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The hydrodynamic stresses created by active particles can destabilise orientational order present
in the system. This is manifested, for example, by the appearance of a bend instability in active
nematics or in quasi-2-dimensional living liquid crystals consisting of swimming bacteria in thin
nematic films. Using large-scale scale hydrodynamics simulations, we study a system consisting of
spherical microswimmers within a 3-dimensional nematic liquid crystal. We observe a spontaneous
chiral symmetry breaking, where the uniform nematic state is kneaded into a continously twisting
state, corresponding to a helical director configuration akin to a cholesteric liquid crystal. The
transition arises from the hydrodynamic coupling between the liquid crystalline elasticity and the
swimmer flow fields, leading to a twist-bend instability of the nematic order. It is observed for
both pusher (extensile) and puller (contractile) swimmers. Further, we show that the liquid crystal
director and particle trajectories are connected: in the cholesteric state the particle trajectories
become helicoidal.

Introduction. Active materials consists of systems
where the individual building blocks convert energy into
work locally [1]. Examples of this are provided by bacte-
rial fluids [2], catalytic Janus colloids [3] or active micro-
tubules [4], at the micrometer length-scale. One of the
striking features of these materials, is the emergence of
collective motion on the scale considerably larger than
the particles themselves, such as spontaneous formation
of polar flocks in active colloids [5] or the emergence of
bacterial turbulence [6]. An interesting subset of active
materials is provided by active nematic gels [7]. These
consists of active units, force dipoles, with overlaying
orientational, nematic, order. Pioneering work showed,
using linear stability analysis, that the (active) force-
dipoles can destabilise their nematic order via hydrody-
namic instabilities [8–10].

Another example is provided by finite size microswim-
mers moving in orientationally ordered fluids, where the
flow-fields created by the swimmers interact with the
topology of the surrounding fluid. Typical experimen-
tal examples include rod-like bacteria swimming in ne-
matic liquid crystals crystals [11–17]. In the experiments,
the bacteria is observed to align along the nematic direc-
tor [13, 17] and the directed motion can be used to, for
example, to transport cargo [12]. Recent experiments
have shown that the LC topology can be used to con-
trol the swimmers [18–21], such as trapping the particles
with topological defects [18] or using LC patterns to cre-
ate bacterial jets [20], where collective (hydrodynamic)
effects play a key role.

The swimming bacteria stir the surrounding fluid
which can reorient the nearby nematic. In the simplest
case of a uniform nematic LC, experiments in thin, quasi
2-dimensional, films have demonstrated an orientational
instability of the nematic order when bacterial activity
is increased [11]. The coupling between the (collective)
hydrodynamic effects created by the swimmers and the
liquid crystalline elasticity, leads to a bend-instability of

the LC director [11], similarly to what is predicted for
extensile active nematic gels [7, 8] in 2-dimensions.

In this work, we open the 3rd dimension and con-
sider microswimmer inclusions in a fully 3-dimensional
nematic liquid crystal. By using hydrodynamic simu-
lations we study the (collective) dynamics of spherical
squirmers in the 3D sample. Our simulations reveal, an
instability of the uniform nematic order, and a sponta-
neous formation of a continuous twist is observed. At
the steady state, the LC director shows a constant twist
along a unique axis, akin to a cholesteric state in pas-
sive LCs and the swimmer trajectories become helicoidal.
This spontaneous chiral symmetry breaking arises from
the coupling between the swimmer flow-fields and the
nematic director. There is no prescribed chirality in the
system, and indeed, on average, we observe the forma-
tion of right and left handed helices at approximately
equal probabilities. By evaluating the elastic distortions,
we show that the spontaneous formation of the continu-
ous twist can be understood in terms of a hydrodynamic
twist-bend instability in 3-dimensions.

Model. We use a lattice Boltzmann (LB) method to
simulate the dynamics of microswimmers in liquid crys-
tals [22, 23]. The nematic LC is modelled using a Landau
– de Gennes free-energy whose density can be expressed
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(
1− γ

3

) Q2
αβ

2
− γ

3
QαβQβγQγα

+
γ

4
(Q2

αβ)2 +
K

2
(∂βQαβ)2. (1)

The Greek indices denote Cartesian coordinates and sum-
mation over repeated indices is implied. Q is symmetric
and traceless order parameter tensor, A0 is a free energy
scale, γ is a temperature-like control parameter giving a
order/disorder transition at γ ∼ 2.7, and K is an elastic
constant.

