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Abstract 

Federated learning initiatives in healthcare are being developed to collaboratively train 

predictive models without the need to centralize sensitive personal data. GenoMed4All is one 

such project, with the goal of connecting European clinical and omics data repositories on 

rare diseases through a federated learning infrastructure. Currently, the consortium faces the 

challenge of a lack of well-established international datasets and interoperability standards 

for federated learning applications in healthcare. This paper presents our practical approach 

to select and implement a Common Data Model (CDM) suitable for the federated training of 

predictive models within the medical domain. We describe our selection process, composed 

of identifying the consortium’s needs, reviewing our functional and technical architecture 

specifications, and extracting a list of business requirements. We review the state of the art 

and evaluate three widely-used approaches (FHIR, OMOP and Phenopackets) based on a 

checklist of requirements and specifications. We discuss the pros and cons of each approach 

considering the use cases specific to our consortium as well as the generic issues of 

implementing a European federated learning healthcare platform. A list of lessons learned 

from the experience in our consortium is discussed, from the importance of establishing the 
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proper communication channels for all stakeholders to the technical aspects related to -omics 

data. For large, federated learning projects focused on secondary use of health data for 

predictive modeling, encompassing multiple data modalities, a phase of data model 

convergence is sorely needed to gather different data representations developed in the context 

of medical research, interoperability of clinical care software, imaging and omics analysis 

into a coherent, unified data model. Our work identifies this need and presents our experience 

and a list of actionable lessons learned for future work in this direction.  

Keywords 
Federated learning, data model, healthcare, omics, lessons learned 
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What this paper adds We identify the need for a common data model in federated learning 

healthcare projects, relate our experience and methodology for its 

implementation in the GenoMed4All project, and compile a list of 

actionable and general lessons learned for similar endeavors. 

 

Introduction 

The lack of availability of high-quality datasets comprising large volumes of data represents a 

significant limitation to the training of machine learning models in the healthcare domain. 

One solution to this problem, the pooling and integration of datasets from multiple centers, is 

often met with a strong resistance in the healthcare setting. In addition to the ethical, 

motivational, and economic barriers preventing data sharing, a review identified legal barriers 

such as privacy protection, political barriers such as lack of trust, and technical barriers such 

as a lack of widely adopted sharing solutions [1]. These barriers are exacerbated in the 

context of rare disease research, where datasets are small and thus more easily identifiable, 

and integration of multiple data modalities (genomic, phenotypical, demographic, medical 

history, and others) is often required. 

Recently the Federated Learning (FL
9
) paradigm has gained popularity as a means to 

overcome such limitations by providing a scalable, privacy-preserving approach to the joint 

training of machine learning models across federated health data repositories [2,3]. The core 

idea behind FL is that instead of sharing data, different centers only need to share the 

parameters of the machine learning model being trained. Despite being very promising, FL 

may not yet be considered a mature technology in the healthcare domain and international 

initiatives based on this approach are only now starting to be developed. The GenoMed4All 

consortium aims to achieve one of the first international implementations of a FL platform for 

clinical and -omics rare disease data. However, the current challenge that the consortium 

faces is the systematic lack of standardized protocols for interoperable data and lack of FAIR 

data principles (Findable, Accessible, Interoperable, Reusable) in the biomedical data 

community. The multidisciplinary nature of GenoMed4All requires the strict cooperation of 

different communities, including clinical medicine, data science, engineering, legal, and data 

                                                 
9
 FL: Federated Learning; CDM: Common Data Model; AI: Artificial Intelligence; ML: Machine Learning; 

SoR: Sources of Records; FAIR: Findable, Accessible, Interoperable, Reusable; EHR: Electronic Health 

Record; CDSS: Clinical Decision Support System; SCD: Sickle-Cell Disease; MM: Multiple Myeloma; MDS: 

Myelodysplastic Syndrome. 



   

 

   

 

privacy.  

In order to protect and disseminate such valuable information and to mitigate the risk of 

building a tower of Babel, the GenoMed4All consortium, created in 2021, has put significant 

preliminary efforts to understand the current state of the art on data interoperability and 

consented reutilization of data of genetic and phenotypic origin in a FAIR way, utilizing 

specialized strategies to facilitate the sharing of clinical data and support the FL paradigm. 

Despite the large volume and heterogeneity of formats and representations available in the 

literature for healthcare data, we faced the challenge of a lack of state-of-the-art examples of 

real-world applications of such approaches to large-scale, international, federated learning 

projects. This process culminated in the definition of the requirements for a project-wide 

Common Data Model (CDM), an abstract representation of the structure of the data, rather 

than of the data itself, aimed at explicitly conveying and formalizing the organization of the 

data and the relationships among data elements via the specification of a machine-readable, 

codified format. In this article, we present the methodology and the outcomes of our data 

modeling effort, based on identifying a list of requirements specific to our project which 

allowed us to study and compare three widely used and highly standardized candidate data 

models: OMOP, FHIR and Phenopacket. We share the key challenges and lessons learned in 

the process of designing a model for multimodal healthcare data with the goal of supporting 

the federated learning paradigm. Ultimately, we hope that our work may be transferable to 

similar efforts in the future, enabling new initiatives to build on top of our experience. 

This paper is structured as follows: in the Materials and Methods section, we present our 

journey towards the definition of a data model for the GenoMed4All platform through a 

process of reviewing our implementation plans, eliciting requirements, and selecting a CDM 

from the available international standards, thus roughly following our chronological order. 

We begin by establishing the motivation for a CDM in our consortium; then we present our 

functional and technical platform architecture focusing on how the data flows, Artificial 

Intelligence (AI) functionalities and technical design choices relate to the CDM; building on 

this knowledge, we elicit a list of business requirements from all stakeholders; finally, we 

evaluate the three candidate models based on this list of requirements. In the Results and 

Discussion section, we identify the pros and cons of each approach and present a series of 

lessons learned related both to the selection of a specific data model, and also to the generic 

process of data modeling for healthcare federated learning platforms.  



