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1 Introduction

The prevalence of ride-sharing services presents a fundamental trade-off between the opera-

tional costs and the users’ convenience. While ride-sharing operations reduce operational

costs, users may experience certain inconveniences, such as longer ride times when sharing

their rides with others. Along with the development of ride-sharing services, the emergence

of new techniques, such as electric vehicles and autonomous techniques, has drawn aca-

demic interest in operations research to apply a more eco-friendly and comfortable mode

of transport. The Electric Autonomous Dial-A-Ride Problem (the E-ADARP) was first

introduced by [1], which consists in designing a set of minimum-cost routes for a fleet of

electric autonomous vehicles (EAVs) by scheduling them to provide ride-sharing services for

users specifying their origins and destinations. In this work, we emphasize the conflicting

interests of service providers and users in the objective function of the E-ADARP and

investigate the Bi-objective E-ADARP (hereafter BO-EADARP), where the two objectives

are the total travel time of all vehicles and the total excess user ride time of all users. We

generalize a single objective branch-and-price (B&P) algorithm to the bi-objective case,

relying on ideas of [2], to solve it. Numerical results and the managerial insights that we

observe from the obtained efficient solutions are summarized.



2 The BO-EADARP Description

The problem is defined on a complete directed graph G = (V,A), where V represents the

set of vertices and A = {(i, j) : i, j ∈ V, i ̸= j} the set of arcs. V can be further partitioned

into several subsets, i.e., V = P ∪D ∪ S ∪O ∪ F . P and D represent the set of all pickup

and drop-off vertices, S is the set of recharging stations, and O and F denote the set of

origin depots and destination depots, respectively. Each user request is a pair (i, n+ i) for

i ∈ P and has a maximum user ride time of mi. The travel time on each arc (i, j) ∈ A is

denoted as ti,j . Detailed mixed-integer-linear program (MILP) of the E-ADARP can be

found in [1]. We replace the weighted-sum objective function in [1] to separate objective

functions, as follows:

min
∑
i,j∈V

ti,jx
k
i,j (1)

min
∑
i∈P

Ri (2)

where xki,j is a binary decision variable which denotes whether vehicle k travels from

node i to j. Ri denotes the excess user ride time of request i ∈ P and is formulated as the

difference between the actual ride time and direct travel time from i to n+ i.

3 Methodologies

In this section, we first present the ϵ-constraint method to solve the BO-EADARP, which

is used to generate benchmark results. Then, we present the framework of the bi-objective

branch-and-price (BOBP) algorithm.

3.1 Epsilon-constraint method

The ϵ-constraint method starts by solving two objectives in lexicographical order with the

single-objective B&P. To facilitate reading, we denote z1(x) as the value of the total travel

time and z2(x) the value of the total excess user ride time for the solution x. In other words,

we first solve lexminx∈X {z1(x), z2(x)} and then solve lexminx∈X {z2(x), z1(x)}, with X
representing the set of all feasible solutions. We use the term lexminx∈X {z1(x), z2(x)} to

describe the process in which we find solutions with the smallest values for z2(x) among solu-

tions in X that have the smallest values for z1(x), and similar for lexminx∈X {z2(x), z1(x)}.
The obtained non-dominated points zT and zB define the search area where other non-

dominated points are included. The ϵ-constraint method always optimizes one objective

(e.g., z1(x)) while the other is bounded by an ϵ value (i.e., z2(x) ≤ ϵ). In each iteration,

the ϵ value is updated with the z2(x
′), where x′ is the newly-found non-dominated solution.



By using the value of the other objective function to restrict the search iteratively, all the

non-dominated points are obtained. The ϵ-constraint method finishes when zB is reached.

3.2 The BOBP algorithm

The principle of the BOBP algorithm is extended from the single-objective B&P introduced

in [3], which aims to divide the original problem into easier subproblems and store them

in the form of “nodes”. We denote each subproblem of the BO-EADARP as P (η), where

η represents the associated node. However, the BOBP algorithm is different from the

single-objective case as lower bound and upper bound sets (instead of single numerical

values) are used to decide whether to fathom a node. The main ingredients of the BOBP

algorithm are presented as follows:

• Calculate lower bound set and update upper bound set: On each branch-and-

bound node, we calculate the lower bound set with the dichotomic method. To solve

each weighted-sum objective problem, the CG algorithm presented in [3] is applied.

Once the lower bound set of the analyzed node η (denoted as L(η)) is calculated, we
first check if new non-dominated points are obtained. If this is the case, the upper

bound set U is updated.

• Lower bound filtering and node fathoming: Then, the lower bounds in the set

are filtered with the current upper bound set U , which stores each candidate point

that corresponds to the integer solution that is not dominated by other points in

the set. The filtering process compares the current L(η) with U and returns a set of

non-dominated portions. If no portion is generated after the filtering process, then

the analyzed node η can be fathomed, as it is fully dominated by the current upper

bound set U .

• Branching procedure: If the analyzed node cannot be fathomed, branching is

applied to generate child nodes. We consider three kinds of branching strategies and

apply them to each disjoint non-dominated portion. After branching, a set of child

nodes is added to the unprocessed node set T .

The tree search terminates when there is no unprocessed node remaining in T , and we

have the set of non-dominated points YN equals to U .

4 Numerical Experiments and Discussion

In this work, we solve the BO-EADARP, where the total travel time and the total excess

user ride time are considered as two separate objectives. The BO-EADARP is more

difficult to solve than the E-ADARP, as one must fully explore the bi-dimension search



area in order to demonstrate the completeness of the Pareto front. To tackle the BO-

EADARP, we introduce one criterion space search algorithm (i.e., the ϵ-constraint) and

a decision space search algorithm (i.e., the BOBP algorithm). The BOBP algorithm is

based on the generalized branch-and-bound algorithm proposed in [2], where the lower

bound set is calculated by the CG algorithm ([3]). In the computational experiments, we

solve the BO-EADARP with two different algorithms on small-to-medium-sized instances

and we compare the generated efficient solutions and their average computational time

from different algorithms. Compared with the classic ϵ-constraint method, the BOBP

algorithm seems to be more efficient and generates more efficient solutions in a less average

computational time. Then, we analyze the obtained efficient solutions, which offer the

following managerial insights for different service providers: (1) for profitable service

providers, it is possible to significantly improve service quality while keeping near-optimal

operational costs; (2) for non-profitable service providers, there exist efficient solutions

of high service quality while at lower operational costs. These efficient solutions are very

interesting for this kind of service provider. To sum up, the obtained efficient solutions

can help decision-makers select Pareto-optimal transportation plans according to their

priorities and preferences.

References

[1] C. Bongiovanni, M. Kaspi and N. Geroliminis,“The electric autonomous dial-a-ride

problem”, Transportation Research Part B : Methodological 122, 436-456, 2019.

[2] S. N. Parragh and F. Tricoire, “Branch-and-bound for bi-objective integer program-

ming”, INFORMS Journal on Computing 31(4), 805-822, 2019.

[3] Y. Su, N. Dupin, S. N. Parragh and J. Puchinger, “A Column Generation Approach

for the Electric Autonomous Dial-a-Ride Problem”, arXiv preprint arXiv:2206.13496,

2022.


