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aUniversité Grenoble Alpes, INRAE, UR LESSEM, Saint-Martin-d’Hères, France6

7

∗corresponding author: julien.barrere@inrae.fr8

9

1



1 Abstract10

1. Tree species composition is known to influence forest productivity, but its11

effect on forest resilience to disturbances such as storms remains largely un-12

explored. Furthermore, climate is likely to influence forest resilience directly13

but also to influence the effect of tree species composition on resilience. In14

Europe, storm-induced tree mortality is currently increasing across all cli-15

matic biomes. Understanding the drivers of forest resilience to storms and16

its consistency across climates appears to be crucial for predicting the con-17

sequences of climate change for European forests.18

19

2. In this study, we used a simulation approach with an integral pro-20

jection model calibrated with National Forest Inventory (NFI) data at the21

European scale. We restricted our simulations to tree species assemblages22

observed in the NFI data, covering a species diversity gradient nested within23

a climate gradient. We quantified functional diversity and the mean position24

of each species assemblage at equilibrium on two functional axis: (i) conser-25

vative vs. fast growing and (ii) low vs. high recruitment. We disturbed each26

species assemblage from equilibrium using species-specific storm disturbance27

mortality probabilities and quantified the assemblages’ resistance (inverse of28

immediate basal area loss), recovery (slope of post-disturbance increase in29

basal area) and resilience (inverse of the cumulative deviation of basal area30

from the undisturbed state).31

32

3. We found that on average, species-rich assemblages had higher recov-33

ery and resilience to storm disturbance, while functional diversity improved34
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resistance and recovery. When analyzing how this effect varied with climate,35

we found that diversity significantly increased resistance and resilience in36

the climatic margins only. Finally, we found that storm resilience was also37

driven by species mean position along both functional axes. In particular,38

the conservative-productive axis had an effect two to three times greater than39

diversity: forests dominated by conservative species were more resistant and40

resilient, but had lower recovery than species assemblages dominated by fast-41

growing species.42

43

4. Taken together, these results show that climate and tree species com-44

position interact to control the ability of forests to resist and recover from45

a storm disturbance through both direct and indirect effects. As such, our46

findings should help to better anticipate climate change consequences for for-47

est ecosystems.48

49

Key-words: forest dynamics, integral projection model, disturbance,50

storm, climate change51
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2 Introduction52

In recent decades, natural disturbances such as fires, storms or insect out-53

breaks have been shown to increase in magnitude, severity and frequency54

(Allen et al., 2010; Senf et al., 2018; Taccoen et al., 2019; Yi et al., 2022;55

Patacca et al., 2022), resulting in increased tree mortality worldwide (Mc-56

Dowell et al., 2020) and loss of forest ecosystem services (Thom et al., 2016).57

In Europe, windstorms are reported to be the main disturbance agent both in58

terms of area (i.e. 2.5 million ha between 2002 and 2016 based on Senf et al.,59

2021) and in terms of timber volume affected (i.e. 40 million m3 per year be-60

tween 2000 and 2020 based on Patacca et al., 2022). Storm disturbances are61

characterized by important temporal variability, with a few years affected62

by large-scale storm events with continental-scale impacts (e.g., Lothar in63

1999). Although the relationship between climate change and storm dis-64

turbance regimes is less clear than for other disturbance types such as fire65

or bark beetle (Seneviratne et al., 2021), an increase in storm related tree66

mortality has been clearly identified in Europe over the last four decades67

(Senf et al., 2021; Patacca et al., 2022). In this context, the identification of68

factors that promote forest resilience to storm disturbances seems crucial to69

anticipate the impacts of global change on European forests.70

71

The concept of resilience, introduced in ecology by Holling, 1973, encom-72

passes a wide range of definitions that are widely discussed in the literature73

(Mori, 2016; Nikinmaa et al., 2020; Yi et al., 2021; Albrich et al., 2022).74

However, the main definitions of resilience used in forest research (e.g., eco-75

logical resilience, engineering resilience) generally converge on the idea that it76
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encompasses both the forest’s ability to persist during the disturbance (here-77

after resistance) and its ability to ’bounce back’ and return to an equilibrium78

(hereafter recovery) (Lloret et al., 2011; Nimmo et al., 2015; Capdevila et79

al., 2022). Resistance and recovery are rarely studied together due to the80

difficulty of tracking these metrics independently. However, resistance and81

recovery are driven by different demographic processes (i.e. survival for re-82

sistance, growth and recruitment for recovery) (Falk et al., 2022) and can83

therefore be expected to respond differently to environmental variation. De-84

composing resilience into resistance and recovery is thus important to better85

understand the mechanisms underlying the relationship between environmen-86

tal conditions and resilience.87

88

Pre-disturbance tree species richness is one of the key drivers of resilience,89

affecting both resistance and recovery (Isbell et al., 2015; Schmitt et al.,90

2020). Recovery, which is strongly related to productivity (Falk et al., 2022),91

is expected to increase with species richness due to higher complementar-92

ity between species, which allows for more complete use of resources (Morin93

et al., 2011; Delalandre et al., 2022), and through the sampling effect - i.e.,94

fast-growing species are more likely to be present in diverse communities95

(Tilman, 2001; Loreau et al., 2001). Resistance is also known to increase96

with diversity in the case of biotic disturbances, as higher species richness97

tends to reduce resources for host-specific pests (Jactel et al., 2007), but the98

effect of species richness on resistance to storm disturbances remains largely99

unknown. Due to high interspecific differences in tree species resistance to100

storm disturbance (Canham et al., 2001; Trouvé et al., 2021; Barrere et al.,101
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2023), an overall positive effect of tree species richness on storm resistance102

could be expected through the sampling effect - i.e., storm-resistant species103

being more likely to be present in diverse tree communities - but this hy-104

pothesis remains to be tested.105

106

Functional diversity is increasingly seen as an alternative metric to species107

richness that better captures the effect of diversity on ecosystem functioning108

(Cadotte et al., 2011), but studies testing the effect of functional diversity109

on resilience remain surprisingly scarce but see Schmitt et al., 2020. In addi-110

tion to functional diversity, studies of herbaceous communities also suggest111

that community mean functional strategy (i.e., the mean value of one or more112

traits weighted by species abundance, Muscarella et al., 2016) may have a key113

influence on their demography (Lepš et al., 1982; de Bello et al., 2021), but114

this has rarely been tested in the context of the resilience of tree communities.115