   

 

   

 

Related work 

The last few decades of IT systems research in healthcare have seen the proliferation of a 

very heterogeneous landscape of proprietary data models for storing and using health data, 

making it difficult to promote an environment of interoperability, FAIR data sharing and 

reproducible scientific collaboration [4]. The main reason behind such diversity is that these 

systems have been developed within the confines of specific design spaces, reflecting 

medical sociology, recording practices, and research needs, as well as serving different 

communities like clinical practitioners or clinical research. Standard data representations are 

typically developed by providers of health care, health insurance, or research, based on data 

formats from multiple sources such as electronic health records (EHR), lab tests, insurance 

claims, and specialty electronic devices [5]. We may distinguish standards:  

 for improving the connection between health research and care delivery, such as the 

HCSRN-VDW [6] and the CESR-VDW [7] common data model;  

  focused on simplifying the sharing of data, for example HL7 clinical documents 

Architecture (CDA) [8], medical records [9], medical imaging information [10], or for 

the pharmacovigilance use case [11,12]; 

 those to facilitate data exchange between different health systems like FHIR [13]; 

 Designed to map electronic medical records as part of medical insight and research 

data hubs, and/or for mapping and collaboration of datasets like OHDSI OMOP [14], 

i2b2 [15], PCORNET [16] (patient-reported and payor data for research) or even 

FHIR (considered as a data warehousing standard); 

 Specialized into acquisition, archive and interchange of metadata and data for clinical 

research studies like CDISC [17].  

 Those specialized in genomic data collection, storage, analyzing, and sharing 

representation and sharing like SAM/BAM, VCF, Phenopacket endorsed by the 

Global Alliance for Genomics and Health (GA4GH) [18] . 

In spite of the abundance of specialized data formats, reutilization of medical data for clinical 

research purposes is still a rare occurrence [19], especially in the case of predictive analytics 

and machine learning [20]. Moreover, these different standards are covering distinct 

functional domains, which raises the problem of a mature CDM covering clinical, imaging 

and -omics data types.  



   

 

   

 

 

Out of those models, within the GenoMed4All project we identified three CDM candidates 

based on our experience and expertise, that have been demonstrated to support predictive 

analytics including genomic data: FHIR, OMOP-CDM and Phenopackets. The HL7 Fast 

Healthcare Interoperability Resources (FHIR) is one of the most robust and complete 

healthcare data persistence and exchange specifications that support full semantic 

interoperability. FHIR has already been successfully applied to a federated learning approach, 

for example in the context of the Personal Health Train Project [21]. The Observational 

Medical Outcomes Partnership (OMOP) Common Data Model (CDM) [14] is one of the most 

widely used CDMs in the life sciences community and has been demonstrated to facilitate 

ML-based oncological studies [22], clinical predictive modeling [23], and other ML-based 

analysis [24]. While neither standards were developed with a specific focus on genomics, 

both have been extended to -omics data [ERREUR ! SIGNET NON DEFINI.,ERREUR ! SIGNET NON 

DEFINI.,ERREUR ! SIGNET NON DEFINI.]. Conversely, the Global Alliance for Genomics and 

Health Steering Committee approved Phenopackets as a format specifically designed to 

integrate genomic and phenotypic information [25]. 

 

Federated learning has been successfully applied in the context of medical research in the 

past decade (see e.g. [26,27,28] for some early applications), and recent reviews confirm a 

growing trend in terms of number of large-scale FL projects [2,29,30,31]. This paper deals 

with the question of how to best identify and integrate healthcare interoperability standards 

and a data model within the context of a FL platform. While recent efforts have been made in 

this regard, for example FL platforms relying on OMOP as a backend data representation and 

FHIR as a data transfer format have been described [32,33], to our knowledge this question 

still remains understudied.   

Materials and Methods 

Federated learning is a distributed machine learning paradigm where multiple participants 

collaborate in the training of a unique global predictive model. There are multiple flavors of 

FL depending on the partitioning of the data, the type of participants, and other aspects 

[34,35]. Erreur ! Source du renvoi introuvable. broadly shows the main workflow and 

architecture of the horizontal, cross-silo, model-centric FL approach chosen by 

Genomed4All. In this paradigm, each local node (called edge node in FL notation) trains a 



   

 

   

 

local ML model based on the features extracted from the local existing data. Once these 

models are prepared, only their parameters are sent to the central node, thus avoiding the 

sharing of personal data. In the central server, the parameters coming from the different edges 

are aggregated to obtain the general model, whose parameters are also sent back to the nodes 

to locally run the main model. This process is executed iteratively multiple times until a 

satisfactory level of convergence has been reached. The main feature of this approach is that 

the only information being exchanged are the models’ parameters.  

 

The purpose of the GenoMed4All project is to build a platform enabling data scientists to 

conduct FL experiments leveraging the network of medical Sources of Records (SoR) within 

the consortium. In what follows, we present the outcomes of our preliminary requirements 

gathering, identification of design principles, and technical infrastructure proposal, which are 

guiding the initial implementation attempts currently underway. Several details, especially 

regarding the technical implementation, have not yet been fully fleshed out. 

  

The implementation of the GenoMed4All platform will be carried out in a multi-phase 

approach. The first phase is focused on the deployment of a centralized version of the AI 

models based on a subset of the data collected in a centralized feature store, after the 

necessary pseudonymization and other privacy measures have been applied. The purpose of 

this phase is to enable a slight degree of data exploration and model debugging to data 

scientists, with the ultimate goal of improving the definition of the model architecture and 

hyperparameters. The second phase will put in place the actual federated training and 

deployment within the platform, allowing an improvement of the models developed in the 

first phase by means of recruiting additional participant sites, thus leading to more data and 

hopefully better generalization of the models.  



   

 

   

 

 

Figure 1 Federated learning platform architecture for GenomedAll. The central server is in charge of registering models 

along with the associated dataset characteristics (described in the model descriptor). Training monitoring and dataset 

exploration (based on metadata) are also envisioned from this location. The multiple edge nodes run the CDM preceded by 

the data integration pipeline ingesting and transforming the different sources of records. Out of the CDM the data is 

prepared and normalized for model training. 

Motivation for a common data model 

The large heterogeneity in data representations and semantics across SoR leads to 

unnecessary complexity in the analysis, reuse, and interpretation of data in health research. A 

well-established approach to overcome this issue relies upon a Common Data Model (CDM), 

a collection of rules which standardizes both the structure and the semantics of disparate 

datasets through the use of ontologies, coding systems, and formal documentation.  

