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Abstract: Evapotranspiration (ET) at weekly and monthly time scales is often needed for various
applications. When using remote sensing (RS)-based models, this can be achieved either by averaging
all the required input variables to the intended time scale and simulating ET using models (input
aggregation), or by estimating daily ET from the models and averaging to weekly or monthly ET
(output aggregation). It is not clear if both these aggregation approaches yield the same outcome
when using RS-based models for the estimation of ET. Another issue in obtaining ET at longer time
scales is the lack of enough satellite observations to estimate ET with reasonable accuracy. This
study aimed to compare the input and output aggregation approaches to obtain ET at weekly and
monthly time scales using three RS ET models, namely, Priestley–Taylor Jet Propulsion Lab (PT-JPL),
Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE), and Surface Temperature
Initiated Closure (STIC) models. The study was conducted using in situ data over six sites of different
agro-climatic conditions in India, Tunisia, and France. The results indicate that the input aggregation
provided relatively better results for monthly and weekly ET values than the output aggregation,
having a lower RMSE (1–40%). Further, it was found that at least seven to eight satellite observations
per month are required to obtain reliable ET estimate when using RS-based models.

Keywords: evapotranspiration; temporal aggregation

1. Introduction

In recent times, many evapotranspiration (ET) models have been developed that use
remote sensing (RS) data for modeling ET over large regions [1]. The RS-based models can
be broadly classified into land surface temperature (LST)-based ET models and conductance-
based models [2], which are primarily based on the Penman–Monteith (PM) equation and
its variations. The difficulties in estimating the surface and aerodynamic conductance (or
resistance) have led to the development of simpler Priestley–Taylor (PT) equation-based
models. Models based on PM and PT equations primarily use meteorological inputs
and vegetation information obtained from visible, Near Infrared (NIR) and Shortwave
Infrared bands (SWIR). The LST-based models provide instantaneous values of ET (or latent
heat flux, λE, i.e., ET expressed in energy units, W m−2) estimated at the time of satellite
observation. This instantaneous ET is converted into daily ET using the self-preservation
of the ratio of ET to a reference variable [3].

The commonly used reference variables are the net available energy (the difference
between net radiation, Rn, and soil heat flux, G), incoming surface solar radiation (Rg), solar
radiation at the top of the atmosphere, reference evapotranspiration, etc. The literature is
rich with studies that compare different scaling factors to convert this instantaneous ET
into daily ET [4–13]. Ryu et al. [5] developed scaling equations to obtain 8-day averaged ET
by combining the multiple instantaneous ET in an 8-day period. For many applications, ET
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measured at weekly and monthly temporal scales are required. When LST-based models
are used, often the daily ET is estimated first and then averaged to the required longer
time scales. During this temporal averaging of ET, different gap filling or interpolation
techniques may also be used to reduce the effect of lost data due to cloud cover [8,10]. This
approach, where ET is estimated at a shorter time scale and then aggregated to longer time
scales, is referred in this paper as ‘output aggregation’.

From the PM/PT based models, it is possible to estimate ET at various time scales
(from instantaneous to monthly) by aggregating the input datasets and then simulating
ET at the necessary temporal scale. For example, the Priestley–Taylor Jet Propulsion Lab
(PT-JPL) model has been used to estimate ET at both instantaneous [14] and monthly
time scales [15]. The approach where all the independent input variables are aggregated
to the required time scale and then model simulations are carried out to estimate ET is
referred to as ‘input aggregation’. It is not clear if there are any differences in the ET
estimated using the two temporal aggregation approaches when using different models.
The issue of aggregation in the spatial domain (i.e., upscaling ET from finer to coarser
spatial resolutions) has been discussed in detail in previous studies [16–18]. There exists a
plethora of studies that compared different scaling factors for upscaling instantaneous ET to
daily ET. However, it is hard to determine from the literature if input or output aggregation
should be used to estimate ET at weekly or monthly scales (i.e., temporal aggregation).
The major aim of this study is to compare the input and output aggregation approaches to
determine which yields better results in modeling ET at weekly and monthly scales using
different remote sensing models.

Three ET models, namely, the Soil Plant Atmosphere and Remote Sensing Evap-
otranspiration (SPARSE, [19]), PT-JPL, [15], and Surface Temperature Initiated Closure
(STIC, [20]) models, were evaluated over six sites under different agro-climatic conditions.
Of these, SPARSE is a surface energy balance-based model in which LST is the primary
input. The SPARSE model has two variants—layer and patch—corresponding to series
and parallel configurations of surface resistances, respectively. Both the layer and the
patch configurations are tested in this study. The STIC model solves the Penman–Monteith
equation using LST, indicating its hybrid nature that integrates the principles of both
conductance-based and LST-based models. Finally, the PT-JPL model was selected as it is
one of the most widely used model, with input data requirements that are similar to those
of conductance-based models.

