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State-of-the-art techniques in generative artificial intelligence are employed for the first time to
construct a surrogate model for plasma turbulence that enables long time transport simulations.
The proposed GAIT (Generative Artificial Intelligence Turbulence) model is based on the coupling
of a convolutional variational auto-encoder, that encodes precomputed turbulence data into a reduce
latent space, and a deep neural network and decoder that generate new turbulence states 400 times
faster than the direct numerical integration. The model is applied to the Hasegawa-Wakatani (HW)
plasma turbulence model, that is closely related to the quasigeostrophic model used in geophysi-
cal fluid dynamics. Very good agreement is found between the GAIT and the HW models in the
spatio-temporal Fourier and Proper Orthogonal Decomposition spectra as well as in the flow topol-
ogy characterized by the Okubo-Weiss decomposition. Agreement is also found in the probability
distribution function of particle displacements and the effective turbulent diffusivity.

Turbulence is ubiquituous in nature and industrial sys-
tems. The atmosphere of planets [1], oceanic currents
[2], ionized gases in stars [3], the solar tachocline [4], and
the solar wind [5] are some examples of systems where
turbulence can be encountered. Other examples include
turbulent flows behind airfoils and in combustion cham-
bers where turbulence is known to play an important role
in mixing [6]. Independently of its nature or underlying
mechanism, turbulence represents without any doubt one
of the greatest challenges in numerical modelling due to
the vast range of spatio-temporal scales involved and the
unpredictable behaviour.

In this Letter we focus on turbulence in magnetized
plasmas of interest to controlled nuclear fusion and as-
trophysics. The pressing need to understand and predict
the role of turbulence in particles and energy transport
in fusion plasmas has motivated the development of a
large number of computational tools ranging from fluid
to gyro-fluid and gyro-kinetic models. However, due to
the spatiotemporal multiscale properties of plasma tur-
bulence these computations are very time consuming and
in some cases impractical or unaffordable. To overcome
this limitation we propose the use of state-of-the-art ar-
tificial intelligence (AI) methods to accelerate turbulence
simulations. Although our focus is on plasma physics, as
we will describe below, the turbulence model of interest
contains as a special case a model extensively used in geo-
physical fluid dynamics. Recently, a variety of machine
learning techniques have been used to accelerate and val-
idate plasma physics simulations as well as to develop
data-driven surrogate models [7–13] Of particular inter-
est is the potential of AI to create new data from existing
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data using generative deep-learning techniques. These
techniques, which have been used in chemistry to auto-
matically design new molecules [14] and fluid mechanics
[15], form the basis of our proposed GAIT (Generative
Artificial Intelligence Turbulence) surrogate model.
Once computed, a turbulence field can be used to per-

form transport studies of passive tracers, e.g., impuri-
ties. In the simplest setting, the basic idea is to solve
the transport equation in a time interval (0, tmax) for
a large ensemble of particles using the electromagnetic
fields computed from the numerical solution of a turbu-
lence model (e.g., gyro-kinetics or gyro-fluid). The main
limitation encountered in this type of studies is that the
tmax of relevance for transport studies is typically much
larger than the time range for which the turbulence model
can be solved, due to limited computational resources.
One way to overcome this limitation is by using surrogate
models, like the GAIT model proposed here, that once
trained in a time range (0, ttrain) can be used to produce,
with negligible computational cost, turbulent states in
the transport scale range (0, tmax) where ttrain ≪ tmax.
As a tractable example to illustrate and test the

GAIT model we consider the extensively used Hasegawa-
Wakatani (HW) model [16]

∂tn+ [ϕ, n] = C (ϕ− n)− κ∂yϕ− µ∇2n (1)

∂tΩ+ [ϕ,Ω] = C (ϕ− n)− µ∇2Ω (2)

where ϕ is the electrostatic potential, n is the den-
sity, Ω = ∇2

⊥ϕ is the vorticity, C is the adiabaticity
coefficient, µ is a hyper-diffusion coefficient, [A,B] =
∂xA∂yB−∂yA∂xB is the canonical Poisson bracket, and
κ = −∂x log n0 is the drive of the instability under-
lying the turbulence with n0 the background density.
The magnetic field is assumed time-independent, uniform
and perpendicular to the (x, y) plane, i.e. B = Bez.
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Time is normalized to the cyclotron frequency ωc0, and
(x, y) to the Larmor radius ρs. In applications to con-
trolled nuclear fusion in toroidal magnetic confinement
devices, this model is used to describe edge turbulence
in a poloidal cross-section perpendicular to the toroidal
magnetic field, and has been very recently employed in
the context of developing data-driven reduced models
[17].

