic approach to the development of

the security management system, rather than a project-
based one, on the basis that the threat landscape evolves
at a quick pace, and thus security policies in place needs
to adapt constantly. In this article, we will mostly be
interested in describing systems that follows the assumed
architecture in IEC 62443, a zone/conduit model. We
will now describe the involved concepts.

1) Zones and conduits: High security needs imply
restrictive policies, and it is usually not feasible to
apply them to the complete system. Thus, the standard
assumes that components that have the same security
requirements are grouped together in security zones.

• The components within a zone can be physical
devices, informational assets, or applications.

• A zone can be physical if the assets share a physical
location, or it can be a purely virtual construct.

• A zone can be considered trusted, or untrusted (if
it connects to the outside, typically).

• We will assume that components are able to com-
municate freely within a zone, as long as this
communication respects the security requirements.

• A zone may contain sub-zones, which must meet
the security requirements of their parent zone. If
a component needs to communicate with an asset
outside the zone, this communication needs to pass
through a conduit.

Conduits are technically zones, set of components
sharing security requirements, but as they are used to
allow communications between zones, they are addition-
ally defined by the set of zones they link.

• Conduits can be physical/virtual and trusted/un-
trusted, dedicated to communications.

• Conduits can be contained within a zone, but they
cannot contain sub-zones themselves.

• Conduits also contain a set of channels, which
are the communications links established within
it. They are compared to cables (channels) within
a pipe (conduit) in the standard. These channels
are defined by a set of components they link. A
channel inherits the security requirements of its par-
ent conduit. It can be considered trusted/untrusted
by the zones it connects, if this security level is
sufficient/insufficient compared to the zone’s target
level.

• Untrusted communication needs to be checked in
some manners before acceptation.

Figure 1 gives a representation of such an ICS, divided
into three layers: an enterprise network connected to
the internet, a more secure demilitarized zone (DMZ)



that filters unwanted communication and hosts critical
services, and two zones dedicated to supervisory control,
that contains PLCs and HMIs, and manage the physical
processes. The defense in depth objective of IEC 62443
is here in plain sight: to interfere with the physical
process, a remote attacker has to go through multiple
layers of firewalls, all with different security rules.

Fig. 1. Example of an ICS using the Zone/Conduit model. From
Cisco blogs [Amirault(2021)].

2) Security levels: In this first part of the standard,
security levels (SLs) are defined as a qualitative descrip-
tion of a zone security. The initially proposed definition
gives a single security level for a zone, ranging from 1 to
3 and corresponding to a low/medium/high security. This
is very vague, and we prefer another definition, used in
more recent parts [IEC(2013)], [IEC(2019)] of the stan-
dard for the implementation. In this second definition, a
security level ranges from 0 to 4, with 0 meaning that
no specific protection is implemented, 1 that the system
is protected against accidents, and 2 to 4 that the system
is able to defend itself from small/medium/large scale
attacks. Usually, we will use vectors of seven security
levels, each corresponding to a foundational requirement
(FR). These FRs are a refinement of the CIA model
specific to IACS, defined in Figure 2. Assets and zones
are given security levels with different meanings, which
are described in Figure 3.

For zones and conduits to reach their target security
level, the passive capability of their components may not
be enough. In this case, countermeasures are added to
raise the achieved security level. Those can be technical
(devices or software), administrative (usage policies) or
physical (locked areas).

• Access Control (AC): Control access to selected
devices, information or both to protect against unau-
thorized interrogation of the device or information.

• Use Control (UC): Control use of selected devices,
information or both to protect against unauthorized
operation of the device or use of information.

• Data Integrity (DI): Ensure the integrity of data on
selected communication channels to protect against
unauthorized changes.

• Data Confidentiality (DC): Ensure the confidentiality
of data on selected communication channels to protect
against eavesdropping.

• Restrict Data Flow (RDF): Restrict the flow of data
on communication channels to protect against the
publication of information to unauthorized sources.

• Timely Response to Event (TRE): Respond to se-
curity violations by notifying the proper authority,
reporting needed forensic evidence of the violation,
and automatically taking timely corrective action in
mission-critical or safety-critical situations.

• Resource Availability (RA): Ensure the availability
of all network resources to protect against denial of
service attacks.

