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Abstract
We use the composite operator method (COM) to analyze the strongly correlated repulsive
Hubbard model, investigating the effect of nearest-neighbor hoppings up to fourth order on a
square lattice. We consider two sets of self-consistent equations, one enforcing the Pauli
principle and the other imposing charge-charge, spin-spin, and pair–pair correlations using a
decoupling scheme developed by Roth (1969 Phys. Rev. 184 451–9). We extract three distinct
solutions from these equations: COM1 and COM2 by imposing the Pauli principle and one from
Roth decoupling. An overview of the method studying the validity of particle-hole symmetry
and the Luttinger theorem for each solution is presented. Additionally, we extend the initial
basis to study superconductivity, concluding that it is induced by the Van Hove singularity.
Finally, we include higher-order hoppings using realistic estimates for tight binding parameters
and compare our results with ARPES measurements on cuprates.

Keywords: bands, superconductivity, correlated, Hubbard, cuprates, Fermi Surface,
strongly correlated

1. Introduction

Exotic behavior and multiple phases exhibited by strongly
correlated materials have attracted significant interest in the
quantum condensed matter community [1, 2]. One promin-
ent example is cuprates, where superconductivity survives up
to very high critical temperatures compared to conventional
superconductors described by the Barden Cooper Schrieffer

∗
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(BCS) theory [3]. Since their discovery in 1987 by Bednorz
and Müller [4], extensive research has focused on modeling
and understanding the pairing mechanism in these materials to
obtain a microscopic theory of cuprate superconductors. The
complexity of their phase diagram and the numerous unex-
plained quantum phases [5] have resulted in various theoretical
models [6].

The repulsive Hubbard model remains the paradigmatic
tool for studying strongly correlated quantummatter even after
sixty years of its proposal. It offers a minimal description of
such systems with just two ingredients—hopping of electrons
between lattice sites t and on-site electron repulsionU creating
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an energy cost for double occupancy on the same lattice site.
It is given by

H=−
∑
i,jσ

tijc
†
iσcjσ +U

∑
i

ni↑ni↓ −µ
∑
iσ

niσ, (1)

where the chemical potential µ fixes the total number of elec-
trons. In equation (1) tij is such that tij = t if i and j are nearest
neighboring sites, and zero otherwise. One can extend the
model to longer ranged hoppings. ciσ/c

†
iσ destroys/creates an

electron on site i with spin σ ∈ {↑,↓} on the lattice and niσ =

c†iσciσ is the number operator for site i and spin σ. However,
this seemingly straightforwardmodel has eluded unbiased the-
oretical solutions.

The Hubbard Hamiltonian is known to be solvable only in
one dimension (1d) and infinite dimensions [7]. In the inter-
mediate dimensions, the equations of motion of the electronic
Green’s function involve higher order Green’s function and
cannot be solved exactly [8]. In the past, approximations such
as Hubbard I, II and III [8] have been made to truncate the
higher-order terms and close the equations of motion.

We revisit a perturbative scheme called ‘Composite
Operators Method’ (COM) [9, 10]. This method originates
from the Hubbard II approximation, where the electronic
Green’s function is decomposed into two poles with respect-
ive self-energies of 0 and U. Unlike Hubbard I and III approx-
imations, Hubbard II approximation satisfies particle-hole
symmetry [11]. In contrast to other methods, such as Kotliar–
Ruckenstein approximation of slave bosons or Gutzwiller’s
wavefunction approach [11], COM is exact in the atomic limit,
establishing an ideal framework for studying strongly correl-
ated regimes. However, Hubbard II approximation requires
self-consistency to establish the effect of electron hopping,
treated as a perturbation. Originally developed by Roth [12],
the composite operators (or Hubbard operators [13]) exactly
diagonalize the Hubbard Hamiltonian in the atomic limit.
They are a good choice to treat the hopping term t as a per-
turbation. The COM starts from Hubbard II approximation
and set-up a self-consistent scheme to compute the effect of
the hopping term.

We consider two sets of such self-consistency equations.
The first enforces charge-charge, spin-spin, and pair–pair cor-
relations using L Roth’s decoupling scheme, and the second
imposes the Pauli principle instead of correlations. We per-
form a numerical minimization of these two sets of equations.
The self-consistency equations enforcing the Pauli principle
yield two distinct solutions named COM1 and COM2. The
other sets of equations using Roth decoupling only exhibit one
solution, which is referred to as the Roth solution. The spec-
tral and magnetic properties of the Roth solution have been
studied in [14, 15]. Despite violating the Pauli principle [9],
the Roth solution shows a band structure in agreement with
quantum Monte–Carlo simulations [10]. In contrast, COM1
and COM2, which have been widely studied in [16] and [9],
exhibit a Fermi surface consistent with cuprate ARPES exper-
iments only under some approximations [17]. Furthermore,
some extensions of COM method to the t− J models have
been made in [18].

Although the self-consistency equations enforcing the Pauli
principle have been previously minimized with next-nearest
neighbor (NNN) hoppings [19], this is not the case for the Roth
decoupling. The latter has been studied with NNN hoppings
for a three-band Hubbard model in cuprates [20], but never
for the one-orbital Hubbard model.

Superconductivity has also been studied using the COM
[10]. Past studies indicate that the proximity to the Van Hove
singularity enhances SC within Roth minimization scheme
[21]. The enhancement of the density of the state associated
with this singularity allows electrons to form more pairs read-
ily. However, a detailed study comparing and contrasting dif-
ferent self-consistent solutions and including realistic hopping
parameters to model the cuprates is still lacking.

We aim to compare and contrast the solutions obtained
in previous studies using the COM, in order to benchmark
the results for a later study where we will break translational
invariance. We evaluate their physical consistency with exper-
iments in cuprates by testing the particle-hole symmetry and
the validity of the Luttinger theorem. This theorem states that
the enclosed volume by the Fermi Surface is proportional to
the electron density [22]. It is important to note that there is
no consensus on when this theorem is expected to be viol-
ated, although its violation is routinely observed [23–25].
Interestingly, it is always violated for this method. Our study
of Fermi Surfaces reveal that only Roth solution is close to the
non-interacting Fermi surface, but is enlarged because of the
violation of Luttinger theorem. Finally, we include the super-
conductivity with longer-ranged hoppings. The plan for the
rest of the paper is as follows: section 2 details the formalism
and self-consistency we use in the manuscript. In section 3, we
restrict to the nearest neighbor (NN) hoppings and compare
the solutions obtained by the different minimizations [10, 26]
while discussing their physical implications, particularly with
regard to particle-hole symmetry and the Luttinger theorem.
Finally, we allow for the superconductivity in the model, and
in the last section 4, we study the impact of the longer-ranged
hopping orders.

2. Composite operator formalism

Composite operators are introduced to solve the equations of
motion of composite Green’s functions (Green’s functions are
composed of two composite operators) exactly in some lim-
its. Since we are interested in a strongly correlated regime of
the Hubbard model, we introduce composite operators solv-
ing exactly the Hubbard model in the atomic limit (no hopping
term). This is a good starting point to treat the hopping term t
with a perturbation expansion.

2.1. Presentation of the method

We start by introducing the following composite operators

{
ξiσ = ciσ − ciσni σ̄
ηiσ = ciσni σ̄

(2)
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where σ̄ means we take a spin ↑ if σ =↓ and a spin ↑ if σ =↓.
These composite operators represent respectively the trans-
ition from an empty site i to a site filled with one electron of
spin σ, and the transition from a site i filled with an electron
of spin σ̄ to a doubly occupied state [16]. Indeed, applying ξiσ
to a state with an electron of spin σ at site i will remove this
electron, while applying ηiσ on a doubly occupied state on site
i will only let one electron of spin σ̄ on site i. We introduce the
following spinors

ψiσ =

(
ξiσ
ηiσ

)
. (3)

Hereafter, ψ1
iσ = ξiσ and ψ2

iσ = ηiσ denotes the first and
second component of the spinor at site i and with spin σ.

2.1.1. Atomic limit. To illustrate the interest of introdu-
cing these operators, we first consider the atomic limit
of equation (1): we put the hopping term t to zero. The
Hamiltonian is now local (ie electrons are not hopping any-
more and each site is independent) and is given by

Hloc = U
∑
i

ni↑ni↓ −µ
∑
iσ

niσ. (4)

We introduce the 2× 2 composite Green’s function matrix
at sites i and j, with spins σ and σ ′ and defined for an imaginary
time τ by

Slocijσσ ′ (τ,τ ′) = ⟨⟨ψiσ (τ) ;ψ†
jσ ′ (τ

′)⟩⟩loc (5)

where, for two operators X and Y,

⟨⟨X(τ) ;Y(τ ′)⟩⟩loc = θH (τ − τ ′)⟨{X(τ) ;Y(τ ′)}⟩loc (6)

where θH(τ − τ ′) is one if τ > τ ′ and zero otherwise
(Heaviside function). ⟨. . .⟩loc denotes the thermal average
taken with the Hamiltonian Hloc and {X(τ);Y(τ ′)} is the anti-
commutator of X and Y. Since we are at equilibrium we have
Slocijσσ ′(τ,τ ′) = Slocijσσ ′(τ − τ ′). By differentiating with respect
to time, we get the following equations of motion for the com-
posite Green’s function matrix

d
dτ

Slocijσσ ′ (τ) = δ (τ)δσσ ′

〈{
ψiσ (τ) ;ψ

†
jσ (0)

}〉
loc

+ δσσ ′⟨⟨[ψiσ (τ) ;Hloc] ;ψ
†
jσ (0)⟩⟩loc

(7)

where [A;B] is the usual commutator between two operators
A and B. We enforce a paramagnetic solution by adding δσσ ′

prefactor. The currents in the atomic limit are given by

Jlociσ (τ) =
d
dτ
ψiσ (τ) = [ψiσ (τ) ;Hloc] = Aψiσ (τ) . (8)

With

A=

(
µ 0
0 U−µ

)
. (9)

The equations of motion become

d
dτ

Slocijσσ ′ (τ)

= δ (τ)δσσ ′

〈{
ψiσ (τ) ;ψ

†
jσ (0)

}〉
loc

−A Slocijσ (τ) .
(10)

By time fourier transform we get

Slocijσσ ′ (ω) = δσσ ′
(
ω−A+ i0+

)−1
Ilociσ δij. (11)

With Ilociσ = ⟨{ψiσ;ψ†
iσ}⟩loc the normalizationmatrix and 0+

a small positive parameter used for analytic continuation since
we are working with Matsubara time τ . This matrix can be
explicitly computed. A bit of algebra leads to

Ilociσ =

(
1−⟨niσ⟩loc 0

0 ⟨niσ⟩loc

)
. (12)

We finally obtain

Slocijσσ (ω) = δijδσσ ′

(
1−⟨niσ⟩loc
ω−µ+i0+ 0

0 ⟨niσ⟩loc
ω−U+µ+i0+

)
. (13)

In the atomic limit the equations of motion can therefore
be closed. The solution is given in equation (11), and by using
the relation between composite and electronic operators ξiσ +
ηiσ = ciσ, we can deduce the electronic Green’s function

Gloc
ijσσ ′ (τ) = δσσ ′⟨⟨ciσ (τ) ;c†jσ ′⟩⟩loc

= δσσ ′
(
S11 loc
ijσ (τ)+ S12 loc

ijσ (τ)

+ S21 loc
ijσ (τ)+ S22 loc

ijσ (τ)
) (14)

where Snm loc
ijσ = ⟨⟨ψniσ(τ);ψmjσ(0)⟩⟩loc. Therefore we have

showed that the composite operators we introduced solve the
Hubbard model exactly at the atomic limit. The electronic
Green’s function can be directly recovered, allowing to extract
information such as the Fermi surface and the density of states.

