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Abstract
In this work, we study the effects of a transverse magnetic field in a Kondo lattice model with two 
f orbitals interacting with the conduction electrons. The f electrons that are present on the same site 
interact through Hund’s coupling, while on neighboring sites they interact through intersite 
exchange. We consider here that part of f electrons are localized (orbital 1) while another part 
(orbital 2) are delocalized, as it is frequent in uranium systems. Then, only electrons in the 
localized orbital 1 interact through exchange interaction with the neighboring ones, while 
electrons in orbital 2 are coupled with conduction electrons through a Kondo interaction. We 
obtain a solution where ferromagnetism and Kondo effect coexist for small values of an applied 
transverse magnetic field for T → 0. Increasing the transverse field, two situations can be obtained 
when Kondo coupling vanishes: first, a metamagnetic transition occurs just before or at the same 
time of the fully polarized state, and second, a metamagnetic transition occurs when the spins are 
already pointing out along the magnetic field.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The duality, local versus non-local character, of strongly
correlated f -orbital electrons is a crucial microscopic
quantum phenomenon. It generates unconventional macro-
scopic properties in rare earth and actinide heavy fermion
compounds [1–3]. Among numerous fascinating examples,
a family of uranium based compounds recently revealed the
possibility of a new paradigm, where superconductivity and
ferromagnetic order can coexist [4, 5]. In these materials,
application of a magnetic field perpendicular to the easy
axis can generate a metamagnetic transition and a surprising
enhancement of superconductivity inside a ferromagnetic
phase.

∗
Author to whom any correspondence should be addressed.

In order to understand the microscopic origin of this unanti-
cipated behavior, we may first be inspired from the physics of
heavy fermion cerium compounds, that can be described by a
Kondo lattice model [6]. In this case, the 4f 1 Kondo ions can
form a magnetically ordered lattice for small values of pres-
sure where Ruderman–Kittel–Kasuya–Yosida interaction is
predominant and go for a coherent Fermi Liquid state at higher
pressure where local Kondo screening dominates. This pres-
sure induced quantum transition can be well explained invok-
ing Doniach’s phase diagram [7]. The itinerant contribution of
a priori local f electronic orbitals in the formation of the coher-
ent Fermi liquid Kondo state is a signature of duality. It is also
characterized by a large effective mass which can be revealed,
for example, by big values of the specific heat Sommerfeld
coefficient. On the other hand, f electrons may be fully local-
ized in the magnetically ordered state. Usually, both regimes
are separated by a quantum critical point [8, 9], close to which
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a rich diversity of physical properties emerges, as for example,
superconductivity in cerium based compounds [10, 11].

Revealing experimentally the passage from fully localized
to itinerant and dual behavior is crucial and challenging. In
CeRhIn5, which is antiferromagnetic at ambient pressure, it
was detected with de Haas-van Alphen experiment that these
changes occur nearly at 2.4GPa [12, 13]. It was shown that the
large band signal indicates an increase of the effective mass
from 5 m0 to 60 m0 which abruptly ‘disappears’ as for a first
order transition. In CeRu2Si2, a clear Fermi surface recon-
struction is observed along the metamagnetic transition [14,
15], where a short Fermi surface takes places from the large
Fermi surface, indicating a itinerant to localized transition.
In YbRh2Si2 [16], the authors studied the modification of
the Fermi surface using high-resolution Compton scattering
and showed a strong variation of the Fermi surface topology
between low and high temperature regimes. They observed a
clear enlargement of Fermi surface as temperature decreases,
which is a signature of a coherent Kondo lattice ground state.