The evolution of Q is given by the hydrodynamic Beris-
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Edwards equation [24]

(∂t + uν∂ν)Qαβ − Sαβ = ΓHαβ . (2)

where the first part describes the advection by velocity
u and Sαβ describes the possible rotation/stretching of
Q by the flow [24]. Γ is the rotational diffusion constant
and the molecular field is given by

Hαβ = −δF/δQαβ + (δαβ/3)Tr(δF/δQαβ). (3)

To simulate the dynamics of the swimmers, we use a
squirmer model [25]. The tangential (slip) velocity profile
at the particle surface is given by [26]

u(θ) = B1 sin(θ) +
1

2
B2 sin(2θ) (4)

where B1 and B2 are constant, giving the strength of the
source and force dipoles, respectively, and θ is the polar
angle with respect to the particle axis [27]. The source
dipole sets the particle swimming speed u0 = 2

3B1 and

the ratio β = B2

B1
is the squirmer parameter. In the LB

method a no-slip boundary condition can be achieved by
employing a bounce-back on links method (BBL) [28, 29],
which needs to be modified for a moving surface [30].
These local rules can include additional terms, such as a
surface slip velocity (Eq. 4) leading to LB simulations of
squirming motion [31, 32].

The fluid velocity obeys continuity equation, and the
Navier-Stokes equation, which is coupled to the LC via
a stress tensor [33]. We employ a 3D lattice Boltzmann
algorithm to solve the equations of motion using the Lud-
wig code [23].

Simulation parameters: We consider both pushers
(β < 0) and pullers (β > 0). We fix the B1 = 0.0015,
giving the particle velocity u0 ≡ 2

3B1 = 10−3 in lattice
units (LU), but vary the force dipole strength B2 such
that β ∈ [−5,+5]. We fix the fluid viscosity η = 0.167
and the swimmer radius R = 6 in LU. To model the
nematic liquid crystal we use: A0 = 0.1, γ = 3.0,
K = 0.005, ξ = 0.7, Γ = 0.3 and a rotational viscosity

γ1 = 2(3s/2)2

Γ = 5/3, where s is the scalar order parame-
ter of the nematic. The physics of our system is governed
by the Reynolds (Re) and Ericksen (Er) numbers, which
give the ratio of inertial and viscous forces, as well as the
ratio of viscous and elastic forces, respectively. Using
the parameters above, we recover Re ≡ u0R

η ≈ 0.036 and

Er ≡ γ1u0R
K ≈ 2. All the simulations were carried in a

rectangular simulation box 21R×21R×21, with periodic
boundary conditions (PBCs) throughout.

Results: To study the collective dynamics of mi-
croswimmers in a 3-dimensional nematic liquid crystal,
we initialised the system in a uniform nematic state with
the n̂ along the x-axis (Fig. 1a). The microswimmers
were randomly distributed and oriented, while their vol-

ume fraction φ = N4/3πR3

LxLyLZ
, and the strength of the force

FIG. 1. (a-c) Examples of observed states in microswimmer
nematic LC composites. (a) At low volume fraction the sys-
tem is uniform nematic and pushers (pullers) swim along (per-
pendicular) to the nematic director n̂. (b) When the activity
of the system is increased, the uniform nematic becomes un-
stable, and a continuously twisting state is observed. The
n̂ has a continuous twist along an unique axis (x-axis in this
case). (c) At high activities, the spatial variations of n̂ become
3-dimensional leading to the formation of topological defects.
(d) Examples of the unwrapped particle trajectories in the he-
lical state, in the plane along (left) and perpendicular (right)
to the helical axis, for pushers (blue lines) and pullers (brown
lines), corresponding to φ ≈ 0.01 and β = ±3.5, respectively.
The dashed lines corresponds to a theoretical argument (see
text for details). The brown scale bar on the left corresponds
to the system size L ≈ 21R and the pink on the right to 6R.
The data in (a)-(c) corresponds to β ≈ −2.0,−2.0,−4.5 and
φ ≈ 0.01, 0.02, 0.02, the background is colour coded according
to |ny| and the nematic director is schematically shown by
purple lines.

dipole B2 and thus β were varied. For a low φ and a low
|β| the system remain in a uniform nematic state, and
pushers (pullers) have linear trajectories parallel (perpen-
dicular) to the nematic director n̂ (Fig. 1a) in agreement
with the simulations of isolated swimmers [22]. When
the global activity is increased, either by increasing φ or
the magnitude of β, the uniform nematic becomes unsta-
ble, and the spontaneous formation of a cholesteric twist
is observed (Fig. 1b). At the steady state the n̂ twist
continuously around a unique axis, and the particle tra-
jectories become helicoidal (Fig. 1d). Finally, the system
looses the cholesteric order at higher activities. The di-
rector field variations lack a clear spatial symmetry and
the particle dynamics become chaotic (Fig. 1c) [34].

