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ABSTRACT Coding algorithms are usually designed to faithfully reconstruct images, which limits the
expected gains in compression. A new approach based on generative models allows for new compression
algorithms that can reach drastically lower compression rates. Instead of pixel fidelity, these algorithms aim
at faithfully generating images that have the same high-level interpretation as their inputs. In that context, the
challenge becomes to set a good representation for the semantics of an image. While text or segmentation
maps have been investigated and have shown their limitations, in this paper, we ask the following question: do
powerful foundation models such as CLIP provide a semantic description suited for compression? By suited
for compression, we mean that this description is robust to traditional compression tools and, in particular,
quantization. We show that CLIP fulfills semantic robustness properties. This makes it an interesting support
for generative compression. To make that intuition concrete, we propose a proof-of-concept for a generative
codec based on CLIP. Results demonstrate that our CLIP-based coder beats state-of-the-art compression
pipelines at extremely low bitrates (0.0012 BPP), both in terms of image quality (65.3 for MUSIQ) and
semantic preservation (0.86 for the Clip score).

INDEX TERMS Compression algorithms, Deep learning, Image coding, Image processing, Image recon-

struction, Image representation, Semantic

I. INTRODUCTION

Since decades, strong research efforts have been spent to im-
prove the rate-distortion performance in image compression.
On average, gains of 50% are reached every decade [1]-[4].
Even though these improvements are impressive, they are
not sufficient to cope with the tremendous amount of data
produced every day [5].

More recently, a new type of approach has arisen: the se-
mantic, or generative, compression methods. Their principle
is to abandon the pixel fidelity criterion, classically measured
with MSE (Mean Squared Error), PSNR (Peak Signal-to-
Noise Ratio) or SSIM (Structural Similarity Index Measure)
[6]. The motivation behind this is that the important infor-
mation carried by an image does not reside at the pixel level
but instead at a higher level. Moreover, in some applications,
having an image that is pixel-wise close to the input is not
necessary. Instead, it is sufficient to have a decoded image
whose high-level content is preserved. This is, for example,
the case in coding for machines [7] or for cold data [8]. Basi-
cally, in such generative compression approaches, an encoder
describes the image semantics in a compact form, and a de-
coder uses a generative method (e.g., Generative Adversarial
Network [9] or Diffusion Models [10]) to synthesize an image
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expressing the coded semantic. One of the research questions
is thus: how to describe the semantics of an image?

By semantic, we have to understand all that deals with
high-level information about an image, e.g.,, objects, po-
sitioning, general atmosphere, and feelings. These features
are human-dependent and remain very difficult to capture.
However, some attempts have been made in the literature. A
first category of methods models the semantics of an image
with a segmentation map, i.e., an image whose pixel values
indicate the class label. A seminal work [11] proposed to
describe an image as a semantic map. This map is used by the
decoder to guide a GAN-based decoder. Similarly, [12]-[15]
estimate the segmentation map at the encoder and reconstruct
an image at the decoder thanks to a diffusion model, such
that the content of the reconstructed image is faithful to the
segmentation map. Clearly, representing the image semantics
with labels can rapidly become limited since the semantics
must belong to a predefined list of classes.

Other, more expressive, high-level descriptions have been
explored, such as the textual description. In [16], [17], the in-
put image is mapped to a text that constitutes the compressed
semantic information. On the decoder side, a diffusion model
is used to generate an image corresponding to the caption. The
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difficulty resides in generating the text corresponding to an
image, which is not always straightforward. To overcome this
challenge, [18] proposed to complete the textual compressed
vector with a compressed sketch of the input. This addition
helps guide the generative model to reconstruct images struc-
turally closer to the inputs.

Recently, foundations models have been explored to rep-
resent information in an embedding space. This can further
be used for several applications, such as [19], which unifies
image generation and image compression, or [20], which uses
large language models to extract the semantic description of
images compactly. One of the most commonly used founda-
tion models is CLIP (Contrastive Language-Image Pretrain-
ing) [21]. In a nutshell, CLIP is trained to align, in the same
embedding space, the vectors representing the image content
and its corresponding textual caption. As a consequence, one
part of the CLIP model can take an image as an input and map
it to a vector in its latent space. From the way CLIP is trained,
we can expect this vector to represent the image semantics in
some way or another.

In this paper, we ask the following question: Is CLIP
suitable for image compression? More precisely, we wonder
to what extent CLIP represents the semantics of an image and
if CLIP’s latent vectors are robust to transformations applied
through traditional compression tools (and in particular quan-
tization). To tackle these questions, we define two properties
that CLIP must satisfy. The first property deals with how
faithful the description of the semantics of the image is to the
CLIP representation. For the second property, we investigate
how compact the CLIP representation is so that it can help
reach low bit rates. In the same spirit as [22], which explores
the latent space of diffusion models, and [23] that explores
the limits of CLIP for image compression, we first propose
an experimental methodology used to demonstrate that CLIP
possesses these properties. Finally, we propose a proof-of-
concept CLIP-based generative coder, highlighting the huge
potential for image representation to rely on CLIP.