On the other side, the actinides have a partially filled 5f
shell and their behavior is different from the lanthanides beha-
vior. At the beginning, the 5f spatial wave function have a lar-
ger extent than the 4f ones. Furthermore, while the valence
is 4f 1 in cerium based Kondo lattice systems, the valence of
uranium based compounds fluctuates between 5f 2 and 5f 3.
As a consequence, a microscopic phenomenological descrip-
tion of duality in these materials requires an adaptation of
the Kondo lattice model, where magnetic ions are described
by composite local f 2 multiplet states coupled to conduction
electrons that account for the f 2–f 3 valence fluctuations [17,
18]. Also, on general theoretical grounds, it is known that
the possible presence of different channels for the conduction
electrons might cause underscreened or overscreened Kondo
effect, depending on the comparison between the number of
channels and the effective spin of the localized electronic
multiplets [19]. In the uranium compounds, the 5f electrons
are considered to be less localized than the 4f electrons in
rare earth (lanthanides) compounds, allowing the possibility of
underscreened Kondo effect, where the 5f electrons are only
partially screened [17, 18]. Some models consider the 5f 2 pair
of orbitals as localized, while in other models one of the 5f
electrons is itinerant, which is necessary to describe the super-
conductivity in U-based compounds [20, 21], where f elec-
trons are considered to be the key for both superconductivity
and ferromagnetism, when they exist.

More precisely, in the group of the ferromagnetic super-
conductors, UGe2 [22], URhGe [23], and UCoGe [24], super-
conductivity appears at low temperatures in the region where
they are ferromagnetic. While for UGe2 the superconducting
state appears for high pressure, for URhGe and UCoGe the
superconducting state already appears at ambient pressure and
it persists for higher values of pressure. From the point of view
of the magnetic response, the magnetic susceptibility χa/b/c
is anisotropic for UGe2, with a-axis being the easy magnetic
axis, and for UCoGe, where c-axis is the easy magnetic axis.
For URhGe, the evidence of anisotropy appears only below

50 K, where χb ̸= χc with c being the easy axis. UGe2 and
UCoGe are considered to be Ising ferromagnets. For URhGe,
the combination between ferromagnetism along the c- and b-
axes is the core of its extremely high field-reentrant supercon-
ductivity for magnetic fields applied along b.

The low value of magnetic moment per atom in UGe2,
URhGe, and UCoGe compounds (1.5, 0.4, and 0.06 µB/U,
respectively) indicates duality between localized and itiner-
ant character of the 5f electrons in UGe2 [25], while UCoGe
has an itinerant behavior. This situation is also present in the
uranium monochalcogenides US, USe and UTe [26], although
their Curie temperatures are much greater and they do not
become superconductors at smaller temperature.

A new fascinating compound, UTe2, was recently added
into the family of uranium superconductors [27]. However,
differently from the previous one, UTe2 does not order fer-
romagnetically. Nevertheless, the compound presents super-
conductivity coexisting with ferromagnetic fluctuations [28],
and a rich phase diagram with different superconducting
phases [29]. What is also interesting is that this compound
presents a metamagnetic transition for higher magnetic field,
leading the system from paramagnetic to polarized paramag-
netic [30, 31]. Earlier first principle calculations with local
density approximation have shown that UTe2 is a Kondo semi-
conductor with small gap (∼130K) and flat bands around
the Fermi Surface coming mainly from the 5f electrons [32].
Other authors found ametallic ground state with moderate val-
ues of Coulomb repulsion (∼1.0 eV) and an insulator-metal
transition by increasing the Coulomb interaction [33]. More
recently [34], density functional theory with exact diagonaliz-
ation calculations indicate that f−valence in UTe2 is close to
5f 3 (Coulomb interaction is about 3 eV).

The interplay between Kondo screening and ferromagnet-
ism has been studied by different authors for spin-1/2 or
spin-1 Kondo lattice models. Mean-field approaches result
in phase diagrams where ferromagnetism is predominant for
small interaction (|J|/D) and for the number of conduction
electrons per site from zero to around 0.5, while Kondo phase
appears for stronger interaction and in a larger range of con-
duction electrons density [35]. Other approaches report sim-
ilar results [36], without coexisting phases. The dynamical
mean field theory calculations and further mean-field decoup-
lings found coexisting phases [37–40] when f–f ferromagnetic
exchange interaction is added to the Kondo lattice model [41,
42]. For URhGe, the density-matrix renormalization group
(DMRG) calculations [43, 44] also addressed this competi-
tion, but no coexistence is reported. In a recent paper [45] it
was shown, using a fermionic mean field approximation, that
under applied magnetic field a metamagnetic transition may
occur in the Kondo lattice; in the present paper we study the
effect of magnetic field on 2-f -orbitals Kondo lattice, which
we think is more appropriate to U compounds which contain
both localized and itinerant f -electrons.