Another issue in RS-based ET modeling is the non-availability of data due to cloud
cover. Alfieri et al. [9] and Guillevic et al. [10] demonstrated that errors in ET will increase
with the increasing number of days in which data is not available. These studies have
used ground observations for the analysis. During practical applications, remote sensing
models are used for ET estimation and each model may respond differently to missing data.
Hence, the second objective of the work is to understand the effect of the lack of data on
the accuracy of ET simulated by these three models.

2. Materials and Methods
2.1. Study Area

The study was conducted over six sites: one site in North Africa, two sites in France,
and three in India, as shown in Figure 1. The sites have different crops, such as wheat,
millet, rice, and grass, and belong to different climatic zones. The data used for each site
had a duration of at least six months. The details of the sites are given in Table 1.
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Table 1. Details of the sites used in the study.

Site Location Crop Climate Data Duration References

Tunisia, North Africa 35.56◦N, 9.94◦E Wheat Tropical semi-arid January 2012–June 2012 [19]

Auradé, France 43.55◦N, 1.11◦E Wheat Temperate January 2009–December 2010 [21]

Lamasquère, France 43.50◦N, 1.24◦E Wheat Temperate January 2013–July 2013 [21]

Nawagam, India 22.80◦N, 72.57◦E Rice Semi-arid August 2017–November 2018 [22]

Samastipur, India 26.00◦N, 85.67◦E Rice and Wheat Sub-humid January 2018–September 2018 [22]

Jaisalmer, India 26.99◦N, 71.34◦E Natural sewan grass Arid January 2018–December 2018 [22]

2.2. Description of Datasets

Over the site in Tunisia, the surface radiometric temperature was measured using
a nadir-looking Apogee thermal radiometer and the energy fluxes were measured with
Campbell™ CSAT sonic anemometers and Krypton fast-response hygrometers. The energy
budget closure was forced, and λE was estimated as the residual [19]. In the Auradé site,
surface radiometric temperature was measured using a precision infrared temperature
sensor (IRTS-P, Campbell Scientific Inc., Logan, UT, USA) at 2.8 m above the ground.
In Lamasquère, it was estimated from upwelling longwave radiation measured by a 4-
component net radiometer at 3.65 m above the ground [21]. The Eddy Covariance system
in both Auradé and Lamasquère sites consisted of a three-dimensional sonic anemometer
(CSAT 3, Campbell Scientific Inc, Logan, UT, USA) and an open-path infrared gas analyzer
(LI 7500, LiCor, Lincoln, NE, USA) [23]. For the Auradé and Lamasquère sites, the energy
budget closure was about 78–94% and 71% respectively (Dare-Idowu et al., 2021, [24]. For
the three sites given above, LAI was estimated using hemispherical photography every 2 to
3 weeks depending on the phenological cycle and validated by destructive measurements
during different stages. The crop height was also measured during the same days as
those of LAI observations [25]. Over the three sites in India, the EC150 IRGASON system
(Campbell Scientific Inc., Logan, UT, USA) was installed at 8 m above the ground for
observing CO2 and H2O fluxes and the net radiation was measured using Kipp & Zonen
CNR4 net radiometers. Over these sites, the soil heat flux was not measured and, thus,
it was computed as the residual of the surface energy balance (i.e., Rn–λE–H). Surface
radiometric temperature was estimated from the net radiometer observations. From the
IRGASON system, raw data were archived at 20 Hz and processed using EddyPro® Flux
Software with an averaging time interval of 15 min for all EC flux calculations [22]. Over
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the three sites in India, crop height was observed once every 15 days and was used in
the study. Field-measured LAI was not available over these three sites, and hence it was
obtained from MODIS data. In all the sites except Tunisia, observed λE uncorrected for
energy budget closure was used in this study.