During the preliminary design phase of the functional and technical architecture for 

GenoMed4All, we realized how much even the simple issue of justifying the need for a CDM 

for federated learning platform requires careful analysis and a tight interdisciplinary 

collaboration. Using a CDM does not come for free: it requires training software developers 

and data analysts, significant levels of expertise and domain knowledge, and a considerable 

initial development effort. However, there’s a lot to be gained by this investment.  

 



   

 

   

 

In a federated approach, a CDM adopted by all SoR is crucial to avoid the combinatorial 

complexity of maintaining separate data preparation and feature extraction pipelines for each 

combination of SoR and ML algorithm. This reduces the burden on data analysts and allows 

clinical and research data to be appropriately merged and compared across institutions. 

Additionally, following CDM specifications, such as e.g. adopting specific terminologies and 

ontologies, can greatly improve semantic consistency across SoR, ultimately leading to better 

data quality. Finally, such a standardized approach makes the raw data auditable and 

searchable through automatics means [36].  

 

The long-term maintenance and scalability of the platform and of the ML models may also be 

impacted by the adoption of a CDM. For example, when onboarding new members into an 

experiment a data quality assessment is mandatory to avoid a degradation of the overall 

federated training performance. And although data quality is essential for both centralized 

and federated solutions, in a centralized solution data quality checking and data update are 

easier to implement as data are located centrally and can be examined at will, whereas 

federated learning imposes additional difficulties as data are are distributed, and the modelers 

do not have access to the data [37]. This data governance step may be greatly facilitated if a 

CDM is enforced between the sources of data and the data preparation pipeline, allowing 

predefined scripts and metrics to be extracted before engaging into the training process.  

 

Finally, the adoption of a CDM may also benefit health care providers directly by simplifying 

the deployment of other data services like data exploration, decision support or alerting 

systems, thus further contributing to offsetting the initial data management costs associated 

with a CDM. Especially for DSS, the heterogeneity of systems with varying data types and 

structures has been identified as an important factor that hinders CDSS implementation in a 

real clinical setting [38].  

Data modeling for federated training of AI models 

The interaction between data modeling and the training of learning algorithms is an evolving 

subject of exploration as it must align two communities with their own practices and tools: AI 

researchers and IT platform integrators. To the best of our knowledge this topic has not been 

extensively analyzed in the healthcare domain (for example the IHE AI interoperability in 

Imaging white paper [39] provides limited indication for data/AI model interaction). In 



   

 

   

 

Genomed4All project this topic has been addressed by the Federated learning platform both 

during the model development and training phases. 

Model development phase  

Data scientists in the consortium have identified a need for a preliminary model development 

phase in which a subset of the data is centralized an made available to them. A dataset 

anonymization and preliminary analysis is usually performed in this phase prior to entering 

the research phase. At this stage, the datasets delivered to data scientists are very often not 

aligned to a CDM.  

 

After the data is made available to the data scientists, there are more challenges to be solved 

in order to develop an ML-based model and provide an automatic application of the whole 

process, such as e.g. the choice of the ML algorithm, which strongly depends on the data, and 

therefore on the data model. We expect that higher heterogeneity of the features considered in 

the datasets corresponds to more complex relationships among these features, fostering the 

usage of ML-based solutions.  In addition, the model’s validation should be performed on a 

set of patients that are not used to learn the normal parameters, in order to avoid overfitting 

issues and to generalize well when applied to new patients. 2 Different data representations 

can impact the model development steps described above, for example by inducing different 

training and validation data splits, introducing numerical errors, or affecting the feature 

selection process. 

 

At the end of the development and validation phase the research team delivers a model 

descriptor, an object whose goal is to provide a description of all the information and 

resources needed by the FL edge system to perform its job. Indeed, in most cases the model is 

not coded to support a CDM data format as input and so a data transformation pipeline must 

be described for preparing the data for training. The training descriptor includes: a cohort 

script to extract data from the CDM into the format requested by the model; imaging and 

genomic pre-processing pipeline descriptor; data quality check metrics; the model and its 

training plan; the minimum system resources capabilities (CPU, Memory, Storage) to 

perform the training. 



   

 

   

 

Federated platform for model training  

Following common design patterns [18] we split the architecture in two distinct components, 

matching the Federated learning paradigm presented above. A central server whose primary 

objective is the registration, training monitoring and aggregation of models; and an edge 

server in charge of driving the training plan and pushing model updates once training is 

finished. These two sides of the architecture handle different components and resources that 

are closely relying on the data stores implementing the CDM. The components of the 

architecture that interact with the common Data model are presented in Erreur ! Source du 

renvoi introuvable. and Figure 2. A short description of their interaction with the CDM is 

given in Table 1. 

 

Table 1 Platform components having significant interactions with the CDM. 

Component Role and interaction with CDM 

Pseudonymization (Optional) Depends on hospital data privacy governance rules 

as the CDM may be used by other research teams to explore & 

create cohorts.  

cohort extractor and dataset Extraction of the dataset from the CDM that will serve the 

model training at the edge (see Figure 2) 

Quality check metrics Computed on the dataset (mandatory fields, validity & 

completeness) to asset the quality & exclude any data that 

would pollute the training phase (see Figure 2) 

Dataset manager To reference, as a catalog (based on metadata aligned with the 

CDM format to ease the analysis) the datasets already deployed 

in the different edge hospitals (see Erreur ! Source du renvoi 

introuvable.) 

Model manager to reference, as a catalog, all the models that are currently 

handled by the federated training framework. The registration 

references all the resources associated with the model (cohort 

extraction script, data quality check metrics, pseudonymization 

The model training data flow 

The diagram in Figure 2 presents the data flow orchestrated by the FL platform at the edge. 

The training descriptor, described in the previous paragraph, is used by the integration 

pipeline to configure the data flow execution. It is also used by the FL edge model trainer to 



   

 

   

 

control and perform the model training. In this flow, the CDM ingests data from the different 

SoR after feature extraction for clinical images and genomic data, alignment on a single 

terminology and formatting into the CDM, and finally pseudonymization. Then the cohort 

extractor retrieves a dataset from the CDM and applies data normalization using a set of 

dictionaries to convert categorical data into the numerical data format for input into the AI 

model. A data quality check based on the training descriptor metrics is then applied, and if 

successful the model training plan can start. When it ends, and if the quality reaches the 

expected level, the model update is sent back to the central platform for aggregation. The 

integration of the algorithm into a Clinical Decision Support system used by clinicians 

requires further validations that are out of the scope of this data flow. 