Consistently with the positive correlation between tree species productivity116

and mortality rates (Stephenson et al., 2011; Esquivel-Muelbert et al., 2020),117

the functional traits conferring resistance to storm disturbances also charac-118

terize conservative, slow-growing species - i.e., high wood density, slow radial119

growth, low height to diameter ratio (Barrere et al., 2023). This suggests the120

existence of a functional trade-off between high storm resistance in forests121

dominated by slow growing species and fast recovery in forests dominated by122

fast-growing species (Nimmo et al., 2015). Beyond the resistance-recovery123

continuum, Rüger et al., 2018 also suggest the existence of an orthogonal de-124

mographic trade-off between high recruitment vs high survival and growth of125

adult trees. However, as resistance and recovery are rarely studied together,126
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it remains to be determined which of these strategies best promotes storm127

resilience and how diversity along these functional trade-offs affects resilience.128

129

As intensification of disturbance regimes has been reported to affect all130

biomes (Yi et al., 2022), understanding the relationship between tree species131

composition and resilience on a global scale also requires consideration of132

the interactive effects of climate. First, climate can directly influence re-133

silience metrics through physiological effects. For example, since recovery134

relies largely on the survival and establishment of seedlings and saplings135

(Falk et al., 2022), recovery should be optimal in more productive climates.136

Second, climate may also influence the relationship between diversity and137

resilience. The stress-gradient hypothesis theorises a shift from competi-138

tive interactions in productive environments to facilitation as environmental139

conditions become more severe, based on the idea that neighbors generally140

limit physical stress in harsh environments (Bertness et al., 1994). Build-141

ing on this hypothesis, studies suggest that the effect of diversity on forest142

productivity should peak in stressful environments (Töıgo et al., 2015; Pa-143

quette et al., 2011; Jucker et al., 2016). We might thus expect a greater144

effect of diversity on forest recovery to disturbance under stressful climatic145

conditions, but empirical evidence for this hypothesis is still scarce. Finally,146

climate may indirectly influence resilience and recovery by influencing the147

dominant functional strategy of tree communities. For example, hotter and148

drier climates have been shown to favour species with traits associated with149

storm resistance (e.g., slow radial growth and high wood density, Barrere150

et al., 2023), whereas productive climates should theoretically favour faster151
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growing species.152

153

This study aims to elucidate the relationship between pre-disturbance154

species composition and basal area resistance and recovery following storm155

disturbance across a climatic gradient spanning the Mediterranean, temper-156

ate and boreal biomes. We investigated (i) the overall effect of mean func-157

tional strategy (along two functional axes, growth vs survival and low vs158

high recruitment), species diversity and functional diversity on resistance,159

recovery and resilience, (ii) how this effect varied along a climatic gradient,160

and (iii) the relative importance of direct and indirect climate effects on re-161

silience. To achieve this, we used a simulation approach and implemented162

species-specific storm disturbance mortality equations from the correlative163

study of Barrere et al., 2023 into a European-scale calibrated integral projec-164

tion model (IPM) (Kunstler et al., 2020; Guyennon et al., 2023). Simulation165

approaches are particularly suited to the study of forest resilience due to166

the long timescale of forest dynamics (Albrich et al., 2022). The key origi-167

nality of our modelling approach is to include species-specific sensitivity to168

disturbance and vital rates to model resistance and recovery independently,169

whereas most simulation studies on forest resilience apply a generic distur-170

bance without considering differences in resistance between species e.g., see171

Schmitt et al., 2020; Guyennon et al., 2023.172
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3 Material and methods173

3.1 The integral projection model174

We used an integral projection model (IPM), that had already been cal-175

ibrated with National Forest Inventory (NFI) data. Here we present the176

main structure of the model, which is presented in Kunstler et al., 2020 and177

in Guyennon et al., 2023, without repeating in detail the calibration process.178

We present in detail all the new additions to the model.179

180

3.1.1 Structure of the original IPM181

An IPM aims to describe how the distribution of a continuous trait (in this182

study, tree size as measured by diameter at breast height, hereafter dbh)183

for a population changes over time (Easterling et al., 2000). The main dif-184

ference with individual tree-based models is that IPMs integrate over the185

uncertainty in vital rates for their population forecast, and thus do not in-186

clude the demographic stochasticity that leads to variation between repli-187

cated simulations. More specifically, an IPM predicts the size distribution of188

a population n(z′, t + 1) at time t + 1 from its distribution n(z, t) at time t189

using the following equation:190

191

n(z′, t+ 1) =

∫ U

L

K(z′, z)n(z, t)dz (1)

L and U are the lower and upper bounds, respectively, of the values taken192

by the state variable z (i.e., minimum and maximum tree dbh observed).193
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K(z′, z) is the projection kernel and is divided into subkernels as follows :194

K(z′, z) = s(z)G(z′, z) + F (z′, z) (2)

Where s(z) is the survival function, G(z′, z) is the growth kernel, which195

gives the probability that an individual of size z will reach size z′, and F (z′, z)196

is the fecundity kernel, which gives the size distribution of recruited trees at197

time t+ 1 based on the size distribution at time t.198

199

3.1.2 Model calibration200

National Forest Inventory data - The IPM was calibrated with data from the201

FunDivEUROPE platform (Baeten et al., 2013; Ratcliffe et al., 2017), which202

includes National Forest Inventories (NFI) from Spain, France, Germany,203

Sweden and Finland. Although protocols differ slightly between countries,204

all NFI plots were circular, with a sampling radius that varied according to205

tree dbh. All NFI plots were surveyed twice (survey interval of 9 years in av-206

erage, ranging between 5 and 20 years) and included measurements of species207

identity, diameter at breast height (dbh) and status (live, dead, harvested or208

ingrowing) for all trees with dbh greater than 10 cm. The protocol for each209

country is detailed in Supporting Information A.210

211

Climatic data - The local climate of NFI plots was described using two212

annual climatic indices that represent well the European climatic gradient213

(overall ranging from hot-dry in the Mediterranean region to cold-wet in214

northern Scandinavia), and which are known to control tree growth, sur-215
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vival and recruitment in Europe (Kunstler et al., 2011): the annual sum216