In the special case n =constant, Eqs. (1)-(2) reduce
to the quasigeostrophic β-plane equation, also known as
Charney equation, modeling Rossby waves in the atmo-
sphere and the oceans [18]. In this reduction, the mag-
netic field corresponds to the earth’s rotation, the elec-
trostatic potential to the fluid streamfunction, and the
plasma density gradient to the variation of the Coriolis
force with latitude. This close analogy opens the possi-
bility of applying methods and ideas in magnetized plas-
mas to geophysical flows and viceversa, see for example
Ref. [19] and references therein. In particular, since our
methodology focuses on the construction of a surrogate
model for the potential, and not the density, it is directly
applicable to geophysical fluid dynamics turbulence.
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FIG. 1: Schematic representation of the architecture of
the proposed generative machine learning surrogate
model for plasma turbulence. [For a dynamic
representation see video in the supplemental material]

To train the GAIT model, Eqs.(1)-(2) with C = 1,
κ = 1, B = 1, µ = 10−3 and k0 = 0.15 were
solved numerically using a pseudo-spectral method with
a (Nx, Ny) = 512 × 512 spatial grid and a 4th order
Runge-Kutta scheme for the time advance with ∆t =
2 · 10−2ω−1

c0 to guarantee convergence and stability. A
total of Ns = 8000 snapshots of the electrostatic poten-
tial were obtained by saving the numerical data at a rate
∆tsaving = ω−1

c0 , i.e. every 50 numerical time steps. To
avoid transient effects, snapshots were saved after turbu-
lence has saturated, which in this case corresponded to
ωc0t ≃ 200.
As illustrated in Fig. 1 the proposed GAIT model con-

sists of a convolutional variational auto-encoder (CVAE)
coupled to a deep neural network (DNN). CVAEs are

FIG. 2: Snapshots of electrostatic potential obtained
from the direct numerical integration of
Hasegawa-Wakatani model (left) and the proposed
GAIT (Generative Artificial Intelligence Turbulence)
model (right).

probabilistic generative machine learning models com-
posed of an encoder, E , and a decoder, D [20, 21]. Simi-
lar architecture has been employed to compress diagnos-
tic measurements characterizing a plasma state [8]. In
our problem E is a convolutional neural network (CNN)
consisting of five successive 2D convolution layers (with
variable stride, kernel sizes, and filters) that map snap-
shots of the electrostatic potential, ϕ, represented in an
Nx ×Ny grid of the (x, y) plane, to points in a reduced
N -dimensional latent space of parameters of a variational
Gaussian distribution N (z|µ, σ), with z ∈ RN , µ ∈ RN

and σ ∈ RN . For training purposes, the 512 × 512 tur-
bulence data was down-sampled to a Nx ×Ny = 64× 64
resolution. For the dimension of the latent space we
used N = 64, resulting in a encoder data compression
factor of NxNy/N = 64. The decoder, D, is designed
as a mirror image of the encoder with transposed con-
volution layers that progressively unfold N -dimensional
latent vectors into Nx × Ny dimensional images, such

that D[E [ϕ]] = ϕ̂ ≈ ϕ. The goal of the training is to
find an optimal E that compresses the data preserving
the maximum information and an optimal D that has
the minimum reconstruction error. This is achieved by
minimizing the loss function

LCVAE =

Ns∑
i

wϕ

∥∥∥ϕi − ϕ̂i

∥∥∥2 + w∇ϕ

∥∥∥∇ϕi −∇ϕ̂i

∥∥∥2
+ wKLKL (N (zi|µi, σi) ,N (zi|0,1))

(3)

where {ϕi}Ns
=1 and {ϕ̂i}Ns

=1 are the Ns training and the Ns

reconstructed snapshots respectively, zi = E (ϕi), and
KL is the Kulback-Leibler divergence [22]. The first two
terms of Eq. (3) are the reconstruction loss of ϕ and ∇ϕ
in the L2 norm, weighted by the hyper-parameters wϕ

and w∇ϕ. Although in principle one can set w∇ϕ = 0, we
have found that using w∇ϕ ̸= 0 leads to faster learning
and a reduction of the error in the evaluation of the elec-
tric field, E = −∇ϕ, which for particle transport studies
is a more relevant field than ϕ itself. The third term in
Eq.(3) uses the Kulback-Leibler divergence to quantify
the difference between the normal distributions of the
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mapped snapshots in the latent space with mean µi and
variance σi and a normal distribution with zero mean
and unit variance. Minimizing this difference forces the
encoder to map the different images into a compact set
with small variability in the latent space, a property that
is critical for the success of the generation of new turbu-
lence data based on the training data. The training of
the CVAE used 8000 snapshots of the potential and was
implemented using an Adam optimizer with a learning
rate lr = 10−3 and 5000 epochs. Since the numerical
simulations are performed in a double periodic domain,
the standard convolution algorithms (e.g., those in Ten-
sorFlow) needed to be modified so the encoder automat-
ically captures the periodicity of the input data and the
decoder generates periodic images from points in the la-
tent space.