Initially, the nematic director n̂ is along x-axis
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FIG. 2. (a) An example of the LC director components nx,
ny and nz along x-axis in the helical state. The data can
be fitted by director n̂ corresponding to a cholesteric with
a x as the helical axis: nx = sinα, ny = sinα cos(qx) and
nz = sinα sin(qx), where α is a tilt angle and q = 2π/p is an
inverse pitch length. (The data corresponds to β = −3.5 and
φ = 0.01). (b) The inverse pitch length q and tilt angle α
measured from the simulations as a function of the squirmer
parameter β at a volume fraction φ ≈ 1%. The horizontal
dashed line marks q ≈ 2π/L, where L is the simulation box
length.

(Fig. 1a). At the onset of the instability, a continuous
twist is observed to develop along this axis. The twist
has well defined handedness and spans the whole system
(Fig. 1b). However, there is no inherent chirality in the
system. Indeed, in the different ensembles, we observed
the formation of both left and right handed twists equally
(see e.g. Fig. 3).

At the steady state, the n̂ is well fitted with a helical
configuration (Fig. 2a): nx = cosα, ny = sinα cos(qx)
and nz = ± sinα sin(qx) where ± corresponds to left and
right handed twists, α is the tilt angle respect to x-axis
and q is an inverse pitch length q = 2π/p. The q is
observed to be nearly constant in the helical state for
both pushers and pullers, and the pitch length p matches
the simulation box length (p ≈ L ≈ 21R; dashed line in
Fig. 2b). The tilt angle α is observed to increase upon
increasing the strength of the force dipoles, with the ten-
dency being slightly more pronounced for pushers than
pullers (open and closed blue circles in Fig. 2b).

The particle trajectories and director orientation are
connected, and the particle trajectories become helicoidal
in the helical state (Fig. 1d). The pitch length of the
particle trajectories is approximately given by the pitch
length of the LC (Fig. 1b and d). At the steady state, on
average, the pushers swim along and pullers perpendicu-
lar to the local n̂, leading to a radius of curvature of the
helical trajectory rt ≈ tan(α)/q and rt ≈ 1/(q tan(α))
for pushers and pullers, respectively. Using the data
(φ ≈ 1% and β ≈ ±3.5 in Fig. 2b) these give rt ≈ 7R and
rt ≈ 1.6R which agree reasonably with the simulations
(dashed and solid lines in the right panel of Fig. 1d).

In passive achiral nematics, chiral symmetry breaking
have been observed to occur due to externally imposed
flow and confinement effects [35–43]. Here, the sponta-

FIG. 3. Steady state phase diagram for the microswimmer-
nematic composite material, as a function of the Ericksen

number Er = γ1|B2|R
K

and the swimmer volume fraction φ.
The blue spheres corresponds to uniform nematic states. The
crosses show where the helical states where observed. The
purple (yellow) crosses mark the right (left) handed helices.
The green diamonds correspond to chaotic states. The critical
swimmer volume fraction φ∗ marking the transition between
the nematic and helical states is fitted by φ∗ ∼ |B2|−1 (see
text for details).

neous formation of the helical states arises from the cou-
pling between the swimmer flow-fields and the nematic
director n̂. The vorticity ω of the squirmer flow-field v(r)
gives rise to a torque on an isolated spherical swimmer
in nematic liquid crystals [22]. In living liquid crystals
thin films [11, 19], a flow instability was shown to arise
from the competition between the active (hydrodynamic)
torques and elastic aligning torques. We assume similar
mechanism here.