One guideline for the theoretical work presented hereafter
is URhGe and more precisely its magnetization, which dis-
plays a rapid variation when a transverse magnetic field is
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applied [46]. In a more complete description, at low temper-
ature, magnetic field perpendicular to the easy axis first des-
troys the superconducting phase around 2 T, and at higher
field a reentrant superconducting phase appears between∼8 T
and ∼12 T . Above the superconducting transition temperat-
ure, in the ferromagnetic phase the spin-reorientation occurs at
HR ≈ 12 T. The maximum value of TSC in the reentrant phase
coincides approximately with HR.

In the family of uranium ferromagnetic superconductors,
reentrance phenomena induced by an applied magnetic field
are still poorly understood. There is still very little theoretical
work to model microscopically the emergence of their prop-
erties, even in the normal phase. Theoretical studies dedicated
to the effect of a magnetic field on these compounds are even
rarer. They include, for example, DMRG [43, 44] and phe-
nomenological [47] approaches. One of the research object-
ives of the present work is to investigate possible microscopic
mechanisms that may lead to an abrupt variation of the easy-
axis magnetization, to a breakdown of Kondo effect, and to
an alignment of the magnetization along the transverse mag-
netic field. We aim at understanding the interplay between
these phenomena and their possible occurrence on the basis of
an effective model that can describe more generally uranium
based strongly correlated electronmaterials. Although a super-
conducting phase is observed experimentally around the mag-
netization change in URhGe, we do not explore this fact, and
let it for a future work. This is justified since TSC is much
smaller than the Curie temperature TC (respectively 0.25K and
9.5K).

The paper is organized as follows: In section 2 the model
used to discuss the Kondo and ferromagnetic interactions in a
transverse field is presented. The results and discussions are
presented in sections 3 and 4.

2. The model

We have in mind the objective of modeling uranium com-
pounds with a valence fluctuating between 5f 2 and 5f 3. We
will thus consider a Kondo lattice Hamiltonian where the
Kondo ions are described by 5f 2 local multiplets. These two 5f
orbitals (labeled as orbitals 1 and 2) are centered on each lattice
site i and we define the spin of each of these electrons as Si1
and Si2. The intrasite interaction should in principle include
both the local Coulomb repulsion and the Hund’s coupling.
However, by enforcing the localization and describing the cor-
responding degrees of freedom with effective spin operators,
the Coulomb repulsion is implicitly assumed to be strong.

Furthermore, we also want to describe the duality of the
localized f -electrons. We consider here that part of f -electrons
is fully localized (orbital 1) while another part (orbital 2) can
be partially delocalized, as it is frequent in U systems. Then,
only electrons in the fully localized orbital 1 are supposed
to interact through ferromagnetic intersite exchange interac-
tion, while electrons in orbital 2 are coupled with conduction
electrons through a Kondo interaction. The itinerant electrons

Figure 1. Some possible ordered phases of the system. The
moments of the three types of electrons ( f 1, f 2 and c electrons) are
indicated separately. From left to right, from top to bottom.
Ferromagnetic phase: the averaged magnetizations for f− and
c−electrons is non zero. Fully Polarized phase : particular
ferromagnetic phase where the magnetizations are saturated and
aligned along the external magnetic field; the f−electron
magnetization per site is S= 1. The c electrons couple antiparallel to
the f ones since local Kondo exchange is negative. Pure Kondo
state: f−electrons in orbital 2 and c−electrons form Kondo singlets,
and the f−electrons in orbital 1 are paramagnetic. Mixed state:
coexistence of ferromagnetic order (non-zero magnetization) and
Kondo screening of electrons in orbital 2.

emerge from the f 2–f 3 valence fluctuation effects as well as
from other electronic bands. In figure 1 we can see some pos-
sible solutions that can be described by the proposed model.
In the ferromagnetic phase spins with all components (c, and
both f orbitals) exhibit a non-zero magnetization. In the fully
polarized phase, all spins are aligned with the transverse mag-
netic field. In the Kondo phase, the spin of the f -electrons
in orbital 2 couple with the spin of the conduction electrons
through Kondo interaction and the spins of orbital 1 remain
paramagnetic and finally, the mixed state where Kondo and
ferromagnetism are both present.