Once the CVAE is trained, the sequence of Ns = 8000
points in the latent space, {z1, z2, . . . zNs}, correspond-
ing to the evolution in time of the turbulence snap-
shots {ϕ1(x, y), ϕ2(x, y), . . . ϕNs

(x, y)}, are used to train
a multi-layer DNN (Deep Neural Network) to predict
zNs+i

, given zNs+i−1
. For this, we shuffle and split the

pairs into training and testing datasets, with a test-size
of 0.30, and train the DNN for 500 epochs using Adam
optimizer with a learning rate lr = 10−3. The DNN
architecture consisted of three hidden layers and was
implemented using Tensorflow and the API Keras us-
ing the loss function LDNN =

∑
i ∥zi+1 −DNN(zi)∥2.

Numerical results show that the electrostatic energy,
|∇ϕi|2 of a turbulence snapshot increases with the eu-
clidean norm of the corresponding latent space vector
zi = Eϕi. Therefore, to avoid strong variations in the
electrostatic energy, the DNN uses bounded tanh ac-
tivation functions that preclude the generation of out-
liers during the generation process. The turbulence AI
generation process is completed by using the decoder to
map the new points in the latent space into new snap-
shots of turbulence, {ϕ̃Ns+1(x, y), . . . ϕ̃Ns+Ng

(x, y)} with

ϕ̃j(x, y) = D[z̃j ]. As shown in Fig.2, the images of the AI
generated turbulent states are practically indistinguish-
able from those generated from the direct numerical sim-
ulation of the Hasegawa-Wakatani turbulence model in
Eq. (1)-(2). However, from the physics perspective it is
critical to go beyond the observed qualitative agreement
of the images and perform systematic tests using quan-
titative metrics. The rest of the letter is devoted to this
goal. Unless otherwise stated, the weights used in the loss
function were set to: wϕ = 1, w∇ϕ = 10, and wKL = 0.01.
These values were selected to reach an optimal balance
between the compression properties of the encoder in the
latent space and the reconstruction error of the decoder.

The first test compares the Fourier power spectra in

space of the electric field turbulent fluctuations, |δ̂E(k)|,
where δ̂E(k, t) is the Fourier transform in space of
δE(x, y, t) = E(x, y, t) − ⟨E⟩, ⟨f⟩ denotes spatial aver-
age, f denotes time average, E is the magnitude of the

electric field, E = | − ∇ϕ|, and k =
√
k2x + k2y. The sec-

ond test compares the Fourier power spectra in time of

the electric field turbulent fluctuations,
〈
|δ̃E(ω)|

〉
, where

δ̃E(x, ω) is the Fourier transform in time of δE(x, y, t).
Figure 3 shows the quantitative between the HW and the
GAIT model in the Fourier power spectra in space and
time of the electric field turbulent fluctuations.

FIG. 3: Comparison of electric field turbulent
fluctuations spectra in the HW and GAIT models. Left:

Fourier power spectra in space, |δ̂E(k)|. Right: Fourier
power spectra in time,

〈
|δ̃E(ω)|

〉
.

FIG. 4: Comparison of electrostatic potential
fluctuations in the HW and GAIT models.(Left) Proper
orthogonal decomposition spectrum. (Right) Eulerian
time auto-correlation function.

A distinctive feature of 2D turbulence is the sponta-
neous formation and persistence of coherent structures,
e.g. vortices and zonal flows [23]. Understanding these
structures is important because the trapping effect of vor-
tices and the long displacements caused by zonal flows
can have a critical role in transport, see for example
[24] and references therein. Accordingly, an important
metric in the evaluation of the proposed AI model is
how well the model captures the coherent structures of
the flow. To quantify this, we use Proper Orthogonal
Decomposition (POD) methods which have been exten-
sively used in fluids [25] and plasmas [26]. Contrary to
Fourier spectral analysis, POD is based on data-driven,
empirical modes providing an optimal representation of
the turbulence state in the energy norm. As discussed
in [27] the POD mode decomposition and spectra can be
used to characterize the spatiotemporal coherence of HW
plasma turbulence. Following this idea, the left panel of
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FIG. 5: Comparison of flow topology in the HW and
GAIT models. Top panel: spatial distribution of
Okubo-Weiss field at a fixed time, Q(x, y, tc), in the
HW model (left) and the GAIT model (right). Bottom
panel: comparison of probability distribution of Q
values in space and time.