Fig. 2. Foundational requirements definitions ([IEC(2009)])

For Zones, Conduits and Components, different security
level vectors are defined:

• Target SL: The actual security requirement for the
zone/conduit, according to the risk assessment.

• Capability SL: Defined for countermeasures and
components within a zone/conduit, and measure
how much it contributes to the security of the
zone/conduit.

• Achieved SL: The current security level applied
in the zone/conduit, computed using the inherent
security properties of components and the counter-
measures applied, and potentially other factors. This
should always be kept equal or above the target SL.

Fig. 3. Security level vectors definitions

B. Part 3-2: Security risk assessment for system design

Part 3-2 [IEC(2020)] of the standard defines zone
conduit requirements (ZCR) for the design process of
an IACS, which includes defining boundaries for the
system under consideration (ZCR 1), partitioning it into
zones and conduits (ZCR 3), performing risk assess-
ments (ZCR 2, 4 and 5) and subsequently establishing



their target security level. While most of this process lies
outside of the scope of system description, this part also
explains how the security requirements, assumptions and
constraints should be documented (ZCR 6), and therefore
includes additional fields used to describe zones and
conduits.

On top of what was already presented in previous
parts, the following information should be added to zones
and conduits:

• A list of accountable organizations
• A definition of the logical (and if applicable phys-

ical) boundaries
• Whether or not the zone contains safety assets, or

is itself safety related.
• A list of access points (Doors, fences, ...) to the

zone’s physical location
• A list of data flows coming in and out of the zone.

This is advised to be a list of tuple, each of the
form (Source, Destination, Protocol).

• A list of applicable security policies.
• A description of assumptions and external depen-

dencies, that are deemed necessary to attain the
target security level.

C. Parts 3-3 and 4-2: Security requirements

1) System requirements: Part 3-3 [IEC(2013)] of the
standard defines the translations between qualitative
foundational requirements security levels and concrete
system requirements (SR) that need to be implemented in
zones. These system requirements are divided, just like
security levels, by foundation requirements, as shown
in Figure 2. For each of these FRs, a table is given,
explaining which measure needs to be in place to achieve
a given security level (From SL1 to SL4).

2) Component requirements: In a similar manner,
part 4-2 [IEC(2019)] defines the translations between
qualitative foundational requirements security levels and
concrete component requirements (CR) that need to be
implemented in corresponding components. Some of
these requirements apply to all components in a zone,
while others are specific to certain kind of components.
The document denotes four different assets archetypes,
those being:

• Software applications
• Embedded devices
• Host devices
• Network devices

Typically, while system requirements are implemented
while deploying the zone, CRs should be enforced when

designing components, determining their inherent secu-
rity capability.

III. DOMAIN SPECIFIC LANGUAGE

A. Motivation

IEC 62443 is a relatively recent and still evolving
standard, with its first part being published in 2009
and the current last part in 2023. Along with the fact
that sharing an ICS architecture currently in use is
innately a risk, the consequence is that no examples of
real zone/conduit architectures are shared online. Most
instances of IEC 62443 systems found on the internet
are merely illustrations of the standard’s concepts, and
none of them show both the architecture and the security
levels at the same time, while both are fundamental to
the norm. Several models can be found in the literature
concerning different parts of the design process found in
IEC 62443.

Some of them are used to perform the threat
analysis found in part 3-2 [IEC(2020)], with
[Da Silva et al.(2023)] and [Fockel et al.(2019)]
using the Microsoft modeling tools and STRIDE,
a model used to identify security threats, to do so.
The former article proposes a database of templates
for components commonly found in ICS and tries to
automatically populate it based on configuration files,
while the second describes a manual methodology that
must be applied by developers and security experts and
proposes a modified threat template compliant with
IEC 62443. In a similar vein, the method found in
[Eckhart et al.(2022)] performs multiple steps of the
risk assessment also found in part 3-2, generates attack
graphs and validates the zone partitioning. They propose
a model written in AutomationML using an extendable
library that allows for cybersecurity semantics to be
defined.