 

 

 

Figure 2 Conceptual Data flow for model training: from the source of record to the deployed algorithm in a decision 

support system. The pipeline execution and model training are configured based on the model descriptor which provides: i) 

the cohort extraction definition along with the dictionary for data normalization; ii) the minimum data quality metrics to 

accept data for training; iii) the training plan. Once the training is finished the model is sent back to the central platform, 

which is responsible for detecting potential data shifts and aggregating a new resulting model. This new version enters then 

the Decision support validation phase (which may include a clinical trial step).   

Data modeling business requirements 

We present an extensive list of requirements for the GenoMed4All federated learning 

platform in Table 2, with the goal of providing a template and inspiration for similar projects, 

and extrapolate generalizable lessons in the discussions section. A first version of these 



   

 

   

 

requirements was obtained by analyzing the proposed technical infrastructure, data flows, AI 

model development strategy described in the sections above. Furthermore, a list of high-level 

data elements present at each SoR in the consortium was gathered to aid in identifying 

whether the shortlisted CDMs could indeed adequately represent the data (see Appendix 

“Genomed4All: clinical demonstrators and available data”). The requirements were discussed 

in the context of group and individual interviews with the different domain experts in the 

consortium, including AI experts, clinical data providers, and software engineers, following a 

requirement engineering approach [40]. After that, the requirements were refined and the 

levels of priority, as defined by the MoSCoW rules [41], were assigned iteratively and 

collaboratively in the context of the bi-weekly consortium meetings as well as during the 

course of two consortium-wide workshops.  

 

Specifically for the data transformation requirements, for a federated learning setting to be 

able to work the data used for training in the various hospitals should use the same data 

model, format and terminologies. However, as this is rarely the case, it is common that 

transformations should be performed before the data are actually usable for the any federated 

learning model. Although neither the FAIR principles nor federated learning have a 

prerequisite the data transformation steps this is commonly required to be performed in 

practice [ref].  

 

Table 2. Data model requirements for the GenoMed4All project. We collected the main expectations and constraints from 

different stakeholders regarding the data model to be used in the GenoMed4All project. We summarize the most commonly 

expressed points, categorized into different general topics. 

Input by 

clinical data 

providers 

The raw clinical data provided as input may or may not respect interoperability 

standards, and it may be in a proprietary format. The platform SHOULD 

support as many input formats as possible. 

The data model SHOULD support the use of the same terminologies and 

ontologies as the raw source data. 

The data model SHOULD be customizable & extensible allowing adaptation to 

data format specifications brought the project. 

The data model SHOULD be agnostic to any terminology. 

The data model SHOULD be unique across all data providers' edge nodes.  

The effort required from clinical data managers to prepare the data for federated 

training through the platform SHOULD be minimized. 



   

 

   

 

The data model MUST support both cross-sectional and longitudinal data. 

The data model COULD support updates and changes to the data structure 

(slowly changing dimensions).  

Data privacy Data relating to the same patient across multiple centers/datasets SHOULD be 

recognizable as belonging to the same subject. 

The data model MUST support all GDPR and national privacy laws. 

The data model MUST support the possibility to cancel data at the granularity 

of individual patients, in respect with GDPR.  

The data model MUST support any pseudonymization strategy. 

The data model must be implemented by at least one technology that offers 

access granting capabilities to meta data allowing the care institution to control 

its data exposure level to other actors. 

Data model 

design 

The data model MUST support the representation of all target data types at their 

intended level of detail, including clinical, demographic, genomic, radiomic, 

and laboratory data. 

The data model MUST support additional information extracted from the raw 

data, possibly through automated AI algorithms, such as e.g., radiomics and 

genomics features 

The data model MUST respect FAIR principles.  

The data model MUST be agnostic w.r.t. the origin of the data.  

The data model COULD retain information about the origin of the data.  

The data model SHOULD be patient-centric. 

The data model COULD be highly normalized to minimize duplication of 

information.  

The data model MUST support both storage and transfer semantics and 

operations.  

Data 

transformations 

The data model MUST provide a uniform interface for accessing and querying 

data for the purposes of training federated AI models.  

The information contained in the data model after transformation MUST be at 

least equivalent to the information contained in the raw source data.  

Data transformations from the raw source to the AI training dataset SHOULD 

be as simple as possible. 

Data transformations from the data model to the training dataset COULD be 

disease-specific, algorithm-specific, and training plan-specific. 

Data consumers 

and federated 

The quality of the data exposed by the CDM for training predictive models 

MUST be at least as high as the quality of the raw input data. 



   

 

   

 

training Given any training plan for an AI algorithm, the data model SHOULD be 

structured in such a way that simplifies the retrieval of all the records in the 

training dataset. 

In-depth knowledge of the data model SHOULD NOT be required from data 

scientists to manipulate the training dataset. 

The data model MUST be sufficiently documented to enable the engagement of 

additional clinical data providers.  

The data model MUST provide extensive metadata to enable basic data 

exploration and simple aggregated queries.  

 

Given the high level of detail in Table 2 and the specificity of some of the requirements to the 

GenoMed4All project, we also extracted a more generic data architecture checklist in Table 3 

to enable future projects to build on our experience. The checklist covers all phases of the 

data flows – from the input of raw clinical data to the generation of training data for the ML 

algorithms – and is structured as a short list of ten questions and related recommended 

actions. In this checklist we aimed to capture the main difficulties, challenges, and points of 

friction that we encountered in the process of designing the data model for the project, with 

the goal of providing a simple yet effective way to pragmatically approach the design of 

similar systems in the future.  

 

Table 3 Data architecture checklist. We distilled the main points of discussion from our experience into a checklist of 

questions and recommended actions, to be used for future implementations of a data architecture based on a CDM in a 

federated learning platform in the healthcare domain.   

Phase Question Recommended action 

Input by clinical 

data providers 

What are the clinical aims and the 

research question? 

An iterative research design 

process involving clinical experts 

(to define the research question, 

describe available data, and 

evaluate proposed analysis) and 

ML experts (to assess available 

data and define ML approach). 

What data and what type of statistical or 

ML analysis can be used to answer such 

question? 

What format is the raw data available 

in?  Which standardized nomenclatures 

and ontologies have been used in the 

raw data? 

Survey among clinical data 

providers. 



   

 

   

 

Data privacy How to ensure full compliance with 

GDPR and national data privacy laws? 

