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An affordance-based intersubjectivity mechanism to infer
the behaviour of other agents

Simon L. Gay1, François Suro1, Olivier L. Georgeon2 and Jean-Paul Jamont1

Abstract— We introduce an architecture based on interactionist
principles which enables autonomous agents to infer the be-
havioural patterns of other agents, without prior knowledge.

Previous works have shown that agents can leverage the
relations between entities and sensorimotor abilities afforded
by them to build a model of the environment which supports
behaviours satisfying innate motivational principles. However,
efficient collaborative or competitive behaviours relies on the
ability to infer hidden motivational principles of other agents
by observing their behaviour. In this paper, we introduce a
novel architecture able to identify mobile affordances generated
by other agents, infer their behavioural preferences and predict
their movements. We validate our proposition though experiments
showing that a predator agent can learn to infer that its prey is
attracted by specific elements of the environment.

I. INTRODUCTION

This paper addresses the issue of predicting the movement
of mobile entities driven by an unknown decision mechanism
for artificial agents that learn a model of their environment
through experience, without a-priori knowledge.

This study is related to the domains of artificial constructivist
learning [1] and enactive learning [2], where learning occurs
through interactions which are the enaction of control loops
that implement Piagetian sensorimotor schemes [3]. The agent
has no a priori knowledge of its environment. Instead, it is
provided with a predefined set of uninterpreted interactions
associated with predefined numerical valences. The agent is
driven to enact interactions that have positive valences and
avoid interactions that have negative valences. This drive de-
fines a kind of intrinsic motivation [4] that we call interactional
motivation [5] in the framework of Radical Interactionism (RI)
[6] and artificial interactionism [7].

The integration of mobile entities is a step toward the long-
term goal of emergent social interactions within groups of
artificial agents. This challenge is two-fold:

1) learning to define, recognize and localize other agents
moving freely in the environment.

2) inferring the intentions of these agents based on their
own environmental contexts.

The first problem has been addressed in a previous work [8].
The present paper focuses on inferring the intentions of other
agents, using the following four step process : 1) localize
a mobile entity (other agent) and define the environmental
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context from this entity’s point of view, 2) keep track of a
mobile entity to observe its dynamic properties, 3) learn the
behavioural preferences of the mobile entity, 4) predict the
future position of the mobile entity from its own context of
affordances. This model relies on two assumptions: A) the
agent can detect the mobile entity’s affordances through its own
interactions, B) the decision process of the entity is similar to
RI agent (although behavioural preferences can differ).

We implement our proposition in simulations where a marine
predator discovers elements of the environment, such as fishes
(its prey) or algae, learns to localize and track fishes and finally
infers that fishes are attracted to algae, their food source.

This paper is subdivided as follows: Section II summarizes
and formalizes the Radical Interactionism model and previ-
ously developed models that are exploited by new mechanisms.
Sections III to VI present the four processing steps allowing the
integration and prediction of mobile entities. Finally, Section
VII encompasses some conclusive remarks and future devel-
opment of the intersubjectivity problem.

II. THE RADICAL INTERACTIONISM MODEL

In contrast with most machine learning approaches, an RI
agent cannot directly access states of its environment, but uses
outcome of control loops as input data. The agent learns and
exploits regularities offered by its coupling with its environ-
ment. We do not design RI agents to reach predefined goals or
maximize a reward value defined as a function of the system’s
state. Their purpose is to study the construction of emergent
models of the environment, and the generation of behaviours
through an open-ended learning process.

Let I be the set of predefined interactions (control loops),
and νi ∈ R the predefined valence of interaction i ∈ I .
Valences define the inborn behavioural preferences of the agent.
At the beginning of step t, the agent selects an intended
interaction it ∈ I to try to enact, and receives, at the end of step
t, a set of actually enacted interaction Et ⊂ I . The enaction
cycle is a success if it ∈ Et. An example of failure may be
when an agent intends to move forward (it=move forward), but
actually collides with an obstacle (et=collide, et ∈ Et).