The generalized Kondo lattice Hamiltonian of the system
is written as:

H= Hintersite +Hlocal +HKondo +Hc , (1)

where the first term is intersite exchange that we consider here
as an Ising interaction between localized spins in orbital 1:

Hintersite =−J
∑
⟨ij⟩

Szi1S
z
j1 . (2)

This Ising exchange interaction describes phenomenologically
the large magnetic uniaxial anisotropy observed experiment-
ally in the uranium based ferromagnetic superconductors. The
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second term in the Hamiltonian includes the on-site interac-
tions: Hund’s coupling (JH ⩾ 0) between electrons in orbit-
als 1 and 2, and applied magnetic field, which can be in any
direction:

Hlocal =−JH
∑
i

Si1 ·Si2 −h ·
∑
i

(
Si1 +Si2

)
. (3)

The third term is the local Kondo coupling (JK ⩾ 0)
between f -electrons in orbital 2 and c-electrons:

HKondo = JK
∑
i

Si2 · si , (4)

where si denotes the local spin density of the c-electrons. The
last term describes the conduction band:

Hc =
∑
kσ

(ϵk −µ)c†kσckσ +Nµnc , (5)

where σ =↑,↓ is the spin component and k is the electron
momentum. ϵk is the dispersion relation, µ is the chemical
potential associated with the averaged total number of conduc-
tion electrons per site nc, and N denotes the number of lattice
sites.

In the following, we will consider that there are 2 f elec-
trons on each site, one in each orbital. Thus in the absence of
Kondo interaction, these two electrons are coupled by Hund’s
interaction in a S= 1 state and they interact with neighboring
sites through Ising exchange. The problem is solved in two
steps: first, we solve the f−electrons problem, with a magnetic
field applied in the x− z plane; second, the Kondo coupling is
added for orbital 2.

2.1. Solution for the magnetic part

We first treat the effect of the Ising and Hund’s interactions in
orbitals 1 and 2 in the presence of magnetic field.

Hf ≡ Hintersite +Hlocal , (6)

where the different terms are defined above.
In a mean field decoupling , we introduce the effective field

acting on electrons in orbital 1 and 2 respectively, hw1 and hw2.
The purely f -orbital part of the Hamiltonian is thus approxim-
ated as:

Hf ≈ HMF
f ≡ E0 −

∑
i

(hw1 ·Si1 +hw2 ·Si2) , (7)

where E0 = N J ′

2 (m
z
1)

2 +NJH(mx
1m

x
2 +mz

1m
z
2) and mz

1(2) =
1
N

∑
i⟨S

z
i1(2)⟩ and m

x
1(2) =

1
N

∑
i⟨Sxi1(2)⟩ are the components of

magnetization in the z and x directions. Note the redefinition
J ′ = 2zJ, where z is the number of nearest neighbors.

The effective fields are defined as

hw1 =

 hx+ JHmx
2

0
hz+ J ′mz

1 + JHm
z
2

 , (8)

hw2 =

 hx+ JHmx
1

0
hz+ JHm

z
1

 . (9)

We can also identify the angles ofmagnetization for both orbit-
als 1 and 2 with respect to x-direction:

tanθ1 =
mz

1

mx
1
=
hz+ J ′mz

1 + JHm
z
2

hx+ JHmx
2

, (10)

tanθ2 =
mz

2

mx
2
=
hz+ JHm

z
1

hx+ JHmx
1
. (11)

These definitions help us to have a more compact form for the
set of self-consistent mean-field equations, that can be written
as

mz
1 =

sinθ1
2

tanh
β∥hw1∥

2
, (12)

mx
1 =

cosθ1
2

tanh
β∥hw1∥

2
, (13)

mz
2 =

sinθ2
2

tanh
β∥hw2∥

2
, (14)

mx
2 =

cosθ2
2

tanh
β∥hw2∥

2
. (15)

The problem can be solved considering the external mag-
netic field in the x–z plane. However, as we will consider the
Kondo coupling between the f electrons in orbital 2 with the
conduction electrons, the magnetization of orbital 2,m f

2, has to
be calculated self-consistently in the presence of Kondo coup-
ling. This is presented below.