of growing degree days above 5.5°C (sgdd) and the water availability index217

(wai), calculated as (P - PET)/PET - where P and PET are annual precipi-218

tation and potential evapotranspiration, respectively. sgdd is related to the219

mean annual temperature and the length of the growing season, and wai is220

negatively correlated to water stress. Daily temperature and P data were221

extracted from the spatially downscaled gridded climatic data of (Moreno222

et al., 2016). PET data were extracted from the gridded climatic data of the223

Climate Research Unit (CRU) (Harris et al., 2014). In each NFI plot, the224

value of these two indices was averaged over a period ranging from 1991 to225

2000. We chose this time period since it covers well the time period of the226

data used to calibrate the IPM model (see supporting information A) while227

being homogeneous across all countries.228

229

Demographic functions - For each species included in the IPM, vital rates230

(i.e., growth, survival and recruitment) were modeled with equations cali-231

brated with the NFI data. Full equations for survival, growth and recruit-232

ment are described in supporting information B. Growth and survival were233

modeled as a function of tree dbh, local climatic variables (sgdd and wai) and234

local competition, measured as the sum of basal area of all competitors. In235

addition of the survival function, a constant harvesting rate of 0.5% of tress236

of all size classes every five years (i.e., average harvest rate in the calibration237

dataset) was also implemented to avoid predicting unrealistic life spans. Be-238

cause the processes of seed production, germination and seedling growth and239

survival were not recorded in the NFI data, the size distribution of recruits240
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was simply a function of fecundity (measured by the cumulative basal area241

of the species) and local competition (measured by the cumulative basal area242

of competitors, with a different effect for conspecific and heterospecific com-243

petition). To account for the time taken by each species to reach recruitment244

size (i.e., 10cm dbh), we used tree-level age data (measured on a subset of245

trees in each NFI plot) to infer a species-specific mean age at 10cm, which246

was included as a delay in the IPM (Supporting Information C). This for-247

mulation is a simplification of the regeneration process which is frequently248

used in ecology due to the difficulty to model the complexity of regeneration249

dynamics (e.g., see Lines et al., 2020).250

251

Uncertainty in vital rates - To account for uncertainty in vital rates, dif-252

ferent model formulations were fitted 100 times using a sample of 70% of253

the available dataset for each species and each vital rate. The AIC of each254

model was computed on the remaining 30% and for each re-sampling itera-255

tion, the formulation of the growth and survival model resulting in the lowest256

AIC was selected. The goodness of fit of the growth, recruitment, and sur-257

vival models computed with a cross-validation on the remaining 30% of the258

dataset over all re-sampling iterations showed good agreement with the data259

(see Supporting Information B). To simplify the simulations, we averaged260

the parameters of the 100 best growth and survival models per species to261

keep one single model per species instead of 100 (i.e., one per re-sampling262

iteration). This simplification of the model did not have a strong effect on263

the mean predictions of the model (Supporting Information D).264

265
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3.1.3 Disturbances in the IPM266

We implemented in the model the possibility to apply storm disturbances of267

different intensity (ranging from 0 to 1) at any time of the IPM simulations.268

When a storm is applied in a given year, the survival function is replaced by269

the species-specific equations from Barrere et al., 2023, which quantify the270

annual mortality probability of a given tree in a stand affected by a storm271

as a function of its dbh, dominance status (log ratio of tree dbh and stand272

quadratic diameter), and type and intensity of the storm. In simulations,273

disturbances were applied over three years to account for possible delayed274

effects of the storm on mortality.275

276

3.2 Simulation experiment277

3.2.1 Selection of observed tree species assemblages per climate278

To investigate the effect of species diversity, climate and their interactions279

on resilience, we ran simulations with different levels of climate and species280

diversity. While most simulation studies on the effect of tree diversity select281

random species assemblages from a species pool, we chose to restrict our282

simulations to species assemblages that are observed in the NFI data and283

that are consistent with the local climate. The goal is to simulate realistic284

species assemblages and to account for the fact that climate can also affect285

resilience through changes in tree species composition (Morin et al., 2018).286

To do this, we used the NFI dataset to select observed species assemblages287

at different levels of species richness and under different climatic conditions.288
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289

Figure 1: Selection of tree species assemblages observed in NFI plots - (a)

Distribution of FunDiv NFI plots along the first axis of the sgdd-wai princi-

pal component analysis, (b) spatial distribution of the plots selected in the

climatic gradient, and (c) number of tree species combinations observed per

climate and species richness level. The red dotted line represents the maxi-

mum number of combinations selected for the simulations per richness and

per climate.
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Climatic gradient - Following Kunstler et al., 2020, we accounted for the290

strong correlation between sgdd and wai by characterising the NFI plots291

with their coordinates on the first axis of the pca of these two climate indices292

(83.6% of variance explained, Fig. 1.a). Low and high values along this axis293

characterise hot-dry and cold-wet climates respectively. As several species294

that were dominant at the hot and dry edge of our dataset were not included295

in the IPM, we chose to restrict our analysis to climates between the 20% and296

100% quantiles of NFI plot coordinates on the pca axis (Fig. 1). We grouped297

all NFI plots within this range into 10 subclimates based on quantiles of the298

climate axis, so that each climate group contained the same number of NFI299

plots (Fig. 1.b). When running simulations for a species assemblage from300

a given subclimate, we used the mean sgdd and wai of all NFI plots within301

that subclimate as the reference climate.302

303

Species diversity gradient - We restricted the observed species assemblages304

to tree species that were both present in the IPM (see Guyennon et al., 2023305

and Kunstler et al., 2020 for the full species list), and for which there was an306

estimation of storm sensitivity in Barrere et al., 2023. In addition, we had307

to exclude from the simulations three species (i.e., Quercus ilex, Carpinus308

betulus and Salix caprea) due to the high uncertainty in the demographic pa-309

rameters of their recruitment function leading to unrealistically high recruit-310

ment values, especially at high basal area (Guyennon et al., 2023). For Q.311

ilex and C. betulus, simulations even lead to exponential population growth312

and never reached an equilibrium. This high uncertainty is likely related to313

insufficient data for Salix caprea (only 0.2% of the basal area share in the314
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calibration dataset) and to the fact that Q. ilex and C. betulus are mostly315

managed in coppice, leading our statistical models to fail capturing the den-316

sity dependence limiting their high recruitment through resprouting. This317

resulted in a total of 14 species included in the simulations, listed in table 1.318