In this work, the main contributions are the following:

o We derive two properties that a semantic representation
must fulfill when it is used in the context of image
compression;

o We experimentally prove that CLIP satisfies the two
aforementioned properties on multiple datasets;

« We propose a proof-of-concept CLIP-based compres-
sion scheme, and we show that it outperforms classical
codecs both in terms of quality and semantics conserva-
tion at extremely low bitrates.

Il. PROBLEM FORMULATION

A. MODELING IMAGE SEMANTICS WITH CLIP

An image is usually represented as a vector x € DV | where
N is the dimension of the image. Each vector element, x[n],
describes a pixel color, represented in a color domain D.
Typically, D = [0, 255] for RGB format. While each pixel
value gives point-wise color information, the concatenation of
these pixels can form more general concepts such as contours,
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textures, shapes, etc. Going further, the concatenation of these
concepts can lead to a high-level interpretation of the scene
described by the image (e.g., objects, actions, atmosphere,
feelings). These elements are typically referred to as the
general concept of semantic. In the following, we denote by
sem(x) the semantics of an image x.

Modeling the sem function has been an intensive research
topic for a long time (image representation [24], image em-
bedding [21]). Recently, foundation models, and more specif-
ically CLIP [21], have been recognized as powerful tools to
model image semantics [25]. Concretely, the CLIP method
casts an image onto a reduced space £ C RM where M is the
dimension of the CLIP space. In the following, L is called the
CLIP latent space:

f:DY — ¢ (D
X — Z

Where M < N. We indeed look for this inequality for two
main reasons: first, as we cast this work in a compression
paradigm, it is interesting to gradually reduce the dimension
of the data in the pipeline. Second, as we suppose that the
latent space of CLIP is more semantic than the pixel domain,
we suppose that the dimensions needed to encapsulate the
high-level description of the image are lower than the dimen-
sions of the pixel space. The function f has been trained such
that two images x; and x5 with close semantic have aligned
CLIP vectors z; and z5. The following property is thus, by
construction, verified:

Property (Py). Fortwo imagesx, and xs and their respective
CLIP representation z1 = f(x1) and zo = f(x2),

ZlTZQ

sem(x;) ~ sem(x2) & —————
121 /l2 /12212

= cos(z1,22) ~ 1
2

This property Py has been very useful for many tasks (such as
classification [21], [24]) as the semantics of two images can
easily be compared by computing the cosine between their
respective CLIP representations.

B. IS CLIP SUITABLE FOR GENERATIVE COMPRESSION?

In this paper, we would like to study whether CLIP’s latent
space respects additional properties that could be useful for
other image processing tasks, such as our task of interest in
this work: compression. Recently, some algorithms have been
developed to explore the problem of image compression at
extremely low bitrates [26]. In such conditions, when coding
an image x, trying to be faithful to the original image’s pixels
is no longer efficient [27]. Instead, it is preferable to describe
the image by its semantics sem(x), especially since the ar-
rival of powerful image generation techniques that enable
reconstructing images from a semantic description [15], [26].
These so-called generative compression algorithms can, for
example, rely on CLIP. In those cases, an image x is encoded
by f, and the compact semantics vector z = f(x) is used
to guide a generative model, denoted by g in the following.

VOLUME 11, 2023
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FIGURE 1. Encoding-decoding pipeline with CLIP, as f and unCLIP, as g.
The input image is noted x, the latent vectors z and the output image 2.

These algorithms allow for reaching extremely low bitrates
and to decode an image x such that f(x) ~ f(x).

To verify that a CLIP-based compression approach is
meaningful, we must verify that having f(x) ~ f(x) implies
that sem(x) &~ sem(¥). In other words, we have to evaluate
how exhaustively the function f captures the semantics of an
image. We therefore consider the following property:

Property (P;). For an image x,
sem(x) = sem(gof(x)) 3)

The property P; is investigated in Sec. IV.

In a CLIP-based generative compression architecture, the
CLIP vector z of an image x constitutes the main element of
the code-word'. The size of the compressed image is thus
strongly linked to the number of bits necessary to describe
the vector z. This number can be reduced by performing a
quantization (denoted by q), as classically done in conven-
tional compression schemes. The quantization q consists in
reducing the size of the alphabet with which the elements of
z are expressed. This can be done only if it does not affect
the semantics of the decoded image x. We then explore the
following property in Sec. VI:

Property (Ps). For an image X,
sem(g o £(x)) ~ sem(g o g o (x)) )

lll. METHODOLOGY

In this section, we define the set-up in which we study the
properties P; and Ps. First, we introduce the pipeline ar-
chitecture: the models and datasets used. In a second time,
we present and discuss the different metrics used to evaluate
the images: the quality metrics and how we plan to evaluate
the preservation of the semantics between the inputs and the
outputs.

A. PROPOSED FRAMEWORK
Figure 1 presents the studied codec (encoder-generator) for
this work. Input images x are encoded with f, the image
encoder, into a latent vector z via f(x) = z € £, where L is
the latent space. Finally, g, the image generator, reconstructs
outputs images % from the latent vectors ¥ = g(z).