2.2. Solution in the presence of Kondo coupling

We now consider the full Hamiltonian defined by equation (1),
where the purely f -orbital part is approximated by the mean-
field expression equation (7):

H≈ HMF1 ≡ E0 +HMF
f +HKondo +Hc , (16)

First it is necessary to make a basis change of the spin quantiz-
ation axis: in the presence of the external magnetic field, the f
magnetic moments tend to point towards the direction of mag-
netic field, but they are not aligned with field since the Ising
exchange acts as a local anisotropy (see above equations (12)–
(15)). For this reason, we will change the quantization axis for
the spins. We use the symbol tilde to represent this new quant-
ization axis: z̃ and σ̃ correspond to the z axis rotated by angle
θ2 defined in the previous section. Invoking the spin rotational
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invariance of HKondo and Hc, the mean-field Hamiltonian is
thus rewritten as

HMF1 = E0 +Nµnc−hw1 ·
∑
i

Si1 − hw2
∑
i

Sz̃i2

+ JK
∑
i

S̃i2 · s̃i+
∑
kσ̃

(ϵk −µ)c†kσ̃ckσ̃ . (17)

The Kondo effect is treated within usual mean field approx-
imation using fermionic representation of the spin operators :

Sz̃i2 =
1
2

(
f†
i2↑̃ fi2↑̃ − f†

i2↓̃ fi2↓̃

)
(18)

Sỹi2 =
i
2

(
f†
i2↓̃ fi2↑̃ − f†

i2↑̃ fi2↓̃

)
(19)

Sx̃i2 =
1
2

(
f†
i2↓̃ fi2↑̃ + f†

i2↑̃ fi2↓̃

)
, (20)

where the Abrikosov fermion annihilation (creation) operat-
ors f(†)i2σ̃ satisfy the local constraints

∑
σ̃ f

†
i2σ̃fi2σ̃ = 1. Within

the mean-field approximation, this constraint is satisfied
on average,

∑
iσ̃⟨ f

†
i2σ̃fi2σ̃⟩= N, by introducing an effective

energy level ϵ f2. Finally the mean-field approximations for the
Hamiltonian give

H≈ HMF2 = EMF2
0 −hw1 ·

∑
i

Si1 +
∑
iσ̃

ϵ f2σ̃f
†
i2σ̃fi2σ̃

+
∑
iσ̃

Λ
˜̄σ
2

(
c†iσ̃fi2σ̃ + f†i2σ̃ciσ̃

)
+
∑
kσ̃

ϵckc
†
kσ̃ckσ̃ ,

(21)

where λσ̃
i2 = ⟨ f†i2σ̃ciσ̃⟩= ⟨c†iσ̃fi2σ̃⟩ and

EMF2
0 = E0 +Nµnc−Nϵ f2 + JKNλ

↑̃
2λ

↓̃
2 , (22)

ϵ f2σ̃ = ϵ f2 − σ̃hw2 , (23)

Λσ̃
2 =−JK

2
λσ̃
2 , (24)

ϵck = ϵk −µ. (25)

σ̃ =±1/2 and hw2 = ∥hw2∥. With the first mean-field approx-
imation that we used, the momenta Si1 describing the local
electronic orbital 1 are effectively decoupled from both the
orbital 2 and the conduction electrons. However, the Hund
interaction between orbitals 1 and 2 is still implicitly present
through the effective fields hw1 and hw2 given by solv-
ing equations (8) and (9) and the self-consistent relations
(12)–(15). The second mean-field approximation replaces
the Kondo interaction by an effective hybridization between
orbital 2 and conduction electrons. It describes qualitatively
and quantitatively the Kondo-singlet correlations that can

occur at low temperature. The mean-field Hamiltonian can be
diagonalized using the space momentum representation k:

HMF2 = EMF2
0 −hw1 ·

∑
i

Si1 +
∑
kσ̃

(
c†kσ̃, f

†
k2σ̃

)
Hcf2
kσ̃

(
ckσ̃
fk2σ̃

)
,

(26)

with

Hcf2
kσ̃ ≡

 ϵck Λ˜̄σ
2

Λ˜̄σ
2 ϵ f2σ̃

 . (27)

From HMF2 and using the above expression of the block
Hcf2

kσ̃ , the one body Green’s functions for orbital 2 and conduc-
tion electrons can be written as

gcckσ̃(iω) =
iω− ϵ f2σ̃

(iω− ϵck)(iω− ϵ f2σ̃)− (Λ˜̄σ
2 )

2
,

(28)

gf2f2kσ̃ (iω) =
iω− ϵck

(iω− ϵck)(iω− ϵ f2σ̃)− (Λ˜̄σ
2 )

2
,

(29)

gcf2kσ̃(iω) = g f2ckσ̃(iω) =
−Λ˜̄σ

2

(iω− ϵck)(iω− ϵ f2σ̃)− (Λ˜̄σ
2 )

2
. (30)

From the Green functions we can calculate the self-
consistent parameters:

ncσ̃ =
∑
k

ˆ ∞

−∞
dωf(ω)ρckσ̃(ω) , (31)

n f2σ̃ =
∑
k

ˆ ∞

−∞
dωf(ω)ρ f2kσ̃(ω) , (32)

λσ̃
2 =

∑
k

ˆ ∞

−∞
dωf(ω)ρcf2kσ̃(ω) (33)

where the spectral density functions are

ρckσ̃(ω) =− 1
π
ℑ
[
gcckσ̃(ω+ i0+)

]
, (34)

ρ f2kσ̃(ω) =− 1
π
ℑ
[
gf2f2kσ̃ (ω+ i0+)

]
, (35)

ρcf2kσ̃(ω) =− 1
π
ℑ
[
gcf2kσ̃(ω+ i0+)

]
. (36)

The parameters defined in equations (31)–(33) are solved
considering a square band (i.e. a constant density of states)
for the conduction electrons. The only k dependence comes
from the dispersion relation ϵk, in this way, the sum over k
is changed by an integral over energy as

∑
k →
´ D
−D ρ0(ϵ)dϵ.

The non-interacting conduction electrons density of states is
taken as ρ0 = 1/2D in the interval [−D : D]. D is the half of
the value of the bandwidth.
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Using the above expressions for the Green’s functions
and invoking the relation equation (24), the mean-field self-
consistent equations can be rewritten as

ncσ̃

= ρ0

ˆ D

−D
dϵ

(
Eσ̃
+(ϵ)− ϵ f2σ̃

)
f(Eσ̃

+(ϵ))−
(
Eσ̃
−(ϵ)− ϵ f2σ̃

)
f(Eσ̃

−(ϵ))

∆E(ϵ)
,

(37)

n f2σ̃

= ρ0

ˆ D

−D
dϵ

(
Eσ̃
+(ϵ)− ϵck

)
f(Eσ̃

+(ϵ))−
(
Eσ̃
−(ϵ)− ϵck

)
f(Eσ̃

−(ϵ))

∆E(ϵ)
,

(38)

Λσ̃
2 =

ρ0JK
2

Λ
˜̄σ
2

ˆ D

−D
dϵ
f(Eσ̃

+(ϵ))− f(Eσ̃
−(ϵ))

∆E(ϵ)
. (39)

where f(ω) = (1+ eβω)−1 denotes the Fermi–Dirac function,
and

Eσ̃
±(ϵ)≡

ϵ+ ϵ f2σ̃ ±
√

(ϵ− ϵ f2σ̃)
2 + 4(Λ˜̄σ

2 )
2

2
, (40)