2.1.2. General case. Let us consider the full Hamiltonian
equation (1) that includes both the local term Hloc and the
hopping term t. We consider the limit U≫ t and we build an
approximation from the atomic limit. From now on, ⟨. . .⟩ are
the thermal averages taken with the full Hamiltonian. We then
introduce

δJiσ = [ψiσ,H−Hloc] = Jiσ − Jlociσ (15)

where the current operator in the atomic limit is given by
equation (8) and Jiσ = [ψiσ,H] is the current operator taken
with the full Hubbard Hamiltonian equation (1). Because of
the tight-binding term, higher order Green’s functions will
appear in the equations of motion of the composite Green’s
function. We will not be able to solve the problem exactly
as in the atomic limit. We thus need to do an approxima-
tion to be able to obtain the composite Green’s function by
truncating the equations of motion. Indeed, let us consider
the composite Green’s functions 2× 2 matrix Sijσσ ′(τ) =
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δσσ ′⟨⟨ψiσ(τ);ψjσ ′(0)⟩⟩ with thermal average on the full
Hamiltonian. Its equations of motion can be written as

d
dτ

Sijσσ ′ (τ) = δσσ ′ (δ (τ)δijIiσ + θH (τ)Mijσ (τ)) (16)

where we introduced the normalization matrix I and the over-
lap matrix M respectively as

Iiσ =
〈{
ψiσ,ψ

†
iσ

}〉
= δij

(
1−⟨niσ⟩ 0

0 ⟨niσ⟩

)
Mijσ =

〈{
Jiσ,ψ

†
jσ

}〉
=

(
m11
ij m12

ij

m12
ij m22

ij

)
.

(17)

To solve the equations of motion for the composite Green’s
function matrix, we need to compute the I and M matrix.
We directly computed the I matrix. The current of the total
Hamiltonian is given by

Jiσ =
∑
l

Eilσψlσ + δϕiσ

Eilσ = Aδil+Pilσ.
(18)

The E matrix contains all the terms proportional to ψ, and
δϕiσ contains all terms which are not. The Amatrix appearing
in E is the contribution of the atomic limit terms. It is given
by

A=

(
µ 0
0 U−µ

)
. (19)

The P matrix appearing in E is defined by

Pijσ =
〈{
δJiσ;ψ

†
jσ

}〉
I−1
jσ . (20)

P is the contribution of the terms proportional to ψ in δJiσ.
With this rewriting, the M matrix is now given by the fol-

lowing expression

Milσ (τ) =
∑
j

Eijσ

〈{
ψjσ (τ) ;ψ

†
lσ

}〉
+
〈{
δϕiσ (τ) ;ψ

†
lσ

}〉
.

(21)

The first term is proportional to Sjlσσ ′ . However the second
term is not and will introduce higher-order Green’s function in
the equations of motion

d
dτ

Sijσσ ′(τ) = δσσ ′(δ(τ)δijIiσ +
∑
l

EilσSljσ(τ)

+ θH(τ)
〈{
δϕiσ(τ);ψ

†
lσ

}〉
.

(22)

An approximation is needed: we will assume that δϕiσ
is negligible. Therefore, after a time Fourier transform,
equation (22) becomes:∑

l

((
ω+ i0+

)
Id2δil− δσσ ′Eilσ

)
Sljσσ ′ = δσσ ′δijIiσ. (23)

One can perform a spatial Fourier transform and use trans-
lational invariance in order to have diagonal elements only in
the momentum space. Therefore, in Fourier space inverting
equation (23) leads to:

Skσσ ′ (ω)≈ δσσ ′
((
ω+ i0+

)
Id2 −Ekσ

)−1
Iσ (24a)

Jiσ (τ)≈
∑
l

Eilσψlσ (τ) (24b)

Ekσ ≈Mkσ (0)I
−1
σ . (24c)

These three equations are a direct consequence of the COM
approximation (neglecting δϕi in the U≫ t limit). The first
one has been derived from the equation of motion. The second
equation is the current from equation (18) and the last equation
is equation (21) at τ = 0(notice that Sijσ(τ = 0) = δijIiσ), after
a spatial Fourier transform in order to have only diagonal ele-
ments in momentum space using translational invariance.

In appendix A, this approximation is studied in depth and
we detail the physical consequences of neglecting δϕ.E acts as
an effective energy matrix. Note that equation (24b) is similar
to a Schrödinger equation for the composite operators. We can
also include higher order terms in the basis to go further in the
approximation. This has been done in [26].

The equations of motion of the composite Green’s function
only depend on the E and Imatrices under our approximation.
In order to perform a self-consistent scheme, we introduce the
2× 2 correlation function matrix

Cijσ = ⟨ψiσψ†
jσ⟩. (25)

We want to find an expression ofCijσσ ′ as a function of the
eigenvalues of theEmatrix.We use the spectral representation
to get

Cijσ =

ˆ
dωd2k ei k(ri−rj) (1− fD (ω))

(
− 1
π

)
Im(Skσ (ω)) .

(26)

With fD = 1
Exp(βω)+1 the Fermi Dirac distribution. From there,

we can use equation (24a) to apply the residue theorem on S
and express it as a function of the eigenvalues of the E matrix
(proof in appendix B)

Skσ (ω) =
2∑

a=1

κa
kσ

(ω− ϵak + i0+)
. (27)

With

κa
kσ =

(−1)a+1Com(ϵakσId2 −Ekσ)
T Iσ(

ϵ1kσ − ϵ2kσ
) (28)

where Com(A) is the cofactor matrix of A, and A ′ is the mat-
rix that results from deleting row i and column j of A. In these
equations, a ∈ {1,2} and ϵ1k and ϵ2k are the two eigenvalues
of the energy matrix Ekσ. Finally, combining equations (26)
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and (27) leads to an expression of the correlation function as
a function of ϵa

Ckσ =
1
2

(
1+ tanh

βϵ1kσ
2

)
κ1
kσ

1
2

(
1+ tanh

βϵ2kσ
2

)
κ2
kσ

(29)

where β = 1
kBT

comes from the Fermi Dirac distribution. To
summarize, from the M and I matrices we can obtain the
energy matrix E. We showed that its eigenvalues are directly
related to the composite correlation function Cijσσ . To close
the system, in the next section we explicitly compute the M
and I matrices and express them as a function of the correla-
tion functions.

2.2. Self-consistent scheme

We can compute the algebra associated with our composite
operators defined in equation (2). We assume spin rotational
symmetric solutions, allowing us to have δσσ ′ in our Green’s
and correlation functions. This implies

⟨ni↑⟩= ⟨ni↓⟩=
ni
2
. (30)

We compute explicitly the currents

j1iσ =−µξiσ −
∑
l

til
(
clσ − ni σ̄clσ + Ssign(σ̄)

i clσ̄ + sign(σ̄)∆ic
†
lσ̄

)
j2iσ =−(µ−U)ηiσ +

∑
l

til
(
−ni σ̄clσ + Ssign(σ̄)

i clσ̄ + sign(σ̄)∆ic
†
lσ̄

).
(31)

With S−i = c†i↓ci↑, S
+
i = c†i↑ci↓ and ∆i = ci↑ci↓. We take

the following convention: sign(↑) = 1 and sign(↓) =−1.
The coefficients of the M matrix are (some details of the

algebra can be found in appendix C):

m11
ij =−µ

(
1− ni

2

)
δij− δij

∑
l

tα1
ileil− tα1

ij

(
1−

ni+ nj
2

+ pij

)
m12
ij = δij

∑
l

tα1
ileil− tα1

ij

(nj
2
− pij

)
m22
ij =−(µ−U)

ni
2
δij− δij

∑
l

tα1
ileil− tα1

ijpij. (32)

With

eij = ⟨ξjσξ†iσ⟩− ⟨ηjση†iσ⟩+ ⟨ξiση†jσ⟩− ⟨ξjση†iσ⟩
pij = ⟨niσnjσ⟩+ ⟨S−i S

+
j ⟩− ⟨∆i∆

∗
j ⟩.

(33)

α1
il =

til
t is equal to 1 if i and l are NNs, and 0 otherwise.

The parameter e contains correlations between neighboring
composite operators and will mainly re-normalize the chem-
ical potential because it always appear in M in front of a δij.
The p parameter contains charge-charge, spin-spin and pair-
pair correlations and will affect the bandwidth.

We now assume translational invariance and lattice inver-
sion and rotation (C4) symmetries in order to take n, p and e

as constants. Under these assumptions the coefficients of the
M matrix become

m11
ij =−µ

(
1− n

2

)
δij− δij4te− tα1

ij (1− n+ p)

m12
ij = δij4te− tα1

ij

(n
2
− p
)

m22
ij =−(µ−U)

n
2
δij− δij4te− tα1

ijp.

(34)

And the E matrix defined by equation (24c) is given by

Eij =

( 2
2−nm

11
ij

2
nm

12
ij

2
2−nm

12
ij

2
nm

22
ij

)
. (35)

This matrix is diagonalizable and equation (29) allows to
express the correlation function Cijσ = ⟨ψiσψ†

jσ⟩ as a function
of its eigenvalues. Thus in order to close the system and be
able to solve it self-consistently we need to express the para-
meters in the M matrix as a function of the correlation func-
tions. A diagram of the self-consistent loop is given in figure 1
for clarity.

Since e and n are one-body parameters, therefore they can
directly be expressed as

n= 2
(
1−C11

0 − 2C12
0 −C22

0

)
e= C11

ij −C22
ij .

(36)

In this equation C0 = Cii are constants by translational
invariance. and C= Cij = Ci−j is treated as e and p using lat-
tice inversion and rotation (C4) symmetry, so it is also a con-
stant but different from C0.

Expressing p as a function of the correlations functions
is not so direct since p is composed of two-bodies operators
while e, n and C are one-body operators. A full detailed com-
putation of p using Roth’s decoupling scheme can be found in
appendix D.

