
HAL Id: hal-04600516
https://hal.science/hal-04600516

Submitted on 4 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Timed Output Synchronized Petri Nets and basics of
Synchronized State Class Graph

Mouna Gaouar, Rabah Ammour, Isabel Demongodin, Dimitri Lefebvre

To cite this version:
Mouna Gaouar, Rabah Ammour, Isabel Demongodin, Dimitri Lefebvre. Timed Output Synchronized
Petri Nets and basics of Synchronized State Class Graph. 17th Workshop on Discrete Event Systems
(WODES’24), Apr 2024, Rio de janeiro, Brazil. �hal-04600516�

https://hal.science/hal-04600516
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Timed Output Synchronized Petri Nets and
basics of Synchronized State Class Graph ⋆

Mouna Gaouar ∗ Rabah Ammour ∗ Isabel Demongodin ∗

Dimitri Lefebvre ∗∗

∗ Aix-Marseille University, CNRS, LIS, Marseille, France, (email:
{mouna.gaouar, rabah.ammour, isabel.demongodin}@lis-lab.fr)
∗∗ Université Le Havre Normandie, GREAH, Le Havre, France,

(email: dimitri.lefebvre@univ-lehavre.fr)

Abstract: This paper presents a timed extension of Synchronized Petri nets that can be
controlled and observed. Output Synchronized Petri Nets have been previously defined for
allowing a Cyber-Physical System to be controlled through input event associated with
controllable transitions and to be observed thanks to output events issued by the marking values
and/or marking changes. The proposed new timed extension, called timed Output Synchronized
Petri nets, is obtained by assigning firing durations to transitions. As the state space of such
formalism involves dense time variables, we propose a state class graph abstraction called
Synchronized State Class Graph.

Keywords: Timed Petri net, Synchronized Petri net, State Class, Cyber-physical systems

1. INTRODUCTION

In recent years, there has been a growing focus on se-
curity of Cyber-Physical Systems (CPS) leading to the
development of various formalisms and methods partic-
ularly within the framework of Discrete Event Systems
(Oliveira et al., 2023). Combining computer networks with
physical processes and controllers, such CPS are character-
ized by their complexity, communication capabilities and
synchronous behaviors. In the Petri net (PN) framework,
Synchronized Petri nets are a very suitable formalism for
representing such a system as the enablings of transitions
are governed by the occurrence of input events and a
set of enabled transitions are fired at once (also called
a maximal step in the PN literature). One extension of
this formalism, called Output Synchronized Petri nets
(OutSynPN) (Ammour et al., 2021) has been proposed for
generating output events. Hence, the system can be con-
trolled through input event associated with controllable
transitions and could be observed thanks to output events
issued by the marking values and/or marking changes.
This formalism allows us to design observers and ana-
lyze vulnerability of CPS under stealthy actuators attacks
(Ammour et al., 2022, 2023). However, there remains a
crucial need to extend this formalism to temporal aspects,
enabling the detection of cyber attacks based on timing
conditions. This need motivates the new formalism pro-
posed in this paper called Timed Output Synchronized
Petri Net (TOutSynPN), which extends OutSynPNs with
a firing duration associated with each transition of the net.
Thanks to TOutSynPN formalism, the model is suitable
to describe both the physical and cyber layers of CPS in
an intuitive way, and to be consistent with most of the

⋆ This work has been partially supported by the French National Re-
search Agency under grant agreement ANR-22-CE10-0002. Version
under licence CC-BY-NC-ND 4.0.

existing classes of Petri nets, as synchronized PNs, inter-
preted PNs, and of course, timed and time PNs. However,
due to the density of the time domain, the state space
of a TOutSynPN model is usually infinite. Hence, there
is a need for contracting the infinite state space into a
finite structure. In the time setting with interval, there
exist several finite representations abstracting the state
space of a time Petri net, one of them being the State
Class Graph (SCG) (Berthomieu and Menasche, 1983).
One of its benefits is to be finite as long as the time PN
is bounded. Several extensions have been defined on such
a SCG, as in (Leclercq et al., 2023) where it is proposed
a state class based controller synthesis approach for time
Petri nets or, the Modified SCG proposed in (Basile et al.,
2015; He et al., 2019) which seems to be well adapted to
describe in a compact and exhaustive manner all possi-
ble behaviors of labeled time Petri nets. This last SCG
has also been used for time interpreted PNs (Basile and
Ferrara, 2023) in which the firing of transitions could be
conditioned by the occurrence of an input event. Inspired
from these previous works, we propose in this paper a
finite structure for TOutSynPN, called Synchronized State
Class Graph (SynSCG). It allows the reachable marking
to be represented while taking into account the semantics
of TOutSynPN such as the enabling conditions related to
the occurrence of input events as well as the synchronized
firing of timed transitions. The practical aim of our work
is to advance CPS cyber-security by offering a comprehen-
sive time-dependent framework for modeling and detecting
cyber threats.