∆E(ϵ)≡ Eσ̃
+(ϵ)−Eσ̃

−(ϵ) . (41)

We note that the mean-field equation (39) has a trivial solu-
tion Λσ̃

2 = 0 which is realized in the non-Kondo phases where
the local f and the conduction electrons are decoupled. When
a solution Λσ̃

2 ̸= 0 exists and is energetically stable, a Kondo
phase is realized. On top of this usual mean-field description
of Kondo effect, we also consider here the possibility of mag-
netic ordering, whichmay coexist or not with theKondo effect.
From equation (38) we can obtain the magnetization of orbital
2 in the rotated direction (noted with tilda), M f z̃

2 = 1
2 (n

f2
↑̃ − n f2↓̃ ).

However, this magnetization is in the direction of the effective
field hw2 and not in the original z or x directions. The magnet-
ization in the initial cartesian coordinates is thus given by

mz
2 =M f z̃

2 sinθ2 , (42)

mx
2 =M f z̃

2 cosθ2 , (43)

where θ2 was defined previously in equation (11).
Finally, we can solve self-consistently our set of equations

(12), (37)–(39) and (42), and determine the parameters mz
1,

µ, ϵf2, λ
↑̃
2 , λ

↓̃
2 , and mz

2, respectively. We have solved the self-
consistent solutions looking for the parameters that minimize
the mean-field Hamiltonian presented in equation (26) for the
case T→ 0. The numerical results are presented in the next
section.

3. Results

Before presenting the results obtained, we would like to point
out that one of the aims of this work is to investigate the pos-
sible occurrence and interplay between metamagnetic trans-
ition, Kondo collapse, and magnetization rotation. Since the
model presented in the previous section depends on various
parameters, we will study their effects first separately, end-
ing with the full analysis in the last part of the section. First,
we fix the number of particles in orbital 2, ⟨n f2⟩ ≡ 1, and the
number of conduction electrons ⟨nc⟩ ≡ nc = 0.8, with the help
of the auxiliary Lagrangian’s multipliers, ϵ f2 and µ. In the last
part, we will explore the effect of variation of nc. The magnetic
field is taken in the x direction, fixing hz = 0. The energies are
scaled with respect to the half bandwidth D= 1, using kB = 1
and T = 0.0001 for all figures.

3.1. Effect of magnetic field and JK for J ′ = JH = 0

First we study here the effect of a magnetic field and Kondo
coupling in the absence of both Hund and intersite interac-
tions, JH = 0 and J ′ = 0. In this case the local spins Si1 are fully
decoupled from the orbital 2 and the conduction electrons. The
model corresponds to an usual Kondo lattice for orbital 2, and
we use the Abrikosov fermions fi2 to describe the local spins
Si2. Since rotational symmetry is preserved at zero field when
J ′ = 0, we arbitrarily choose the x-axis along the direction of
the applied magnetic field.

The figure 2(a) shows the variation of the effective Kondo
hybridizations λσ

2 and the magnetizations for both orbitals as a
function of the magnetic field hx, for JK = 1.0 and J ′ = JH = 0.
Here, orbital 1 is fully decoupled from the other electrons,
therefore in the ground state its magnetization saturates to
its maximal value as soon as hx ̸= 0. The magnetization of
orbital 2 is more interesting and we can identify three regimes
depending on intensity of the applied magnetic field: at rel-
atively small hx, we find that mx

2 increases linearly with hx,
revealing a Fermi-liquid regime with a finite susceptibility
that correspond to the usual Kondo coherent regime. On the
other side, the magnetization mx

2 saturates to its maximal value
when the applied field is higher than a critical value h⋆K. h

⋆
K

is defined as the critical field necessary to destroy the Kondo
hybridization and it coincides with the saturation of mx

2 only
in some cases (see section 3.3). The intermediate regime of
magnetic fields, above the linear response and below the crit-
ical value h⋆K, we find a magnetization plateau at the value
mx

2 ≈ (1− nc)/2 independently from hx and JK as can be seen in
figures 2(b) and (c).