Models: For the image encoder f, we use CLIP [21], as it
is a popular foundation model for image embedding. Specifi-
cally, we use the Vital/14 version of the model. In this version,

The CLIP vector might be completed by some light additional informa-
tion to bring more consistency between x and x.
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images are encoded in a 768-dimensional (thus £ C R758)
vector coded on 16-bits vectors. For the image generator g, we
use the stable unCLIP [28] model, a CLIP fine-tuned latent
diffusion model based on the Stable Diffusion model [29].
The used weights can be found here?.

We specify that CLIP and Stable unCLIP are not fine-
tuned nor retrained for any of the experiments presented in
this work.

Datasets: In this work, we benchmark our explorations on
multiple datasets to prove the aforementioned properties. The
first dataset used for benchmarking is Kodak [30]. This is a
classical dataset used for evaluating and comparing compres-
sion pipelines. We also evaluate the pipeline on images from
two other datasets: Landscape [31] and CelebA [32]. The for-
mer has been selected as it is expected to behave nicely in the
context of semantic generative compression — as landscapes
in general were used to train CLIP and also have an easily
extractable high-level interpretation. The latter, on the other
hand, was used as it was not expected to easily comply with
semantic compression. Indeed, faces were explicitly removed
from CLIP training set to avoid generating known people into
displeasing images. Also note that the semantic high-level
description of faces is far more complicated to grasp [33].

B. EVALUATION OF THE GENERATED IMAGES

By nature, classical MSE-based metrics are not efficient for
evaluating a generative coding pipeline. Instead, we have to
assess to what extent the semantic is conserved during com-
pression. We also have to ensure the quality of the generated
images.

Semantic conservation metrics: To evaluate the semantic
fidelity, we first propose to compute a segmentation map of
both images, and then compare them. Concretely, the seg-
mentation maps are computed with [34], which is a Deeplab
implementation with a ResNetl101 backbone [35]. The seg-
mentation maps can be made of more than a hundred of
classes, based on the classes of the MS-COCO dataset [36].
We represent the segmentation map as a vector s, in which
each component s[i] corresponds to one class and depicts the
proportion of the image belonging to this class. We denote by
sb its binary version, where only the presence or absence of
a class is described. Let us consider two segmentation maps
represented in their vector forms: s1 and s2, taken from two
images, x; and x5. To compare these segmentation maps, we
define two scores:

CSS(x1, x )—SI# 5)
B szl
st A sty

BSS(x1, xp) = L =211 (6)
G x2) = [,

The CSS shows to what extent the content of both images
is semantically the same — regardless of where the different
classes are present in the images. However, this score will not
be able to detect whether the generated images produce weird,

Zhttps://huggingface.co/docs/diffusers/api/pipelines/stable_unclip
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CC(Xl, X2) +

Low correlation High correlation

FIGURE 2. Some examples of semantic conservation scores obtained at different levels of correlation.

FIGURE 3. Examples of generated images with g o f. (Row-wise, top to bottom) Inputs respectively taken from Landscape, CelebA and Kodak. For each
sub-figure, the input is the top left image, and the generated images are the three others.
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small artifacts that were not initially present in the inputs. On
the other hand, the BSS tells us to what extent both images
share the same semantic class, regardless of their importance
in the image. Both of these metrics range from 0 to 1, the latter
being the better.

Another way to evaluate semantic similarity between two
images is to compare their CLIP latent representation z; and
22 [371: o

CC(x1, x2) = — ) )
llz12[22 ]2
ranging from 0 to 1, the latter being the better.

Finally, to ensure that the generated images follow the same
semantic distribution as the inputs, we compute the Fréchet
Inception Distance (FID) between the input images and the
generated images. This metric gives the distance between two
groups of images, considered as probability distributions in
the latent space of a certain classification model. In this work,
we use the Torch Metric implementation [38], based on the
third version of the Inception model [39]. This metric is a
distance, so the closer to 0, the better.

To give some intuition about the behavior of these semantic
metrics, we compare the expected high-level semantic cor-
relation to the one given by the metrics. Figure 2 gives the
typical value scores obtained for different levels of semantic
correlation. These metrics are relevant to the proposed study,
as the obtained scores correlate with the human-given seman-
tic correlation.

No-reference image quality metrics: Generated images
have to follow natural images distribution. To ensure this, we
propose to evaluate the realism of the outputs, regardless of
the original input; we use Image Quality Assessment (/QA)
metrics.

To evaluate realism, we use two no-reference IQA met-
rics: MUSIQ [40] and DBCNN [41]. MUSIQ is a multiscale
image quality transformer processing images with varying
resolutions and ratios. DBCNN is a deep bilinear model for
blind image quality assessments specialized in synthetic and
authentic distortions, one for each network. The higher, the
better for both of these IQA metrics.