We distinguish between primary interactions that are Pi-
agetian control loops (action, result), and secondary interac-
tions that are a couple (primary interaction, additional sensory
outcome). These additional outcomes are sensory input that
cannot be separated from the movement or environment change
produced by the primary interaction. The optical flow is an
example of such sensory outcome that must be associated with
a movement to characterize a position in space. Et contains



only one enacted primary interaction et, other elements are
secondary interactions associated with this primary interaction.

A Signature mechanism [9] evaluates the possibility of
enacting an interaction it+1 in a given context Et. This mech-
anism rests upon the assumption that the result of interaction i
depends on a limited set of entities in the environment, which
defines the context that afford [10] i. Since an RI agent can only
perceive its environment through Et, the signature designates
one or more sets of interactions whose previous enaction
indicates the possibility to subsequently enact i. The signature
of interaction i is formalized as a function Si : P(I) → [−1; 1]
giving the estimation of the likelihood of successfully enacting
i in a context Et. Si(Et) = 1 means success is certain,
and −1 means failure is certain. This estimation is improved by
adjusting parameters of Si each time i succeeds or fails. The
signature’s pseudo-reverse function Ŝi : {1,−1} → P(P(I))
provides either the minimal context(s) Ci

k ⊂ I affording (Ŝi(1))
or those preventing (Ŝi(−1)) interaction i.

This model defines an affordance as prerequisites for the
success or failure of an interaction. Thus, affordances are
conditioned by the agent-environment coupling (i.e. the set
I of sensorimotor possibilities). The agent cannot access the
physical entity behind an affordance, but learns to detect its
presence from the outcome of interactions. Defining entities of
the environment through sensorimotor possibilities that they
afford is abundant in literature (e.g. [11][12][13]). Because
most of these approaches detect affordances using perception,
they are limited to the prediction of the next action or require
prior knowledge (e.g. [14]) about the environment and/or space.
By using interactions, signatures can exploit spatial properties
implicitly encoded in interactions, especially the movement
that they produce, to detect distant affordances. A signature
of an interaction i designates a set of interactions {jk}k ⊂ I

whose previous enaction signals the possibility to enact i. As
interactions jk, associated to the same primary interaction j,
have their own signatures, it is possible to project the signature
of i backward through j, by combining the signatures Sjk

of interactions jk. The resulting signature S
⟨j⟩
i designates a

context affording i after enacting j, i.e. an affordance of i
located a ’step j ahead’. The recursive chaining of primary
interactions in a sequence σ = ⟨j1, ..., jn⟩ thus allows the agent
to detect an entity that affords i at the position designated by σ.

The agent keeps track of the position of discovered affor-
dances in its Egocentric Spatial Memory (ESM) [9]. The ESM
assumes that the position of an affordance can be defined by a
couple of parameters (i, d) derived from the shortest sequence
σ leading to this affordance: d ∈ N is σ’s length, and i ∈ I
is σ’s first interaction. A Place is a couple (i, d), covering all
sequences σ sharing the same parameters i and d. A place
can be preceded by a short sequence of interactions, defining a
Composite Place. Over time, the ESM learns relations between
positions σ and composite places, then between composite
places, allowing an accurate tracking of affordances outside
perceptual range. The contexts of affordances are thus provided
as tuples (a, (i, d)), with a the afforded interaction and (i, d) a

place characterizing its position.
A decision process defines a utility value of interactions

leading to affordances stored in ESM M according to their
valence, fostering interactions allowing to move towards affor-
dances with positive valences [9]:

ui =
∑

(ak,jk,dk)∈M

νak
× f(dk)× id(i, jk) (1)

where id(i, j) = 1 when i = j and 0 otherwise, vak
is the

valence of ak, and f is a strictly decreasing and positive func-
tion characterizing the importance of an affordance according
to its distance in the agent’s decision.