Identify GDPR roles, 

pseudonymization strategies, and 

assess data flows. Consider 

carrying out a full DPIA. 

Data model design Does the data model accurately cover all 

the data types, with straightforward 

mapping from the raw data? 

Gather metadata about all 

available data types and carry 

out a preliminary mapping 

exercise for all candidate data 

models. 

Does the data model support  both input 

by clinical data providers and extraction 

by data scientists? How might the data 

be modified/updated in the future? 

Preliminary analysis of possible 

strategies for data input, 

modification, and extraction.  

What kind of auditing and governance 

metadata is supported by the data 

model? 

Preliminary assessment of 

metadata needs and exploratory 

mapping to data model. 

Data 

transformations 

How to ensure proper data governance 

and how to retain semantic content and 

the same level of information throughout 

the data transformation, wrangling and 

curation processes? 

Establish two detailed mapping 

documents: the first maps the raw 

data to the data model, the 

second maps the data model to 

the training data format. 

Data consumers 

and federated 

training 

Does the data architecture support all 

intended use cases for data 

consumption? 

Identify all use cases (with 

support of clinical, AI and 

software engineering experts) 

and assess support. 

Is the data quality sufficient to support 

federated training of ML models? 

Identify data quality needs and 

evaluate putting in place quality 

checks (automatic or manual).         

 

What are the challenges and biases 

related to the (potentially uneven) 

distribution of data across SoRs? 

Survey data providers to identify 

biases in patient demographics’ 

distributions and data volumes. 

Conduct statistical analysis prior 

to the training of predictive 

models.  

 



   

 

   

 

Mapping data models to the requirements 

One of the main technical challenges that we encountered in the process of selection and 

design of the data model was to identify which available international standards best suited 

our needs. We present here a preliminary mapping exercise trying to identify whether the 

three data models under investigation are adequate in covering all data aspects that should be 

modeled within GenoMed4All. We expand on the “Data model design” row from the 

checklist in Table 3 and our prior work on gathering the requirements expressed in Table 2 to 

identify a set of dimensions to evaluate three commonly used standards for clinical and 

genomics data: FHIR, OMOP, and Phenopackets. 

Our first concern was to look at the expressivity of each model with the goal of making sure 

that all types of data may be adequately represented in the platform. We summarize the 

results of this exercise in Table 4 for the clinical data. Given the importance of genomics and 

–omics data for GenoMed4All, and the relative lack of maturity of well-established standards 

for these data types, we also present a detailed analysis for genomics data in Table 5, and 

Table 6 for other ‑ omics data. Given the still-preliminary nature of our investigation, we did 

not yet have access to the full list of data elements that will be made available for federated 

training. Instead, these tables provide a first cursory analysis on possible mapping strategies 

that would satisfy our project requirements for data macro-categories, with the caveat that 

details about each data type may lead to different approaches when the full list of data 

elements is finally made available. Additional details about this mapping exercise can be 

found in the Appendix “Additional details for mapping exercise”. 

Table 4 Mappings between the three candidate common data models and the GenoMed4All clinical information. 

Clinical Information 

 FHIR OMOP-CDM Phenopacket 

Demographic 
Patient, 

Observation 

Person, 

Observation, 

Measurement 

Individual 

Treatments 
Procedure, 

ServiceRequest 

Drug_Exposure, 

Procedure_Occurrence 
Treatment 

Diagnosis 
Observation, 

DiagnosticReport 
Condition_Occurrence Disease 

Conditions/Clinical 

Manifestations 

Condition, 

Observation 

Condition_Occurrence, 

Observation 

Phenotypic features, 

Evidence 

Laboratory Observation, Measurement  Biosample, Measurement 



   

 

   

 

Measure, 

MeasureReport 

Longitudinal data 

(History) 

Most FHIR resources of 

interest have a date 

field, e.g. 

Observation.effectiveIss

ued, 

Procedure.performedDat

eTime 

Condition_Occurrence linked 

with Observation 

Individual elements such as 

Individual, 

PhenotypicFeature, 

Biosample, Medical action, 

combined with building 

blocks such as, Time element 

to create longitudinal 

structure 

 

Terminologies/ 

Ontologies 

CodeSystem ValueSet, 

ConceptMap  

Concept, Vocabulary,  

Domain, Concept_class, 

Concept_relationship,  

Concept_synonym,  

Concept_ancestor 

Ontologies are well supported 

in phenopackets   

 

In the specific case of genomics, we found this mapping exercise to be quite challenging even 

at the relatively coarse level of detail that we are considering here. For example, while our 

proposed approach for mapping the information of which variants are significant in FHIR 

relies on the interpretation field within the Observation resource, there is debate whether this 

is the best approach, as other valid alternatives can be considered such as e.g. the Variant 

confidence status [42]. Similarly, it remains unclear to us whether the Variant_annotation 

table represents the best mapping in the OMOP-CDM.  

 

Table 5 Mappings between the three candidate common data models and the GenoMed4All genomics information. 

Genomics Information 

 FHIR OMOP-CDM Phenopacket 

Presence/absence of 

each mutation 

DiagnosticReport-

genetics,  

Observation-genetics, 

Molecular_sequence 

Variant_Occurrence  VariationDescriptor  

Genomic location  

 

DiagnosticReport-

genetics,  

Observation-genetics 

Genomic_Test, 

Target_Gene, 

Variant_Occurrence  

 

VariationDescriptor  

Variant type  

 

DiagnosticReport-

genetics,  

Variant_occurrence  

 
VariationDescriptor  



   

 

   

 

Observation-genetics  

Genotype information   

 

DiagnosticReport-

genetics,  

Observation-genetics 

Variant_occurrence  

 
VariationDescriptor  

Annotation of which 

variants are significant 

Using interpretation field 

in Observation  
Variant_annotation  VariantInterpretation 

 

Table 6 Mappings between the three candidate common data models and the GENOMED4ALL –omics and other data types 

information. 

Other data types and –omics data 

 FHIR OMOP-CDM Phenopacket 

Imaging data  

 

Media,  

ImagingStudy,  

DiagnosticReport 

Radiology_Image 

Radiology_Occurrence 
 N.A. 

Oxygenscan data    

 

Observation,    

Measure,  

MeasureReport    

Procedure_occurrence, 

Measurement 
N.A. 