The content of this paper is as follow. Section II is
about the concepts and definitions of OutSynPNs. and,
proposes the timed extension of this formalism. Basics
of Synchronized State Class Graph are then presented in
Section III. Section IV concludes the paper.

2. TIMED OUTPUT SYNCHRONIZED PETRI NETS

After recalling some concepts about Output Synchronized
Petri nets (see (Ammour et al., 2021, 2022) for more
details), this section presents temporal extension added
as deterministic (or constant) ”firing durations” assigned
to transitions of the net, qualifying the Timed OutSynPN
as a particular class of timed-transition Petri nets.

2.1 Output Synchronized Petri Nets

To begin with, we denote by Br the set of Boolean
functions that can be defined on {0, 1}r. This allows us
to define the output function that is marking dependent.

Definition 1. An output synchronized Petri net (Out-
SynPN) is a structure Nos = ⟨N,E, f,Σ,Γ, Q, g⟩. A
marked OutSynPN is ⟨Nos,M0⟩ such that:
• N = ⟨P, T, Pre, Post⟩ is a Petri net, where P is a set of
m places, T is a set of n transitions, Pre : P × T → N
and Post : P × T → N are the pre− and post−
incidence matrices that specify the weights of directed
arcs from places to transitions and vice versa.

• A marking is a vector M : P → Nm that assigns to each
place a non-negative integer. We denote byM(pi) ormi,
the marking of place pi and, by M0 an initial marking.

• E is an alphabet of external input events.
• f : T → Eλ = E ∪ λ where λ is the always occurring
event. f is an input function that associates with each
transition t ∈ T an event in Eλ.

• Σ ⊆ {↑M(pi), ↓M(pi) | pi ∈ P} is a non empty set of
events associated with a marking change of places, where
↓ and ↑ represent any decreasing and any increasing of
a place marking, respectively;

• Γ ⊆ {M(pi) ∼ h, | pi ∈ P, h ∈ N, ∼ ∈ {=, ̸=,≥,≤, >
,<}} is a set of conditions on the place marking;

• Q is an alphabet of output events, and Qε = Q∪ε where
ε is a silent output event;

• g : Q → {0, 1} is an output function such that ∀qi ∈ Q,
g(qi) = Υ(BΓ(qi)) ∧ Θ(BΣ(qi)) where BΓ(qi) ∈ B|Γ|,
BΣ(qi) ∈ B|Σ| and, Υ : B|Γ| → {0, 1} is a Boolean
function depicting the conditions on the marking value
of places to generate output qi and Υ(.) = 1 when no
condition on the marking values is involved for output
qi; Θ : B|Σ| → {0, 1} is a Boolean function depicting the
conditions on the marking change events to generate
output qi and Θ(.) = 0 when no event on the marking
change is involved for output qi. ▲

C = Post − Pre is the incidence matrix. The preset and
postset of transitions are respectively: •t = {p ∈ P |
Pre(p, t) > 0} and t• = {p ∈ P | Post(p, t) > 0}.
Two transitions, t, t′ ∈ T , are said to be in structural
conflict if they share at least one common input place,
i.e., (•t ∩ •t′) ̸= ∅.
The set of transitions associated with an input event
e ∈ Eλ is denoted by: Te = {t ∈ T : f(t) = e}. The set
of transitions enabled at marking M and associated with
input event e, called receptive transitions set for event e
at marking M , is denoted by ζe(M) = {t ∈ Te : M ≥
Pre(·, t)}.
In a standard autonomous discrete Petri net, the behaviour
is driven by asynchronous dynamics, meaning that only

one transition is fired at a marking. The behaviour of
an OutSynPN is defined by synchronous dynamics in
regards to transitions and also by asynchronous dynamics
in regards to external input events. In other terms, at
marking M , only one external input event can occur at
once, while several transitions can be fired simultaneously.
In addition, at a marking, if the receptive transitions set
for the always occurring event is not empty, the λ−input
event prevails over any external event (called choice policy
in the next). As a consequence, at the occurrence of
event e ∈ Eλ, receptive transitions associated with e
(tj ∈ ζe(M)), may be fired simultaneously in one step. This
leads to the concept of Elementary Firing Sequence (EFS),
denoted as σe(M) = [tj1 , · · · , tjk], where the brackets are
used to denote that the firing order of the k transitions
can be arbitrarily chosen. Hence, at marking M , the
firing of an EFS σe(M) yields to marking M ′, denoted
as M [σe(M) ⟩M ′, with M ′ = M + C · σ̃e(M) where
σ̃e(M) ∈ N|T | is the EFS vector of σe(M).