Learning the signature of an interaction afforded by a mobile
entity is challenging because the presence of the affordance at
time t may still lead to a failure of the interaction at time t+1 if
the entity has moved. The extended model proposed in [8] used
differences appearing in failure predictions to eliminate false
negative. Its implementation was based on a neural architecture
where competing neurons define a set of exclusive contexts
and their respective probabilities of success. The network can
also invert the signature output, allowing to integrate “negative
affordance” (i.e. affordances preventing an interaction). The
contexts are characterized by weights of their neurons.

III. DEFINING THE CONTEXT FROM ANOTHER
AGENT’S PERSPECTIVE

As behaviour is expected to be influenced by the context
of surrounding affordances, the first step to infer an entity’s
behaviour is to estimate such a context in its reference.

A. Principle of Reference Change
A previous work [9] has shown how the ESM learned to up-

date positions of stored affordances, in egocentric reference, as
the agent enacted interactions. Let At = {(ak, (ik, dk))}k∈Kt

be the current context of affordances. We propose to apply
recursively the interactions of a sequence σ to a copy A′ of
At. Thereby, we simulate the enaction of a sequence σ and
obtain the context of affordances Aσ that should be observed
when reaching the position defined by σ.

However, a sequence σi characterizes the position from
which it is possible to enact i, and not the physical entity
affording it. [9] showed the emergence of negative affordances
which prevent the enaction of an interaction. For instance,
moving forward is prevented by the presence of a solid object.
The signatures of negative affordance designate the area the
agent should occupy after enacting the interaction. This prop-
erty can be exploited to locate the physical object defining an
affordance: for a given affordance ai at position σi, we propose
to consider an alternative interaction j of i (i.e. the enaction of
i can lead to the enaction of j) that has a negative signature.
Then, if there is a part C ⊂ Et such that Sσi

i (C) ≈ 1 and
S

σj

j (C) ≈ −1 (i.e. C affords i at σi and prevents j at σj),
it is possible to assume that the agent can occupy the area
of the physical object affording i by moving through sequence
⟨σj , j⟩. We note σai = ⟨σj , j⟩ the position of the physical object
affording i.



Fig. 1. The test environment. The grey shark (bottom left) is our agent, green
blocks are walls, red leaves are algae and blue fish are mobile prey. At each
simulation step, the fish can move up, down, left, and right. The bottom-right
frame shows the visual system of our agent, which covers an area to the front
and sides, and extends one row behind.

Unlike [8], we keep the sets of sequences {σi,k}k (and
{σai,k}k) which describe the paths to the future possible
positions of an affordance of i. Each sequence σai,k allows
the ESM to recall the contexts, noted Aσai,k that should be
observed for each possible position of ai.

B. Experimental Setup

For our experiments, we use an artificial agent in a discrete1

2D environment (Fig. 1). The environment contains three types
of objects (entities) that the agent can identify by colour:
walls (green) which are obstacles, algae (red) which can be
crossed, and fish (blue) which are mobile agents behaving as
follows: they are attracted to algae and repulsed by walls. Their
perception range is 7 grid units. When a fish eats an alga, it is
removed and a new one is placed at random in the environment.
Fish have a 15% chance of inactivity, and are also inactive
when no affordances are detected. A movement vector V⃗ of a
fish is defined from entities ok within perception range:

V⃗ =
∑
ok

vok × e−dok × p⃗ok (2)

where vok is the valence of ok (20 for algae, −2 for walls),
dok the Manhattan distance of ok, and p⃗ok the vector towards
ok. The fish moves along cardinal directions, according to V⃗ .

The sensorimotor possibilities of the agent define six primary
interactions:

move forward one step bump into an obstacle
turn left by 90◦ eat something edible
turn right by 90◦ slide on a soft object

The agent is equipped with a visual sensor that detects
three colors (red, green, blue) and measure distances. While
enacting a primary interaction (except for bump that does not
produce movement), the agent may see red, green or blue
entities in positions of its egocentric space. Its field of view,
shown in the bottom-right frame of Fig. 1, is discretized as a
15 by 9 regular grid (this distribution of positions in space is
unknown to the agent). We thus define a total of 2025 visual

1For applications of the signature mechanism, detection mechanism and
ESM in a continuous environment, see [9].