2.3. Brief Description of the Models
2.3.1. Priestley–Taylor Jet Propulsion Lab (PT-JPL)

Fisher et al. [15] developed a three-source model that partitions ET into canopy tran-
spiration (λEv), soil evaporation (λEs), and interception evaporation (λEi) based on the PT
equation. First, the PT equation is used to estimate the potential value of each component
and then, based on plant physiological status and soil moisture availability, the potential
ET is reduced to actual ET. The model requires five inputs: net radiation (Rn), Normalized
Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), maximum air
temperature, and vapor pressure. The plant physiological factors that are used to reduce po-
tential canopy transpiration to the actual value are LAI, actively transpiring green fraction
of canopy (fg), plant temperature constraint (fT), and plant moisture constraint (fM). LAI is
calculated from fractional vegetation cover (fc), which is assumed to be equal to the light
intercepted by vegetation fraction (fIPAR), which in turn is estimated as a linear function
of NDVI. fg is calculated as the ratio of light absorbed by vegetation fraction (fAPAR) to
fIPAR, by estimating fAPAR as a linear function of SAVI. fT is estimated from maximum air
temperature. fM is estimated as the relative change in light absorptance assuming that
light absorptance varies with moisture stress. Potential soil evaporation is constrained by
the soil water deficit index (fSM), calculated from the vapor pressure deficit and relative
humidity at midday. The potential value of interception is multiplied by the fraction of
time when the surface is wet (fwet), calculated as a power function of relative humidity. The
total ET is calculated as the sum of three components. The final equations that are used for
the computation are given below:

λEs = ( fwet + fSM (1 − fwet)) α
∆

(∆ + γ)
(Rns − G) (1)

λEv = (1 − fwet) fg fT fM α
∆

(∆ + γ)
Rnc (2)

λEi = fwet α
∆

(∆ + γ)
Rnc (3)

where λEs, λEv, and λEi are all expressed in W m−2. Rns is net radiation to the soil in
W m−2, Rnc is net radiation to the canopy in W m−2, ∆ is the slope of the saturation-to-
vapor pressure curve, γ is the psychrometric constant (∼0.066 kPa ◦C−1), and α is the PT
coefficient with a value of 1.26 [26].

2.3.2. Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE)

SPARSE [19] is based on the Two Source Energy Balance (TSEB) model. In TSEB
models, it is assumed initially that there is enough water in the root zone for the plant to
transpire, and then the model corrects the soil evaporation and transpiration processes
iteratively. The model has both layer and patch configurations. In the layer approach, it is
assumed that the canopy covers the soil completely and thus there is no direct interaction
between the soil surface and the atmospheric reference level, and soil and vegetation fluxes
are connected in series. In the patch approach, it is assumed that there is no interaction
between soil and vegetation, and that both interact directly with the atmosphere. Five equa-
tions, one for each of latent heat flux as the summation of soil and vegetation components,
sensible heat flux (H, W m−2) as the summation of soil and vegetation components, energy
budget for soil and vegetation, and the link between radiative surface temperature and soil
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and vegetation temperature, are solved simultaneously to obtain latent heat flux for soil
and vegetation. The important equations for the SPARSE-Layer model are given below:

λEs =
ρaCp

γ
βS

[
esat(TS)− e0

ras

]
(4)

λEv =
ρaCp

γ
βV

[
esat(TV)− e0

rvv

]
(5)

where βS and βV are the soil evaporation and canopy transpiration efficiencies, respectively;
esat is the saturation vapor pressure (kPa); ras and rvv are the soil surface resistance and
canopy resistance to latent heat transfer, respectively (m s−1); ρa is the air density (kg m−3);
and Cp is the specific heat capacity of air at constant pressure (J kg−1 K−1). Similarly for
the SPARSE-Patch model, the equations are as follows, where ra is aerodynamic resistance:

λES =
ρaCp

γ
βS

[
esat(TS)− e0

ras + ra

]
(6)

λEv =
ρaCp

γ
βV

[
esat(TV)− e0

rvv + ra

]
(7)

2.3.3. Surface Temperature Initiated Closure (STIC)

The STIC [20] model integrates LST into the Penman–Monteith equation for the esti-
mation of H and λE without the need of knowledge of the conductance terms. A set of four
equations with four unknowns, aerodynamic conductance (gB), stomatal conductance (gS),
difference between aerodynamic temperature and air temperature (∆T), and evaporative
fraction (EF) are solved analytically. Moisture availability (M) is estimated taking into
consideration the relationship between temperature and vapor pressure and is used in
partitioning ET into its components. The equations given below are solved simultaneously
to estimate λE:

gB =
Rn − G

ρ Cp

(
∆T + es−ea

γ

) (8)

gS = gB
es − ea

e∗s − es
(9)

∆T =
es − ea

γ

1 − EF
EF

(10)

EF =
2 α s

2s + γ
(

2 + gB
gs

) (11)

λE =
∆(Rn − G) + ρaCpgaDa

∆ + γ
(

1 + ga
gc

) (12)

2.4. Methodology
2.4.1. Temporal Aggregation

The in situ data were available at intervals of half an hour; however, to mimic satellite
observations, in situ data at two instances (10:30 a.m. and 1:30 p.m.) were only used to
force the models. The temporal aggregation experiment was carried out for estimating λE
at both weekly and monthly scales. For this study, we used data only during clear-sky days.
This was to avoid any effect of intermittent clouds on the aggregation results. Further, this
helped in realistically simulating the satellite-based λE estimation as closely as possible.
The screening of data for cloudy days is explained in Section 2.4.2.