These 14 species represent altogether 78% of the basal share in the NFI plots319

(Fig. 1.b). To ensure comparable diversity gradients between subclimates,320

we selected the 10 most frequent combinations of these 14 tree species per321

observed level of species richness in each subclimate (Fig. 1.c). When less322

than 10 different species assemblages were observed for a given species rich-323

ness, we selected all observed species assemblages. This resulted in a total324

of 474 species assemblages being selected for the simulations (i.e., 47.4 per325

subclimate in average).326
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Table 1: Mean dbh, share in basal area and climatic niche (cold margin,

optimum, hot margin) within the NFI dataset and trait value of the 15

species included in the simulations
mean dbh share in wai/sgdd trait value

(mm) basal area (%) cold mar. optimum hot mar. PC1 PC2

Abies alba 250 3.9 1.15/575 0.45/1824 -0.01/2629 1.88 0.88

Alnus glutinosa 188 0.7 0.56/1482 0.09/2301 -0.34/3069 1.07 -1.32

Fagus sylvatica 217 10.6 0.87/817 0.18/2044 -0.19/2688 -1.59 1.28

Fraxinus excelsior 200 1.8 0.62/1348 0.05/2347 -0.32/2999 0.01 0.58

Picea abies 204 22.7 1/468 0.45/1445 0.03/2185 1.46 1.45

Pinus halepensis 174 2.3 -0.37/2844 -0.61/3274 -0.92/3813 -1.11 -0.09

Pinus nigra 179 2.8 -0.05/1756 -0.45/2470 -0.69/2886 -0.31 -1.26

Pinus pinaster 210 5.7 0.23/1888 -0.35/2911 -0.74/3613 0.95 0.39

Pinus pinea 208 0.8 -0.29/2973 -0.51/3351 -0.93/4109 -1.18 -0.23

Pinus sylvestris 200 14.9 0.53/874 0.05/1717 -0.45/2601 0.18 -0.75

Pinus uncinata 199 0.6 0.67/452 0.25/1195 -0.07/1771 -1.69 -1.45

Populus tremula 185 0.4 0.58/1185 -0.03/2275 -0.35/2825 2.88 -0.75

Quercus petraea 230 5.3 0.42/1602 -0.01/2371 -0.31/2898 -1.33 0.54

Quercus robur 249 5.5 0.43/1830 0/2582 -0.29/3092 -1.24 0.73
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3.2.2 Equilibrium and species composition metrics327

Equilibrium state in IPM - For each species assemblage, we ran simulations328

from a random initial size distribution until variations in size distribution329

over time became negligible - i.e. until the amplitude of change in total330

stand basal area remained below 0.5 m2.ha−1. This allowed us to identify a331

single equilibrium state per species assemblage-climate combination, which332

we defined as the pre-disturbance state. Of the 465 species assemblages se-333

lected, 37 did not reach equilibrium - i.e., the amplitude of change in basal334

area over time remained greater than 0.5 m2.ha−1 after 50000 years of sim-335

ulation from a random size distribution. These species assemblages were336

therefore excluded from the dataset. This resulted in a total of 428 simu-337

lations that were eventually included in the statistical models. For each of338

the 428 species assemblages, we calculated species composition metrics (i.e.,339

species diversity, functional diversity and mean functional strategy) at the340

pre-disturbance equilibrium state.341

342

Species composition metrics - We characterised tree species diversity in a343

species assemblage i using the Shannon index (Hi) to account for interspe-344

cific differences in abundance (measured for a tree species j as its basal area345

at equilibrium BAeqij) at equilibrium:346

347

Hi =

Ni∑
j

pij ∗ log(pij) with pij =
BAeqij∑Ni

j BAeqij

(3)

Where Ni in the number of species present in species assemblage i.348
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349

Figure 2: Position of each species included in the IPM along the two first

axes of the principal component analysis of the functional traits.

To calculate functional diversity and the mean functional strategy, we350

chose to focus on two functional axes analogous to the two main demo-351

graphic dimensions structuring tree communities in Rüger et al., 2018: (1)352
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the growth-survival trade-off and (2) the recruitment axis. To quantify the353

growth-survival axis, we used three functional traits (i.e., wood density,354

height/dbh ratio and maximum radial growth) that were shown to corre-355

late well with the sensitivity of tree species to storm disturbance (Barrere356

et al., 2023) and that are available for most of the species studied. These357

three traits were available for 22 of the 27 species present in the IMP (in-358

cluding the 14 selected for the simulations) from the wood density database359

(Chave et al., 2009) and from Barrere et al., 2023. All traits were calculated360

for adult trees (defined for traits calculated from NFI data as trees with a361

dbh higher than 10cm). We quantified the recruitment axis with a single362

trait: the recruitment of each species at their climatic optimum, and for the363

average conditions of intra and inter-specific competition across the dataset364

(17 and 6 m2.ha−1 of basal area, respectively). This trait, hereafter referred365

to as recruitment rate, was calculated using the recruitment function of the366

IPM described in supporting information B. We chose to use this trait cal-367

culated from demographic parameters of our model due to the difficulty to368

find trait that reflects the whole process of recruitment (i.e., both fecundity369

and regeneration dynamics). The first axis of the principal component anal-370

ysis (PCA1) with these four traits contrasted fast-growing species (i.e., high371

maximum growth and height/dbh ratio) with slow-growing resistant species372

(i.e., high wood density) (Fig. 2). The second axis of the principal compo-373

nent analysis (PCA2) contrasted species with high and low recruitment rate374

(Fig. 2). In a species assemblage i with Ni species, we calculated the mean375

functional strategy along each of the two functional axes at equilibrium using376

community weighted mean (CWM1 i and CWM2 i) - i.e., the mean of species377
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coordinates along PCA1 and PCA2 respectively, weighted by their basal area378

at equilibrium (BAeq). Functional diversity at equilibrium (FD) was calcu-379

lated with the functional dispersion index (Laliberté et al., 2010), which is380

the abundance-weighted mean distance zj of each species j to the centroid381

of all species of the community in the multivariate trait space formed by the382

two functional axes:383



CWM1 i =
∑Ni

j BAeqij ∗PCA1j∑Ni
j BAeqij

CWM i =
∑Ni

j BAeqij ∗PCA2j∑Ni
j BAeqij

FDi =
∑Ni

j BAeqij ∗zj∑Ni
j BAeqij

(4)