Fig. 2. Signatures of interaction bump (left) and slide (right), recorded
after 100 000 simulation steps. A signature is characterized by the weights
of 7 formal neurons, each neuron being represented by a column (in the
same way than in [8]). As these signatures identified a unique context (static
object), we only represent weights of one neuron. As external observers, we
can organize weights to make signatures more readable: first, weights related
to primary interactions are represented with six squares below (green for a
positive weight, red for a negative weight). Weights associated with secondary
interaction are grouped according to their primary interaction, forming the five
groups (from top to bottom: forward, eat, slide, turn left, turn right; bump
does not produce visual interactions). Each group is organized to place visual
interaction with their associated position in space, relative to the agent (orange
triangle). Colours associated with visual interactions are overlapped to generate
signatures under the form of an RGB image. Signature of bump identified a
context that consist of seeing a green element in front of the agent, and slide
to a red element in front of the agent. Bump is also related to the success of
bump, since this interaction can be enacted repeatedly.

interactions from the grid positions (9x15), colours (3) and
primary interactions (5).

Signatures and distant affordance localization use the model
and implementation proposed in [8], with a sequence length
limit of 8 interactions. The agent is provided with a learning
mechanism that fosters interactions with low certainty of suc-
cess or failure (low |Si(Et)|).

We use a hard-coded ESM implementing properties shown
in [9] to avoid observation bias induced by an incompletely
learned structure. This ESM can add an affordance a detected
at σa, update the context with an enacted interaction e, and
simulate a sequence σ on a copy of the context. The ESM
provides the current and simulated contexts of affordances as
a set of tuples {(ak, (ik, dk))}k where ak is the afforded inter-
action and (ik, dk) its current place. The horizon of the ESM
is set to 10 interactions, and will not register longer sequences
nor keep older affordances. As the ESM was not tested with
mobile entities, affordances of eat will not be stored.

Simulations on the acquisition of signatures have given
results similar to [8]: signatures of interactions related to static
affordances (bump and slide) emerged within 5000 simulation
steps, while signatures of interactions related to prey (eat and
moving forward unobstructed) required around 50 000 steps
to get accurate contexts and probabilities. Signatures of visual
interactions related to seeing blue (fish) also required more
time, as their enaction were less frequent. These signatures
successfully integrated the movement of primary interactions
and the probabilities of each contexts making possible to detect
mobile affordances. In the subsequent experiments, we used
signatures obtained after 350 000 simulation steps.



Fig. 3. Signature of eat and move forward, recorded after 100 000 simulation
steps. Each column represents a neuron of the signature. We only display
weights related to secondary interactions associated to move forward (first line)
and turn right (fourth line), as other contexts are similar, as shown in Fig. 2.
Greyed contexts have low weights and are thus unused by the signature. The
signatures successfully integrated the possible contexts affording them (in this
Figure, neurons are sorted to match the above situations). The second layer
weight of move forward is negative: the signature thus represents contexts
preventing moving forward. As it is an alternative of eat, it can be used to
detect the physical position of the affordance of eat.

C. Defining the context of an affordance

After the agent enacts an interaction, the detection mecha-
nism uses the new environmental context Et to detect distant
affordances. Fig. 4 shows that the eat interaction is seen at
several positions corresponding to the possible moves of the
fish and that all entities, including the fish, are identified
as affordances preventing move forward. It is thus possible
to correlate this data to determine the position of the eat
affordance and perform simulations in the Space Memory.

IV. TRACKING THE POSITION OF A MOBILE
AFFORDANCE

Observing the movement of a mobile affordance is required
to infer its behaviour. The agent must therefore have the ability
to keep track of the affordance over multiple steps.