Metabolomics 

Observation,    

Measure,  

MeasureReport,  

DiagnosticReport 

Measurement  

(with LOINC and SNOMED) 
N.A. 

 

Results and Discussion 

Comparison of data models 

Based on our coarse-grained preliminary analysis, all three data models were deemed 

generally capable of supporting all the clinical and genomics data requirements foreseen for 

the GenoMed4All project, as well as all the necessary processes for querying and 

transforming information required by the AI algorithms. We found more overlap in the 

capabilities offered by FHIR and OMOP, whereas Phenopackets, which has better 

expressivity for genomic data, has the disadvantage of not being able to adequately represent 

some common data types such as imaging or other –omics data. The complementarity of the 

three data models is particularly obvious in the specific case of representation of genomics 



   

 

   

 

data, where we highlighted some difficulties in mapping specific concepts to FHIR and 

OMOP. We report in Erreur ! Source du renvoi introuvable. the hierarchy of genomics 

data needs for GenoMed4All [43]: while FHIR and OMOP are better suited for highly 

processed genomics data and linking with other clinical data types, Phenopackets retains the 

ability to natively express raw sequencing data and linking it to specific phenotypical 

manifestations. 

In general, all analyzed data models serve well as a layer of standardization for clinical 

research data within one’s own research network. However, in case one wants to reuse and 

integrate a set of datasets in broader clinical research communities across different research 

networks, this requires a global data model as a reference standard to facilitate not only data 

model harmonization and data integration, but also easy data transfer and exchange. Towards 

this end, there has been an effort recently to combine several data standards in a single global 

common data model that will allow researchers to pull data from multiple sources and 

compile it in the same structure without degradation of the information. We believe that a 

combination of data models, as well as the implementation of Phenopackets within the FHIR 

or OMOP standard, will facilitate in better developing and improving the interoperability and 

standardization in genomics data. This effort may be carried out in the context of integrating 

with Phenopackets-based platforms such as RD-Connect, or in the context of leveraging the 

protobuf layer of Phenopackets as a data interface for data scientists. 



   

 

   

 

 

 

Data modeling for a federated-learning healthcare platform: lessons 

learned 

The journey towards the implementation of a CDM for the GenoMed4All project has been a 

challenging experience that required multiple steps, engagement of different types of 

stakeholders, and the solution to technical and organizational issues. We summarize in Figure 

4 the main steps in this journey, starting from identifying the need for a CDM and ending 

with the actual implementation in the data flows and processes of the project. In what 

follows, we relay the main lessons that we learned from our experience during this journey 

and extract generalizable insights for future projects. 

Raw sequence reads

Variants

Binary presence of mutations 
on selected genes of interest

Annotated variants

Link with clinical and other  

–omics data 
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Straightforward 
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Figure 3 Hierarchy of genomics data needs in the GenoMed4All project and level of applicability for the FHIR, OMOP and 

Phenopacket data models. The analysis and ML model training within the GenoMed4All is expected to cover different levels 

of genomics data refinement, spanning from raw sequencing data to linking genomics information with other clinical data. 

While all the analyzed standards are able to natively represent data at a medium level of processing, we find that OMOP and 

FHIR are more easily applied to highly processed genomics data (green bars) but do not support representing raw 

sequencing data (red bars), while the situation is reversed for Phenopackets.  



   

 

   

 

 

Lesson 1: The need for a common data model in a federated learning project 

One of the main results of the data modeling exercise in the GenoMed4All project has been 

to identify the precise motivation, cost, benefits, and challenges related to implementing a 

CDM in a federated learning platform for medical research. A CDM contract between data 

providers and consumers enables homogeneity, consistency and standardization for both 

semantic and syntactic aspects, thus leading to improved data quality and reusability. 

Furthermore, it makes the data more readily auditable and searchable, thus also improving its 

findability. In a federated setting, a CDM is also crucial to support scalability, by simplifying 

the recruitement of new SoR, and future-proofing of the platform. However, enforcing such a 

contract from the beginning can be met with some resistance by clinical data providers as it 

shifts some of the data management burden to them – especially in the cases where they lack 

Figure 4 Journey towards the implementation of a good CDM strategy. First, the need and motivation for a CDM must 

be established, and a cost-benefits analysis carried out taking into account the specific context of the project. In order 

to be successful, open communication and engagement with all involved stakeholders (platform engineers, clinicians 

and ML experts) is necessary. Through open discourse and collaboration, the research questions must be formulated 

and their data requirements expressed. Finally, a data model may be created and/or selected, and a common strategy 

defined between data provides (clinical institutions) and consumers (FL platform and data scientists). Measures to 

mitigate risk, such as plans for dealing with data heterogeneity, must be implemented as a last step.   



   

 

   

 

the in-house expertise to perform complex dataset mappings – as well as by data scientists 

who may need to divert time and effort from the development and training of ML models to 

learning the technicalities of the CDM.  

Lesson 2: Implementing a CDM in a federated network is not only a technical 

challenge 

In our experience, the implementation of a CDM within a federated network of clinical data 

providers proved to be not only a technical challenge, but also a complex management issue 

requiring open communication between all stakeholders involved. We found that the three 

communities involved, i.e., the clinical, AI and engineering teams, all had slightly different 

expectations which needed to be balanced out. The clinical team was mostly worried about 

the additional effort and technical difficulty of mapping the data to yet another terminology 

and structure, an operation that may seem redundant at first as it does not necessarily add any 

more medical information to the data. The AI team was worried about ease of adoption and 

quick manipulation in the context of developing and testing new algorithms. The engineering 

team was worried about duplication of work and pushed to enforce standardization wherever 

possible. Similarly, we experienced a contrast between a strive for generality in designing the 

data model and the narrowly focused nature of ML algorithms, which represent an ad-hoc 

solution by their very nature.  

Lesson 3: Breaking the cycle of requirements 

A common stalling point in our discussions about data requirements for the project was met 

when we hit the cycle of requirements: to identify the available data we need to define in 

detail a specific research question, but to define a research question we need to know what 

kind of data is available. We often encountered this deadlock situation during 

interdisciplinary meetings, where the AI experts would ask the clinical team to identify 

interesting research questions, but the clinical team would answer back that this was difficult 

to say because they didn’t know which kinds of questions could be answered with data, and 

when the AI team would ask what kind of data is available, the reply was that it depends on 

the type of question to be asked. Breaking this cycle required a long and iterative work of 

educating each side of the discussion to the other side’s specific needs, requirements, and 

sometimes even language. This lessons, which applies to any AI project in the medical field, 



   

 

   

 

is especially relevant for FL scenarios where the data scientists never have access to the full 

dataset. 