The transition point between the nematic and helical
states depends both on the particle volume fraction φ
and the strength of the force dipole |B2| (Fig. 3). To
phenomenologically relate these quantities to an activ-
ity ζ at the continuum limit, we consider the vorticity
ω of the squirmer flow-field in isotropic fluid v(r) [44]
at a distance r from another swimmer ω = ∇ × v(r) =
−3/2 sin 2θB2/r

3êξ, where êξ is a unit vector along az-
imuthal direction. When the density of the particles is
uniform, at low φ the average distance l between the par-
ticles follows l ∼ φ−1/3. Using these we can approximate
ζ ∼ B2φ. When all the other material parameters are
unchanged, the instability occurs at a (constant) criti-
cal value ζ∗. This gives φ∗ ∼ B−1

2 for the critical vol-
ume fraction, which is in agreement with the predictions
for confined 2D living liquid crystals [19], and fits the
simulation data remarkably well (white lines in Fig. 3).
The onset of the helical state, is observed to happen at
moderate Ericksen numbers and span to low swimmer
concentrations Er ∼ 10 and φ ∼ 1%, corresponding to
experimentally relevant values [11, 15].

The system is achiral, and we observe an equal amount



4

FIG. 4. The bend B (blue circles), splay S (green dots) and
twist T (yellow triangles) distortions as well as the defect
concentration (red diamonds) measured from the simulations
for φ ≈ 0.01 and φ ≈ 0.04 left and right panel, respectively, as
a function of the squirmer parameter β. The dashed vertical
pink (orange) lines mark the transition between nematic and
helical (helical and chaotic) states.

of left and right handed states (given by yellow and pur-
ple crosses in Fig. 3). This suggests that the chiral sym-
metry breaking arises from an hydrodynamic instabil-
ity. In 2-dimensional extensile active nematics [8] and in
thin-film living liquid crystals [11], a bend-instability has
been observed to be dominant. Our results suggest, that
the dominant instability is replaced by a twist when the
3rd dimension is opened. Indeed, linear stability analy-
sis have predicted, a twist-bend mode to be most unsta-
ble in 3-dimensional extensile active gels [45, 46], and a
spontaneous mirror symmetry breaking in the defect dy-
namics of active nematic gels have been observed both in
simulations [47] and in experiments [48]. Very recently
a spontaneous flow transition with well a defined chiral-
ity has been predicted in homeotropically confined active
nematics [49].

In our system, the equilibrium state of the liquid crys-
tal is a uniform nematic. The swimmer flow-fields can
perturb this and create (local) deformations, which are
penalised by the elastic cost of these distortions. To an-
alyze the different deformations in the system, we calcu-
lated the amount of twist, bend and splay [34, 50] across
nematic, helical and chaotic states (Fig. 4). In the ne-
matic state, the system has uniform order and any defor-
mations are small and localised near the particles (small

|β| values in Fig. 4). At the onset of the instability, we
observe a sudden increase of the distortions. The twist
distortions are approximately twice larger than the bend,
and four times that of splay, for both pushers and pullers
(top and bottom panels in Fig. 4, respectively). The
chaotic state is marked by the emergence of topological
defects (Fig. 4b and d) [34]. The splay distortion are also
observed to grow, while the bend and twist deformations
rest largest (large |β| values in the Fig. 4b and d).

The sudden growth of twist and bend distortions at
the transition between the uniform nematic and helical
states (Fig. 4a and c), suggests the dominance of the
twist-bend mode, in agreement with the linear stability
analysis of 3-dimensional extensile active nematics [45].
The absence of splay instability for pullers, which has
been predicted for contractile active nematics [8], can be
understood in the terms of the swimming direction of the
particles. At the steady state, the pullers swim perpen-
dicular to the (local) nematic director [22]. The perpen-
dicular alignment of an inward (contractile) force-dipole
respect to the LC director, corresponds approximately to
a parallel alignment of an outward (extensile) force dipole
aligned along n̂. Thus the flow-instability for both spher-
ical pusher and puller swimmers can be expected to be
the same, which agrees with our observations (upper and
lower panels in Fig. 4, respectively).

Conclusions: Using hydrodynamic simulations, we
have studied the collective dynamics of microswimmers
in nematic liquid crystal. We observe a spontaneous chi-
ral symmetry breaking, where the uniform nematic order
becomes unstable and formation of a continuous twist
along a unique axis is observed. The particle dynam-
ics follows the LC order and in the cholesteric state the
swimmer trajectories become helical.