When M ′ ̸= M , this marking change can produce a set of
output events Q(M, e) = {q ∈ Q : g(q) = 1}. If no output
event is generated, it is noted as a silent output ε. Observe
that this is always the case when M = M ′, as there is
no marking change. Finally, M [σe(M) ⟩ M ′ : Q(M, e),
denotes that, from marking M , the occurrence of event e
resulting in EFS σe, yields to marking M ′ and generates
an output set Q(M, e).

2.2 Timed Output Synchronized Petri Nets

Definition 2. A timed output synchronized Petri net
(TOutSynPN) is a structure, Ntos = ⟨Nos, D⟩ such that:
• Nos = ⟨N,E, f,Σ,Γ, Q, g⟩ is an OutSynPN;
• D : T → Q+

0 is a function that associates with each
transition tj a firing duration dj . ▲

The marking M of a timed output synchronized Petri net
⟨Nos, D⟩ is a vector M : P → Nm, where m is the number
of places in the net, that assigns to each place a non-
negative integer. It represents the logical part of a state
of a TOutSynPN.

For timing requirements, the service policy considered
in this paper is mono server semantics with respect to
input events. This means that no matter how many times
an event successively occurs at a given state, only one
occurrence will be considered. We also assume mono-
server semantics with respect to transitions, that implies
no transition can be enabled or activated more than once
at the same marking. To represent in the time domain such
a mono-server semantics, a single local clock is associated
with each transition. Hence, the state of a TOutSynPN is
defined as follows.

Definition 3. A state of a marked TOutSynPN ⟨Ntos,M0⟩
is a pair s = (M,O), composed of the marking of
places and the value of all local clocks, O = {ot ∈
R+

0 ∪ {♯,+∞}, t ∈ T}, where ♯ stands for a large positive
rational number that can be assimilated to +∞ in terms
of properties. ▲

Inspired by the three-phases firing semantics previously
proposed by Ramchandani and extended with zero firing
delay by Popova-Zeugmann (2013), we consider for TOut-

SynPN a preselection policy as firing rules. When a timed
transition is activated, it consists of reserving the input
tokens of the transition, waiting until the firing duration
is reached (delay) and next, deleting reserved tokens and
creating the output tokens of the transition. This firing
process when initiated cannot be interrupted or stopped.
To represent such a preselection policy, the marking of a
TOutSynPN is decomposed in two components.

Definition 4. The marking M of a timed output syn-
chronized Petri net ⟨Ntos,M0⟩ is composed of a reserved
marking MR and a non reserved marking MNR, such that:
M = MR + MNR. ▲

We assume that there is no reserved marking at the initial
marking, i.e., MNR

0 = M0 and MR
0 = 0.

a) Enabling, activation, firing and local clock of a timed
transition

The rules that govern the dynamics of a timed transition
in a TOutSynPN differ from the OutSynPN in the sense
that they depend on the non reserved marking.

Definition 5. At state s = (M,O) withM = MR+MNR,
a timed transition t is enabled if the non reserved marking
satisfies the logical precondition, MNR ≥ Pre(·, t). ▲
Definition 6. At state s = (M,O) with M = MR +
MNR, an enabled timed transition t is activated when its
associated event, f(t) = e ∈ Eλ occurs. ▲

Due to the preselection policy, when transition t is ac-
tivated, the marking needed for its firing is reserved:
M ′R = MR + Pre(·, tj) and M ′NR = MNR − Pre(·, tj).
In (Ammour et al., 2021), we assume that the net is
deterministic, meaning that the same input event cannot
be shared by transitions in structural conflict. In the
present paper we relax this assumption and define a
synchronized conflict by an input event as follows.

Definition 7. Let t, t′ ∈ T be two transitions in structural
conflict with f(t) = f(t′) = e ∈ Eλ. At state s = (M,O),
transitions t and t′ are in synchronized conflict by input
event e if they are both enabled and event e occurs at
state s with (MNR ≥ Pre(., t)) ∧ (MNR ≥ Pre(., t′)) ∧
(MNR < Pre(., t) + Pre(., t′)). ▲

Hence, in case of a synchronized conflict by an input event,
both transitions could be activated whereas the marking
cannot satisfy both firings at once. To handle such a
situation, we assume that the conflict is externally resolved
by a priority relation based on the priority function π
which assigns to each transition t ∈ T in structural conflict
an integer π(t) ∈ N, called the priority of t. Transition t is
said to have priority over transition t′, denoted as t ≫ t′,
if π(t) > π(t′). Moreover, it is assumed in the rest of this
paper that two transitions t, t′ in structural conflict do
not have the same priority, i.e., π(t) ̸= π(t′). Hence, the
priority relation ≫ is assumed irreflexive, asymmetric and
transitive. As a result, a priority-based conflict policy of a
TOutSynPN is defined as follows.