3.2.3 Disturbances and resilience metrics384

Simulation of disturbance - For each species assemblage, we applied a sin-385

gle disturbance event from the equilibrium state and simulated the post-386

disturbance trajectories over 3000 years. We applied the same disturbance387

event to all species assemblages - i.e., a storm disturbance of intensity 0.5,388

which is the 90% quantile of the storm disturbance intensity distribution es-389

timated across Europe in Barrere et al., 2023. As an illustration, for spruce390

(Picea abies), fir (Abies alba) and pine (Pinus sylvestris) trees of 250 mm391

dbh, such a disturbance (i.e. storm of intensity 0.5) corresponds to a proba-392

bility of mortality of about 30%, 20% and 10%, respectively (see Supporting393

Information E for example changes in basal area and species composition of394

tree assemblages during post-disturbance simulations).395

396

Calculation of forest response to disturbance - To quantify forest response397
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to disturbance in basal area, we calculated three different metrics: resistance,398

recovery and resilience. We calculated resistance as the ratio of the stand399

basal area immediately after the disturbance (BAdist) vs before, at equilib-400

rium (BAeq), as in many studies e.g., see Lloret et al., 2011; Enright et al.,401

2014; Nimmo et al., 2015. As in João et al., 2018, we quantify recovery as402

the slope of the short-term (i.e., 20 years) post-disturbance increase in basal403

area. Finally, we quantify resilience as the inverse of the integration over404

time of the difference in basal area from the undisturbed state, as in Schmitt405

et al., 2020, so that resilience correlates positively with both the forest’s abil-406

ity to resist and to recover from a disturbance (Fig. 3).407

Unlike other studies that explored resilience not only in term of forest struc-408

ture but also in species composition (e.g., Sánchez-Pinillos et al., 2019), we409

focused in this study on forest response in term of total basal area only.410

Indeed, in the IPM model, forests that recovered the pre-disturbance state411

in term of basal area systematically returned to the same species composi-412

tion, so that metrics of change in species composition are highly correlated413

to metrics of change in basal area (see supporting Information F).414

3.3 Data analysis415

Effect of species composition on resistance, recovery and resilience - We fit-416

ted three simple linear models, one for each forest response metric (i.e.,417

resistance, recovery and resilience), each with the four species composition418

metrics (H, FD, CWM1 and CWM2) as explanatory variables.419

420

Consistency of species composition effect across climates - To test whether421
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Figure 3: Schematic representation of the metric representing resistance,

recovery and resilience to storm in our study.

the effect of species composition on forest response to disturbance is influ-422

enced by climate, we fitted a model for each forest response metric with423

species composition metrics, climate (i.e., first axis of the wai-sgdd pca, Fig.424

1.a) and a quadratic effect of climate as explanatory variables to account for425

potential non-linear effects. We fitted models including all possible combina-426

tions of interactions between species composition metrics and climate, and427

selected the most parsimonious one based on the AIC criterion.428

429

Direct and indirect effects of climate on forest response - To disentangle430

the direct effect of climate on resistance, recovery and resilience from indi-431

rect effects through climate-induced changes in tree species composition, we432
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used structural equation modelling (SEM). SEM allows multiple models to be433

combined into a single causal network, where variables can be both response434

and explanatory variables. We constructed the SEM network based on a pri-435

ori knowledge of the relationships between variables. We included a total of436

7 sub-models, described in Supporting information G, with the four species437

composition metrics and the three forest response metrics as response vari-438

ables. We used a peacewise SEM (Lefcheck, 2016), which, unlike traditional439

SEM, allows the inclusion of models with non-normal error distributions. In440

our SEM analysis, all models had a normal error distribution, except for the441

two sub-models with FD and H as response variables, for which we used442

a generalised linear model with a Tweedie error distribution to account for443

the continuous zero-inflated distribution of these variables (Lecomte et al.,444

2013). For each sub-models, we reported the direct, indirect and total effect445

of each explanatory variable using the semEff R package (Murphy, 2023). We446

estimated 95% confidence intervals for total effects using 1000 bootstrap runs.447

448

Explanatory variables were centred and scaled in all statistical models.449

We log-transformed recovery and resilience and logit-transformed resistance450

to meet normality assumptions. All statistical analyses were performed using451

R.4.1.2 (RCoreTeam, 2019) in Rstudio version 2021.9.1.372 (RStudioTeam,452

2021). The IPM model is implemented in the R package matreex, ver-453

sion 0.3 (Jaunatre et al., 2023) available at https://github.com/gowachin/454

matreex. We used the peacewiseSEM package (version 2.1) to fit the SEM455

analysis (Lefcheck, 2016).456
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4 Results457

4.1 Direct effect of species composition on resilience458

Linear models testing the effects of species composition metrics on resistance,459

recovery and resilience reveal a predominant role of the species functional460

strategy followed by a smaller positive effect of species diversity and func-461

tional diversity.462

463

Figure 4: Effect of species composition metrics - Shannon index (H), func-

tional diversity (FD) and mean functional strategy along the growth-survival

(CWM1) and recruitment (CWM2) axes - on resistance, recovery and re-

silience to storm.

Functional strategy effect - Mean functional strategy on the growth-survival464

(CWM1) and recruitment (CWM2) axes had a strong significant effect on465

the three forest response metrics. In particular, the effect of CWM1 was466

of an order of magnitude higher (on resistance and resilience) or equal (on467

recovery) to the effect of diversity (Fig. 4). Species assemblages dominated468
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by species with high wood density, slow radial growth and low height to dbh469

ratio were more resistant and resilient, but had lower recovery. The effect of470

CWM2 was relatively small in magnitude but significant for both resistance471

and resilience: species assemblages dominated by species with high recruit-472

ment rate had low resistance but high resilience (Fig. 4).473

474

Diversity effect - Species diversity (H) had a significant positive effect on475

recovery and resilience and functional diversity (FD) had a significant posi-476

tive effect on resistance and recovery (Fig. 4).477

478

Detailed statistics of the three models, the analysis of the residuals and479

the relationship between predicted and observed values are provided in Sup-480

porting Information H.481

4.2 Consistency of the species composition effect across482

climate483

Our linear models testing interactive effects with climate showed that the484

effect of species composition on response to disturbance was highly variable485

across climates, particularly for resistance.486

487

Resistance - The effects of the four species composition metrics (i.e.,488

CWM1, CWM2, H and FD) on resistance all interacted significantly with489

climate. The positive effect of functional diversity on resistance was only490

significant at the hot and dry edge while the positive effect of species di-491

versity was only significant at the cold and wet edge. Species assemblages492
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dominated by slow-growing species were more resistant regardless of climate,493