Lesson 4: Convergence of data standards from the -omics and clinical domains 

is needed  

Our comparative analysis has identified that, in the context of modeling -omics and clinical 

data for ML applications, there is a lack for an industry-standard common approach able to 

fully cover both the phenotype and the -omics information. This may partly be due to the 

origin of common standards, which have typically been developed within a more restricted 

design space. However, convergence of standards such as OMOP, FHIR and Phenopackets is 

sorely needed to enable the next generation of AI models fulfill the goal of precision 

medicine. 

Lesson 5: The CDM strategy and FL platform are closely related: their 

integration must be anticipated 

The analysis and identification of the FL platform requirements (and the choice of the 

underlying technology) quickly revealed a close interrelationship with the CDM. Three key 

elements of this platform, previously described in this paper, have exposed interfaces with the 

CDM: the central server dataset manager, the cohort extractor, and the client data integration 

pipeline. This close inter-relationship highlighted a major architecture risk if it was not well 

anticipated upstream in the design.  

Lesson 6: Heterogeneity among stakeholder communities, and within data 

sources, represents a significant risk to the project 

We found that discussions on the data model represented the first moment where the three 

different stakeholder communities (clinical, AI, and engineering) were required to concretely 

discuss technical details and produce actionable outcomes in our project. Among such diverse 

communities, communication was hampered by the lack of a shared common language and 

point of view, ultimately resulting in a slower start of data-related activities and, in extreme 

cases, loss of engagement. Terms that may seem trivial to one group were completely obscure 

for another: for example, commonly used words such as features and labels in the ML 

community were not understood by the clinical team.  



   

 

   

 

In our experience, the need for structured and curated data represented the biggest challenge 

in integrating data from external sources into the GenoMed4All platform, especially 

considering that not all clinical data providers may have the expertise or the computational 

infrastructure to provide the necessary data flows and transformations. All the datasets used 

within the first phase of the project required significant manual work to reach an 

interoperable standardized format, directly impacting the project’s execution as well as the 

final quality of the data. While this lesson applies to any ML project in healthcare, it is 

especially relevant for FL platforms due to their distributed design and explicit goal of 

including multiple heterogeneous data sources.   

Conclusion 

This work presented a case study for selecting and implementing a common data model 

(CDM) in a federated learning healthcare platform, based on the experience of the 

GenoMed4All consortium. We identified a lack of well-established implementations of 

medical data standards in federated learning projects at large scale, able to cover multiple 

data modalities and –omics data in particular, and to support the federated training of 

predictive models. In our case, the need for a CDM arose as the solution to challenges related 

to the heterogeneity in data representations and semantics across sources of records, 

interoperability, reutilization of secondary data, auditing, quality, long term sustainability and 

scalability of the platform.  

In order to select the most appropriate approach for our specific use case, we first conducted 

a design exercise to understand how the CDM should fit in the architecture of the platform. 

We quickly realized that a collaborative effort from all stakeholders involved, not just the 

systems architecture experts, was required in order to correctly position the CDM in the full 

end-to-end process, from the upload of pseudonymized data by clinical data managers to the 

training of predictive models by data scientists. In this process we reviewed the actors, the 

functionalities that should be supported by the platform, and the main processes and data 

flows to identify all the critical points where a CDM could have an impact. This exercise 

culminated in a set of business requirements that must be satisfied by the chosen data 

modeling approach to fully satisfy all stakeholder needs. Even though the exercise was 

conducted with our specific use case in mind, we believe that most of the challenges, 

solutions and lessons learned may be generalized to other initiatives dedicated to federated 



   

 

   

 

learning in healthcare, hence we share some details about our technical architecture, medical 

and AI approaches, as well as the list of requirements.  

We then surveyed the most commonly used data models in healthcare, and preselected FHIR, 

OMOP and Phenopackets for further exploration due to their widespread adoption, usability 

for predictive analytics, and familiarity for our consortium members. Building on our list of 

requirements, we share the in-depth comparison and the insights derived from the analysis of 

these standards and their applicability to our needs. We found that all three standards are 

generally capable of covering all the basic requirements, however FHIR and OMOP are 

supported by a larger community, a wider adoption, and a better coverage of the specifics of 

common medical data types, while Phenopackets is better suited for the representation of 

genomic data and the linking with phenotypical information. Finally, we share a list of 

lessons learned that we believe could be applicable to other initiatives with a similar goal of 

supporting the federated training of predictive models applied to the medical domain, 

especially those with a focus on rare disease and –omics data. Namely, we reiterate the need 

for and importance of a CDM in such initiatives, the importance of collaboration among all 

stakeholder communities, the role of the CDM as a fil rouge in the end-to-end flows of the 

process, and the challenges related to heterogeneity across data sources.  
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Appendix 

Genomed4All: clinical demonstrators and available data  

The applicability and utility of GenoMed4All will be shown with clinical demonstrators 

focused on specific disease areas: an oncological use case including Myelodysplastic 

Syndromes (MDS) and Multiple Myeloma (MM), and a non-oncological use case including 

Sickle Cell Disease (SCD). As a first step in the data modeling process, the clinical team 

worked closely with the AI experts to define a research plan. This involved finding the right 



   

 

   

 

balance between identifying clinically relevant research questions and the feasibility of their 

analysis through ML methods. Building on the research questions and their intended AI 

analysis we elicited the data requirements, leveraging the expertise of the engineering team in 

the consortium to define a plan for a scalable and interoperable platform. 

Each clinical demonstrator has identified a set of research questions to be answered with 

predictive modeling tools and AI, leveraging data from several repositories in a federated 

learning setting. The research questions range both unsupervised and supervised ML 

approaches, addressing both cross-sectional and longitudinal analysis of the patients’ cohorts 

for the three use cases, and can be divided into broad categories according to the 

corresponding ML technique: clustering, classification, and survival analysis.  