Finally, the expressions for the parameters appearing in M
and I as a function of the Cnmij = ⟨ψni (ψmj )†⟩ are the following

e= C11 −C22

n= 2
(
1−C11

0 − 2C12
0 −C22

0

)
p= n2

4 − ρ1
1−ϕ2 − ρ1

1−ϕ − ρ3
1+ϕ

. (37)

With
ϕ =− 2

2−n

(
C11
0 +C12

0

)
+ 2

n

(
C12
0 +C22

0

)
ρ1 =

2
2−n

(
C11 +C12

)2
+ 2

n

(
C22 +C12

)2
ρ3 =

4
n(2−n)

(
C11 +C12

)(
C22 +C12

) . (38)

With the self consistent equations equation (37) on the para-
meters n, e and p we just closed the system. In figure 1, we
represented the self-consistency pattern. Starting from initial
guess for e, n and p, we compute theM and Imatrices. We can
then obtain E and diagonalize it. Then, using equation (29),
we can express the correlation functions from its eigenvalues.
Finally, using the self consistent equation (37), we compute
again e, p and n.We stop when f(x)− x< δ where x= (e,p,µ)
and f are given in equation (37). We chose δ = 10−8. Once the
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Figure 1. The self consistency loop. Our hypothesis on the currents allows us to get a relation between theM and I matrices
(equation (24c)). The energy matrix E is diagonalizable. We can express correlation functions as a function of its eigenvalues with
equation (29). Then, we can rewrite theM and I matrices in term of these correlations functions and do a self-consistency (equation (37)).

system converges, we use the parameters (e,p,µ) to compute
the electronic Green’s function

Gk (ω) = S11k (ω)+ S12k (ω)+ S21k (ω)+ S22k (ω)

=
2∑
l=1

(
κl
)11
k
+
(
κl
)12
k
+
(
κl
)21
k
+
(
κl
)22
k

ω− ϵlk+ i0+
(39)

where the κ act as spectral weights and are defined in
equation (28) and ϵ1, ϵ2 are the eigenvalues of the E matrix,
and can be built from the parameters (e,p,µ).

3. Nearest-neighbors study

This self-consistent scheme has a drawback. With the numer-
ical solution of the self consistent equations we obtain a non
vanishing C12

0 . However, analytically this correlation function
is zero because of the Pauli principle.

C12
0 = ⟨ξiση†iσ⟩

= ⟨ciσc†iσniσ̄ + ciσc
†
i σ̄c

†
iσci σ̄ni σ̄⟩

= ⟨−ciσ
(
c†i σ̄

)2
c†iσ (ci σ̄)

2⟩

= 0.

(40)

This numerical violation of the Pauli principle gets smaller
as U becomes larger than t [9].

It is possible to solve a different set of self-consistent
equations by imposing C12

0 = 0 [26] as the third self consistent
equation instead of p in equation (37). From now on, we will
call the minimization with p the ‘Roth minimization’ since it
uses the decoupling formalized by L Roth and the minimiza-
tion with C12

0 the ‘Pauli minimization’.

In the following section we consider both minimizations
and discuss the bands and Fermi surfaces obtained for each
solution we found. We compare to the non interacting tight-
binding model, and study the particle-hole symmetry, the
Luttinger theorem as well as superconductivity.

3.1. Comparison of Pauli and Roth minimization

By varying the initial conditions and using a minimizer, we
isolate two distinct solutions with the Pauli minimization and
one unique solution with the Roth minimization. Following
notations from [9], we call these three solutions COM1,
COM2, andRoth solutions. In figure 2, we plot the bands along
high symmetry points for these solutions.

These bands correspond to the eigenvalues of the E mat-
rix and act as the poles of the electronic Green’s function
(cf equation (39)). The solutions have two bands associated
with the two eigenvalues of the energy matrix, split by the
interaction strength U. The COM2 and Roth solutions exhibit
Mott insulator physics at half-filling as the chemical poten-
tial resides between the two bands. In contrast, contrary to the
conventional understanding, the COM1 solution represents a
metallic phase at half-filling for t= 1, U= 8t. Consequently,
COM1 cannot be deemed a physically viable solution for the
Hubbard model in strong coupling regimes.

The COM2 solution is very different from the non interact-
ing case (figure 2(b)), but always presents two holes pockets,
leading to two Fermi Surfaces in figure 3. This is unexpec-
ted, as this has never been observed by ARPES experiments
for strongly correlated materials such as cuprates where this
treatment of the Hubbard model is relevant. However, in [26]
the basis has been extended to take into account dynamical
corrections of the self-energy (cf appendix A for details). The
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Figure 2. Bands along high symmetry points with t= 1,U= 8t,T= 0,n= 0.8. The non interacting (NI) band (red line) is splitted into 2
Hubbard bands obtained for every solutions with the composite operator method (blue lines). Therefore at half filling the chemical potential
lies in between the two Hubbard bands and we get a Mott insulator. (a) One of the two solutions obtained with Pauli minimization (using
equation (40) instead of the p parameter in equation (37)). It has no renormalization from the interaction since the shape of the Hubbard
bands is similar to the non-interacting band. (b) The second solution obtained with the Pauli minimization. It has a minimum at M = (π,π)
and exhibits two hole pockets. The two dispersions obtained from the Pauli minimization we obtain are analogous to [9] (c) The solution
obtained with the Roth minimization. We observe a flattening of the bands around X = (π,0).

Figure 3. Fermi Surfaces obtained from the spectral function
(imaginary part of equation (39)) at ω= 0, associated to the bands
depicted in (2). The parameters are t= 1,n= 0.8,U= 8t and T = 0.
Top left: COM1, top right: COM2, bottom left: Roth, bottom right:
non interacting (tight binding).

lifetime of the second hole pocket is then computed and hap-
pens to be small, which can explain why it is not observed
experimentally. Finally, the Roth solution (figure 2(c)) has a
very different shape from the non-interactive solution. It also
has the advantages of presenting only one hole pocket and a
maximum at (π,π).

Note we plotted the bands we obtained at half filling for
the Roth solution in appendix E, on figure 17. Close to half
filling (around 3% hole doping), the Roth solution exhib-
its a second small hole pocket at (π,π) (in appendix E we
plot the bands and Fermi surface of Roth decoupling at 2%

hole doping in figure 16). This second hole pocket around
(π,π) may be the consequence of our paramagnetic assump-
tion ⟨ni↑⟩= ⟨ni↓⟩= n

2 . It appears around half filling where we
know the antiferromagnetic phase dominates [27]. The wave-
vector (π,π) is also associated with antiferromagnetism, so
this second hole pocket might be an instability of the system
because we neglected it.

For comparison, in the Hubbard I approximation (the first
and simplest approximation developed by Hubbard in [8]) a
simple factorization procedure of the 2-bodies Green functions
is used. According to [9], Hubbard I approximation in the com-
posite operator framework would be equivalent to set

e= 0

p=
n2

4

. (41)

It is known that the Hubbard I approximation does exhibit
a Mott-insulator transition as long asU ̸= 0 (see [8]). However
this approximation only treat the currents partially compared
to the Composite operator Method. Therefore the compos-
ite operator method is a more refined approximation than
Hubbard I.

It is also instructive to consider the density of states. In
figure 4, we plot it as a function of energy for several dop-
ing with the Roth solution. Only Roth solution is considered
because its Fermi surface is the closest to the non-interacting
one, but similar behaviors are expected for COM1 and COM2.
The density of states has been computed from the spectral
function using the following formula

D (ω) =
1
N2
k

Nk∑
kx,ky=1

(
− 1
2π

)
Im(G(k,ω)) (42)

where Nk denotes the number of considered points for
sampling kx and ky. At half filling we do not have any states
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Figure 4. Density of states in energy with parameters t= 1,U= 8t and T = 0, using Roth minimization with nearest neighbors. From top to
bottom the filling is respectively: n = 0.75, 0.88, 0.93, 0.98, 1 (half filling), 1.07 and 1.25. The blue line on each panel corresponds to the
chemical potential.

Figure 5. Fermi Surface obtained with Roth solution, at n = 0.7
and n = 0.9. The chemical potential or the Fermi energy coincides
with the Van Hove singularity for some specific electron density
(here n = 0.8). Below the singularity the Fermi surface is centered
around (0, 0), and above the singularity it is centered around (π,π).

at the Fermi energy, since the model leads to an insulator for
this doping. Around the gap two peaks can be distinguished.
For every doping except half-filling, a third peak is observ-
able and corresponds to the Van Hove singularity. It is asso-
ciated to a flattening of the bands, meaning there are a lot of
states associated to this energy. In term of Fermi surface for
a square lattice the Van Hove singularity corresponds to the
doping below which the Fermi surface is centered on (0, 0)
and above which it is centered on (π,π), as shown in figure 5.
On figure 2, this flatness of the bands can be found for every
solutions around (π,0). The Fermi energy is exactly at the Van
Hove singularity for the Roth solution at n = 0.8 or n = 1.2.
On figure 2, the Roth solution is plotted exactly at this doping
and we can check the flat band around (π,0) lies exactly at the
Fermi energy (corresponding to the dotted black line).

Regarding the Mott transition, we see at half filling no qua-
siparticle peak is observed around the Fermi energy. Instead,
the density of states is closer to what was observed with
determinantal quantum Monte Carlo simulation (DQMC) in

[28]. DQMC is a stochastic algorithm which allows under
some limitations to perform direct studies of complex con-
densed matter problems. As predicted by DQMC in [28], at
high doping we have only one peak corresponding to a Van
Hove singularity (Fermi liquid behavior), and when approach-
ing the Mott transition a transfer of spectral weight occurs,
changing the density of states, without creating a quasiparticle
peak at the Fermi energy at half filling. Therefore in this
regime where U≫ t the density of states of the lower and
upper Hubbard bands are the only contribution.

3.2. Particle-hole symmetry and Luttinger theorem

3.2.1. Particle-hole symmetry. It is well known that the
Hubbard model with NN hoppings only is particle-hole sym-
metric. This symmetry exchanges particles and holes with the
transformation

ciσ → (−1)i c†iσ c†iσ → (−1)i ciσ. (43)

We could also have taken another convention for this trans-
formation without any (−1)i, as long as we change t to -t
to keep the Hamiltonian invariant. Applied to the composite
operators one can show that it becomes

ηiσ → (−1)i ξ†iσ ξiσ → (−1)i η†iσ. (44)

Let us study the behavior of the parameters µ, p and e under
the particle-hole symmetry. With the paramagnetic assump-
tion, the particle-hole transformation is rewritten

⟨c†iσciσ⟩ → ⟨ciσc†iσ⟩ ⇔
n
2
→ 1− n

2
. (45)
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Figure 6. (a)–(c) Parameters as a function of doping for each solution. The dash lines in the electron dope (n> 1) region are the
particle-hole symmetric (46) of their equivalent in the hole doped region. Bottom right: area of Fermi surface as a function of doping. It is
computed using equation (49). We observe a violation of Luttinger theorem for all solutions. All of these figures are obtained at T = 0K
(β ≈ 105t) and U= 8t.