Definition 8. Let t and t′ be two transitions with t ≫ t′.
The priority-based conflict policy is defined such that, at
state s, in case of synchronized conflict between t and t′

by input event f(t) = f(t′), enabled transition t which
has priority over t′, is activated, whereas transition t′ is
disabled and, consequently, not activated. ▲

The previous conflict policy is adopted in the rest of
this paper. Note that due to the mono-server policy, no
transition can be enabled or activated more than once.
Moreover, we assume an ”as soon as possible” (asap)
semantics (also called the maximal progress semantics)
which means, for TOutSynPN, that enabled transitions
are activated immediately at the occurrence of their input
events, after applying the priority rule if necessary. With
this asap semantics, the firing duration associated with a
transition refers to the exact time required for the firing
of a transition after its activation.

In order to track the state of a transition and the time
elapsed between its activation and its firing, the possible
values of its local clock are as follows.
(i) If tj is not enabled, its local clock otj is set on ♯.
(ii) As soon as transition tj is enabled, its local clock otj
is instantaneously set on +∞, which denotes that it is
receptive to its associated event f(tj).
(iii) When transition tj is activated, its local clock in-
stantaneously goes from +∞ to dj , it is set to its firing
duration, i.e., otj = dj , we then say that the clock is
triggered, and the marking needed for the activation of
tj is reserved.
(iv) As soon as tj is activated, its clock otj starts ticking
down, and thus, dj ≥ otj ≥ 0. Its value represents the time
left until the firing of tj . When it reaches 0, transition tj
is fired, then the clock is reset to ♯.

Note that, due to the preselection policy, when a transition
is activated, it cannot be desactivated until its firing. In
other terms, in a TOutSynPN with a preselection policy
and a conflict policy as previously defined, all transitions
are persistent, which means that their deactivation is only
a consequence of their own firing.

b) Events leading the dynamics
The dynamics of a TOutSynPN is driven by two types

of instantaneous events:
1- The external events are the input events in the set E.
Their occurrence is one of the conditions for the activation
of transitions and the triggering of local clocks. The always
occurring event, λ, is also considered as an external event,
although it is always occurring.
2- The internal events correspond to the firing of transi-
tions whose local clock reaches zero.

The dynamics of a TOutSynPN is event driven meaning
that, the occurrence of events drives the net from one state
to another one. A change of state implies a change of the
local clocks values and possibly a change in the marking
values of the places.

c) Elementary sequences
Due to the timing aspects, we need to distinguish

the activation of transitions from their firing. Thus, we
introduce here two different elementary sequences: the
elementary activating sequence and the timed elementary
firing sequence. The former corresponds to an external
event while the latter is dedicated to internal ones.

Enabling memory is used as memory policy with respect
to newly activated transitions and to timed elementary
firing sequence, meaning that the clock of the transitions
not newly activated or fired, keep their values.

We extend the notion of the receptive transitions set of
OutSynPNs to TOutSynPNs such that: ζe(s) = {t ∈ Te :
ot = +∞}. It is defined as the set of all enabled transitions
that can be activated by the occurrence of e. Suppose e oc-
curs at s, transitions in ζe(s) which are not in synchronized
conflict are activated. For those in synchronized conflict by
input event e, the priority-based conflict policy is applied
and thus, the prioritized transitions are activated.

Let us define by ζA(s) = {tj ∈ T : otj ̸∈ {♯,+∞}} the set
of activated transitions in state s.

An Elementary Activating Sequence (EAS) of an input
event e ∈ Eλ, denoted by σe(s), is here assimilated to
the set of newly activated transitions when event e occurs.
We still denote by σ̃e(s) the firing vector associated to
σe(s) of dimension n = |T | such that σ̃j

e(s) corresponds
to the number of times transition tj appears in σe(s).
Note that, due to the mono-server semantics, transition tj
appears at most once in σe(s), i.e., σ̃

j
e(s) ∈ {0, 1},∀tj ∈ T .