Fig. 4 compares the time average (over the 8000 snap-
shots) of the POD singular values wl as function of the

rank, l, where ϕ(x, y, t) =
∑N

l=1 wl(t)u
(l)(x, t)v(l)(y, t) is

the singular value decomposition of the electrostatic po-
tential at time t. The close agreement, indicates that the
GAIT model reproduces well the coherent structures of
the HW model. Another metric of interest is the Eule-
rian correlation time of the electrostatic potential fluc-
tuations, C(τ) = ⟨ϕ(x, t)ϕ(x, t+ τ)⟩. The right panel in
Fig. 4 shows overall agreement in this metric although the
correlation in the GAIT model exhibits a slightly slower
decay.

To further compare the GAIT and the HW turbu-
lence models, we consider the Okubo-Weiss (OW) pa-
rameter, used in [28] to characterize the flow topol-
ogy in HW plasma turbulence. The OW parameter
is defined as Q = s2 − ω2, where ω = ∂xVy − ∂yVx

is the vorticity, s2 = s21 + s22 is the deformation with
s1 = ∂xVx − ∂yVy and s2 = ∂xVy + ∂yVx [29]. In the
problem of interest here V is the magnitude of the drift
velocity, V = −∇ϕ × Bez = (Vx, Vy) = B(−∂yϕ, ∂xϕ).

Given the threshold, Q0 =

√
⟨Q2⟩, the turbulent flow can

then be partitioned into three topologically distinctive re-
gions: strongly elliptic (vorticity dominated) Q ≤ −Q0,
strongly hyperbolic (deformation dominated) Q ≥ Q0,
and intermediate −Q0 < Q < Q0. From a transport per-
spective, strongly elliptic regions tend to reduce trans-
port due to particle trapping and strongly hyperbolic re-
gions tend to enhance mixing due to particle dispersion.
The agreement between the GAIT and the HW models
in the flow topology of the turbulent field is shown in
Fig.5. The top panels compare the Okubo-Weiss three
levels (Q < −Q0, −Q0 < Q < Q0, Q > Q0) decom-

position of the turbulence field at a given time. The
bottom panel compares the probability distribution of Q
values in space and time {Qi,j(tk)}, where i = 1, . . . 64,
j = 1, . . . 64 and k = 1, . . . Ns.
As a final test we consider the transport problem con-

sisting of solving dx
dt = −∇ϕ × Bez for an ensemble of

104 tracers initially distributed uniformly in the square
domain {(x, y)|0 < x < 2π/k0 , 0 < y < 2π/k0}. A
Runge-Kutta method, with a timestep ∆t = 0.2, was
used to integrate the orbits, along with a linear inter-
polation in time, and a bilinear interpolation in space
for the potential snapshots. When computing the La-
grangian statistics the particles’ orbits are considered in
the extended R2. That is the values of (xi(t), yi(t)) were
not wrapped in the [0, 2π/k0] × [0, 2π/k0] double peri-
odic domain. The main quantities of interest are the the
probability distribution function of displacements P (∆r)

and its variance, σ2
∆r(t) =

〈
(∆r − ⟨∆r⟩)2

〉
, where ∆r2 =

(x (t)− x (0))
2
+(y (t)− y (0))

2
and ⟨·⟩ denotes ensemble

average.
Figure 6 shows that both the HW and the GAIT mod-

els exhibit the expected diffusive scaling σ2
∆r(t) ∼ t and

Gaussian profiles of P (∆r). However, for the parame-
ters used in the results reported above, (wϕ, w∇ϕ, wKL) =
(1, 10, 0.01), labeled as “case 1” in the figure, the value
of the diffusivity D = σ2

∆r/2t in the GAIT model,
DGAIT,1 = 1.28, tends to be bigger than the diffusiv-
ity obtained using the HW model, DHW = 0.933. This
discrepancy can be resolved by using (wϕ, w∇ϕ, wKL) =
(0, 10, 0.1). This case, labeled as “case 2” in the fig-
ure, exhibits excellent agreement with DGAIT,2 = 0.981.
Most importantly, the GAIT model preserves the same
transport properties when extrapolated way beyond the
range of training and solution of the HW model.

FIG. 6: Comparison of radial displacements, ∆r, of
tracers in HW and GAIT models. Left: variance σ2

∆r(t)
as function of t in log-log scale. Right: Probability
distribution function of displacements at different times.

In the calculations reported in this letter, the numeri-
cal integration of the HW model to produce 10000 snap-
shots of training data took 50 hours on a V100 GPU
node of the French Jean-Zay super computer. On the
same node, the training of the CVAE took 1 hour, and
the training of the DNN less than two minutes. The gen-
eration of 10000 snapshots of turbulent states with the
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GAIT model took about 7.5 min. That is, once trained,
the GAIT model can generate turbulent states at a rate
50 hrs/ 7.5 min ∼ 400 times faster than the direct nu-
merical integration.
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