For the input temporal aggregation, all the inputs required by each model that were
observed at 10:30 a.m. and 1:30 p.m. were averaged to weekly or monthly scales. Thus,
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we had two sets of input values per week or month: one corresponding to 10:30 a.m. and
another corresponding to 1:30 p.m. These averaged inputs were then passed as inputs
to the models to estimate λE corresponding to these two times. For the output temporal
aggregation, the model inputs were fed into the model each day to obtain instantaneous
λE corresponding to 10:30 a.m. and 1:30 p.m. The obtained outputs were then averaged
over a week or month to obtain the corresponding averaged λE. The multi-day averaged
instantaneous λE values obtained from both the aggregation approaches were converted to
weekly and monthly averaged ET using scaling variables, as presented in Section 2.4.3. The
detailed methodology followed for aggregation is illustrated in Figure 2.
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The estimated λE values from input and output temporal aggregation were then
compared to the reference data. The reference data were obtained by averaging the half-
hourly values of in situ λE. First, the in situ observations were averaged to obtain daytime
λE, and then this was further averaged to weekly or monthly temporal scales. Daytime
was defined as sunlit hours where the incoming solar radiation was greater than zero.
The input and output aggregated λE values were compared with the reference data, and
results of the comparison were estimated in terms of Root Mean Square Error (RMSE).
The aggregation approach having the smaller RMSE was chosen as the better performing
one. The SPARSE and PT-JPL models used in this study are multi-source models, which
first estimate the components such as soil evaporation and transpiration for calculating
the total λE. We also analyzed how the values of individual components change due to
different aggregation approaches. No in situ observations were available on the partitioned
components of λE. Hence, the ratio of each component of λE to total λE (simulated by the
corresponding model), i.e., the ratio of soil evaporation to total λE and transpiration to total
λE, were computed using both aggregation approaches. The PT-JPL model is a three-source
model and has an interception component. To simplify this, the evaporation component of
the PT-JPL model was considered as the sum of interception and evaporation. The ratios
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obtained from both input and output aggregation were then compared with each other to
see if there were any differences in partitioning due to the aggregation approach followed.

2.4.2. Identifying Clear-Sky Days

The clear-sky days were determined based on the ratio of incoming solar radiation mea-
sured to the extra-terrestrial solar radiation (Ra), which was computed as per FAO 56 [27]:

Ra =
12 (60)

π
Gscdr[(ω2 − ω1)sinϕsinδ + cosϕcosδ(sinω2 − sin ω1)] (13)

where Ra is extra-terrestrial radiation in any given hour (MJ m–2 h−1), Gsc is the solar
constant (0.0820 MJ m–2 min−1), dr is the inverse of the relative distance between the Earth
and the Sun, δ is the solar declination (rad), ϕ is latitude in (rad), ω1 is the solar time angle
at the beginning of the hour (rad), and ω2 is the solar time angle at end of the hour (rad).
Ra computed as MJ m–2 h−1 was converted to W m−2 to use it with in situ observed solar
radiation. Theoretically, clear-sky radiation was considered to be 75% of Ra as per FAO
56 [27], and Delogu et al. [4] mentioned that, if the measured solar radiation is higher
than 85% of the theoretical clear-sky solar radiation, it can be considered to be clear sky.
Based on this, data corresponding to days when the ratio of incoming solar radiation to Ra
was less than 0.63 (0.75 × 0.85) were considered cloudy and omitted from the dataset and
further use.

2.4.3. Instantaneous to Daily ET

In this study, net available energy (Rn–G) and Rg were used as scaling variables to
convert instantaneous values of λE into weekly or monthly averaged values. These two
scaling factors were adopted as they are two of the most widely used variables in the
literature. First, the ratio of multi-day averaged instantaneous λE was divided by multi-day
averaged (for the corresponding temporal duration, i.e., weekly or monthly) instantaneous
net available energy (Rn–G) or Rg (observed at the corresponding time, i.e., 10:30 a.m. or
1:30 p.m.) to obtain the evaporative fraction (EF) or solar radiation fraction (SR), respectively.
Two values of EF and SR were estimated, corresponding to before noon and afternoon
conditions. Then, the EF was multiplied with weekly or monthly averaged daytime (Rn–G)
and SR was multiplied with weekly or monthly averaged Rg to obtain corresponding
temporally aggregated λE.