Fig. 4. Detection of distant affordances: the agent enacts an interaction,
and perceives its environment (top left). The main representation shows the
detected sequences σ as circles showing the position and orientation that
would be obtained by enacting the sequence (the agent cannot access this
geometric representation). A small offset is applied to observe overlapping
circles. The agent detects two instances of bump (a) and of slide (b). These
static affordances are stored in the Space Memory and localized with places,
forming the context (c). Eat is detected through a set of sequences giving
multiple positions (we only represent three sequences (d) among 28 detected).
The agent also detects that these positions prevent move forward (black circles)
(e), that has a negative signature. Then, by using the simulation possibilities
of the Space Memory, affordance contexts (f) are defined from these positions.

Fig. 5. Tracking and recognizing mobile entities. At step t − 1, the agent
detected two instances of eat, respectively localized with 29 (a) and 11 (b)
sequences, then enacted an interaction (here, move forward). The agent detects
two instances of eat. Here, the recognition mechanism detected 7 common
sequences for the left affordance (c) and 10 for the right affordance (d). Then,
the agent computes the average distance of surrounding affordances from each
mobile affordance’s position. By comparing the distance at t− 1 (e) and t (f),
the agent detected that left fish moved while right fish remains immobile.

A. Recognizing a Mobile Affordance

We can assume that we are considering the same static
entity when affordances of the same interaction j are found
at the same position σ over two steps. After the agent enacts
an interaction i, the situated interactions σt

j and σt−1
j are

considered related when σt−1
j = ⟨i, σt

j⟩.
The possible positions of a mobile affordance aj are defined

as a set of sequences Ξaj = {σaj ,k}k. Thus, after enacting i,
the agent is expected to find at least a sequence of Ξaj such
as σt

aj
= ⟨i, σt+1

aj
⟩. Formally, we note the subset of sequences

starting with i : Ξi
aj

. We can consider that two affordances of
j detected at step t− 1 and t are the same if Ξt−1,i

aj
∩ Ξt

aj
̸= ∅.

To associate multiple instance of the same affordance detected
at different steps, a matching algorithm is defined, based on
Card(Ξt−1,i

aj
∩ Ξt

aj
).

B. Detecting movement

We propose to use the variation in estimated distances of
surrounding affordances: formally, a mobile affordance of i
is localized through a set of sequences Ξt

ai
= {σai,k}k∈Kt ,

and the space memory provides, for each sequence σai,k, a
predicted context Aσk = {(am, (i

σk
m , d

σk
m ))}m, with (i

σk
m , d

σk
m ) the

simulated place of am through σai,k. Then, an average context
can be defined using the average distance for each surrounding
affordance. Since interactions iσk

m are here unnecessary, we
define the average context as Aai

= {(am, dm)}, with dm =

averagek({dσk
m })

The average context can then be compared for two consec-
utive steps t − 1 and t. We detect that a mobile affordance
actually moved through changes in relative distances of at
least one surrounding (static) affordances: ∃ am | (am, dt−1

m ) ∈
A

t−1
ai

, (am, dtm) ∈ A
t
ai

, |dt−1
m − dtm| > threshold. To make the

system more tolerant to imprecision in distance estimations, a
threshold ∈]0, 1[ must be defined.

Fig. 5 shows an agent identifying two separate affordances
of eat over two consecutive steps. The matching mechanism
associates the two occurrences of step t with the corresponding
occurrences of step t− 1. Then, the average contexts A of the
two occurrences are obtained over the two steps, showing that
a fish moved while the other remained static.



An interesting aspect of this mechanism is that the movement
is not defined in the reference of the agent (egocentric) but
instead in the reference of static affordances, making the agent
able to generate allocentric references.

V. DEFINING THE BEHAVIOURAL PREFERENCES
OF MOBILE AFFORDANCES

Once the agent can define the context of a mobile entity
and observe its movement, it becomes possible to infer the
influence of affordances, and thus, the behavioural preferences
of this entity.