Hence, when event e occurs at state s = (M,O), an EAS
σe(s) leads to a new state, denoted by s[σe(s)⟩s′, such that
s′ = (M ′,O′) is given by:

• M ′ = M with

{
M ′R = MR + Pre · σ̃e(s)

M ′NR = MNR − Pre · σ̃e(s)

• o′tj =

{
dj if tj ∈ σe(s)

otj otherwise

Observe that, the activated transition set becomes: ζA(s
′) =

ζA(s) ∪ {tj ∈ T : o′t = dj}.
Suppose now that at state s, a set of local clocks reach 0,
i.e., {tj ∈ ζA(s) : otj = 0}. The transitions associated
with those clocks are simultaneously fired at s through a
Timed Elementary Firing Sequence (TEFS) noted σ(s) =
[tj1, ..., tjk]. The firing of a TEFS implies that the clock
of the fired transitions are reset (i.e., set on ♯), whereas
the clocks of other transitions keep their values. Hence, at
state s = (M,O), the firing of TEFS σ(s) leads to a new
state s′ = (M ′,O′), i.e., s[σ(s) ⟩ s′, such that:

• M ′ = M+C·σ̃(s) with

{
M ′R = MR − Pre · σ̃(s)
M ′NR = MNR + Post · σ̃(s)

• o′tj =

{
♯ if tj ∈ σ(s)

otj otherwise

The set of activated transition thus becomes: ζA(s
′) =

ζA(s) \{tj ∈ ζA(s) : otj = 0}.
Observe that the firing itself of a TEFS does not con-
sume time and represents the multiple internal events
occurrence. Moreover, compared to the logical setting, the
transitions that form a TEFS are not necessarily activated
by the same input event.

d) Multiple external events occurrence
In a Timed OutSynPN, multiple external events may

occur simultaneously while the system is in state s =
(M,O). Let E(s) be the set of external input events e ∈ E
that occur at state s. For every event e ∈ E(s), if ζe(s) = ∅,
no clocks are triggered by it. Else, if ζe(s) ̸= ∅ thus there
exists an elementary activating sequence associated with
event e, whose transitions are necessarily fired after the
elapsing of a given time. We can then define an Elementary
Activating Sequence (EAS) associated with a set of events
E(s) such that σE(s) = [σei(s) : ei ∈ E(s)]. Note that if

there exists a λ−receptive set at state s, the occurrence of
any event in E does not affect the changing of state which
is simply defined by s[σλ(s)⟩. When events in E(s) occur,
the system in state s = (M,O) reaches, instantly, state
s′ = (M ′,O′), i.e., s[σE(s) ⟩ s′, according to:

• M ′ = M with

M ′R = MR + Pre · (Σ

ei∈E(s)
σ̃ei(s))

M ′NR = MNR − Pre · (Σ
ei∈E(s)

σ̃ei(s))

• o′tj =

{
dj if f(tj) ∈ E(s) and otj = +∞
otj otherwise

We extend here Definition 7, synchronized conflict by an
input event, to multiple external event occurrence. Let
t, t′ ∈ T be two timed transitions in structural conflict,
such that f(t), f(t′) ∈ Eλ with f(t) ̸= f(t′). Enabled
transitions t and t′ are said to be in synchronized conflict
if f(t) and f(t′) occur simultaneously at state s = (M,O)
(i.e., f(t), f(t′) ∈ E(s)), such that (MNR ≥ Pre(., t)) ∧
(MNR ≥ Pre(., t′)) ∧ (MNR < Pre(., t) + Pre(., t′)).
However, we assume in this paper that it is not possible
for different events to occur simultaneously if they are
associated with transitions in structural conflict, although
these events may occur simultaneously with other events.
This means that synchronized conflicts only occur for
transitions associated with the same input event e ∈ Eλ.
In that case, the previously priority-based conflict policy is
applied meaning that, if t ≫ t′, t is activated and added in
EAS σE(s), whereas t

′ is disabled and o′t′ = ♯, consequently.

e) Elapsing of time
The dynamics of a TOutSynPN is led by the occurrence

of input events or the firing of transitions. If none occur
however, clock values still change with the elapsing of time.
Starting from state s = (M,O), if no event e ∈ Eλ occurs
while ζe(M) ̸= ∅ and no activated transitions are fired
(i.e., ∄otj = 0), after the elapsing of a time τ < min(O), a
new state s′ = (M ′,O′) is reached, i.e., s[τ ⟩ s′, given
by: M ′ = M with M ′NR = MNR, M ′R = MR and,

o′tj =

{
otj − τ if otj ∈ R+,

otj otherwise.

f) Resume
The event driven continuous time dynamics of a TOut-

SynPN is governed by the occurrence of internal and
external events, both of which instantaneously incur state
changes. Between the occurrence of such events, delays
attributed to the elapsing of time can be observed. It
should be noted that a change in the marking can produce
output events, as is the case with OutSynPN. To sum up,
the state of the model evolves either by time progression
or by applying of elementary sequences as below:

s = (M,O)
σ(s),Q(M,σ(s))−−−−−−−−−−→ s′ = (M ′,O′): firing of a TEFS;

s = (M,O)
σE(s)−−−→ s′ = (M,O′): applying of an EAS;

s = (M,O)
τ−→ s′ = (M,O′): elapsing of time.