2.4.4. Effect of Missing Data

As the next part of the analysis, the effect of missing data on the monthly averaged λE
was studied. For this, only the best performing temporal aggregation method was used.
The number of days in a month for which the data was available was varied between a
minimum of 1 day and a maximum of 28 days. It is to be noted that all the months did
not have 28 days of data due to the cloudy day screening approach adopted. For such
months, the maximum number of days is limited by the actual days of data availability.
Of the n days for which data are available in a given month, x number of days (x varied
between 1 and n) were selected randomly to estimate ET using the three models. Multiple
iterations (50) were carried out to select different combination of x days out of n days. After
selecting the data, monthly averaged λE was estimated as given in previous sections and
the RMSE was computed. Then, the variation in RMSE with respect to the number of days
was analyzed.

3. Results and Discussions
3.1. Temporal Aggregation

The main objective of this study is to understand the difference between the two
aggregation approaches for estimating ET at larger temporal scales. Hence, we focused on
the relative difference between the accuracy of ET simulated by these two approaches by
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the different models. We did not compare the accuracy of ET by different models in this
study as that may have taken the focus away from the main objective.

Input and output temporally aggregated λE values from the three models were com-
pared with the reference values from the field for all the six sites. The results corresponding
to the two time instances (10:30 a.m. and 1:30 p.m.) and two scaling variables (EF and
SR) were analyzed separately. The difference in RMSE of the monthly ET (expressed in
mm/month) estimated using output and input aggregation (RMSEoutput – RMSEinput)
methods by each of the three models and for each site are given in Table 2. Further, in the
table, the RMSE difference is also expressed as a percentage of in situ observed monthly ET.
This indicates the level of improvement in the model-simulated ET when compared with in
situ observations. From the table, it can be observed that the RMSE in ET estimated using
output aggregation was always higher than that of input aggregation (leading to a positive
difference) for all the sites and for all the models, except the PT-JPL model over Jaisalmer
and Samastipur sites. This was true for both the scaling variables and both morning and
afternoon time instances. Similar results were also obtained when temporally aggregating
to weekly timescales (Table 3).

Table 2. The difference in RMSE between output and input aggregation (mm/month). Numbers in
brackets express this RMSE difference as a percentage of in situ observed monthly ET. In the header,
Evaporative Fraction and Solar Radiation indicate the scaling variable used to convert instantaneous
ET (at 10:30 a.m. or 1:30 p.m.) to daily ET.

Site
Evaporative Fraction Solar Radiation

10:30 a.m. 1:30 p.m. 10:30 a.m. 1:30 p.m.

SPARSE-Layer

Tunisia 2.39 (4.45) 1.64 (3.05) 2.77 (5.16) 1.23 (2.3)
Auradé 1.37 (3.16) 1.92 (4.43) 1.76 (4.08) 2.48 (5.74)

Lamasquère 11.14 (9.83) 3.26 (2.88) 10.62 (9.37) 4.84 (4.27)
Nawagam 1.11 (1.37) 0.03 (0.03) 0.22 (0.27) 0.63 (0.78)
Samastipur 5.45 (5.81) 5.03 (5.36) 6.06 (6.46) 4.9 (5.22)
Jaisalmer 4.49 (26.26) 4.84 (28.32) 4.2 (24.56) 4.75 (27.81)

SPARSE-Patch

Tunisia 0.04 (0.07) 0.72 (1.35) 0.14 (0.26) 2.53 (4.72)
Auradé 0.04 (0.09) 0.29 (0.66) 0.78 (1.8) 0.91 (2.1)

Lamasquère 0.96 (0.85) 0.28 (0.24) 0.3 (0.26) 0.94 (0.83)
Nawagam 4.54 (5.63) 1.73 (2.15) 3.76 (4.66) 0.3 (0.38)
Samastipur 0.13 (0.14) 1.29 (1.38) 0.31 (0.33) 1.32 (1.41)
Jaisalmer 0.15 (0.86) 0.12 (0.7) 0.16 (0.95) 0.13 (0.78)

PT-JPL

Tunisia 4.8 (8.96) 6.08 (11.34) 3.84 (7.16) 3.52 (6.57)
Auradé 4.43 (10.24) 6.72 (15.53) 4.05 (9.36) 7.19 (16.61)

Lamasquère 40.01 (35.31) 38.58 (34.05) 48.08 (42.44) 38.08 (33.61)
Nawagam 35.32 (43.78) 30.35 (37.62) 19.4 (24.04) 31.07 (38.51)
Samastipur –18.14 (19.35) –10.79 (11.5) –22.11 (23.57) –13.17 (14.04)
Jaisalmer –6.01 (35.16) –26.43 (154.72) –6.09 (35.67) –26.98 (157.95)