Hence applying the particle-hole transformation on electronic
filling gives n→ 2− n. The transformation changes p and e
(equation (33)) as follow (details are given in appendix G)

e(2− n) =−e(n)
p(2− n) = p(n)+ (1− n)

µ(2− n) = U−µ(n) .

(46)

The relation of the chemical potential can be obtained by
using the fact that the Hubbard Hamiltonian must stay invari-
ant under this symmetry for NN hoppings. Finally, applying
this transformation on the composite bands ϵ1 and ϵ2 leads to

ϵ1k (2− n) =−ϵ2k+(π,π) (n)

ϵ2k (2− n) =−ϵ1k+(π,π) (n) .
(47)

In figures 6(a)–(c) we plot e, p and µ as a function of doping
for the three solutions we studied (COM1, COM2 and Roth).
The dashed-lines on the electron-doped region is the value
the parameter must have to satisfy the particle-hole relations
equation (46). We see that particle-hole symmetry is respec-
ted for every parameters for the three solutions. The chemical
potential presents a jump of the order of U at half filling for the
COM2 and Roth solutions. This is because the lower Hubbard
band is filled and the upper Hubbard band starts to be occupied
at half filling. COM1 does not exhibit this feature.

We obtain a different result from [9]. It is possible to have
a particle-hole symmetric solution which violates Pauli prin-
ciple. This is indeed the case of the Roth solution which has a
non vanishing C12

0 despite the fact it is zero analytically. The
solution is particle-hole symmetric as long as C12

0 is not put
to zero by hand in the self-consistent equations it must appear
both in the equation of n and in the ϕ term in the equation
of p.

3.2.2. Luttinger theorem. We now turn our attention to
the Luttinger theorem. This theorem states that the volume
enclosed by the Fermi surface is proportional to the electron
density [29]. The regime of validity of Luttinger theorem is
still a very debated topic [23–25]. To compute the volume
enclosed by the Fermi surface, we need to remember the rela-
tion between the composite and electronic Green’s function
equation (39) The κ act as spectral weights of the electronic
Green’s function. The Fermi surface is given by the imaginary
part of this electronic Green’s function at the Fermi energy

Ak (ω = 0) =− 1
π
Im(Gk (ω = 0))

=
∑
l

[(
κl
)11
k
+
(
κl
)12
k
+
(
κl
)21
k
+
(
κl
)22
k

]
δ
(
ϵlk
)
.

(48)
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Figure 7. Luttinger violation as a function of electron density. The
parameters are with β = 2t and U= 10t. The solutions are
proportional to the electron density only asymptotically (the curves
and the black dotted line ‘FS = n’ associated to Luttinger theorem
are not parallel). The system is in a ‘Luttinger breaking phase’.
These behaviors are similar to what was obtained in [28] from
Determinantal Monte Carlo.

Thus, the Fermi contour is the set of points associated to a
vanishing ϵlij. Therefore a way to compute the enclosed area
AFS is simply by considering the following equation

AlFS =
1
N2

N∑
kx,ky=1

θH
(
ϵlk
)
. (49)

Note in this last equation we do not have the sum over the
two eigenvalues. Indeed, one must only consider the bands
that are not completely filled or empty, so l has to been
chosen accordingly. For instance, in the hole-doped regime the
upper band is going to be empty, so l must correspond to the
eigenvalue of the lower upper band. Figure 6(d) reveals that
the Luttinger theorem is violated. This violation is analogous
to what was observed by [28] using determinantal quantum
Monte–Carlo simulations. In figure 7, we plot Luttinger viola-
tion observedwith the same parameters as in [28] (U= 10t and
β = 2). We obtain analogous results: while none of the solu-
tions we considered are precisely similar to what was observed
with determinantal quantum Monte–Carlo, we have the same
overall behavior. Our curves are not parallel to the black dotted
line representing the Luttinger theorem (where Fermi surface
area equals electron density). The system is in a ‘Luttinger
breaking phase’. Osborne et al [28] claimed this phase is a
consequence of a topological order because of the proximity
to the Mott transition. Contrary to their results, Luttinger the-
orem with composite operators seems broken at every doping
and verified only asymptotically at maximum and minimum
doping.

3.3. Superconductivity and Van Hove singularity

3.3.1. Method. Superconductivity can be studied by extend-
ing the initial basis. The new spinor ψ to consider is

ψ =


ξiσ
ηiσ
ξ†i σ̄
η†iσ̄

 . (50)

The method described before remains the same except for
the I and M matrix which are now 4× 4 matrices. Since we
are interested in cuprates, we consider only the case of d-wave
superconductivity. Therefore, ⟨ci↑ci↓⟩= 0. The expression of
the M and I matrices can be found in appendix C. It is import-
ant to note that a new superconducting parameter, γijθij will
now appear in the M matrix.
γij is a d-wave coefficient such that γi,i±δy =−γi±δx,i = 1

and δx/δy is the lattice constant along x/y axis. The parameter
θ is given by

θij = ⟨ciσciσ̄njσ⟩. (51)

θij can be expressed in several symmetry channels. For the
sake of giving an intuition of this, we apply Wick theorem on
θij (this cannot be done since Wick theorem is only valid for
weak correlations but it will give an insight of the physics)

θij = ⟨ciσciσ̄⟩njσ −⟨ciσc†jσ⟩ci σ̄cjσ
+ ⟨ciσcjσ⟩ciσ̄c†jσ −⟨ci σ̄cjσ⟩ciσc†jσ.

(52)

Since we impose d-wave symmetry by mean of the d-wave
γij factor in equation (89), all the symmetry channels except
the one associated to the d-wave symmetry ⟨ci σ̄cjσ⟩ will be
assumed to be negligible. θij can therefore been seen as an
anomalous d-wave superconductivity mean field parameter.
Since we consider singlet pairing, we have

⟨ciσci σ̄njσ⟩= ⟨c†i σ̄c
†
iσnjσ⟩. (53)

We can still apply translational invariance to treat p, n and e
as a constant. We can do the same for θ, but because of d-wave
symmetry θ is not the same along the x and y axis (θx =−θy).
We will therefore only average on one axis in order to have a
non zero θ. The self-consistent equations remain the same for
n and e since they are only one body correlations. However
extending the basis changes the self-consistent equations of
pij and θij. We obtain (cf appendix F for details){

p= n2

4 − ρ1+ϕρ2
1−ϕ2 − ρ1−ρ2

1−ϕ − ρ3
1+ϕ

θ = ζ
1+ϕ

. (54)

With

ϕ =− 2
2−n

(
C11
0 +C12

0

)
+ 2

n

(
C12
0 +C22

0

)
ρ1 =

2
2−n

(
C11 +C12

)2
+ 2

n

(
C22 +C12

)2
ρ2 =

2
2−n

(
C13 +C14

)2
+ 2

n

(
C23 +C24

)2
ρ3 =

4
n(2−n)

(
C11 +C12

)(
C22 +C12

)
ζ = 2

2−n

(
C11 +C12

)(
C13 +C14

)
+ 2

n

(
C12 +C22

)(
C23 +C24

)
. (55)

Let us note that this decoupling is not unique. Several
choices can be made. These choices give similar results

10



Figure 8. Bands and Fermi Surface with superconductivity at t= 1, U= 8t and T = 0. The plots on the left correspond to the Roth solution
at n= 0.8, whereas the plot on the right correspond to COM2 at n= 0.9. These are the respective doping at which superconductivity is
maximum. We observe a doubling of the bands associated to the doubling of the basis. The insets on the top plots correspond to a zoom
around zero energy of the bands: we see a gap opening at k = (π,0). There is no gap opening between k = (0, 0) and k = (π,π) because of
d-wave symmetry. Both Fermi surfaces on the bottom plots have a loss of spectral weight around k = (π,0).

but tend to overestimate or underestimate some quantities,
depending onwhich regimewe consider [4]. Except for the lar-
ger M and I matrices and these changes in the self-consistent
equation, everything else remains the same. The expression
of κ from equation (28) remains unchanged, but will involve
4× 4 matrices.

3.3.2. Results. On figure 8 we plot the bands for the Roth
and COM2 solutions. There is a doubling of the bands due
to the particle-hole symmetry of the basis: we have four dis-
tincts eigenvalues ϵl of the E matrix verifying the property
ϵ1 =−ϵ3 and ϵ2 =−ϵ4. Beside this doubling, the bands are
almost unmodified compared to what we have without super-
conductivity. Only one difference can be seen: a gap open-
ing at (π,0). We performed a zoom around zero energy in
order to see the gap better on the insets. The presence of the
gap also appears on the Fermi surface: there is less weight
near the (π,0) compared to what we had in figure 2 without
superconductivity.

On figure 9(a), we plot the parameter θ as a function
of the electron density n for the COM2 and the Roth solu-
tions. The dashed-line corresponds to the usual d-wave super-
conducting order parameter ∆d

ij = ⟨ciσcj σ̄⟩. We can recover

it directly from the correlation functions involving nearest-
neighbors Cnmij = ⟨ψni (ψmj )†⟩ using the following equation

∆d
ij = C13

ij +C14
ij +C23

ij +C24
ij . (56)

The maximum of θ and ∆d are at the same electron dens-
ity. For the Roth solution this corresponds to n= 0.8, while for
the COM2 solution it is around n = 0.9. We already showed
that n = 0.8 corresponds to the Van Hove singularity for the
Roth solution in the discussion of figures 4 and 5. This is in
agreement with other studies [10, 21]. We claim the same phe-
nomenon occurs for the COM2 solution. In figure 8 we plotted
the bands and Fermi surfaces for the COM2 solution at n= 0.9
where superconductivity is maximum. Beside the gap open-
ing, the band for COM2 exhibits some flatness at (π,0) (it is
at least flatter than the Roth solution) and its Fermi Surface is
almost diamond-like. We justified this claim by plotting the
density of states at the Fermi energy as a function of elec-
tron density on figure 9(b). Let us note we did not considered
superconductivity to compute this density of states (in order
to see the Van Hove singularity): this is why we do not have
any superconducting gap. The density of states was computed
using equation (42) at ω= 0. The maximum of the density of
states can be seen at n = 0.9 for the COM2 solution. For the
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Figure 9. (a) Anomalous superconducting mean field parameter θ as a function of doping for Roth minimization and Pauli minimization
(COM2 solution). θ satisfy particle-hole symmetry in both cases. The dashed lines corresponds to the d-wave superconducting order
parameter∆d. (b) Density of states at the Fermi energy with no superconductivity. We see a clear correlation between enhancement of the
density of states and superconductivity. θ and∆d are maximum at the Van Hove singularity. It lies at n = 0.8 for Roth and around n = 0.9
for COM2, as shown in figure 8.