A fundamental difference between OutSynPN and TOut-
SynPN lies in the definition of a state, as for the timed
extension, it is a pair that consists of not only the marking
but also the values of the clocks. Although these values are
in R+

0 , the fact that external events can occur within infi-
nite intervals [0,+∞[, implies that the number of reachable
states of a TOutSynPN is infinite.

3. SYNCHRONIZED STATE CLASS GRAPH

Due to the density of time and/or because the net may
be unbounded, the state graph of a timed OutSynPN is
infinite, and therefore, enumeration analysis of this model
must go through state abstractions. We therefore propose
in this paper, a state graph contraction, based on state
class graphs (SCG) (Berthomieu and Menasche, 1983),
that we call Synchronized State Class Graphs (SynSCG).
This labeled digraph is composed by nodes (or classes) and
arcs, where the temporal information is seen as activation
and firing domains, instead of clock functions.

3.1 Structure of a SynSCG

Definition 9. A synchronized state class C is a set of
states of the TOutSynPN that can be defined as a couple
C = (M,Θ) such that:

• M is a reachable marking of the net.
• Θ is a domain defined by a set of linear inequalities,

called the firing and activation domains of the transi-
tions of the net. ▲

States belonging to the same class possess the same re-
served and non-reserved marking, as they are only dif-
ferentiated by the elapsing of time. The domain of a
class C = (M,Θ) is defined by two sets of constraints,
Θ = (Θf ,Θa), as presented below.
• Θf is the set of firing constraints dedicated to the firing
of transitions. It gives for each activated transition tj ,
the set of delays after which the timing constraint of tj is
satisfied for its firing. It is a system of linear inequalities

of the following forms, where variables θfj are bijectively
associated with activated transitions in class C.

· ∀tj ∈ ζA(C) : αtj ≤ θfj ≤ βtj ,

· θfj −θfj′ ≤ γj,j′ for all transitions tj , tj′ that are not
newly activated at C,

with αtj , βtj , γj,j′ ∈ R+
0 and ζA(C) stands for the set of

activated transitions.
• Θa is the set of activation constraints of the class,

dedicated to occurrences of input events. It gives for
each possible external event ei, the set of delays for
which event ei can occur from class C while affecting
the state of the net (i.e., activate one or more enabled
transitions). It is also described by a system of linear
inequalities where variables θai are bijectively associated
with external events in E.

· ∀ei ∈ E with ζei(C) ̸= ∅ : 0 ≤ θai ,
· For the always occurring event λ with ζλ(C) ̸= ∅
it holds: 0 ≤ θaλ ≤ 0, i.e., θaλ = 0,

where ζei(C) (resp. ζλ(C)) stands for receptive transi-
tions set for event ei (resp. λ) defined by: ζej (C) = {t ∈
T : t ̸∈ ζA(C),MNR ≥ Pre(·, t)}, ∀ej ∈ Eλ.

The arcs linking two different classes C and C ′ correspond
to: (i) either an occurrence of one input event (i.e., e ∈ Eλ)
or, the occurrence of several internal events (i.e., a TEFS
σ) with a set of generated outputs (i.e., {q ∈ Qε : g(q) =
1}); and, (ii) a time interval leading the dynamics of the
model (i.e., ∆ = [l, u] with l, u ∈ R+

0 ∪ {+∞} and l ≤ u).

3.2 Basics on SynSCG construction

Let ⟨N ,M0⟩ be a marked TOutSynPN, under preselection,
single-server, choice and priority policies as seen before.

First of all, let us focus on the firing domain of transitions
when an input event occurs. Suppose that at class C,

transition tk is newly activated, i.e., θfk = αtk = βtk =
dk ≥ 0. Assume that input event ei occurs from C (i.e.,
ζei(C) ̸= ∅) within a time interval [0, u] leading to class
C ′. The firing domain of tk in class C ′ is then updated

by: max(0, dk − u) ≤ θ′fk ≤ dk. As the occurrence of input
event ei from C is only considered before the firing of tk,

it holds u ≤ dk and, consequently, (dk − u) ≤ θ′fk ≤ dk.
Suppose now that several transitions are activated in class