STIC

Tunisia 0.34 (0.64) 0.66 (1.23) 0.63 (1.18) 0.67 (1.24)
Auradé 18.23 (42.13) 0.18 (0.41) 13.99 (32.33) 0.73 (1.68)

Lamasquère 67.88 (59.9) 22.19 (19.58) 51.72 (45.65) 21.21 (18.72)
Nawagam 2.83 (3.5) 1.45 (1.79) 2.51 (3.11) 0.87 (1.08)
Samastipur 1.44 (1.54) 1.83 (1.96) 0.38 (0.41) 2.33 (2.49)
Jaisalmer 16 (93.65) 32.07 (187.77) 17.89 (104.74) 33.49 (196.1)
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Table 3. Same as Table 2 but for weekly ET values. RMSE differences are expressed in mm/week.

Site
Evaporative Fraction Solar Radiation

10:30 a.m. 1:30 p.m. 10:30 a.m. 1:30 p.m.

SPARSE-Layer

Tunisia 0.35 (2.74) 0.13 (0.99) 0.43 (3.41) 0.02 (0.15)
Auradé 0.87 (9.83) 0.81 (9.23) 0.56 (6.32) 0.1 (1.09)

Lamasquère 0.91 (3.48) 1.4 (5.38) 0.72 (2.75) 0.63 (2.42)
Nawagam 0.33 (1.85) 0.6 (3.38) 0.17 (0.97) 0.63 (3.52)
Samastipur 0.96 (4.42) 0.74 (3.39) 1.06 (4.87) 0.8 (3.67)
Jaisalmer 0.24 (6.53) 0.6 (16.46) 0.19 (5.18) 0.57 (15.38)

SPARSE-Patch

Tunisia 0.04 (0.29) 0.16 (1.26) 0.01 (0.06) 0.04 (0.32)
Auradé 0.49 (5.56) 0.5 (5.7) 0.18 (2.06) 0.09 (1.01)

Lamasquère 1.88 (7.23) 0.07 (0.25) 0.03 (0.12) 0.03 (0.1)
Nawagam 0.02 (0.09) 0.48 (2.71) 0.02 (0.14) 0.14 (0.77)
Samastipur 0.33 (1.54) 0.44 (2.04) 0.31 (1.43) 0.48 (2.2)
Jaisalmer 0.01 (0.32) 0.03 (0.85) 0.02 (0.42) 0.02 (0.64)

PT-JPL

Tunisia 1.83 (14.5) 2 (15.83) 1.74 (13.78) 1.28 (10.19)
Auradé 0.44 (4.98) 0.88 (9.96) 0.24 (2.72) 0.87 (9.9)

Lamasquère 3.24 (12.44) 8.75 (33.57) 3.58 (13.72) 0.67 (2.57)
Nawagam 7.9 (44.19) 6.28 (35.15) 3.12 (17.48) 4.82 (26.97)
Samastipur –3.46 (15.91) 1.22 (5.59) –4.05 (18.61) 0.84 (3.87)
Jaisalmer –3.02 (82.08) –3.59 (97.78) –3.18 (86.65) –3.73 (101.61)

STIC

Tunisia 0.05 (0.37) 0.13 (1.02) 0.05 (0.37) 0.09 (0.69)
Auradé 1.56 (17.67) 0.37 (4.21) 1.36 (15.44) 0.42 (4.8)

Lamasquère 4.45 (17.08) 2.1 (8.07) 4.47 (17.15) 15.94 (61.15)
Nawagam 0.61 (3.4) 0.17 (0.96) 0.37 (2.05) 0.03 (0.19)
Samastipur 1.74 (7.99) 5.61 (25.79) 1.1 (5.08) 5.69 (26.17)
Jaisalmer 2.4 (65.39) 2.63 (71.65) 2.72 (74.08) 2.7 (73.55)

The correlation coefficient (r) between observed ET and modeled ET using input
aggregation at monthly time scale was 0.64, 0.76, 0.57, and 0.64 from the SPARSE-Layer,
SPARSE-Patch, PT-JPL, and STIC models, respectively. The r values were 0.61, 0.75, 0.53
and 0.51 from the four models in the same order when output aggregation was used to
estimate monthly ET. Similarly, at a weekly scale, the r value was 0.58 and 0.51 for input and
output aggregation, respectively, using the SPARSE-Layer model. For the SPARSE-Patch
model, it was 0.67 and 0.60; for the PT-JPL model, r values were 0.30 and 0.24; and finally,
for the STIC model, it was 0.49 and 0.35, respectively, for the input and output aggregation.
In all cases, the r value was better for input aggregation than for output aggregation at both
monthly and weekly scales. The scatter plots of observed and SPARSE-Layer model ET
values at monthly and weekly scales are presented in Figure 3.