IV. PRESERVATION OF IMAGE SEMANTICS WITH CLIP
(PROPERTY 7;)

In this section, we evaluate how the property P; is verified
experimentally. Specifically, we would like to measure how
much the CLIP function f captures the semantics of images.
For that purpose, a high number of images are processed
with the pipeline g o f, depicted in Figure 1. First, we ensure
that the quality of the rendered image is perceptually good
and that the x¥ are semantically close to x visually. Then,
we propose a quantitative assessment method for semantic
coherence evaluation and show that the proposed pipeline
indeed preserves the inputs’ semantic.

A. QUALITATIVE ASSESSMENT EVALUATION
To assess the quality of the generated images, we process a set
of 100 images from the three datasets with the pipeline g o f
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depicted in Figure 1. For the sake of robustness, we generate 3
images x = (g o f)(x) per input. First, we would like to ensure
that the generated images are good-looking (for the moment,
without any consideration of the input). Hence, we measure
the quality of each X with the no-reference metrics introduced
in Section III-B. Each metric is also benchmarked on original
images, without any modifications, to estimate the scores on
natural images.

Table. 1 presents the no-reference scores obtained for each
tested dataset. We first observe that the metrics are coherent
from one to another, which means that they are reliable.
Second, we observe that the input images’ scores (i columns)
are slightly better than the ones from the generated images (g
columns). While this decrease in quality can be considered
a problem for generating images, we observe from Figure 3
that the quality of the output is sufficient for the generative
compression needs. For each example, we verify that the
generated images X are visually coherent with their respective
input image. This tends to prove that the image semantics
are well captured by the function f. To go further in the
demonstration, we propose a quantitative assessment in the
following.

[ DBCNN () | DBCNN(g) | MUSIQ() | MUSIQ () |

Kodad 0.69(£0.04) | 0.43(£0.1) | 74.6(£2.3) | 58.6(£9)
Landscape || 0.61(£0.1) | 0.48(%£0.1) | 68.3(£6.8) | 63.9(£7.2)
CelebA || 0.58(£0.13) | 0.32(£0.1) | 51.8(£10) | 49(%10.3)

TABLE 1. No-reference quality metrics applied to Kodak, Landscape, and
CelebA. (Columns 1 and 3) Original images. (Columns 2 and 4) Images
generated via gof.

B. QUANTITATIVE ASSESSMENT EVALUATION

Now that we are armed with simple yet effective seman-
tic metrics, we can evaluate to what extent the generation
pipeline preserves the semantics of the input image. To do
so, we select 100 images, and we generate 3 variations from
each latent vector. We evaluate, for each dataset, the semantic
score of the outputs regarding the inputs: each input image is
compared to each of the 3 generated variations.

Table. 2 shows the semantic score of the generated images
regarding their inputs. We first observe that, similarly to the
previous semantic evaluation experiments, the four metrics
are correlated, here in the high values. Indeed, we observe a
high semantic correlation (from 0.79 to 0.89 CC, 1.43 FID for
Landscape and CelebA and 0.93 CSS for CelebA) between
the generated images and their counterpart inputs. In terms
of “high-level” correlation, we are in the “highly correlated
images” range for the previous subsection experiment. Some
low values can be observed, such as 5.83 FID for Kodak. We
suppose that the FID is not a good metric for evaluating se-
mantics for highly heterogeneous datasets, as their statistical
features may not be highly correlated and more images may
be required for more precise results.

These values can be compared to those of Figure 2. We
observe, as expected, that the generated images are around the
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| [ cc [FDb ] BSS [ CSS |
Kodad ]| 0.86 (£0.05) | 5.83 | 0.43 (£0.1) | 0.76 (£0.2)
Landscape || 0.89 (£0.06) | 1.43 | 0.49 (£0.1) | 0.75 (£0.2)
CelebA || 0.79 (£0.06) | 1.45 | 0.44 (£0.2) | 0.93 (£0.1)

TABLE 2. semantics metrics applied to images generated from Kodak,
Landscape and CelebA via gof.

highly correlated values for each metric. This demonstrates
that the property P; is, in general, verified, and that we can
rely on the CLIP function f to model quite exhaustively the
sem function.

V. SHAPE OF THE CLIP LATENT SPACE L

Before tackling property P2, we must acknowledge that in
property Po, the latent vectors (resulting from the mapping
of an image with f) are modified due to quantization, before
being processed by the generator g. There is no guarantee that
performing such operations in the latent space is compatible
with the way the generator g was trained (and we recall that
we want to avoid retraining or even fine-tuning f or g). In this
section, we first investigate the shape of £ and we show that
it is included in a thin spherical shell of dimension MA , and
thus can be approximated by a sphere M dimensional £. In a
second time, we define an operator 7 that projects vectors of
RM onto L. The goal is to use 7 to move the modified CLIP
latent vectors to a space that is safe for the generator g.

A. L AS A SPHERICAL SHELL

At first glance, the CLIP latent space £ is a subset of RY
(M = 768) with no a priori organization. To find the general
shape of £, it is important to note that the function f is trained
such that the mapping of an image f(x) is aligned with the
embedding of its textual description. Moreover, the training
strategy leads to the property Py, stating that two images are
semantically correlated if the cosine similarity between their
CLIP description is close to 1. For all these reasons, one can
expect that the CLIP latent vectors are characterized by their
orientation in RM . It is thus reasonable to assume that £ has
a seemingly spherical shape.