A. Finding the Valence of a Mobile Affordance

We assume that the agent “projects” its own decision model
on mobile affordances, that is, closing in on affordances (Eq.
1). However, it is not possible for the agent to observe the
afforded interactions of an entity whose sensorimotor abilities
may be entirely different. We thus rely on the differences
between positions σ1 and σ2 to define the utility value of a
movement. If these two positions have contexts with the same
affordance, Eq. 1 can be adapted :

uσ1,σ2
=

∑
(ak,(jk,1,dk,1))∈Aσ1

(ak,(jk,2,dk,2))∈Aσ2

νiak
× (f(dk,2)− f(dk,1))

The agent does not know the valence of affordances used by
the mobile entities and assumes it always follows the maximum
utility value. Therefore, the comparison of two average contexts
A

t−1

ai
and A

t

ai
is expected to yield a positive utility value, and

a negative value is assumed to be an error in the estimated
valences. In this case, the valence νij of an interaction j,
for a mobile affordance designated by i, is increased when
affordances of j move closer to the mobile affordance of i and
decreased for those moving away from the mobile affordance.
The learning rate decreases over time to allow a stabilization of
the valences and also takes into account the distance between
the agent and the mobile affordance ai, which mitigates the
impact of decisions of the mobile entity based on affordances
beyond the visual range of the agent. The adjustment value is
defined as α/n × f(dσk

), where α is the learning rate, f a
strictly positive and decreasing function, dai

the distance of a
mobile affordance, and n the number of updates.

B. Implementation

The valence learning system uses the following adjustment
value: 10/n× exp(dai). To maximize the probability of iden-
tifying a prey and estimate valences, the agent’s behaviour is
modified to follow the closest perception of a prey.

Results show that, in less than 500 prey observations, the
estimation of valences converges toward a positive value for
affordances of slide (algae) and negative for affordances of
bump (walls), with a greater absolute value for slide. Table I
shows a sample of valences obtained after 10 000 observations
on five different runs. Since the behaviour model of the fish
is exclusively based on walls and alga, only the sign and ratio

TABLE I
ESTIMATED VALENCES OF bump (WALLS) AND slide (ALGAE) FOR MOBILE

AFFORDANCES OF eat (FISH), IN FIVE DIFFERENT RUNS.

Run #1 #2 #3 #4 #5
alga 6.681 2.994 0.597 2.650 11.404
wall -0.711 -0.170 -0.078 -0.178 -0.408
ratio -9.397 -17.612 -7.654 -14.888 -27.950

between their related utility values are significant. For given
values of 20 for algae and −2 for walls, we expect a ratio of
−10. This ratio can however vary around this value due to the
discrete nature of movements.

Table I shows that the agent inferred that affordances of
eat are attracted by affordances of slide and repulsed by
affordances of bump, and the slide affordances have the most
influence on the decision. The majority of runs result in a
ratio between -5 and -20. Some runs, such as #5, are biased
by updates based on incomplete observations happening early
in the training process when the learning rate is high. Other
mechanisms will be investigated to mitigate such effects and
improve the agent’s tolerance to environment changes.

VI. PREDICTING THE MOVEMENTS OF A MOBILE
AFFORDANCE

As the agent can obtain the future positions and behavioural
preferences of a mobile affordance, it becomes possible to
define its next moves. The future positions of a mobile affor-
dance ai is given by the set of sequences Ξt

ai
= {σai,k}

t
k. For

each sequence, it is possible to define a context of affordances
Aσai,k

,t, and define the utility value of each position from the
current average context A

t
ai

, noted uσai,k
= u

Aai
,A

σai,k . The
expected next positions of the mobile affordance is then defined
as sequences {σai,k|uσai,k

} > 0.

A. Predicting the Future Position of Mobile Affordance

A sequence σt
ai

gives the expected position of the physical
affordance ai of i, but not the position σi allowing to enact
i, and cannot be used recursively predict next positions. σt

ai

must be converted into a set of interactions Cai ⊂ I allowing
to detect it. As the affordance is present in the environment, a
single interaction in Cai

is sufficient to characterize it. We thus
propose to define an interaction i ∈ I to characterize the most
probable next position of ai. We use the whole set of sequence
Ξt
ai

= {σai,k}tk, from which two subsets are defined: Ξt,+
ai

the
subset of sequences for which uσt

ai,k
> 0 and St,−

ai
the subset

of sequences for which uσt
ai,k

< 0.
First, for each sequence σai,k ∈ Ξt

ai
we get the position σj,k

of j, alternative of i, that was used to define the position of
the physical affordance of i (c.f. Sec. III-A). The position of j
is defined as σj |σai = ⟨σj , j⟩. We then define the two sets Ξt,+

j

and Ξt,−
j respectively from sequences of Ξt,+

ai
and Ξt,−

ai
.