The difference in RMSE of ET estimated using input and output aggregation ap-
proaches varied with models and sites. The patch version of the SPARSE model had the
least difference in ET simulated by the two approaches across the six sites. The difference
was less than 1% for most of the sites, indicating that the SPARSE-Patch model is relatively
insensitive to the temporal aggregation method for estimating ET at longer time scales.
By comparison, the PT-JPL model exhibited higher sensitivity to the temporal aggrega-
tion method with the input aggregation performing better at four of the six sites (except
Jaisalmer and Samastipur). Among the six sites used here, Samastipur is characterized by
relatively higher rainfall (~1100 mm year−1) and higher ET (~950 mm year−1). The ob-
served EF at the site remained around 0.8 during both the major cropping seasons (January
to March and May to September) and around 0.5 for the rest of the months [22], indicating
a larger fraction of net available energy being converted into latent heat flux over the site.
Jaisalmer, in contrast, is an arid site with an annual rainfall of around 210 mm. These results
indicate that, for the PT-JPL model, output aggregation may be a better approach when
working over sites that are either relatively wet with a humid climate, or over drier, arid
sites. However, this needs to be tested further over other such sites.
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ET from the STIC model was also found to be sensitive to the aggregation method.
Specifically, over the arid Jaisalmer site, the daily simulated ET often had large outliers,
which translated into higher RMSE in calculating monthly ET using the output aggregation
method. When using the input aggregation approach, the process of averaging the inputs
and running the model at weekly or monthly scales resulted in improved ET estimation
by the model, leading to a significant reduction in RMSE (Tables 2 and 3). The SPARSE-
Layer model exhibited minor improvements, varying between one and ten percent in
most of the sites when input aggregation was used. Here, significant changes were also
observed in the model simulated ET over the Jaisalmer site when using the two aggregation
approaches. Similar results were observed in different seasons for all the models. Although
the improvement in accuracy in weekly and monthly ET varied for different models and
different sites, the input aggregation method helps in obtaining temporally aggregated ET
with relatively better accuracy than the output aggregation approach (except for the PT-JPL
model over wet and arid sites). Further, the results remain the same irrespective of the
accuracy of the ET models used in this study.

The individual components of ET simulated by the SPARSE and PT-JPL models
estimated using the two aggregation approaches were compared with each other. Both the
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models estimated different values of E and T when using input and output aggregation
approaches, leading to differences in the total ET simulated. The ratio of monthly E/ET
estimated using solar radiation as the scaling variable is presented in Table 4. From the
values given in the table, the ratio T/ET can be estimated as 1 – (E/ET). As expected,
the E/ET ratios estimated at 10:30 a.m. and 1:30 p.m. differ from each other, which may
either be due to the diurnal variation in the land surface processes or model physics. The
ratio also varied with the temporal aggregation that was used to obtain monthly ET. The
SPARSE-Layer model seems to be relatively stable, with the E/ET ratio varying less than
20% between the input and output aggregations, except for the Lamasquère site. This
was followed by the SPARSE-Patch model in terms of variation in E/ET ratios. Sites with
relatively higher rainfall, such as Samastipur and Lamasquère, exhibited higher variation in
the E/ET ratios estimated by the two aggregation approaches (Table 4). The PT-JPL model
exhibited significant differences in the E/ET ratio when different aggregation approaches
were used. When using output aggregation, the model predicted E/ET to be 1 (i.e., zero
transpiration) over Auradé, Lamasquère, and Jaisalmer, but the E/ET ratio was less than
one when using input aggregation. The difference between input and output aggregation
was larger at 1:30 p.m. than 10:30 a.m. for most of the cases. Although we cannot check the
individual ET components due to lack of in situ data, the differences in model simulations
of E and T due to different temporal averaging procedures highlight the uncertainties in ET
partitioning by remote sensing models.

Table 4. E/ET ratio estimated with the SPARSE and PT-JPL models using the two aggregation approaches.

Model Site
10:30 a.m. 1:30 p.m.