Roth solution a maximum can be found near half-filling but
this maximum is associated with the extremum of the band and
does not improve superconductivity because it is too close to
half-filling. Another maximum is found at n= 0.8 and corres-
ponds to the flatness at (π,0) we already associated this with
the Van Hove singularity. This is in agreement with our phys-
ical intuition: a high density of states means there are a lot of
available electrons available to form Cooper pairs.

We checked that the θ parameter also verifies the following
particle-hole symmetry

θ→ θ∗. (57)

In order to satisfy particle-hole symmetry, there must be
another maximum of θ, therefore another Van Hove singular-
ity in the electron doped regime. On figure 9(b), we indeed
see another peak both for superconductivity and the density of
states in the n> 1 area. They correspond to the particle-hole
symmetric of the peaks in the hole doped region.

In this method, the gap opening observed on the bands in
figure 8 is of the order of ∆d, as it is expected. The value
of θ affects both superconductivity and the density n, since
θ involves both quantities.

4. Further hoppings study

We now want to consider the effect of higher hopping terms
in order to get closer to more realistic materials. We want to
see if the results we had with NNs hoppings on the bands,
the validity of the Luttinger theorem and superconductivity are
modified by further hoppings. Including at least NNNs in the
model is enough to break the particle-hole symmetry. We will
only consider the Roth solution in this section, since COM2
and COM1 solutions have been studied with NNNs in [19],
and Roth presents Fermi surface closer to what is observed by
ARPES for cuprates.

Figure 10. Square lattice with the considered hopping. We will
consider long ranged hoppings up to t5. The associated values of
these hoppings can be found in table 1.

4.1. Effect of further NNs and bands analysis

From now on we will consider four different sets of tight-
binding parameters all corresponding to a square lattice as in
figure 10.

These tight-binding parameters correspond to cuprates
Bi2212 and LSCO, which are strongly correlated. Their val-
ues, taken from [30], are given in table 1. They are such that
the energy for a tight binding model of a square lattice is given
by

ϵtb (k) = 2t(cos(kx)+ cos(ky))

+ 4t2cos(kx)cos(ky)

+ 2t3 (cos(2kx)+ cos(2ky))

+ 4t4 (cos(kx)cos(2kx)+ cos(2kx)cos(ky))

+ 4t5cos(2kx)cos(2ky)

(58)

12



Figure 11. Bands renormalization using Roth minimization with hoppings up to order 5. The tight bindings parameters are taken from [30]
and are given in table I. The red line is the non-interactive, tight binding dispersion. We are at 20% hole doping.

In the following we will normalize every plots so we have
t = 1 (we will divide every tight binding parameter by t in
absolute value).

In this section we include hoppings up to t5 and study
the bands and Fermi surface behavior. With additional hop-
ping terms, only the expression of the matrix M changes.
In addition to the α1

il parameter appearing in equation (32)
higher hopping terms will appear in the M matrix. It
becomes

m11
ij =−µ

(
1− ni

2

)
δij−

N∑
k=1

t

×

[
αkij

(
1−

ni+ nj
2

+ pij

)
+ δij

∑
l

αkileil

]

m12
ij =

N∑
k=1

t

[
αkij

(nj
2
− pij

)
− δij

∑
l

αkileil

]

m22
ij =−(µ−U)

ni
2
δij+

N∑
k=1

t

[
αkijpij− δij

∑
l

αkileil

]
(59)

where

αNil = 1 if i and l are

N−1times︷ ︸︸ ︷
next-... -nearest neighbour

αNil = 0 Otherwise
.

(60)

Each new hopping considered adds a term in the tight-
binding Hamiltonian which is then added in theMmatrix. The
parameters p and e depend on i− j, so we should make a dis-
tinction between e1ij with i and jNNs, e

2
ij with i and j NNN. . . e

n
ij

and pnij will be associated with their corresponding hopping as
in figure 10. Translational invariance still allows us to treat
e1, e2, . . .,e5, p1, p2, . . .,p5 as constants. Correlation functions
Cij = ⟨ψi;ψ†

j ⟩ are at different sites too, so we will also have to
make a distinction in the self-consistent equations betweenC1

for NN, C2 for NNN and so on.
Figure 11 presents the bands we obtain for Roth solutions

for the four sets of tight-binding parameters in table 1. In
figures 12 and 13 we plotted respectively the Fermi surfaces

13



Table 1. Values of the four tight bindings we are going to consider. tb1 is based on an ARPES fit of Bi2212. tb2 corresponds to the bonding
surface of Bi2212, tb3 is a modified version of tb2 to get a flatter band and tb4 corresponds to underdoped LSCO.

t t2 t3 t4 t5

tb1 −0.2956 0.0818 −0.0260 −0.0280 0.0255
tb2 −0.3399 0.1184 −0.0397 0.0086 0.0006
tb3 −0.2941 0.0731 0.0048 −0.0325 0.0035
tb4 −0.3912 0.0370 −0.0294 −0.0350 −0.0087

Figure 12. Fermi surfaces renormalized by the composite operator methods using Roth minimization with the parameters of [30]. We are at
20% hole doping. Top left: tb1, top right: tb2, bottom left: tb3, bottom right: tb4.

Figure 13. Non interacting (NI) Fermi surfaces for the parameters of [30] at 20% hole doping. Top left: tb1, top right: tb2, bottom left: tb3,
bottom right: tb4.

obtained with the method and the Fermi surfaces of the
non-interactive tight-binding dispersions (corresponding to
equation (58)).

In the hole doped regime, the Fermi surface we obtained
from the Roth solution has the same general shape as the non
interacting Fermi surface. The composite operators method

produces Fermi surfaces that appear to be smaller/larger than
the tight-binding ones. This is in agreement with the viol-
ation of the Luttinger theorem observed with NN hopping,
and indicates that it is still violated with further hoppings. We
checked the opposite situation is accordingly observed in elec-
tron doped area: the Fermi surface obtained with the method
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Figure 14. (a)–(c) Parameters as a function of doping for each tight binding with next nearest neighbors. The circles corresponds to p1 and
e1 (NN) while the squares corresponds to p2 and e2 (NNN). (d) Luttinger violation for each tight binding.

is at a lower doping than the non interacting one. In the fol-
lowing we study the particle-hole symmetry and the Luttinger
theorem violation with NNNs.

4.2. Particle-hole symmetry and Luttinger theorem with
further neighbors

For the sake of simplicity we restrict ourselves to NNNs in
this part. In order to keep the full Hamiltonian invariant under
particle-hole symmetry the following relation is needed

t2 →−t2. (61)

This is because the hopping term of the Hamiltonian∑
ij tijc

†
iσcjσ transforms into

∑
ij tij(−1)i+jciσc

†
jσ. For i and

j NNN we have (−1)i+j = 1. We obtain −
∑

⟨⟨i,j⟩⟩ t2c
†
jσciσ,

which has an additional minus sign, breaking the symmetry
unless t2 changes its sign with the transformation.

Hence, we know that at least NNNs will break particle-hole
symmetry (because t2 is an external parameter that will always
keep the same sign, therefore we do not verify equation (61)).
The particle-hole transformation works the same for n and µ

n→ 2− n

µ→ U−µ.
(62)

The main difference with the nearest-neighbors case comes
from the necessity to differentiate the e and p parameters
depending on the considered hopping. We already know the
transformation for p1 and e1. The only difference for p2 and
e2 is (−1)i+j = 1. p2 will not be affected by the (−1)i+j

coming from the transformation because it involves only
two bodies operators. Thus only e2 has an additional minus
sign under the transformation, and we obtain the following
relations

p1 → 1− n+ p1

p2 → 1− n+ p2

e1 →−e1

e2 → e2.

(63)

In figures 14(a)–(c) we plot the parameters µ, e and
p as a function of doping for the four considered tight-
binding parameters of table 1, only considering t and t2.
Parameters e2 and p2 indeed break the particle-hole sym-
metry from equation (63). The chemical potential, as well
as e1 and p1 behave as in the NN case. We also checked
that equation (63) is respected if we impose t2 →−t2 when
n→ 2− n.
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Figure 15. (a) Anomalous superconducting order parameter θ as a function of doping for the four sets of tight bindings parameters with
Roth minimization. The dashed line corresponds to the usual d-wave superconducting order parameter we rebuilt from the correlation
function. We are at U= 8t. (b) Density of states (with no superconductivity in order to see the peaks) at the Fermi energy. The 2 peaks
corresponds to the 2 Van Hove singularity in hole and electron doping respectively. To illustrate this the bottom plots (c) and (d) are the
bands at the Van Hove singularity with tight binding parameters tb3 at n = 0.6 respectively with: (c) no superconductivity, where we clearly
see the flat band associated to Van Hove singularity (d) with superconductivity, where we see on the zoom in the inset the gap of the
order of ∆d.

Finally we can again study the Luttinger theorem. In
figure 14(d), the area of the Fermi surface is plotted as a func-
tion of electron density. Interestingly we observe an analog-
ous behavior as in the NN case. The Luttinger violation does
not seem to be modified by NNNs hoppings and is barely
affected whenwemodify tight-binding parameters. As already
mentioned before, the Luttinger theorem is strongly violated
around half filling and is recovered further away. This confirms
why in the previous section the Fermi surfaces seemed to be at
a higher doping than the electron density we considered when
we are in the hole doped regime (and conversely, at a lower
doping in the electron doped regime).

4.3. Superconductivity, Van Hove singularity and density of
states

Superconductivity can also be included in the model with
more hoppings. In this section we include hoppings up until
t5. We assume again a d-wave symmetry and only consider

nearest-neighbor pairing. As before, the M and I matrices
become 4× 4 and have the same symmetries as the NNs case.
The I matrix is independent of t and t’ and is thus the same as
before. The main difference is that the coefficients m11

ij , m
12
ij

and m22
ij are now given by equation (59). m13

ij stays identical
to its expression in the NN case since we only consider super-
conductivity for NNs. Therefore m13

ij is proportional to the θ
parameter, defined the same way as before (θij = ⟨ci↑ci↓njσ⟩).