Other models are used to check that security con-
straints are met. For instance, [Kulik et al.(2019)] uses
a labeled transition system model, representing the
studied system behaviour, and applies model checking
techniques to verify that system requirements found
in part 3-3 [IEC(2013)] are met. On the other hand,
[Ehrlich et al.(2019)] proposes a TOSCA (Topology
and Orchestration Specification for Cloud Applications)
model, and ensures that system requirements are met
whenever the supervised ICS is reconfigured. Both of
these models are specific to cloud-based ICS. For com-
ponent requirements found in part 4-2 [IEC(2019)],
[Göttel et al.(2023)] presents a survey of available tools,
but they do not propose a specific model.



There is however a lack of publicly available tool
dedicated to modeling such systems in their finished
state, once the zone layout and security levels are de-
vised. This is where our contribution resides, after the
threat/risk analysis, and the corresponding models men-
tioned, and at a higher abstraction level which uses the
generic zone/conduit model described in the standard, as
opposed to the mentioned model checking techniques.

This contribution consists of a domain specific lan-
guage (DSL), capable of modeling systems divided in
Zones/Conduits, as described in the standard. This model
can be read and modified programmatically, and we
initially created it to serve as a base for our use case,
control reconfiguration. We will now go into the details
of this language, starting with some reminders about
DSL technologies.

B. Domain specific languages and model driven engi-
neering

Domain specific languages are modeling or pro-
gramming languages dedicated to a specific use case
[Mernik et al.(2005)], as opposed to general-purpose
languages. Typically, DSLs can be either external or
internal. Internal (or Embedded) DSLs are defined as
a subset of a general-purpose language, and therefore
use the same syntax. They can be understood as a kind
of API. On the other hand, external DSL have their
own grammar, and therefore their own parser. We will
prefer external DSLs, as the freedom in the syntax design
allows for code that is easier to understand and write.

DSLs are often used under a greater paradigm, model-
driven engineering (MDE) [Schmidt et al.(2006)]. This
approach starts by defining specific domain models, and
subsequently generating source code based on the model.
This level of abstraction allows for faster development
times, and ensures that the output code works according
to the model’s specifications, by design. In this approach,
DSLs can be used to represent instances of the domain
model, and their parser, which translates a text following
their grammar into an instance of the domain model,
is classically automatically generated from the desired
grammar. In turn, the obtained instance can be used to
generate code specific to the system it describes.

DSLs have already been created to model Indus-
trial systems architecture. For instance, one has been
developed to model a specific Industry 4.0 architec-
ture, the Reference Architecture Model Industry 4.0
[Binder et al.(2019)].

C. Assumptions

Some parts of the model used in the standard are
vague, or even contradictory. For instance, in part 1-
1[IEC(2009)], it is both written that "A conduit can have
subconduits" (6.5.5), and that "a conduit is not made up
of subconduits" (6.5.6). As such, we needed to make a
few assumptions to fill in the blanks.

For this particular case, as shown in the previous parts,
conduits will not be able to contain subconduits. On
another note, we assume that applications need to be
explicitly run on a device within their zone.

The achieved security level of a zone/conduit will only
be computed using the capability of its components and
countermeasures. More precisely, the achieved SL vector
will be the pairwise maximum between :

• the pairwise minimum of all component capabilities
• the pairwise maximum of all countermeasures ca-

pabilities
This rule assumes that the potential security levels SL0,
SL1, SL2, SL3 and SL4 behave as the integers 0,1,2,3
and 4 respectively. An example illustrating this compu-
tation can be found in Figure 4

Fig. 4. Achieved security level vector computation

Theoretically, this achieved level also degrades over
time, and depends on other parameters. As our model is
a static representation, such evolutions should be taken
into account by reducing the capabilities of obsolete
components / countermeasures.

We also took inspiration from the security level model
found in [Ehrlich et al.(2019)] that allows for some se-
curity level in capability vectors to be designated as Not
Relevant (NR), which excludes them from the achieved
level computation.

Finally, communication-wise, we suppose that com-
ponents within a zone can freely communicate, as long
as this communication respects the measures befitting of



the zone security levels. However, it is not assumed that
sub-zones can innately communicate with their parent,
it must be explicitly indicated via a conduit. Also, we
assume that communications between components may
only pass through at most one conduit.