but this effect tended to be higher in hotter and drier climates. Finally, the494

higher resistance of forests dominated by species with low recruitment rate495

peaked in intermediate climates (Fig. 5).496

497

Figure 5: Effect of species composition metrics - Shannon index (R), func-

tional diversity (FD) and mean functional strategy (CWM1 and CWM2) -

on resistance, recovery and resilience to storm along the climatic gradient

described in fig. 1

Recovery - The effect of mean functional strategy on recovery significantly498

interacted with the climate quadratic term. The positive effect of CWM1 on499
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recovery (i.e., communities dominated by species with low wood density and500

fast radial growth recover faster) peaked in hot and dry climates (Fig. 5).501

The effect of CWM2 on recovery was negative (i.e., communities dominated502

by species with high recruitment rate recover faster) at the cold and wet503

edge, and positive at the hot and dry climatic edge (Fig. 5). Interactions504

between the effects of diversity (H and FD) and climate on recovery were not505

significant. Including climate in the recovery model therefore did not change506

the effect of these two variables - i.e., significantly positive (Fig. 5).507

508

Resilience - The effect of mean functional strategy on resilience interacted509

significantly with both climate and its quadratic term. The negative effect of510

CWM1 on resilience (i.e., communities dominated by species with high wood511

density and slow radial growth are more resilient) peaked in hot and dry cli-512

mates (Fig. 5). Assemblages dominated by species with high recruitment513

rate were significantly more resilient at the hot and dry edge, and signifi-514

cantly less resilient at intermediate climates. The effect of species diversity515

(H) on resilience was significant in cold and wet climates, but not in hot and516

dry climates. Finally, the non-significant effect of functional diversity (FD)517

on resilience was not affected by climate (Fig. 5).518

519

Detailed statistics of the three models and the relationship between pre-520

dicted and observed values are provided in Supporting Information I.521

522
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4.3 Direct and indirect effects of climate on forest re-523

sponse to disturbance524

The structural equation model (SEM) showed that overall resilience was525

higher in hotter and drier climates. This trend was primarily driven by di-526

rect effects, while indirect effects through climate-induced changes in species527

composition were of secondary importance.528

529

Table 2: Direct, indirect and total effect of eachexplanatory variable on each

response variable in the structural equation model. Total effectis the sum of

both direct and indirect effects.* indicates significance.
Response Explanatory Direct effect Indirect effect Total effect

variable variable Est. (95% CI) Est. (95% CI) Est. (95% CI)

H climate 0.003 (-0.007-0.012) 0.003 (-0.007-0.012)

FD climate 0.01 (0.002-0.017)* 0 (-0.001-0.001) 0.01 (0.002-0.017)*

FD H 0.113 (0.106-0.119)* 0.113 (0.106-0.119)*

CWM1 climate -0.012 (-0.115-0.09) -0.012 (-0.115-0.09)

CWM2 climate 0.334 (0.222-0.435)* 0.334 (0.222-0.435)*

resistance climate -0.067 (-0.131–0.004)* 0.068 (0.001-0.136)* 0.001 (-0.078-0.084)

resistance CWM1 -0.597 (-0.646–0.549)* -0.597 (-0.646–0.549)*

resistance CWM2 0.184 (0.094-0.266)* 0.184 (0.094-0.266)*

resistance FD 0.082 (0.042-0.122)* 0.082 (0.042-0.122)*

resistance H -0.028 (-0.07-0.018) 0.009 (0.005-0.014)* -0.018 (-0.058-0.025)

recovery climate 0.035 (-0.069-0.137) 0.013 (-0.034-0.066) 0.048 (-0.042-0.133)

recovery CWM1 0.266 (0.122-0.403)* 0.266 (0.122-0.403)*

recovery CWM2 0.038 (-0.068-0.146) 0.038 (-0.068-0.146)

recovery FD 0.086 (0.023-0.148)* 0.086 (0.023-0.148)*

recovery H 0.156 (0.095-0.218)* 0.01 (0.003-0.017)* 0.166 (0.109-0.222)*

resilience climate -0.313 (-0.377–0.248)* -0.031 (-0.07-0.01) -0.344 (-0.403–0.278)*

resilience CWM1 0.04 (-0.045-0.123) -0.248 (-0.287–0.206)* -0.208 (-0.281–0.133)*

resilience CWM2 -0.059 (-0.114–0.001)* 0.046 (-0.012-0.098) -0.012 (-0.084-0.055)

resilience FD -0.025 (-0.08-0.028) 0.003 (-0.024-0.031) -0.022 (-0.08-0.035)

resilience H 0.158 (0.094-0.22)* -0.05 (-0.078–0.021)* 0.108 (0.051-0.164)*

resilience recovery -0.253 (-0.358–0.119)* -0.253 (-0.358–0.119)*

resilience resistance 0.308 (0.237-0.383)* 0.308 (0.237-0.383)*

The SEM we fitted (AIC = 267) resulted in a majority of significant re-530

lationships between variables and relatively high R2 in the submodels of the531
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Figure 6: Structural equation model predicting the direct and indirect (via

changes in species composition) effects of climate on resistance, recovery

and resilience to storm. Red solid lines, blue solid lines and grey dotted

lines respectively indicates significant positive, significant negative and non

significant effects.

SEM (i.e. R2 higher than 60% in three out of the seven submodels) (Fig. 6),532

indicating a good quality of fit (Hertzog, 2019). Although Shipley’s direct533

separation test suggests that some relationships between variables may be534

missing in our SEM (Fisher’s C = 215, df = 12, p < 0.01), a more complete535

SEM including additional relationships to satisfy Shipley’s test yielded the536

same magnitude of the effects we tested (see Supporting Information J).537

538
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The structural equation model shows that forests from colder and wetter539

climate are more functionally diverse and are dominated by species with low540

recruitment rate (Fig. 6). These climate-induced changes in tree species541

composition significantly increases resistance indirectly but have no signifi-542

cant indirect effect on recovery nor on resilience (table 2). This indirect effect543

of climate on resistance is offset by a significant direct effect in the opposite544

direction (i.e., higher resistance in hot and dry climate, Fig. 6), resulting in545

an overall non-significant effect of climate on resistance (table 2). Finally,546

our SEM analysis shows that forests are overall more resilient in hotter and547

drier climates, but that this is not related to changes in tree species compo-548

sition (table 2).549

550

5 Discussion551

5.1 Tree species composition drives resistance, recov-552

ery and resilience to storm disturbance553

The key effect of mean functional strategy - Our simulation experiment showed554

that in Europe, forests dominated by conservative species (i.e., high wood555

density, slow radial growth) had lower recovery but higher resistance and re-556

silience than forests dominated by fast-growing species. This suggests that,557

under the conditions of our model, a forest’s ability to resist and survive storm558

disturbance contributes more to its resilience than its rate of recovery. This559

result is broadly consistent with previous field studies that reported greater560
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resilience in tropical tree communities dominated by conservative species561