FIGURE 4. Norm distribution of the latent vectors for input images from
Kodak (left) and from Landscape (right).

This hypothesis is verified when looking at the distribution
of the norms of the encoded images of Kodak and Land-
scape, pictured in Figure 4. We observe that the norms are

6

concentrated on a given value (= 19 or 20), which can be
interpreted as the radius rqua of a sphere. We then hypothesize
that £ is included in a thin spherical shell. Said differently, we
hypothesize that most of the CLIP latent vectors of natural
images lie in an M —dimensional spherical shell. By doing
so, we need to show that the radius contains no information
regarding the semantic.

To verify this statement, we map images x to their latent
vectors z, and in a second time, rescale each latent vector
with a factor A € [0.1,2.5]: zy = Az. We then generate
images x from the rescaled latent vectors x) = g(Af(x)).
Finally, we evaluate the quality of the generated images,
and more importantly, we evaluate their semantic coherence
with the input image. A visual toy example is presented in
Figure 5, and quantitative results are presented in Figure 6.
From Figure 5 we observe that indeed the semantic coherence
with the input images seems to be maintained for A values not
too far from 1, proving the spherical shell form of £. More
precisely, we observe that for low values of A, i.e., A < 0.75,
the generated image is either gibberish or of a lesser quality
in terms of structural coherence. Furthermore, the semantics
seem to change as well, becoming broader and more general.
For high values of A, i.e. A > 1.5, we observe that the gener-
ated images are more and more noisy as \ increases, showing
that the model has not been trained to generate images from
latent vectors whose norms are too big. Finally, as expected
by our intuition, when the values of A are reasonably close
to 1, the generated images show no differences from control
experiments in Fig. 3. We conclude that the generator g does
not work for either high rescaling values or low rescaling
values, demonstrating once again that the meaningful latent
vectors should be placed not too far from the sphere of radius
Tqual- This trend is confirmed when looking at the quantitative
results in Figure 6. More precisely, we observe two interesting
phenomena. First, we see that the quality of the generated
images does not depend on the scale factor, except for tiny and
considerably large latent vectors, as the DBCNN and MUSIQ
graphs show. This simply demonstrates that the generator
g has been trained to maximize the quality of the outputs,
regardless from where in £ the latent vector z has been drawn.
The second phenomenon we observe in this figure concerns
the semantic metrics. Indeed, for CC, BSS, CSS, and FID to
a lesser extent, the semantic coherence between the inputs
and the outputs is maximized (minimized for the FID) on a
plateau around A = 1. When the scale factor is too far from
this plateau, i.e., A < 0.5 or A > 1.5, the semantic coherence
quickly drops in quality.

This experiment confirms that £ is included in a thin spher-
ical shell. To guarantee good visual quality and semantics
coherence, we propose, in the next section, an operator 7 that
maps RY vectors onto £, an M-dimensional sphere included
in L.

B. PROJECTION ONTO L
Applying quantization operations on latent vectors in £ may
displace the resulting latent vectors in a region of R that is

VOLUME 11, 2023
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FIGURE 5. Visual examples of generating from scaled latent vector. (Top to Bottom) Inputs respectively taken from Kodak, Landscape and CelebA. For
each sub-figure: (Left) Input image. (Right, left to right, top to bottom) Generated images from the scaled latent: )\ € [0.1,0.25,0.5,0.75,1.25,1.5,2, 4].

VOLUME 11, 2023



IEEE Access

Bachard et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

DBCNN
0.55
0.50
0.45
<
o
@ 0.40
0.35
— Kodak
0304 — Landscape
—— CelebA
T T T T T T T T
0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
Scale A
cC
0.9
0.8
0.7 1
o
o
A 0.6 1
0.5
—— Kodak
0.4 1 —— landscape
—— CelebA
T T T T T T T T
0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
Scale A
css
0.8
0.6 1
z
=]
A
0.4 1
027 — rodak
—— Landscape
—— CelebA

T T T T T T T T
0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
Scale A

FIGURE 6. Quality and semantic coherence scores regarding the scale factor ), applied to Landscape, Kodak and CelebA. (Top to bottom, left to right)

DBCNN, MUSIQ, CC, BSS, CSS, and FID.

MUSIQ

65

60 4

50 4

45

— Kodak
—— Landscape
— CelebA

T T T T T T T T
0.25 0.50 0.75 1.00 125 1.50 175 2.00

0.5

0.4

0.2 4

0.1

Scale A

BSS
— Kodak
—— Landscape
—— CelebA

T T T T T T T T
0.25 0.50 0.75 1.00 125 150 175 2.00

Scale A
FID
—— Kodak
—— Landscape
—— CelebA

T T T T T T T T
0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
Scale A

VOLUME 11, 2023




Bachard et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

IEEE Access

outside the interesting subspace £, where coherent generation
is not guaranteed. In this subsection, we_ motivate and intro-
duce a projection operator 7 : RM — £ C L that preserves
the semantics after projection while ensuring good generative
properties.