D. Implementation

The DSL has been implemented using Eclipse Mod-
eling Framework (EMF) [Steinberg et al.(2008)] and
Xtext [Eysholdt and Behrens(2010)], from the Eclipse
suite. Both EMF and Xtext follow a model driven
engineering paradigm, generating code based on a given
model. EMF allows us to generate java classes repre-
senting a metamodel corresponding to the standard’s
by editing a graphical class diagram. This generated
code can easily be modified and extended. Xtext takes a
grammar and this java metamodel as input and generates
a parser, which translates texts that follows the grammar
into corresponding instances of the supplied metamodel.
Xtext also generates a runtime integrated development
environment (IDE) and several hooks that, for instance,
allow verifying properties that are not purely grammat-
ical by navigating the abstract syntax tree instead. Our
model follows the abstract grammar found in Figure 5,
which will be referenced in the rest of this section. This
grammar is provided in a formalism akin to Backus-
Naur, while ignoring most keywords used in the concrete
implementation. This section will ignore the additional
zone/conduit informal information found in Section II-B
for the sake of brevity, as they do not change the shape of
the model and are mostly implemented as lists of String.

1) Conduits and zones: An instance of the model
contains a set of zones, which may either be "normal"
zones, or conduits. Zones are identified by their names,
which must be unique. A given zone also has a security
level vector as a target, and contains a set of components,
and a set of countermeasures. Classical zones may con-
tain subzones (which may themselves be either classical
zones or conduits), while conduits may contain channels.
Additionally, zones are either trusted or untrusted, and
physical or virtual, these properties being represented as
two boolean fields.

2) Components: Components are either devices or
applications. All components are identified by their name
and possess a capability security vector. They may also
possess a "needed" security level vector, which must
always be pairwise lower than the target level of the
zone the component resides in. To allow descriptions
with more depth, the possibility to describe application

dependencies and component attributes/constraints has
been added.

To roughly represent critical interconnections, appli-
cations within the model have a field named "communi-
catesWith", that lists every other application or device
that it needs to communicate with to run properly.
According to hypotheses regarding communication, this
means that all of these components must be within
one conduit of the application. These communication
needs are not necessarily symmetrical: Let’s say we have
two applications a1 and a2, if a1 has a2 listed as a
dependency, a1 cannot run if a2 is not accessible, but
a2 can.

Every component in the model is also given a
list of properties, or attributes (both terms will be
used). These are String-value associations, expressed as
propName = value, that can be used to give more
details about the component. The values in question
may be either boolean, integer, float or string constants.
Applications are given a list of constraints, conditions
that applies to the device running them. These constraints
may either require that the running location possess a
given property, regardless of its value/type, or that this
attribute satisfies a comparison to a given value. This
value can be a constant, one of the application’s proper-
ties, or one of the device’s. In any case, both the property
and the value it is compared to must be compatible type-
wise. The comparison operators are the usual ones, and
strings are assumed to follow an alphabetical ordering.

Devices are further detailed by three boolean fields, in-
dicating respectively whether they are a network device,
a host device and/or an embedded device. It was assumed
that these categories are not mutually exclusive. As of
now, these are used in the process translating the security
level to specific component security requirements.

3) Countermeasures: Countermeasures are identified
by their names, and described by a capability security
level vector. As a reminder, according to the hypotheses,
countermeasures raise the achieved security levels of the
zone they reside in up to their own level.

4) Channels: Channels are identified by their names,
and defined by the set of at least two components that
they link. These channels are used to specify the precise
end points of conduits within the linked zones, and will
mostly be ignored in the examples, as this granularity is
not suited to small instances.

E. Validation rules

Not all properties can be enforced on a grammar level,
and the following ones are checked using validation rules



model ::= zone∗

zone ::= normalZone | conduit
normalZone ::= zoneName purpletarget slevels

component∗ countermeasure∗ purplesubZones
zone∗

conduit ::= zoneName purpleconnects zoneName∗

purpletarget slevels component∗ countermeasure∗

channel∗

component ::= device | app
counterMeasure ::= cntmName purplecapability

slevels
device ::= deviceName purplecapability slevels

property∗

app ::= appName purplerun purpleon (purplenothing
| deviceName) purplecapability slevels
(purpleneeded slevels )? constraint ∗

componentName∗ property∗

channel ::= channelName purpleconnects
componentName∗

componentName ::= deviceName | appName |
systemName

slevels ::= SL7

SL ::= SL0 | SL1 | SL2 | SL3 | SL4
property ::= propName value
value ::= bool | int | float | string
constraint ::= purpleoptional? propName

( operation (value | (purple self |
purpleref ) propName))?

operation ::= = | <> | < | <= | > | >=

Fig. 5. Abstract DSL grammar. "∗" denote that the rule can be
repeated any number of times, including 0. Words in bold are
keywords relevant to the field they precede.