Input Output Input Output

SPARSE-Layer

Tunisia 0.11 0.12 0.3 0.2
Auradé 0.35 0.4 0.31 0.36

Lamasquère 0.09 0.19 0.09 0.15
Nawagam 0.15 0.15 0.18 0.21
Samastipur 0.06 0.06 0.1 0.09
Jaisalmer 0.53 0.42 0.71 0.58

SPARSE-Patch

Tunisia 0.47 0.31 0.28 0.32
Auradé 0.69 0.68 0.67 0.71

Lamasquère 0.12 0.09 0.1 0.04
Nawagam 0.42 0.33 0.35 0.31
Samastipur 0.03 0.05 0.04 0.06
Jaisalmer 0.88 0.94 0.87 0.93

PT-JPL

Tunisia 0.54 0.65 0.63 0.79
Auradé 0.89 1 0.83 1

Lamasquère 0.53 0.95 0.36 1
Nawagam 0.14 0.65 0.35 0.66
Samastipur 0.63 0.89 0.56 0.9
Jaisalmer 0.92 1 0.94 0.91

3.2. Effect of Missing Data

To understand the effect of missing data, monthly ET was estimated through the
input aggregation approach using different models by continuously reducing the number
of days from 28 to 1. For all the models, the lowest RMSE in monthly ET was observed
when the data were available for 25 to 28 days. When the number of days reduced, the
RMSE in monthly ET generally increased, as reported in previous studies [10]. The change
in RMSE with the decreasing number of days of data availability for all the models and
sites is presented in Figure 4. In the figure, the percentage increase in RMSE with respect
to the lowest RMSE observed is plotted. For example, in the Samastipur site, the lowest
RMSE in monthly averaged ET simulated by the SPARSE-Layer model was 0.9 mm day−1

when data were available for 25 days. Taking this lowest RMSE as the base value, the
percentage change in RMSE for a decreasing number of days is plotted in the figure. The
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RMSE in monthly ET varied within 10% of the lowest value when at least 15 days of data
are available in a month for all the models. For the Samastipur site, a 10% increase in
RMSE from the base value leads to an increase of about 2.8 mm month−1 in RMSE, which
translates to 3.5% of the average monthly ET observed at the site. The increase in error
in simulated monthly ET varied with site and model. In general, when the data were
available for 5 to 10 days in a month, the RMSE of ET from models increased by about 20%,
and this varied anywhere between 7% and 30% of the in situ observed ET for different
sites and models. However, for the sites with irrigated agriculture (e.g., Nawagam and
Samastipur), a 20% increase in RMSE was observed even when the data were available
for 10 days (Figure 4d,e). The STIC model exhibited a higher increase in RMSE than other
models at the Lamasquère, Nawagam, and Samastipur sites, which might suggest that the
model is sensitive to a lack of data. Guillevic et al. [10] reported an increase in uncertainty
in monthly ET by 31% for a 16-day revisit cycle (i.e., two observations are available) using
AmeriFlux data. However, when simulating ET using models, we observed an increase
in RMSE by 30% of the in situ observed ET even when five to eight observations were
available per month. Anderson et al. [28] also recommended a constellation of high spatial
resolution satellites providing a combined revisit cycle of 4 days, thus providing seven to
eight observations per month for successful ET retrieval across most parts of the globe.
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4. Conclusions

Temporal aggregation of ET into weekly and monthly values is considered one of
the trivial tasks using remote sensing models. However, this study demonstrated that the
selected aggregation approach can alter the ET simulated from the models. In general,
input aggregation was found to yield ET values closer to in situ observations when using
the surface energy balance-based SPARSE model and the PM equation-based STIC model.
However, for the PT-JPL model, output aggregation worked better for humid and arid
sites and input aggregation worked for sites with semi-arid and temperate climates. The
individual components of E and T simulated by these models also varied, indicating that
the models are sensitive to the way they are forced with datasets.
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In addition to the temporal aggregation approach, continuous data availability plays
a major role in determining the accuracy of the modeled ET. When using remote sensing
models, at least seven to eight observations are needed in a month to retrieve ET with
limited errors, and any further decrease in data availability significantly increases the RMSE
in ET. The model error due to a lack of data can be much higher than the improvement
obtained by selecting the appropriate temporal aggregation approach. This result is signifi-
cant, especially for the models that use LST as a primary input (e.g., SPARSE and STIC).
Currently, LST data at the required temporal frequency are provided only by satellites
having coarser spatial resolutions (≥1 km). For modeling ET at high spatial resolution
(~100 m) using LST-based models, it is necessary to have a revisit period of 4 days as
planned for the upcoming Indo-French TRISHNA mission. In addition, for the PM/PT
equation-based models, modeling ET with finer spatial resolutions is generally limited by
the grid size of the numerical models that provide meteorological data. It is necessary to
develop numerical models with finer spatial resolution, which can then be combined with
vegetation information obtained from a suite of visible, NIR, and SWIR data available from
multiple sensors.
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