C, i.e., ∀tj ∈ ζA(C) ̸= ∅, αtj ≤ θfj ≤ βtj . The occurrence

of ei in [0, u] generates for those transitions in class C ′ a

changing of their firing domain given by: α′
tj ≤ θ′fj ≤ β′

tj

with α′
tj = max(0, (αtj − u)) and β′

tj = βtj . However,
the occurrence of ei implies some other transitions to
be newly activated. From ζei(C), and after applying the
priority-based conflict policy if necessary, the elementary
activating sequence of ei, noted σei , is determined. The
set of activated transitions is, consequently, increased in
regards to σei , i.e., ζA(C

′) = ζA(C) ∪ {tj ∈ σei}, and
activation domains of these newly activated transitions are

initialized, i.e., ∀tj ∈ σei , θ
′f
j = dj . In the meantime, the

marking is reserved for their activation, i.e., M ′R = MR+
Pre · σ̃ei and M ′NR = MNR−Pre · σ̃ei , while the marking
of C ′ remains equals to that of C, i.e., M ′ = M . Note that,
the activation domain in C ′ is the one of C by removing
the activation constraint of ei.

Another specification of TOutSynPN is that a set of
activated transitions are fired at once. Let us denote by
σ this set of firings leading to class C ′′ from class C within
a time interval [uσ, lσ]. In such a case, the marking of class
C ′′ is directly given by the state equation: M ′′ = M+C · σ̃
with M ′′R = MR −Pre · σ̃ and M ′′NR = MNR +Post · σ̃,
while the set of activated transitions is reduced in regards
to the fired transitions: ζA(C

′′) = ζA(C) \{t ∈ σ}. The
output events set of the input arc is thus determined
by Q(C,C ′′) = {q ∈ Qε : g(q) = 1}. However, the
new marking M ′′ may allow some other transitions to be
receptive to input events occurrences. As a consequence,
the receptive transitions sets are determined for class C ′′

by: ∀ej ∈ Eλ ζej (C
′′) = {t ∈ T : t ̸∈ ζA(C

′′),M ′′NR ≥
Pre(·, t)} and, the activation domain is defined by the
following activation constraints: 0 ≤ θai ,∀ei ∈ E such
that ζei(C

′′) ̸= ∅, and θaλ = 0 if ζλ(C
′′) ̸= ∅. Concerning

the firing domain, it is updated according to the rules of
the SCG defined in Berthomieu and Menasche (1983), by
observing that no transition can be newly activated in C ′′.

Concerning the arcs, from class C = (M,Θ), new reachable
classes C ′ (or C ′′) are created by applying the following
steps (when the associated conditions are fulfilled):
Step 1: determine internal events (if Θf ̸= ∅). First of all,
the upper bound of any time interval in which an activated
transition can be fired is given by: uσ = mintk∈ζA(C)(βtk)
if ζλ(C) = ∅, or uσ = 0 if ζλ(C) ̸= ∅. We define
T f (C) = {tj ∈ ζA(C) : αtj ≤ uσ} as the set of all firable
transitions from class C. To represent the synchronous

dynamics of TOutSynPN, a single arc is created for firable
transitions that are certain to be fired at the same time,
i.e., σ = {tj ∈ T f (C) : αtj = βtj = uσ}. This arc labeled
by (σ : Q(C,C ′),∆σ = [uσ, uσ]) links class C to a new
class C ′. For each remaining firable transition tj ∈ T f (C)
and tj /∈ σ, an arc is added from class C to a new class
C ′j and labeled by (tj : Q(C,C ′j),∆j = [αtj , uσ]).
Step 2: determine λ−event (if θaλ = 0). A new class C ′′

is created and an arc is added from C to C ′′ labeled by
(λ,∆ = [0, 0]). As λ−event prevails, all the other input
events are disregarded and, consequently, no more arcs are
created from class C.
Step 3: determine external events (if Θa ̸= ∅∧ζλ(C) = ∅∧
mintj∈ζA(C)̸=∅(βtj) ̸= 0). For each input event ei ∈ E
such that 0 ≤ θai in class C, a class C ′′ is created and
an arc from C to C ′′ is added, labeled by (ei,∆ =
[0,mintj∈ζA(C)(βtj ,+∞)]).

According to the previous basics, the SynSCG of a TOut-
SynPN ⟨N ,M0⟩, can be constructed starting from C0 =
(M0,Θ0) where Θ0 is given by: θaλ = 0 if ζλ(C0) ̸= ∅, 0 ≤ θai
if ζei(C0) ̸= ∅ ∀ei ∈ E, and Θf

0 = ∅ with ζA(C0) = ∅. In
addition, if two classes in the graph are equivalent, it is
necessary to merge them into one, keeping that two classes
C = (M,Θ) and C ′ = (M ′,Θ′) are equivalent if their
markings are the same, M = M ′ and MR = M ′R, and
their firing and activation domains have equal solution sets
(see (Berthomieu and Menasche, 1983) for more details on
classes equivalence).