In Section V-A, we showed that, around a certain norm,
the latent vectors share the same semantic. This is especially
true when the displacement is radial. Figure 6 shows that
the cosine similarity between different latent vectors is con-
served. This result motivates the definition of the 7 operator
as a radial rescaling operator. Because the semantic along a
line passing through the origin is the same, we only have
to maximize the quality of the output image. This rescaling
value is given by the most representative norm of the encoded
images from our datasets. According to Figure 4, this value
should be set to around rqa =~ 19.5. By doing so, we
approximate the latent space £ by a spherical sphere LcCL.

We thus define the following projection operator 7, that is
applied to all the latent vectors before generation, when they
result from any displacement in the latent space:

T RM s LcL 3
Tqual

Z
[=4]

V1. QUANTIZATION IN THE LATENT SPACE (PROPERTY
Pa)

In this section, we discuss the property P,. We are looking
at the effects of quantization in the latent space on generated
images. First, we discuss the quantization pipeline and how
we model the quantization process, first as a uniform bit
reduction per dimension and then as an additive Gaussian
noise. We then evaluate both the quality and the semantic
preservation of the generated images for both quantization
models.

=

A. METHODOLOGY

Quantization
——
- _ _ .
—l— z
- z z -
Input Output

FIGURE 7. Proposed quantization pipeline.

To test how much the CLIP latent dimension can be re-
duced (property P2), we introduce a new operator ¢ per-
forming quantization in the latent space. This operator is
represented in Figure 7. The quantized vectors are noted Z and
the generated images x. Note that because we use an operator
that may cast the latent vectors outside £ (see Section V-B),
we also have to compose with the 7 operator after the quanti-
zation step. Indeed, this ensures that the latent vectors end up
in £ C L, a suitable space for image generation.

In this work, we explore quantization in its simplest form:
uniform quantization alongside each dimension of the latent

VOLUME 11, 2023

vector. This is motivated by the fact that classical encoders,
such as JPEG, also use this form of quantization [42]. For a
given quantization step ¢ (usually ¢ = 27° where b is the
number of bits allowed per dimension), the quantization is
performed as follows:

o S q
2=q(z) = Lqu+ 5 ©)]

where Vi, z[i] = max(min(z[i], —1), 1)

The lower and upper bounds for quantization are set to +1
as prior experiments showed no degradations in the recon-
structed images with wider ranges. As the models used in
this pipeline use 16-bits vectors as inputs, the quantization
experiments only consider 16 bits through 1 bit per dimension
quantization.

B. EFFECT OF UNIFORM QUANTIZATION
To observe the effects of uniform quantization on generated
images, we evaluate both the quality and the semantic con-
servation of generated images where the latent vectors have
been compressed with different levels of quantization. To
quantify these effects, we select 20 images from different
datasets, encode their latent vectors with f, quantify them
(b € [1,2,4,8,16]) and generate 3 variations for each quan-
tified latent vector. We then compare x and X with the metrics
introduced in Sec III-B. In particular, these metrics measure
the quality of the rendering and the semantic similarity.
Visual examples of this experiment are presented in Fig-
ure 8. We observe that, regardless of the quantization level,
the generated images seem both semantically close to their
respective inputs and qualitative. No degradation can be ob-
served, even when the Z[i] are represented with only 1 bit. This
tendency is confirmed by Figure 9 where we do not observe
any significant score decreasing for any metric, except a slight
decrease for the CC score when going from 2 bits to 1.
These experiments strongly suggest that the CLIP latent
vectors z can be represented in a coarse, quantized form
without affecting the content of the generated image. These
results are interesting for two reasons. First, it indicates that
we can drastically reduce the number of bits necessary to
describe CLIP latent vectors when they are used as a com-
pressed representation of images. Second, it shows that the
shape of CLIP’s latent space seems pretty smooth, in the
sense that the neighborhood of a CLIP latent leads to pretty
consistent generation results in terms of semantics. We further
investigate these observations in the next section.

C. GAUSSIAN NOISE

As shown in the results of the previous experiments, even
harsh compression does not seem to impact the quality of the
generated images or the semantic relations with their inputs.
Only slight semantic degradations seem to appear when going
from 2 bits per dimension to 1. In this section, we would
like to investigate how far from each other two CLIP latent
vectors can be and still lead to the same generated images in

9



IEEE Access

Bachard et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 8. Generated images from quantized latent vectors. (Left to Right) Inputs respectively taken from Kodak, Landscape, and CelebA. For each
sub-figure: (Top) Input image. (Middle to Bottom) Variation with different levels of quantization. (Left to Right, Top to Bottom) Quantization: 1 bit, 2 bits, 4
bits, and 8 bits.
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terms of semantics. For that purpose, we consider an exper-
iment where we map an image to a latent vector z, to which
we add a Gaussian noise with a fixed controllable variance
3. = ol. This operation classically mimics quantization, with
the quantization step being controlled by the variance of the
noise:

z=z+m, wheren ~ N(0,X) (10)

For each noisy latent vector Z, where o ranges from 0.1 to 2.5
with a 0.1 step, we generate 3 variations of each input images.
The results from different datasets are presented in Figure 10,
for the quantitative results, and in Figure 11, visual examples.