(Hérault et al., 2018) or boreal tree communities dominated by broadleaf562

species (White et al., 2023), despite their slower growth rates. More sur-563

prisingly, we observed that the effect of the mean functional strategy of the564

community on resilience was much stronger in magnitude than the effects565

of species diversity and functional diversity. The idea that the traits of the566

dominant species in a community contribute more to resilience and recovery567

than diversity has been documented in studies of herbaceous communities568

(Lepš et al., 1982; Grime, 1998; de Bello et al., 2021), but our study is the569

first, to our knowledge, to show that this trend can also apply to forest tree570

communities. However, it is important to note that in the dataset used to571

calibrate the storm mortality equations and which guided the set of traits572

chosen for this study, information on the exact mechanisms causing storm573

mortality (e.g., windthrow, mechanical failure of the bole in the presence of574

fungal saprotrophs, etc.) was not available (Barrere et al., 2023). Thus, the575

traits chosen as proxies for storm sensitivity were relatively generic (radial576

growth, wood density). Better knowledge of the mechanisms at play, to-577

gether with a set of more adapted traits, might have resulted in a stronger578

effect of functional diversity. Finally, we showed that the mean position of579

tree species along the recruitment functional axis also contributed (although580

to a lower extent than the growth-survival trade-off) to explain forest demo-581

graphic response to storm disturbance. This is in agreement with the study582

of Rüger et al., 2018 in tropical context who showed that tree species demog-583

raphy is not only structured by the growth-survival trade-off but also by an584

orthogonal fecundity axis. Overall, our results argue for a more systematic585
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use of the community mean functional strategy in studies of the relationship586

between tree species composition and forest dynamics.587

588

Diverse forests are more resilient to storm - One of the key findings from589

our simulations is also that diversity (i.e. species diversity and/or functional590

diversity) improves the ability of forests to both resist and recover from a591

storm disturbance. While the positive relationship between forest produc-592

tivity and biodiversity has been extensively studied in the literature (Morin593

et al., 2011; Jucker et al., 2016; Ammer, 2019), only a few studies have in-594

vestigated the effect of diversity on forest response to disturbance, and these595

have focused either on insect attack (Jactel et al., 2007; Jactel et al., 2017)596

or on a generic disturbance (Schmitt et al., 2020), but never on storm distur-597

bance. Considering resilience as the combination of resistance and recovery598

(Holling, 1973; Albrich et al., 2020), we show that the higher resilience of599

diverse forests is due to a positive effect of diversity on both resistance and600

recovery. Unlike most simulation studies of diversity effects, which use ran-601

dom species combinations to cover a broad diversity gradient (Morin et al.,602

2011; Schmitt et al., 2020), we chose to restrict our simulations to observed603

species assemblages, despite the low diversity gradient observed in European604

forests (i.e., a maximum of 6 species in our simulations). This approach al-605

lowed us to show that a diversity effect on the resilience to storm disturbances606

is already noticeable for the short diversity gradients observed in European607

forests.608

609

33



5.2 Climate mediates the effect of species composition610

on forest response to disturbance to storm611

The diversity - recovery relationship is not affected by climate - In line with612

the stress gradient hypothesis (Bertness et al., 1994), several field studies have613

shown that the effect of diversity on forest productivity peaks in harsher en-614

vironments with lower productivity and resource availability (Paquette et al.,615

2011; Töıgo et al., 2015; Jucker et al., 2016; Ratcliffe et al., 2017; Jactel et616

al., 2018). Due to the strong relationship between recovery and productivity617

(Falk et al., 2022), we might have expected this higher productivity under618

extreme conditions to translate into higher post-storm recovery. However,619

our simulations showed that the effect of diversity on recovery was constant620

across the European climatic gradient. The main explanation put forward621

to explain the stronger relationship between diversity and productivity un-622

der stressful conditions is that competition between species is reduced due623

to low productivity, leaving more room for facilitative interactions (Ammer,624

2019). Our finding may arise from the weaker competitive interactions un-625

der post-storm conditions: as recovery occurs at low stand densities following626

disturbance, biodiversity effects that promote productivity through reduced627

competition are less likely to occur.628

629

The effect of species composition on resistance is highly sensitive to cli-630

mate - While many studies have examined the effect of climate on the631

diversity-productivity relationship (Töıgo et al., 2015; Jucker et al., 2016;632

Jactel et al., 2018), its effect on the relationship between diversity and resis-633

tance to disturbance has been much less investigated. In this study, we found634
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that the positive effect of diversity on resistance to storm disturbance peaked635

at the two extremes of the climatic gradient. Due to the positive correlation636

between resistance and resilience (Fig. 6), this also resulted in a similar637

but weaker trend for the diversity-resilience relationship. In a previous field638

study, Guyot et al., 2016 found that the positive effect of diversity on re-639

sistance to biotic disturbance was constant across a European-scale climatic640

gradient. The difference between our results and those of Guyot et al., 2016 is641

likely due to differences in the mechanisms underlying the diversity-resistance642

relationship between biotic and storm disturbances. In their review, Jactel643

et al., 2017 suggest that for biotic damage, the resistance-diversity relation644

is mainly driven by association effects (e.g., fewer hosts are available in di-645

verse stands for specialist pests), whereas the windstorm resistance-diversity646

relation is mainly driven by the sampling effect (e.g., diverse species assem-647

blages are more likely to host storm-resistant species). The contribution of648

the sampling effect to the diversity-resistance relationship should be partic-649

ularly strong under the conditions of our model, as disturbance mortality650

depends solely on forest structure and species sensitivity. This effect is ex-651

pected to be particularly strong in harsher environments, where the propor-652

tion of slow-growing, resistant species is higher than in more growth-optimal653

climates, where most species tend to optimise productivity, leading to more654

functional redundancy (Wu et al., 2015; Barrere et al., 2023). Overall, our655

results support the idea that the relationship between diversity (i.e., both656

functional diversity and species diversity) and ecosystem functioning can be657

highly variable depending on environmental variables such as climate (Rat-658

cliffe et al., 2017).659
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660