Next, we define the set of interactions designated by Ŝσ
j

that can characterize the affordance of i. This set is defined
as {jk ∈ Ŝσ

j |∃σi, jk ∈ Ŝσi
i }. A probability value is defined

for each interaction i ∈ I , by adding/subtracting probabilities
defined by projected signatures Ξσ

j :



pi =
∑

σ∈Ξt,+
j |i∈Ŝσ

j

pSσ
j

−
∑

σ∈Ξt,−
j |i∈Ŝσ

j

pSσ
j

Finally, we get the interaction it+1
ai

|pit+1
ai

= maxi(pi) as the
perception of ai in its new position. As ai is considered present,
it becomes possible to locate it at a sequence σ when it+1

ai
∈

Ŝσ
i . Then, the prediction process can be repeated to define a

sequence of future positions St+k
i . An interesting consequence

of this principle is that the prediction of movements of a
mobile affordance is independent of the movements of the
agent: the successive positions St+k

i are defined in reference
to other affordances, which contribute to the emergence of an
allocentric reference.

B. Implementation
The prediction model was implemented in the agent and

tested in different configurations. We used a valence value
of 2 for slide interactions and −0.2 for bump interaction.
Fig. 6 shows an example of configuration. The agent then
enacts an interaction to perceive its environment, and generates
predictions on the detected fish (eat). The recursive prediction
is limited to ten steps. At each step, we get the interactions it+k

ai

and the position of the affordance Ξt+k
i , allowing to observe

the evolution of the position considered by the agent. In the
configuration shown in Fig 6, the fish is located at a position
implying a turn left interaction, then, after three simulation
steps, in front of the agent, then, at a position implying a
turn right. The sequence of positions is close to the expected
movements of the fish: the agent successfully predicted that
the affordance of eat will move toward the affordance of slide.
When the predicted position of the fish arrives next to the alga,
prediction stops or becomes inaccurate as the current prediction
model still cannot detect the enaction of an interaction by other
entities, and thus their consequences.

This evolution of the considered position will be used by fu-
ture decisional mechanisms to generate interception behaviours
instead of following behaviours.

Fig. 6. Prediction of future positions of an affordance of eat. The blue
circles represent the visual interactions characterizing the affordance at each
prediction cycle. On the left, for readability reasons, we only represent, at each
step, a single sequence leading in front of the prey, also represented with red
arrows in the middle representation. The affordance, initially located through
sequences including turn left (steps 0 to 5), is then located in front (step 6),
then with sequences including turn right. The errors (steps 0 to 1 and 5 to
6) are mainly due to remaining errors in signatures. Although the estimated
path slightly differs from the real path (dotted red line), the agent successfully
predicted that the affordance of eat will move towards the affordance of slide.

VII. CONCLUSION
This work introduces a new mechanism enabling an agent to

integrate mobile entities in its emergent model of the environ-
ment, and infer its decisional properties to enable the prediction
of its future positions. This mechanism is spatial/temporal
independent, and learns though interaction [9], and can thus be
applied to vastly different contexts based on different modes
of interaction. However, the predictions made by the agent are
biased by its own decisional model, a limit that we will address
in future works to improve the intersubjectivity possibilities
between agents. Our next step is to study how an agent can
employ the estimation of the behavioural model and predict
the movements of a mobile entity and increase the complexity
of its behaviours. Also, we will investigate methods enabling
the integration of the agent itself in the estimated context
of mobile entities, taking into account the influence of the
agent on others. We intend to implement these mechanisms in
multi-agent contexts to study the emergence of collaborative
behaviours, such as coordinate hunting of large prey.
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