From the different metric scores, presented in Figure 10,
at low variance noise, we observe that the generated images
from the noisy latent vectors are semantically close to their
original inputs while still being of good quality. Furthermore,
the more the noise variance increases, the farther semanti-
cally the generated images are from their respective inputs.
However, we observe that, even at high variance noise, the
generated images are still qualitative in terms of natural im-
ages (regardless of the original latent vector or image). This
further strengthens the interpretation that unCLIP is trained
to generate natural images from any latent vector, regardless
if it can be obtained from a natural image or not. These
observations are confirmed by the visual examples presented
in Figure 11. We indeed observe that for a small noise, i.e.
o < 0.6, the generated images are semantically close to their
respective inputs and most high-level details are kept (some
exceptions arise, such as the second face in the CelebA exam-
ple). For a moderate noise addition, i.e. 0.6 < o < 1.4, only
the structural semantics is conserved, while medium-to-high-
level details are modified or suppressed. For example, we
observe the apparition of a priest or shellfish in the Landscape
example or a complete change of topic in the Kodad example.
Finally, when the added noise is too big, i.e. ¢ > 1.4, the
generated images have low-to-no-semantic resemblance with
their current inputs. This can especially be observed in the
Landscape and Kodak examples. Note that, for some of these
examples, some generated images with large noise may seem
closer than some generated with lower noise. While this is
statistically wrong, see Fig. 10, we chose not to cherry-pick
the results to also highlight the fact that some directions may
alter the semantics in a worse way than others. This work is,
however, suitable for future study.

Furthermore, we added the scores of the metrics we ob-
tained with the previous quantization experiments on Fig-
ure 10. We observe that the quantization steps, even the
harsher ones at 1 bit or 2 bits per dimension, lay in the no-to-
small noise variance area. This explains the good rendering
results we obtain with the previous quantization experiment.

We can conclude that, while already very compact in its
16-bits precision form, the CLIP latent z of an image can
be largely compressed until reaching the impressive size of
1 bit per component (i.e., a compression ratio of 16). This
demonstrates that CLIP manages to describe the image se-
mantics well and can be a good representation for a generative

12

compression method. This is what we develop in the next
section.

VII. CLIP-BASED SEMANTICS GENERATIVE CODING
SCHEME

This section introduces a simple compression scheme based
on the discussions of P; and P,. We compare the proposed
compression algorithm with the intracodec of VVC [43] at
low bitrates, as well as Text+Sketch [18], an extremely low
bitrate generative compression pipeline. To put the future
work into perspective, we conclude with the limitations of the
proposed coding method.

A. CODING SCHEME AND EXAMPLES

We introduce a proof-of-concept coding algorithm based on
the semantic properties P; and Py demonstrated on the CLIP-
unCLIP codec. The proposed coding scheme is the same as
the one proposed in Figure 7:

o We encode the images via the encoder e = qof;

o To prepare the quantization, we clamp the latent vectors
to [—1,1];

« We quantize the latent vectors to 1—bit per dimension;

o On the user side, they decode the quantized latent vector
via the decoder d = go.

Note that we use of the projector 7 to ensure that the generated
images are in £ C L. For this experiment, we fix the
generated images size to 768 x 768, thus the bit per pixel

(BPP) for this pipeline is fixed to -20% ~ 0.0012 BPP.

B. STATE-OF-THE-ART COMPARISON

To compare our framework among the extremely low bitrate
compression pipelines, we encoded the same images with
the VVC intra coder [43], the current best standard image
compression scheme. The compression is done at the highest
possible Quantization Parameter (QP) to reach the same BPP
magnitude. At QP 63, we reach an average BPP of 0.0045.
This BPP value is still 4 times higher than the one proposed
by our coding scheme. We also compare our pipeline to the
Text+Sketch model [18]. This pipeline relies on a gener-
ative compression algorithm using a textual description of
the images, with or without a sketch of the image, as side
information for the generator. While the sketch helps to recon-
struct closer images to the input, it also adds a supplementary
cost in terms of compression. To make a fair comparison, we
compare our model to both of the modes.