In figure 15(a), the θ and ∆d parameters are plotted as a
function of electron density for the four tight-binding para-
meters with the Roth solution. Since we have included fur-
ther neighbors, θ is not particle-hole symmetric anymore. In
figure 15(b), we plotted the density of states at the Fermi
energy without superconductivity using equation (42) at ω= 0
(in order to see the peaks with no superconducting gap). In
figures 15(c) and (d), we plotted without and with supercon-
ductivity the bands at electron densities corresponding to the
maximum of the density of states for tb3 when the system is
hole doped (n≈ 0.6). The bands with no superconductivity on
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Table 2. Electron density at which there is a Van Hove singularity
at the chemical potential. At this values a flat band lies at the Fermi
energy and the associated Fermi surface is diamond like. These
singularities occur both in electron and in hole.

tb1 tb2 tb3 tb4

Van Hove (electron) 1.04 1.05 1.10 1.11
Van Hove (hole) 0.57 0.45 0.6 0.58

figure 15(c) are flats at the Fermi energy. This proves that
the maximum of figure 15(b) correspond to the Van Hove
singularity. On figure 15(d) we see in the inset the gap at (π,0)
is again of the order of 2∆d. The maximum of the θ and ∆d

parameters are thus at the same electron density as the Van
Hove singularity. Hence, the situation is the same as in the
nearest-neighbor case. In table 2 we give the electron densit-
ies associated to the Van Hove singularities for the four sets of
tight-binding parameters. Let us note there is no proportional-
ity between the peak in the density of states and∆d: it is differ-
ent for every set of tight-binding parameters. This is seemingly
a consequence of the electronic correlations which are treated
differently for each tight-binding parameters as a consequence
of the main approximation of the method equation (24b).

The most striking feature is that superconductivity in the
method seems to be induced by the proximity of the Van Hove
singularity. This was already the case with NNs but this prop-
erty seems unaffected by further hopping terms. For cuprates
there exist a consensus that antiferromagnetism is the inter-
action necessary to explain the pairing mechanism [31]. This
has also the advantage to explain why experimentally super-
conductivity is observed around 15% hole doping. Since this
method predicts superconductivity only close to the Van Hove
singularity, it is non zero at some doping values which does
not correspond to what is expected. This flaw is maybe a con-
sequence of the main hypothesis of the method (detailed in
appendix A): it is maybe necessary to consider dynamical cor-
rections to the self-energy in order to observe a different beha-
vior for superconductivity.

5. Conclusion

Considering only NNs first, three solutions have been isol-
ated and studied: COM1, COM2 and Roth solutions. The
Roth solution is the unique solution obtained if the self-
consistency is performed on a parameter we called p andwhich
enforced charge–charge, spin–spin and pair–pair correlations.
This solution violates the Pauli principle because the correl-
ation function C12

0 = ⟨ξi↑η†i↑⟩ obtained after convergence is
numerically non zero, even though it should be analytically
because of the Pauli principle. COM1 andCOM2 are two inde-
pendent solutions obtained by performing a self-consistency
imposing the correlation function C12

0 instead of the parameter
p to enforce the Pauli principle.

We have performed a systematic comparison of the bands
and Fermi surfaces for these three solutions. The three solu-
tions present two Hubbard bands associated to the two eigen-
values of the method. COM1 is not renormalized by the inter-
actions. COM2 has two hole pockets whatever the doping.
Roth only has one hole pocket but a second small one appears
close to half filling at (π,π), possibly because antiferromag-
netism has been neglected. Both Roth and COM2 solutions are
insulators at half filling because the chemical potential lies in
between the two Hubbard bands. The density of states for the
Roth solution does not present the usual quasiparticle peak at
ω= 0 at half-filling and is in agreement with Determinantal
quantum Monte–Carlo simulations.

The particle-hole symmetry is respected with NN hop-
pings: we checked that all solutions verify particle-hole rela-
tions, including the Roth solution. This result is different from
what was predicted by [9]: a solution of this method can viol-
ate the Pauli principle and still be particle-hole symmetric.
All solutions break the Luttinger close to half filling. This
results is also in agreement with the determinantal quantum
Monte–Carlo simulation [28]. The Luttinger theorem is only
proven for weakly interacting systems.We think the Roth solu-
tion is the most physical. Although there is a violation of the
Pauli principle, this solution exhibits Fermi surfaces typical
of strongly correlated materials such as cuprates, contrary to
COM1 andCOM2. The COM2 solution presents a second hole
pocket for every value of the electron density which is not
observed in ARPES experiments for Bi2212 and LSCO.

We extended the method to study d-wave superconductiv-
ity. Four composite operators are necessary to perform this
study. The doubling of the basis leads to four eigenvalues,
which are particle-hole symmetric because of the symmetry of
the basis. We observed a gap opening at (π,0) for the COM2
and Roth solutions, of the order of the usual d-wave super-
conducting order parameter ∆d

ij = ⟨ci↑cj↓⟩. We only observe
non zero superconductivity close to the Van Hove singularity.
While this has already been predicted for the Roth solution
[21], we showed that the COM2 solution behaves the same.
We observed two Van Hove singularities for the COM2 and
Roth solutions: one in the hole-doped and one in the electron-
doped regime. Both singularities are a consequence of a flat
band at (π,0). Lastly we noticed∆d = ⟨ci↑cj↓⟩ is three or four
times bigger than θ. θ has no proportionnality to ∆d because
it includes both a superconducting and a charge channel when
we try to decouple it.

We studied the effect of longer ranged tight-binding para-
meters fitted from ARPES experiments on cuprates Bi2212
and LSCO from [30], with the Roth minimization. If hole
doped, the Fermi surfaces obtained with the method are sim-
ilar to the non interacting Fermi surface, but at a higher dop-
ing. The opposite situation happens if the system is doped
in electron: the Fermi surfaces appear similar but at a lower
doping than the non interacting one. This is in agreement
with the violation of the Luttinger theorem we still observe
around the Mott transition. Adding further hoppings does not
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seem to modify this property. We checked that adding fur-
ther hoppings breaks particle-hole symmetry. Finally, super-
conductivity also behaves mostly the same with further neigh-
bors compared to the NN case. The main difference is that
Van Hove singularities as well as superconductivity peaks are
moved at different electron density compared to the nearest-
neighbors case. While this result is not at all in agreement with
what was observed experimentally [5], it may be an indication
that the main approximation done in this scheme needs to be
refined. The dynamical corrections to the self-energy need to
be considered in order to maybe have a behavior for super-
conductivity which is more in agreement with experimental
observations.

Data availability statement

The data cannot be made publicly available upon publication
because they are not available in a format that is sufficiently
accessible or reusable by other researchers. The data that sup-
port the findings of this study are available upon reasonable
request from the authors.

Appendix A. Physical meaning of the
approximation on the current

In order to be able to compute the M matrix with the full
Hubbard Hamiltonian in the strongly coupled regime, we neg-
lected all terms in the current (equation (8)) that are not along
ψ. Though afterwards we computed explicitly the currents,
the terms orthogonal to ψ are neglected through the self con-
sistency because we use the relation M= EI, which is a con-
sequence of our hypothesis.

To better understand the consequences of such approxima-
tion we need to consider the self energy. To do so, we follow
the step of [17]. Let’s therefore consider the full expression of
the current

Ji =
∑
l

Eilψl+ δϕi. (64)

Our approximation, ⟨{δϕi,ψ†
j }⟩= 0 allows us to write

Ek =Mk · I−1
k . From this, we know the 0th order Green’s func-

tion is defined for δϕ = 0 by S0 = I
ω−E .

Without this approximation, the full equations of motion
for the composite Green’s function is

d
dτ

Sij (τ) = δ (τ)
〈{
ψi (τ) ;ψ

†
j

}〉
+ θH (τ)

〈{
Ji (τ) ;ψ

†
j

}〉
.

(65)

In Fourier space, and with equation (64), this becomes

Sk (ω) = S0k (ω)+ I−1S0k (ω)⟨
{
δϕk (ω) ;ψ

† (ω)
}
⟩. (66)

Now we know that

d
dτ
ψ†
i =

∑
l

Eilψ
†
l + δϕi. (67)

Therefore in Fourier space

ψ†
k (ω) =

(
ω−Ek+ i0+

)−1
δϕk = S0k (ω)I

−1δϕk. (68)

Hence we can inject this in the equations of motion on Sk
to get

Sk (ω) = S0k (ω)+ S0k (ω)I
−1⟨
{
δϕk;δϕ

†}⟩I−1S0k (ω) . (69)

We can introduce the scattering matrix T

T= I−1⟨
{
δϕ;δϕ†

}
⟩I−1. (70)

We therefore obtain the familiar form

S= S0 +S0TS0. (71)

We can introduce the self-energy through the relation
TS0 = I−1ΣS, and obtain in reciprocal space the Dyson
equation

S(k,ω) =
I

ω−E(k)−Σ(k,ω)+ i0+
. (72)

From this equation we clearly see the consequences of our
approximation. Neglecting δϕ in the current, which are all
the contributions orthogonal to ψ, is equivalent to neglect-
ing Σ(k,ω), therefore working with a static self energy. This
approximation neglects all dynamical dependencies of the self
energy.

Appendix B. Spectral representation and residue
theorem of the composite Green’s function

We start from the following expression for the composite
Green’s function

Sk (ω) =
I

ω−Ek+ i0+
. (73)

E is diagonalizable, its eigenvalues are called ϵ1 and ϵ2, and
we can rewrite this as

Sij (ω) =
I Com(ω−Ek+ i0+)T

det(ω−Ek+ i0+)

=
I Com(ω−Ek+ i0+)T(

ω− ϵ1k + i0+
)(
ω− ϵ2k + i0+

) (74)

where Com(A) is the cofactors matrix of A. We now want to
apply residue theorem.

We consider the function Sij(z)
z−ω+iη with η small. Since we

know any Green’s functions, including S, is analytical on the
upper half-circle of the complex plane we integrate over this
contour Cu. The poles of S are real and we have another pole
at z= ω− iη, which is on the lower half-circle of the complex
plane. Therefore no poles lies in Cu and we have

˛

Cu

Sk (z)
z−ω− iη

dz= 0. (75)
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We now use the previous expression of S to get

˛

Cu

I Com(z−Ek)
T

det(z−Ek)(z−ω− iη)
dz= 0. (76)

Replacing the integrals by the sum of all the residues, we
obtain

∑
z0∈P

Res

(
I Com(z−Ek)

T(
z− ϵ1k

)(
z− ϵ2k

)
(z−ω− iη)

,z→ z0

)
= 0.

(77)

In this equation,P denotes the poles of Sk(z)
z−ω+iη . It has three

poles

z1 = ω+ iη

z2 = ϵ1k

z3 = ϵ2k .

(78)

These poles are all non degenerated, meaning the residue
can easily be computed using

Res( f(z) ,z→ z0) = lim
z→z0

(z− z0) f(z) . (79)

Doing so leads to

0=
I Com(ω−Ek+ iη)T(

ω− ϵ1k + iη
)(
ω− ϵ2k + iη

)
+

I Com
(
ϵ1k −Ek

)T(
ϵ1k − ϵ2k

)(
ϵ1k −ω− iη

)
+

I Com
(
ϵ2k −Ek

)T(
ϵ2k − ϵ1ikj

)(
ϵ2k −ω− iη

) .
(80)

We recognize the first term can be rewritten as

I Com(ω−Ek+ iη)T

det(ω−Ek+ iη)
= I(ω−Ek+ iη)−1

= Sk (ω+ iη) .