(which can be understood as static semantics), applied on
the abstract syntax tree (AST) returned by the parser. We
will now describe these, which implements properties
and hypotheses that were previously mentioned.

The first category of validation rule verify that the
system description is well-formed. Violating one of
these rules would lead either to a nonsensical model,
to ambiguities, or would give redundant information.

• Every component, zone, countermeasure and chan-
nel has a unique name, when compared to other
objects of the same type anywhere in the model.
As conduits are zones, there cannot be a classical
zone and a conduit sharing the same name.

• For a given component, every property has a unique
name. Different devices may, and probably should

have properties with identical names.
• In every list, elements are never referred to twice.

For instance, zones are not connected multiple times
by the same conduit, and application do not have
duplicate dependencies.

• Zones can’t be subzones of themselves, and a
subzone can’t contain it’s parent. This is checked
recursively to avoid container loops.

• Conduits do not connect themselves, as this con-
nection is implicit.

• Channels connects components that are part of the
zones their parent conduit connects, or part of the
conduit itself. A single channel connects at least
two components.

• Every application run on a device in its own zone,
or does not run.

The other validation rules concerns security-related
properties.

• Target security level of subzones are always pair-
wise equal or higher when compared to their par-
ent’s. This comes from the standard, which indicates
that subzones must abide by their parent’s security
needs.

• For each zone, the target security level must be
compatible with the achieved one, based on its com-
ponents and countermeasures. The achieved secu-
rity level is computed according to the assumptions
found in section III-C.

• For every application currently running, each non-
optional constraint is met. This entails checking that
the tested property is present, that the constraint is
correctly typed and that the comparison returns true
when computed.

• Every application is at most one conduit away
from the components it communicates with, under
the hypothesis that a communication cannot pass
through more than one conduit.

Finally, some validation rules are optional, and only
raise warnings when violated. Such warnings will be
given when:

• A running application does not meet an optional
requirement.

• An application is not running on any device.

F. DSL Functionalities

1) Textual IDE: The textual IDE’s interface is shown
in Figure 6. It is automatically generated by xtext using
the grammar description and the programmed validations
rules. This is accessed through an eclipse runtime appli-
cation when opening a .miec file.



On the figure, several functionalities can be seen.
To help write the instances, the language’s keywords
are highlighted, and suggestions can be given: in the
example, in the device being described, these suggestions
indicates that the keyword "capability" must be entered
next. The IDE also indicates grammatical and validation
errors. In the example, the aforementioned device dec-
laration is underlined in red, as the capability feature
is missing, while it’s presence is mandatory within the
grammar rules. In zone B, a validation rule error is
showcased: The target security level is not reached, as
the application appB lacks sufficient capability. In this
case, both the zone target level and the component are
underlined. Finally, optional constraints raise a warning
when they are not met, as seen with the constraint on
the model, underlined in yellow.

Fig. 6. Textual IDE illustration

2) Graphical IDE: The graphical IDE, designed using
Sirius, can be used to visualize and edit DSL models. It
is also accessed through the eclipse runtime application,
by creating a representation file for a .miec file. The
two zone example previously shown in textual form is
represented in this graphical IDE in Figure 7.

The potential actions are shown on the right within a
palette, they are used to add or edit elements within the
model. They can be activated by drag-and-dropping them

Fig. 7. Graphical IDE illustration

to corresponding areas, or by holding the mouse over the
field you want to edit until their icons appears. In the
example, two such icons appear on the "Zone A" at the
top of the image, showing that one can add a sub-zone
or a sub-conduit. The same effects could be obtained by
drag and dropping these actions on Zone A. All such
tools will not be enumerated, as they corresponds to the
fields in the grammar found in Figure 5. The ability to
copy-paste parts of the model is also implemented. All
in all, the graphical IDE can be used interchangeably
with the textual one. However, for clarity reasons, editing
channels graphically is not supported.