Example 1. Consider the TOutSynPN in Figure 1, called
N where E = {e1, e2}, Te1 = {t1, t4}, Te2 = {t2, t6},
Tλ = {t3, t5}, and Q = {A,B,C}. We assume t1 ≫ t4,
as both transitions are in structural conflict. The SynSCG
(see Figure 2) of N is built starting from C0 = (M0,Θ0)
where M0 = (2p1) (with MR

0 = 0 and MNR
0 = (2p1)),

and Θ0 is defined by the inequality 0 ≤ θa1 . From C0,
conditions of steps 1 and 2 are not fulfilled and only step
3 is applied since Θf = ∅ and ζλ(C0) = ∅. It results
in the creation of an arc labeled (e1, [0,+∞[) leading
to new class C1, where transitions t1 and t4 are newly

activated, implying θf1 = 1, θf4 = 1 and MR
1 = (2p1).

From C1, step 1 implies a synchronized firing of [t1, t4], as
uσ = min(1, 1) = αt1 = αt4 = βt1 = βt4 = 1. Thus, an
arc labeled ([t1, t4] : {A}, [1, 1]) is added from C1 to new
class C2. As marking of p2 increases, this arc is labeled by
output event A. In class C2, as Θ2 is defined by θaλ = 0 and
0 ≤ θa2 , according to step 2, input event e2 is disregarded
and only one arc labeled (λ, [0, 0]) is added leading to new
class C3. From this class, despite the activation constraint
for e2, only one arc ([t5] : {B}, [0, 0]) is created by step
1 whereas step 3 is not applied as βt5 = 0. And so on.
Observe that from M0, a temporal input/output sequence
could be expressed by: (e1) (A, [1, 1]) (B, 0) (e2) (C, [3, 3])
(e1) (A, [1, 1]) (e2) (C, [3, 3]).

4. CONCLUSIONS

In this paper we present a timed output synchronized
Petri net formalism, that could be extended to time
intervals but also to infinite server semantics, and its
associated state class graphs, called Synchronized State
Class Graph. In the challenging context of security of
cyber-physical systems, we believe that timed OutSynPNs
present a suitable framework for investigating this issue

Fig. 1. TOutSynPN N

Fig. 2. SynSCG of TOutSynPN N
in a timed setting. The explicit information provided by
the knowledge of inputs, the measurement of outputs and
associated time stamps will be discussed and used to
develop efficient detection schemes for cyber-attacks in
CPSs.

REFERENCES

Ammour, R., Amari, S., Brenner, L., Demongodin, I., and Lefebvre,
D. (2021). Observer design for bounded output synchronized Petri
nets. In European Control Conference (ECC), 746–751.

Ammour, R., Amari, S., Brenner, L., Demongodin, I., and Lefebvre,
D. (2022). Observer design for labeled finite automata with
inputs under stealthy actuators attacks. IFAC-PapersOnLine
(WODES), 55(28), 46–51.

Ammour, R., Amari, S., Brenner, L., Demongodin, I., and Lefebvre,
D. (2023). Robust stealthy attacks based on uncertain costs
and labeled finite automata with inputs. IEEE Robotics and
Automation Letters, 8(5), 2732–2739.

Basile, F., Cabasino, M.P., and Seatzu, C. (2015). State estimation
and fault diagnosis of labeled time Petri net systems with unob-
servable transitions. IEEE Trans. on Automatic Control, 60(4),
997–1009.

Basile, F. and Ferrara, L. (2023). Validation of industrial automation
systems using a timed model of system requirements. IEEE Trans.
on Control Systems Technology, 31(1), 130–143.

Berthomieu, B. and Menasche, M. (1983). An enumerative approach
for analyzing time petri nets. In IFIP, 41–46. Elsevier Science
Publishers.

He, Z., Li, Z., Giua, A., Basile, F., and Seatzu, C. (2019). Some
remarks on “state estimation and fault diagnosis of labeled time
Petri net systems with unobservable transitions”. IEEE Trans.
on Automatic Control, 64(12), 5253–5259.

Leclercq, L., Lime, D., and Roux, O.H. (2023). A state class based
controller synthesis approach for time Petri nets. In Petri Nets
2023, volume 13929 of LNCS, 393–414.

Oliveira, S., Leal, A.B., Teixeira, M., and Lopes, Y.K. (2023). A
classification of cybersecurity strategies in the context of discrete
event systems. Annual Reviews in Control, 56, 100907.

Popova-Zeugmann, L. (2013). Time and Petri Nets. Springer.