(81)

Finally we rearrange the equation (and evaluate S in ω−
iη to get retarded composite Green’s functions) to recover the
desired decomposition (replacing η by 0+)

Sk (ω) =
I Com

(
ϵ2k −Ek

)T(
ϵ1k − ϵ2k

)(
ω− ϵ2k + i0+

)
−

I Com
(
ϵ1k −Ek

)T(
ϵ1k − ϵ2k

)(
ω− ϵ1k + i0+

) . (82)

We pose

κa
k = (−1)a+1 Iij Com(ϵak −Ek)

T(
ϵ1k − ϵ2k

) . (83)

With a ∈ {1,2} to obtain the form given in equation (27).

Appendix C. Computations of M and I matrices

In this section we first derive from the composite operator
algebra the currents, then we use them to obtain the M and
Imatrices. Let us start by writing few of the most useful com-
mutation relation that we used for the computations{

ηiσ;η
†
jσ ′

}
= δij

(
δσσ ′ni σ̄ − δσσ̄ ′c†iσci σ̄

)
{
ξiσ;ξ

†
jσ ′

}
= δij

(
δσσ ′ (1− ni σ̄)+ δσσ̄ ′c†iσci σ̄

)
{
ξiσ;η

†
jσ ′

}
= 0{

ciσ;ξ
†
jσ ′

}
= δij

(
δσσ ′ (1− njσ)+ δσσ̄ ′c†iσ ′ci σ̄ ′

)
{
ciσ;η

†
jσ ′

}
= δij

(
δσσ ′ni σ̄ − δσσ̄ ′c†iσ ′ci σ̄ ′

)
{ciσ;ξjσ ′}= δijδσσ̄ ′ciσ ′ci σ̄ ′

{ciσ;ηjσ ′}=−δijδσσ̄ ′ciσ ′ci σ̄ ′ .

(84)

From this we can explicitly compute the commutators of
the composite operators ψ with the Hamiltonian to get the fol-
lowing currents

j1i =−µξiσ −
∑
l

til
(
clσ − ni σ̄clσ + S−i clσ̄ −∆ic

†
lσ̄

)
j2i =−(µ−U)ηiσ +

∑
l

til
(
−ni σ̄clσ + S−i clσ̄ −∆ic

†
lσ̄

)
.

(85)

The I= ⟨{ψ;ψ†}⟩ and M= ⟨{j;ψ†}⟩ matrices can be
explicitly computed from these expressions. Note that

I12ij = I21ij

M12
ij =M12

ij .
(86)

In the extended ψi basis with superconductivity, the M and
I matrices are 4× 4 matrices and take the following form: In
this framework, theM and I matrices are given by

Ii =


1− ni

2 0 0 0
0 ni

2 0 0
0 0 1− ni

2 0
0 0 0 ni

2

 (87)

Mij =


m11
ij m12

ij m13
ij −m13

ij

m12
ij m22

ij −m13
ij m13

ij

m13
ij −m13

ij −m11
ij −m12

ij

−m13
ij m13

ij −m12
ij −m22

ij

 . (88)

The expression of m11
ij , m

12
ij and m22

ij are the same as before
(cf equation (32)). The off diagonal coefficient is given by

m13
ij =−tγijθij. (89)

Appendix D. Roth decoupling and computation of p

In this appendix we derive the self-consistent equation of

p(i− j) = ⟨ni↑nj↑⟩+ ⟨S+i S
−
j ⟩− ⟨∆i∆

∗
j ⟩. (90)
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D.1. Pair-pair term

Following the step of Roth [12], we express p as a function of
correlation functions by mean of equations of motion.

First, notice we can write

⟨∆i∆
∗
j ⟩= ⟨ξi↑ci↓∆∗

j ⟩+ ⟨ηi↑ci↓∆∗
j ⟩. (91)

Note we illustrate this decoupling with ξi↑ and ηi↑ but the
idea is exactly the same with ψi↓. We introduce the following
Green’s functions{

Fijl (τ) = ⟨⟨ξi↑ (τ) ;cj↓∆∗
l ⟩⟩

Gijl (τ) = ⟨⟨ηi↑ (τ) ;cj↓∆∗
l ⟩⟩.

(92)

We then consider the equations of motion for these Green’s
functions

∂τ

(
Fijl (τ)
Gijl (τ)

)
= θH (τ)

(
⟨{∂tξi↑ (τ) ;cj↓∆∗

l }⟩
⟨{∂τηi↑ (τ) ;cj↓∆∗

l }⟩

)
+ δ (τ)

(
f 1ijl
f 2ijl

)
.

(93)

where f nijl = ⟨{ψni ;cj↓∆∗
l }⟩. We now use equation (24b) to

obtain

∂τ

(
Fijl (τ)
Gijl (τ)

)
=
∑
k

Eik

(
Fkjl (τ)
Gkjl (τ)

)
+ δ (τ)

(
f 1ijl
f 2ijl

)
. (94)

We then time and space Fourier transform associating the
Fourier variable k1 to ri− rl and k2 to ri− rj. The equation
becomes(

Fk1k2 (ω)
Gk1k2 (ω)

)
= (ωId2 −Ek1+k2)

−1
(
f1k1k2
f2k1k2

)
. (95)

Finally we use equation (24a) to obtain(
Fk1k2 (ω)
Gk1k2 (ω)

)
= Sk1+k2 (ω) I

−1

(
f 1k1k2
f 2k1k2

)
. (96)

Finally, we can extract ⟨∆i∆
∗
j ⟩ by summing F and G, integ-

rating overω and taking the imaginary part to use equation (26)
in order to replace the composite Green’s functions by correl-
ation functions. We get

TF [⟨ciσcj σ̄∆∗
l ⟩] (k1,k2) =

2
2− n

∑
k

(
C11
k1+k2 +C12

k1+k2

)
f 1k1k2

+
2
n

∑
k

(
C12
k1+k2 +C22

k1+k2

)
f 2k1k2 .

(97)

We compute fnkjl = ⟨{ψnk ;cj↓∆∗
l }⟩ using the algebraic rela-

tions given in appendix C leads to

f 1ijl = δij⟨∆i∆
∗
l ⟩+ δil

(
C21
ij +C22

ij

)
f 2ijl =−δij⟨∆i∆

∗
l ⟩+ δil

(
C11
ij +C12

ij

)
.

(98)

Performing a Fourier transform of f 1ijl and f 2ijl and setting i = j
by integrating on k2, then finally inverse Fourier transform on
k1 leads to:

⟨∆i∆
∗
l ⟩=

4
n(2− n)

(
C11
il +C12

il

)(
C22
il +C21

il

)
1− 2

2−n

(
C11
0 +C12

0

)
+ 2

n

(
C21
0 +C22

0

) .
(99)

Which is the form in the main text. We pose

ϕ =− 2
2− n

(
C11
0 +C12

0

)
+

2
n

(
C21
0 +C22

0

)
. (100)

Replacing C11
0 and C22

0 by their definitions allows us to
express these correlations function explicitly as a function of
n. We do not explicit C12

0 however, else it will be zero while
it is not numerically: C12

0 should stay in the numerical min-
imization process to obtain our results. Doing so leads to the
following expression for ϕ

ϕ =
n2 − 4

(
n
2 −⟨ni↑ni↓⟩−C12

0

)
n(2− n)

. (101)

With our notations the pair-pair term becomes

⟨∆i∆
∗
l ⟩=

ρ3
1+ϕ

(102)

D.2. Spin–spin term

The spin–spin term is defined as ⟨S+i S
−
l ⟩= ⟨c†i↑ci↓c

†
l↓cl↑⟩. In

order to have our basis element as the first term, we rewrite it
as

⟨S+i S
−
l ⟩=−⟨c†i↑ci↓cl↑c

†
l↓⟩=−⟨cl↑c†l↓c

†
i↑ci↓⟩. (103)

We therefore introduce the following Green’s functions
(setting τ ′ = 0)

{
Fijl (τ) = ⟨⟨ξi↑ (τ) ;c†j↓S

+
l ⟩⟩

Gijl (τ) = ⟨⟨ηi↑ (τ) ;c†j↓S
+
l ⟩⟩.

(104)

The next steps are the same as with the pair-pair term.
The only difference lies in the definition of f n in the result-
ing equations of motion. For the spin–spin term it is defined
as f nijl = ⟨{ψni ;c

†
j↓S

+
l }⟩. Hence we arrive at the following

equation
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TF
(
⟨ci↑c†j↓S

+
l ⟩
)
(k1,k2) =

2
2− n

(
C11
k1+k2 +C12

k1+k2

)
f1k1k2

+
2
n

(
C12
k1+k2 +C22

k1+k2

)
f 2k1k2 .

(105)

A computation of the fn leads to

f 1ijl = δij⟨S−i S
+
l ⟩− δkl

(
C11
ij +C12

ij

)
f 2ijl =−δij⟨S−i S

+
l ⟩− δkl

(
C12
ij +C22

ij

)
.

(106)

Therefore by Fourier transform the expression of f, then by
integrating over k2 to set i= j and by inverse Fourier transform
on k1, we obtain

⟨S−i S
+
l ⟩=−

2
2−n

(
C11
il +C12

il

)2
+ 2

n

(
C12
il +Cil22

)2
1− 2

2−n

(
C11
0 +C12

0

)
+ 2

n

(
C12
0 +C22

0

) . (107)

Which become with our notations

⟨S−i S
+
l ⟩=

ρ1
1−ϕ

. (108)

D.3. Charge–charge term

Aswe did for the ⟨S−i S
+
l ⟩ termwe need to commute the charge

term so the first element can be decomposed using our spinor.
We then rewrite

⟨c†i↑ci↑nl↑⟩=
n
2
−⟨ci↑c†i↑nl↑⟩. (109)

We introduce the following Green’s functions{
Fijl (τ) = ⟨⟨ξi↑ (τ) ;c†j↑nl↑⟩⟩
Gijl (τ) = ⟨⟨ηi↑ (τ) ;c†j↑nl↑⟩⟩.

(110)

Once again the general form of the equation for ⟨ciσc†iσnlσ⟩
will be the same as for the other 2 terms. However the defin-
ition of the involved f nijl will not be the same. We compute
f nijl = ⟨{ψni ;c

†
j↑nl↑}⟩

f 1ijl = δij

(n
2
−⟨ni↓nl↑⟩

)
+ δil

(
C11
ij +C12

ij

)
f 2ijl = δij⟨ni↓nl↑⟩+ δil

(
C12
ij +C22

ij

)
.