The comparisons of 20 compressed and decompressed im-
ages from Landscape (as it is the best dataset to work on,
according to previous experiments) are presented in Table 3.
We show that for each of the metrics used in this work (quality
of the outputs and conservation of the inputs’ semantics),
our method performs better at extremely low bitrate than
VVC, the classical coder. Indeed, if we observe the outputs
of both methods, see Figure 12, we see that VVC produces
poor-quality images from which one can barely recognize the
inputs. We emphasize that VVC is one of the best current
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FIGURE 11. Visual evolution of the generation of the addition of increasing Gaussian noise on the latent vector. (Top to bottom) Inputs respectively taken
from Kodak, Landscape, and CelebA. For each sub-figure: (Left) Input image. (Right, top to bottom, left to right) Variation with different levels of noise.
From left to right, top to bottom: o € [0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2].

image encoders used for video compression. Yet, it has not
been designed to be efficient at such low bitrates, hence the
poor visual results. Note that this is also the case for all the
other classical compression algorithms, as such extremely
low compression rates are not considered in general. On the
other hand, our codec, while encoding at a BPP 4 times lower,
generates qualitative images that are semantically close to the
different inputs. However, this codec still has room for im-
provements to be used as a complete compression framework,
as discussed in the following.

Comparing to a generative compression framework, the
differences between our pipeline and [18] are less obvious
in terms of metrics. For the IQA metrics [18]’s image quality
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outperforms our model, and even outperforms the quality of
natural images, see Tab. 1. Regarding the semantic metrics,
our method competes with the other generative models. One
can observe that one of the advantages of our method is that
the generated images are visually closer to their respective
inputs in terms of style (as one can observe in the first
example) and in the conservation of some semantic details (as
one can observe in the third example with the disappearance
of the walking path or even the individuals). All in all, in
the proposed framework, both the quality of the generated
images and the conservation of the semantics are competitive
with other generative compression pipelines while providing
a BPP 3 to 20 times lower.
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| I BPP [ DBCNN | MUSIQ | cC [ BSS [ CSS [ FID |
VVC [43] 0.0045 0.19 (£0.02) | 20.33 (£5.23) | 0.64 (£0.06) | 0.091 (£0.05) | 0.116 (£0.15) | 3.5

[18] (without sketches) || 0.003 (£0.001) | 0.7 (£0.04) | 73.3 (£2.5) | 0.84 (£0.04) | 0.44 (£0.11) | 0.68 (£0.13) | 1.48
[18] (with sketches) || 0.026 (£0.005) | 0.68 (£0.06) | 71.1 (£3.0) | 0.87 (£0.04) | 0.52 (£0.2) | 0.65 (£0.28) | 1.69
Ours 0.0012 0.58 (£0.12) | 65.3 (£4.7) | 0.86 (£0.09) | 0.48 (£0.07) | 0.72 (£0.14) | 1.53

TABLE 3. Quality and semantics quantification evaluations between VVC and the proposed method at very low bitrates. Scores calculated on Landscape.

FIGURE 12. Visual comparison of the different compression pipelines at extremely low bitrates. (Left to right for each row) Input image. Proposed method
(0.0012BPP). VVC (0.0045 BPP). [18] without sketches (0.003 BPP). [18] with sketches (0.026 BPP).
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C. LIMITATIONS

The results presented in the last experiments are promising: a
CLIP (and unCLIP)-based compression framework is suited
for extremely low bitrate compression. Both the quality of
the generated images and the conservation of the semantics
make the pipeline suitable for semantic image compression.
However, we observe that the generated images are some-
times far from the inputs in terms of structural organization
(colors, place of the objects, themes, etc.). Thus, a possible
enhancement of the proposed framework could be to add a
bit of side information containing the structure of the input
images in the compressed vectors. This information can be a
color map of the inputs, as proposed in [15], or a sketch of the
inputs, as proposed in [18]. While this side information may
add to sticking closer to the inputs, it would come at the cost
of a few extra bits for the compressed vectors. This would
highlight a rate-distortion trade-off between the conservation
of structural information between the inputs and the outputs,
and the size of the compressed latent vectors. A typical rate-
distortion trade-off, as proposed by [27].

Vill. CONCLUSION AND FUTURE WORK
A. CONCLUSION

In this work, we demonstrated that CLIP can be used as a
semantic image encoder for generative compression. Indeed,
after showing that the relevant part of its latent space is a
spherical shell, we proved two important properties for gener-
ative compression. First, the CLIP latent representations are
faithful to the descriptions of their respective inputs. Second,
CLIP is resistant to harsh uniform quantization. These two
properties allowed us to suggest a proof-of-concept genera-
tive compression pipeline for extremely low bitrate compres-
sion that even beats VVC with a BPP 4 times higher, both in
terms of image quality and semantic preservation.

B. FUTURE WORK

As the visual examples showed through all this work, the
generated images are of good quality and semantically close
to their respective inputs. However, the structural information
(color, style, position, theme, efc.) are sometimes a bit off
regarding the inputs. So, a possible way to continue this work
is to find a way to encapsulate this non-semantic information
to help the guidance during generation. For example, using a
color map or a sketch as side information, as proposed in the
state-of-the-art. However, this side information would come
with a cost to the compression rate, and one would not be able
to easily achieve the compression rate submitted in this work.

Another interesting study could also be to generate these
results on other semantic encoders and generators outside
the CLIP-unCLIP codec. Indeed, other foundation models
can possibly fulfill better semantic properties for semantic
generative compression. Moreover, one can look for a way
to generalize or automate the proposed semantic properties
in other foundation models.
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