Upon discussion, it quickly became clear that the data needs vary depending not only on the 

disease area of focus, but also on the specific research question. We asked the clinical teams 

from each disease area in GenoMed4All to share detailed information about the currently 

available datasets to be analyzed within the scope of the project. In the interest of respecting 

interoperability standards, we endeavored to identify which standardized nomenclatures and 

ontologies were already being used. We found a highly heterogeneous situation, comprising a 

mix of well-established data types with their related common terminologies, as well as niche 

terminologies (such as the rare-disease specific ORPHA codes [44]) and uncommon data 

types generated by cutting-edge techniques such as Oxygenscan  [45]. We summarize our 

findings for GenoMed4All in Table 7, where we list for all data modalities the associated 

technical data type and the standardized terminologies and ontologies being used by data 

providers participating in the project.  

Table 7 Data types with related terminologies and ontologies for the GenoMed4All disease use cases. 

Data modality Examples Type 

Terminologies and 

ontologies 

 

demographics 

Objective 

characteristics 

about the 

patient: age, 

sex, height, etc.. 

Free text, numeric, category  
 

treatments type of Coded term, category ATC; 



   

 

   

 

treatment 

received, when 

and how, 

including both 

drugs and 

procedures. 

CPT 

diagnosis 

Diagnosed 

disease, date of 

diagnosis. 

Coded term 
ORPHA 

WHO-2016 

conditions and 

clinical 

manifestations 

Characterizatio

ns of the clinical 

status of a 

patient, 

excluding 

diagnosis  

Coded term, free text, category 

SCDO; 

ORPHA; 

HPO; 

SNOMED- CT 

laboratory 

Results from 

tests and assays 

not conducted in 

the clinic. 

Includes 

hematological 

data. 

Numeric, coded term LOINC 

genomics 

Presence/absen

ce of 

mutation/alterat

ion; genomic 

location; type of 

variation; 

genotype 

information; 

annotation of 

variants 

significance 

Coded term, string of coded terms 

HGNC; 

HGVS  

HGNC  

cytogenetics 
Chromosomal 

abnormalities, 
Coded term, string of coded terms ISCN string 



   

 

   

 

deletions, 

duplications, 

inversions, etc… 

imaging MRI or PET  Bytes DICOM format 

oxygenscan 

Lorrca 

oxygenscan 

technique 

Numeric None exists 

 

Additional details for mapping exercise 

 

Building on other requirements, we also tried to assess the ease of interacting with the data in 

each format, summarized in Table 8 and Table 9, as well as the possibility to embed 

governance and auditing information within the data model for quality purposes, as shown in 

Table 10. 

Table 8 How to query information in the three candidate common data models. 

How to query information 

 FHIR OMOP-CDM Phenopacket 

All the data of a 

patient 

 

FHIR resources are saved in 

document stores (e.g., ElasticSearch, 

MongoDB.) Using elastic API, there 

are the following options1. Get each 

document from each resource filtered 

by any field (i.e. patientID) with a 

POST request; 

2. Using _msearch, it is possible to 

perform a single query and retrieve 

the information needed. 

SQL query joining all OMOP 

tables based on the person_id. 

(All tables have person_id as 

FK) 

Phenopackets is a 

protobuf file, so as 

a file it cannot be 

queried. A user has 

to store the 

information needed 

in a database and 

then the database 

will provide a way 

of querying it.  

All the data of all 

the patients in a 

disease case 

study   

 

Creating nested queries is one 

approach. Another approach is to 

create an index with all the info 

needed, and the user can directly 

make a request to this index 

containing all the info required. 

SELECT query from the Person 

table joined with 

Condition_Occurrence, filtering 

on the condition values 

referring to the disease.  

 

All the data 

associated with 

This data will be post-processed in 

async mode to be easily and quickly 

consumed. 

Write the proper SQL query for 

getting the required information 



   

 

   

 

the training of a 

given AI 

algorithm 

 

Table 9 Proposed strategies for extracting information from clinical sites to the three candidate common data models, and 

outputting it to AI compliant formats. 

I/O of data to/from CDM 

 FHIR OMOP-CDM Phenopacket 

Extracting EHR data 

as input to the CDM 

 

Python ETL tool with 

specific mappers - will 

depend on each specific 

data provider. 

ETL tools:  

whiterabbit (summary reports 

informing the design of the 

ETL pipeline),  

rabbit in a hat (syntactic 

mappings),  

usagi (mappings between 

vocabularies),  

Achilles (assessing mapping 

quality), 

By using FHIR - 

phenopackets, if the 

hospital EHR system are 

already FHIR compliant. 

Extracting data from 

other clinical 

databases as input to 

the CDM   

 

Python ETL tool with 

specific mapperrs - will 

depend on each specific 

data provider  

whiterabbit (summary reports 

informing the design of the 

ETL pipeline),  

rabbit in a hat (syntactic 

mappings),  

usagi (mappings between 

vocabularies), Achilles 

(assessing mapping quality) 

 

Outputting data in a 

format suitable for AI 

algorithms 

Python tool with Spark that 

will generate csv files 

SQL queries for accessing the 

required information, and then 

map it to the input format 

required by AI algorithms 

(e.g., csv) 

Using protobuf in 

python and getting a 

python object where one 

can access the value. It 

would be needed a 

mapper to input for AI 

algorithms. 

 

Table 10 Proposed strategies for representing information about data governance and auditing. 

Representing information about data governance and auditing 

 FHIR OMOP-CDM Phenopacket 

Data Data for specific Add specific metadata Storing query returning the 



   

 

   

 

corresponding to 

specific AI 

algorithms 

 

algorithms should match 

some filters, that will 

identify the data set used 

for each algorithm. 

attributes to the Metadata 

OMOP-CDM table. 

dataset in a text or some other 

format. However, this might be 

too ambitious and creating an 

additional table for each AI 

algorithm with the IDs of each 

patient and the feature sets 

might be more feasible, in the 

short-middle term. 

Auditing 

information 

 

FHIR contains metadata 

that can contain some of 

this information. 

Metadata table for storing 

metadata information about a 

dataset, and Cdm_Source for 

storing detail about the 

source database and the 

process used to transform the 

data into the OMOP-CDM. 

This should be handled by the 

platform, so that it logs all the 

update operations. 

Contributing 

institution for 

each data sample 

Each resource has an 

identifier field, that is a 

list of ids. Each identifier 

has a reference to the 

Organization. 

Care_Site (for institutions),  

Provider (for individuals). 

There are some description 

metadata fields which can store 

this kind of information. 
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