5.3 Resilience is higher in hot and dry climates661

Our analyses show that, overall, forests tend to be more resilient in hot and662

dry climates. In addition to influencing the effect of diversity on resilience,663

climate has been reported to directly influence productivity through physi-664

ological effects (Ammer, 2019) and to alter species composition, which may665

indirectly influence both productivity (Morin et al., 2018) or resistance to666

disturbance (Rogers et al., 2017; Barrere et al., 2023). However, the con-667

tribution of indirect climate effects on storm resilience via changes in tree668

species composition has rarely been investigated. Previous studies focusing669

on productivity have found that climate has mainly indirect effects through670

changes in tree species composition (Morin et al., 2018; Delalandre et al.,671

2022). Our structural equation modelling (SEM) approach suggests the ex-672

istence of indirect climate effects on resistance through changes in species673

composition (i.e., via FD and CWM2), with forests from cold and wet cli-674

mates being more resistant to storm due to a higher functional diversity and675

a lower proportion of species with high recruitment rate (i.e., high CW2).676

However, we found that the indirect effects of climate on resilience were677

not significant, thereby suggesting that the higher resilience of forests from678

hot and dry climates is not related to changes in tree species composition.679

Given the hypotheses of our model, part of this climate effect on resilience680

unexplained by tree species composition could be related to climate-induced681

changes in forest structure at equilibrium which can further affect resilience682

(Cooper-Ellis et al., 1999). High temperatures and reduced water availability683
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have been shown to reduce average tree size (Astigarraga et al., 2020). This684

was also observed in our analyses, along with higher tree density and lower685

disturbance-induced changes in tree size distribution in hot and dry climates686

(Supporting information K). Taken together, our results highlight the fact687

that climate also contributes to shaping forest resilience to disturbance, and688

that the interactions between climate, tree species composition and resilience689

need to be considered when predicting forest dynamics under climate change.690

691

5.4 Advantages and limitations of the modelling ap-692

proach693

Disentangling resistance from recovery to better understand the drivers of694

resilience - One key originality of our study was to analyse resistance and695

recovery together. Indeed, due to the difficulty of capturing species-specific696

sensitivity to disturbance, studies simulating forest resilience tend to focus on697

recovery (Schmitt et al., 2020; Guyennon et al., 2023) without considering698

tree species resistance, despite the existence of possible trade-offs between699

resistance and recovery (Nimmo et al., 2015) and the fact that both metrics700

contribute to explaining overall forest resilience (Holling, 1973; Lloret et al.,701

2011). Our SEM analysis tends to support the existence of such a trade-off by702

showing that resilience and recovery are associated with different edges of the703

same functional axis: communities dominated by conservative species (slow704

radial growth, high wood density) were more resistant, whereas communi-705

ties dominated by fast-growing species (fast radial growth and high height to706

diameter ratio) had higher recovery. The effect of diversity on these two met-707
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rics also differed, with resistance being largely driven by functional diversity,708

whereas recovery was driven only by species diversity. Overall, resistance709

appeared to have the strongest effect on the resilience metric we used, sup-710

porting the various studies arguing that resilience is higher in communities711

dominated by conservative rather than fast-growing species (Hérault et al.,712

2018; White et al., 2023). Our results thus shed light on the fact that resis-713

tance and recovery are driven by different processes (Falk et al., 2022), and714

on the relative influence of these two metrics on resilience.715

716

Simulating forest dynamics from an equilibrium in the context of global717

change - In this study, we chose to simulate forest trajectories from a stable718

equilibrium, in line with the classical notion of resilience that uses a ref-719

erence equilibrium state (Holling, 1973; Lloret et al., 2011; Albrich et al.,720

2020). Simulating disturbances from an equilibrium state is also the most721

common approach found in similar studies (Morin et al., 2018; Schmitt et al.,722

2020; Guyennon et al., 2023), in part because using a reference equilibrium723

allows clear quantification of resilience. As the identification of a long-term724

equilibrium state is notoriously difficult in field studies due to their limited725

temporal range, the use of a reference equilibrium state often involves the use726

of a model. In that sense, the study of resilience well illustrates the benefits727

of using modeling approaches and the complementarity between modeling728

and field studies, despite the limitations that are inherent to all models. In729

the present study for instance, our recruitment model was relatively sim-730

ple, and the IPM simulations always recovered both in terms of total basal731

area and in terms of species composition. Field studies have however shown732
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that storm-induced competition-release can promote a decoupled recovery of733

forest structure and species composition (Chin et al., 2023). Furthermore,734

while the question of forest response to single disturbance in equilibrium is735

a first step to understanding the mechanisms that drive resilience, forests736

can in reality take centuries to reach this equilibrium, while the return rate737

of disturbances tends to be much lower. This argues for the development738

of quantitative approaches to measure resilience in the absence of a strict739

equilibrium and in response to disturbance regimes rather than to single dis-740

turbances (Seidl et al., 2011). Johnstone et al., 2016 theorized that forest741

resilience to disturbance regimes arises from an alignment between the char-742

acteristics of these regimes (i.e., disturbance type, frequency, size) and tree743

species traits characterizing the response to these disturbances (e.g., fecun-744

dity, resistance traits). Under this theory, looking at forest resilience in the745

context of changes in disturbance regimes (Senf et al., 2018; Patacca et al.,746

2022) in term of basal area but also in term of forest functional composition747

will be an important next step.748

749

6 Conclusion750

Our simulation study highlights the key role of tree species composition in751

the ability of European forests to both resist and recover from storm dis-752

turbance. In particular, we showed that diverse forests dominated by con-753

servative rather than fast-growing species are more resilient to storm distur-754

bances due to their high resistance. We also showed that the relationship755
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between tree species composition and resilience is highly climate sensitive.756

Finally, our results suggest that climate directly and indirectly influences757

resilience, with forests from cold and wet climates being less resilient due758

to unfavourable growth conditions for recovery and changes in tree species759

composition towards less functionally diverse communities. In the context of760

intensifying disturbance regimes across all climatic biomes, our simulations761

highlight the key interactions between climate, tree species composition and762

forest resilience to disturbance, which should help to anticipate the conse-763

quences of climate change and intensifying disturbance regimes on forest764

ecosystem dynamics.765
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