(111)

We hence obtain

⟨ni↑nl↑⟩=
n
2
− ρ1 −ϕ⟨ni↑nl↓⟩+

n
2− n

(
C11
0 +C12

0

)
.

(112)

We do not know how to express ⟨ni↓nl↑⟩ as a function of the
correlations functions. So we need to redo this decoupling on
this term. This time we use

⟨ni↓nl↑⟩=
n
2
−⟨cl↑c†l↑ni↓⟩. (113)

We therefore introduce{
Fijl (τ) = ⟨⟨ξi↑ (τ) ;c†j↑nl↓⟩⟩
Gijl (τ) = ⟨⟨ηi↑ (τ) ;c†j,↑nl↓⟩⟩.

(114)

The f nijl = ⟨ψni ,c
†
j↑nl↓⟩ are given by

f 1ijl = δij

(n
2
−⟨ni↓nl↓⟩

)
f 2ijl = δij⟨ni↓nl↓⟩.

(115)

Using the paramagnetic assumption we have ⟨ni↑nl↑⟩=
⟨ni↓nl↓⟩, leading to

⟨ni↑nl↓⟩=
n
2
−ϕ⟨ni↑nl↑⟩+

n
2− n

(
C11
0 +C12

0

)
. (116)

If we inject this in the equation of ⟨ni↑nl↑⟩, we obtain

⟨ni↑nl↑⟩=−ρ1 +ϕ2⟨ni↑nl↑⟩+
n

2− n

(
C11
0 +C12

0

)
(1−ϕ) .

(117)

The last term can be simplified. An explicit computations
of the C0 leads to C11

0 +C12
0 = 1− n+ ⟨ni↑ni↓⟩, allowing us

to show the last term is in fact just equal to n2

4 . We therefore
obtain

⟨ni↑nl↓⟩=
n2

4
− ρ1

1−ϕ2
. (118)

Which is the self consistent equation we have. Combining
the three terms, since p= ⟨ni↑nl↑⟩+ ⟨S+i S

−
l ⟩− ⟨∆i∆

∗
l ⟩, we

obtain the following self consistent equation

p=
n2

4
− ρ1

1−ϕ2
− ρ1

1−ϕ
− ρ3

1+ϕ
. (119)

Appendix E. Bands at and around half-filling

Here we plot the bands for nearest-neighbors at half filling for
the three minimization. We see the Fermi energy in between
the two bands therefore we have an insulator. Note we get the
same result with next-nearest neighbors. We plot the bands for
Roth solution at 2% hole doping with its Fermi surface: we see
the formation of a small hole pocket at (π,π) when approach-
ing half filling. This can be interpreted as amagnetic instability
[27], our assumption of paramagnetism becomes invalid.
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Figure 16. Fermi surfaces and bands obtained by Roth minimization in the neighborhood of half filling. Top row: 2% hole doped. Bottom
row: 2% electron doped.

Figure 17. Band at half filling with t = 1, U= 8t. Note that COM2
and Roth solutions are alike.

Appendix F. Roth decoupling with
superconductivity

In this appendix we show how Roth decoupling changes when
we include superconductivity with 4× 4 basis. We will redo

one of the terms of p as an example, and perform the decoup-
ling for the θ parameter. Let us start by considering ⟨S−i S

+
l ⟩

in p for example. The superconducting basis is of size 4 and
define by

ψ =


ξi↑
ηi↑
ξ†i↓
η†i↓

 . (120)

To include the full basis we need to introduce four Green’s
functions now

Aijl = ⟨⟨ξi↑;c†j↓S
+
l ⟩⟩

Bijl = ⟨⟨ηi↑;c†j↓S
+
l ⟩⟩

Fijl = ⟨⟨ξ†i↓;c
†
j↓S

+
l ⟩⟩

Gijl = ⟨⟨η†i↓;c
†
j↓S

+
l ⟩⟩.

(121)

Now the equations of motion has to be defined for the four
Green’s functions. Hence

∂τ


Aijl
Bijl
Fijl
Gijl

(τ) =
∑
k

Eik


Aijl
Bijl
Fijl
Gijl

(τ)+ δ (τ)


f 1ijl
f 2ijl
f 3ijl
f 4ijl

 .
(122)

22



With f nijl = ⟨{ψni ;c
†
j↓S

+
l }⟩. As before we can use (ω−

Ek) = Sk(ω)I−1 after a space Fourier transform and integrate
over ω after we took the imaginary part to replace the compos-
ite Green’s function matrix by a correlation function matrix.
Thus

−TF
[
⟨c†j↓ci↑S

+
l ⟩
]
(k1,k2)

=
2

2− n

[(
C11
k1+k2 +C12

k1+k2

)
f1k1k2 +

(
C12
k1+k2 +C22

k1+k2

)
f2k1k2

+
(
C13
k1+k2 +C23

k1+k2

)
f3k1k2 +

(
C14
k1+k2 +C24

k1+k2

)
f4k1k2

]
.

(123)

In the last equation, the first line is the same as before, while
the second line are additional terms appearing with the super-
conducting basis. A bit of algebra yields to

f 3ijl = δil
(
C13
ij +C14

ij

)
f 4ijl = δil

(
C23
ij +C24

ij

)
.

(124)

Finally the spin–spin term in p becomes

⟨S−i S
+
l ⟩=−ρ1 + ρ2

1−ϕ
. (125)

With ρ2 = 2
2−n (C

13
il +C14

il )
2 + 2

n (C
23
il +C24

il )
2.

Now we move on to the Roth decoupling for θ. As Beenen
and Edwards [10] have mentioned, we have several ways of
decoupling θ depending on whether we consider ⟨ci↑ci↓nlσ⟩ or
for example ⟨c†i↓c

†
i↑nlσ⟩. Depending on the decoupling scheme

we will over estimate or underestimate the real value of θ but
the behavior will remain globally the same [32]. Here we con-
sider a decoupling starting from ⟨⟨c†i↓,c

†
i↑nlσ⟩⟩. We introduce

the following Green’s functions


Aijl = ⟨⟨ξi↑;c†j↑nl↑⟩⟩
Bijl = ⟨⟨ηi↑;c†j↑nl↑⟩⟩
Fijl = ⟨⟨ξ†i↓;c

†
j↑nl↑⟩⟩

Gijl = ⟨⟨η†i↓;c
†
j↑nl↑⟩⟩

 . (126)

The decoupling is identical and by considering F+G we
arrive to

TF
[
⟨c†i↓c

†
j↑nlσ⟩

]
(k1,k2) =

2
2− n

[(
C13
k1+k2 +C14

k1+k2

)
f 1k1k2

+
(
C33
k1+k2 +C44

k1+k2

)
f 3k1k2

]
+

2
n

[(
C23
k1+k2 +C24

k1+k2

)
f 2k1k2

+
(
C34
k1+k2 +C44

k1+k2

)
f 4k1k2

]
.

(127)

With f nijl = ⟨{ψni ;c
†
j↑nlσ}⟩. Computing the f gives

f 1ijl = δij

(n
2
−⟨ni↑nl↑⟩

)
+ δil

(
C11
ij +C12

ij

)
f 2ijl = δij⟨ni↑nl↑⟩+ δil

(
C12
ij +C22

ij

)
f 3ijl =−δij

θil
2

f 4ijl = δij
θil
2
.

(128)

We therefore obtain

θ

2
=

⟨ni↑nl↑⟩
[
2
n

(
C23
0 +C24

0

)
− 2

2−n

(
C13
0 +C14

0

)]
+ ζ

1+ϕ

+
n
2
C13
0 +C14

0

1+ϕ
.

(129)

With ζ = 2
2−n (C

11
il +C12

il )(C
13
il +C14

il )+
2
n (C

12
il +C22

il )

(C23
il +C24

il ). Finally by noting that C23
0 +C24

0 = 0 and
C13
0 +C14

0 = 0, we obtain the equation we used

θ

2
=

ζ

1+ϕ
. (130)

Appendix G. Effects of particle-hole transformation

In this appendix we give some details on how we derived
the particle-hole relations in equation (46). The relation for
the chemical potential is obtained by using the fact that the
Hubbard Hamiltonian stays invariant under this transforma-
tion.

H=
∑
ijσ

tijc
†
iσcjσ +U

∑
ni↑ni↓ +µ

∑
iσ

niσ

→
∑
ijσ

tij (−1)i+j ciσc
†
jσ +U

∑
i

(−1)4i ci↑c
†
i↑ci↓c

†
i↓

−µ
∑
iσ

(−1)2i ciσc
†
iσ

=−
∑
ijσ

tijciσc
†
jσ +U

∑
i

(
ci↓c

†
i↓ − ni↑ci↓c

†
i↓

)
+µ

∑
iσ

niσ

=
∑
ijσ

tijc
†
jσciσ +U

∑
i

(1− ni↓ − ni↑ + ni↑ni↓)+µ
∑
iσ

niσ

=
∑
ijσ

tijc
†
iσcjσ +U

∑
i

ni↑ni↓ +(µ−U)
∑
iσ

niσ + cste.

(131)

Thus, to keep the Hamiltonian invariant and therefore have
under the particle-hole transformation H→ H, we need to
impose

µ(2− n) =−(µ(n)−U) . (132)

Which is the relation we get in the main text. For e and p
we work directly with their definitions

e= ⟨ξiσξ†jσ⟩− ⟨ηiση†jσ⟩
p= ⟨niσnjσ⟩+ ⟨S+i S

−
j ⟩− ⟨∆i∆

∗
j ⟩.

(133)
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Under the particle-hole transformation we have

ξiσ → (−1)i η†iσ ηiσ → (−1)i ξ†iσ. (134)

Hence

e(2− n)→ (−1)i+j
(
⟨η†iσηjσ⟩− ⟨ξ†iσξjσ⟩

)
= ⟨ηjση†iσ⟩− ⟨ξjσξ†iσ⟩

=−
(
⟨ξiσξ†jσ⟩− ⟨ηiση†jσ⟩

)
=−e(n) .

(135)

We did not kept the terms with δij because e and p always
appear with a tij prefactor and tij = 0 if i= j. We used the fact
that i and j are always nearest neighbours to get (−1)i+j =−1.
For p, we have

p→ (−1)2i+2j ⟨ciσc†iσcjσc
†
jσ + ci↑c

†
i↓cj↓c

†
j↑

− c†i↑c
†
i↓cj↓cj↑⟩

= ⟨cjσc†jσ − niσcjσc
†
jσ + S−i S

+
j −∆∗

j ∆i ⟩
= ⟨1− njσ − niσ + niσnjσ + S+j S

−
i −∆i∆

∗
j ⟩

= 1− n
2
− n

2
+ p(n) .

= (1− n)+ p(n)

(136)

Which is the other relation we had.
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