3) Security requirements: Thanks to the parts of the
standard evoked in section II-C, we are able to trans-
late the security levels to security requirements. System
requirements are given for each zone/conduit based on
their target security level, while component requirements
are given to each applications, and to each host, network
or embedded devices, based on their capability.

IV. APPLICATION

As an application, we will study a simple use case,
and its translation to a DSL instance.

A. System studied

We study a heavily simplified industrial control sys-
tem, supervising a schematic chain of production. The
system is divided into two parts, the first one manufactur-
ing raw materials, and the second one sorting them based
on their color. Both parts are controlled by a dedicated
PLC implementing the local loop , and these two PLCs
are supervized by a third one, that controls a Human-
machine interface (HMI) and communicates with the rest
of the (hypothetical) system. The two PLCs managing a
physical process do not directly communicate.



Fig. 8. Schema representing the example system as a Zone/conduit model

B. Zone/conduit model

By design, this system lends itself well to a zone-
based model. It is easily split into three zones: One for
each part of the physical process, containing the local
PLC and it’s program, sensors and actuators, and one
for the supervision that contains a PLC and the HMI.
Additionally, there needs to be a conduit connecting
these zones, and we will assume one links all three.
This conduit will contain two channels, one linking the
supervision to the manufacturing zone, and one to the
sorter. A graphical view of this model is found in Figure
8.

Concerning foundational requirements, found in Fig-
ure 2, we will define the zones’ targets for the example’s
sake. The first two zones will need a level of SL1 in
Access Control and Use Control, restricting who can
access it and which command is acceptable, and a level
of SL2 in Timely Response to Events, as reacting quickly
is a priority when managing a physical system. FRs
related to confidentiality or integrity are assumed as
not critical for low level data produced in these zones,
and protection against DOS attacks unnecessary. For the
supervision zone, access and use control will likewise
need a level of SL1, and in this case data confidentiality
as well. These security levels cannot be achieved by the
PLCs alone, and in this example, firewalls are present as
a countermeasure to filter accesses.

C. DSL instance

This Zone/Conduit model is easily translated to the
DSL format, which shares its architecture. The DSL
instance can be found in Figure 9. Note that the conduit
does not enforce any security level, as it only contains a
switch, and is thus considered untrusted by all zones.
This means that any information passing through it
must be checked, by the firewalls for zones managing a
process here, and by the PLC for the supervision. There
are no errors or warnings reported, meaning the model
is correct both syntactically, and validation-wise.



Fig. 9. Textual DSL instance corresponding to the studied example



V. CONCLUSION

In this paper, we have pointed to a lack of design tools
for the models found in the cybersecurity standard for
ICS IEC 62443. As we needed a formal representation
of compliant systems for our use case, we designed
and presented a new DSL, describing industrial control
systems in a zone/conduit model compliant with the
new standard IEC 62443. Instances can be edited using
either a graphical or textual IDE, and are checked using
validations rules that enforces semantic properties.

By itself, the DSL is descriptive, and does not have
much functionalities beside creating instances. This cre-
ation process could be improved, potentially by adding
predefined components, which could be derived from
online devices catalogs. However, this enhancement
would need readily available information about innate
component security levels according to the IEC 62443
standard, which is not realistic at the moment. As for
additional functionalities, models may be edited pro-
grammaticaly, allowing for ad-hoc expansions using the
component attributes. Our main use case, for example,
aims to design a reconfiguration controller allowing us to
migrate programs away from compromised devices while
sustaining a cyberattack. This controller is obtained by
automatically deriving a constraint program, modeling
the reconfiguration problem from the DSL description.
The DSL models are modified by this reconfiguration,
and constraints and properties are used to restrict where
applications can be executed.

As for immediate perspectives, part 3-2 of the standard
indicates that a zone and conduit drawing on the system
should be produced to illustrate the partitioning, and
producing it should be easy to automate based on the
DSL description.

A. Code availability

The source code can be found in an archive
[Vaudey(2024)]. We aim to find better ways to share it,
by exporting the eclipse installation alongside the source
code.
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