There is no inherent chirality in the system. At the
steady state, an equal amount of of left and right handed
helices are observed. The chiral states arise from a hy-
drodynamic instability, originating from the coupling be-
tween the swimmer flow-fields and the liquid crystalline
elasticity. By evaluating the distortions in the system,
we demonstrate that the dominant mode is a twist-bend
instability. This agrees with predictions from a linear
stability analysis of 3-dimensional extensile active nemat-
ics [45]. Our predictions could be tested experimentally
by opening the 3rd dimension in the experiments of quasi-
2d living LCs [11], where the Ericksen number Er ∼ 10
and φ ∼ 0.2%, are commensurate with the parameters
considered in our simulations. In these experiments, the
lateral size of the system, is a lot larger than the pre-
dicted periodicity p ∼ 21R ∼ 140µm, which should allow
the helical state to occur. The predictions for pullers,
could be realised by considering, for example, Chlamy-
domonas which is near spherical microswimmer with a
far-field flow corresponding to a puller force-dipole [51].
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Additional details for the calculation of the twist, bend and splay deformations as well as the defect density

In the simulations, we use a Q-tensor for the nematic liquid crystal. At each time step, we calculate the Landau-de
Gennes free energy density given by equation (1) in the main text, where a single elastic constant approximation is
used.

To evaluate the bend, splay and twist distortions in the system, we consider the Oseen-Frank formalism and follow
the interpretation given in [50]. In this framework, the elastic free energy density FOF associated with the distortions
in the uniaxial nematic liquid crystal, with director field n̂(r), is expressed as follows [52],

FOF =
1

2
K11(∇ · n̂)2 +

1

2
K22(n̂ · ∇ × n̂)2 +

1

2
K33(n̂× (∇× n̂))2 −K24∇ · [n̂(∇ · n̂) + n̂× (∇× n̂)] (S1)

Here, K11, K22, and K33 represents the elastic constants for splay, twist and bend distortions, respectively. The K24

is the elastic constant for the fourth type of distortion known as ”biaxial splay” [50]. The splay S, bend ~B, and twist
T distortions are defined as :

S = ∇ · n̂ T = n̂ · (∇× n̂) ~B = n̂× (∇× n̂) (S2)

While one can use above expressions to calculate the amount of different distortions, it would be advantageous in our
simulations to calculate these distortions directly from the Q-tensor. To achieve this, we use the formalism proposed
by Selinger [50], where the distortions are calculated using a tensor q, which is related to Q by

qij =
1

3

(
δij +

2Qij
s

)
. (S3)

s is the scalar order parameter of nematic liquid crystal. Due to inherent ambiguity in defining the splay scalar
uniquely in terms of qij , a splay vector ~S = S n̂ is introdcued and the distortions are given by [50]

Si = qil∂jqjl T = εijkqil∂jqkl Bk = −qil∂iqkl (S4)

We use these expressions to calculate |~S|, |T |, and | ~B|, representing the magnitudes of splay, bend and twist,
respectively, in the nematic liquid crystal. From the Ludwig code [23], the output is a Q-tensor field. These tensors
can be diagonalized to extract corresponding eigenvalues and eigenvectors. At each lattice point, the nematic director
is determined by taking eigenvector corresponding to the highest absolute eigenvalue. Subsequently, we reconstruct
the nematic order tensor using the formula:

Qij = s

(
3

2
ninj −

1

2
δij

)
(S5)

From this, we construct the q tensor using equation (3), and calculate distortions using equation (4). The results
shown in the Fig. 4 of the main text are averaged over all the liquid crystal lattice points.

To characterise the chaotic LC state, the defect density in the system was calculated. The defects are identified as
the regions where the local order parameter sloc ≤ 0.85s, where s = 1/3 corresponds to perfect nematic order. The
figure 4 in the main text, shows the resulting defect Vdefect/VLC densities.
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Additional figures showing particle trajectories and the topological defects in the chaotic state

FIG. S1. Examples of unwrapped trajectories of pushers in the chaotic state are given by blue and black solid lines. In the
chaotic state, the pushers align themselves, on average, with the local nematic director, but its trajectory lacks a specific
pattern due to spatial variations in the director field. The red scale bar corresponds to the system size L ≈ 21R and the data
to φ ≈ 4% and β ≈ −3.5 (Er ≈ 10.5)

FIG. S2. An example of the topological defects observed in the chaotic state. +1/2 defect top left, and −1/2 bottom right.
The brown ribbon corresponds to the disclination line in 3-dimensions. The simulations corresponds to φ ≈ 2% and β = −5
(Er ≈ 15.)