The three magnetization regimes described above can be
interpreted as follows: for relatively small hx, the local Kondo
spins Si2 and the conduction electrons form a coherent Kondo
Fermi liquid state characterized by a constant susceptibility
and a linear magnetization. The occurrence of an interme-
diate plateau regime at higher values of the field was pre-
dicted previously for a Kondo lattice (see figure 5 in [48]).
It can be explained using a strong Kondo coupling picture:
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Figure 2. (a) Variation of the magnetization and Kondo mean field
parameter as a function of hx. λ↑ ̸= λ↓ while mx

2 is finite and not
saturated. (b) The magnetization mx

2 as a function of hx. Higher
values of JK allows longer plateau behaviour. (c) mx

2 as a function of
JK. At the same point where λ↑ and λ↓ have a discontinuity, mx

2 has
a step from its saturated value to mx

2 = (1− nc)/2 indicating the
mixed phase. It goes continually to zero for large values of JK . mz

1
and mz

2 are zero for all figures since J ′ = JH = 0.

independently from the magnetic field, in this Kondo phase
a fraction nc of the Kondo spins are screened and form local
Kondo singlets with the conduction electrons. The remaining
fraction 1− nc of unscreened Kondo spins can thus be magnet-
ized without breaking the macroscopic coherent Kondo state.
This intermediate Kondo regime with a magnetization plat-
eau is energetically favorable as long as the Kondo singlet
energy (typically the Kondo temperature TK) is higher than the
Zeeman energy (proportional to hx).

This plateau corresponds to a Kondo phase with λ↑ and
λ↓ slightly different from each other but both non-zero (see
figure 2(a)). In the Kondo phase, λ↑ and λ↓ take relatively close
values that differ as soon as hx is non-zero and both vanish
above the same critical field h⋆K which marks the breakdown
of Kondo effect.

The variation of h⋆K is depicted in figure 3(a) and in its inset.
After an exponential behavior (∼exp(−a/JK)) at small Kondo
coupling, it goes linearly with JK for strong Kondo interac-
tion. From the inset, it is possible to verify that the Kondo crit-
ical field scales as TK for hx = 0 [48]. The figures 3(b) and (c)
present the variation of the f − c effective hybridization λ↑ as

Figure 3. (a) The critical magnetic field, h⋆K, as a function of JK.
The critical field follows an exponential behavior (∼exp(−a/JK))
for small values of JK (inset). For higher values, the JK dependence
is linear, as it can also be seen in the inset. (b) λ↑ as a function of JK
for different values of hx. The effective hybridization is zero for
small values of JK. For hx ̸= 0, there is a critical value of JK where
λ↑ increases abruptly. (c) λ↑ as a function of hx for different values
of JK. As JK increases, the absolute value of λ↑ increases and the
field hx above which Kondo pairing is destroyed increases also.
J ′ = JH = 0 for all figures.

a function of JK for fixed values of hx, and as a function of hx
for fixed values of JK, respectively. We find that λ↑ vanishes at
small JK as soon as hx is non-zero, it abruptly jumps to a finite
value around a critical value of JK and then increases continu-
ously with JK. When fixing the Kondo coupling, we find that
the effective hybridization is almost constant as hx increases
and vanishes abruptly at hx ≡ h⋆K. This is consistent with the
abrupt jump observed when increasing JK, reflecting the fact
that h⋆K depends on JK in a monotonous way.

3.2. Effect of the intersite magnetic interaction J ′ for JH = 0

Here, the effect of a magnetic field along the x direction is ana-
lyzed by considering also the intersite Ising-like interaction J′

for the orbital 1. The Hund’s coupling is not considered here,
JH = 0. Therefore the orbital 1 is fully decoupled from the other
electrons which, on their side, form a Kondo lattice system.
Themodel for the orbital 2 and the conduction electrons is sim-
ilar to the one discussed in section 3.1 and we thus choose here

7



Figure 4. Variation of magnetization and Kondo coupling as a
function of hx for different values of J′ with JK = 1.0 and JH = 0.
(a) J ′ = 0.05. (b) J ′ = 0.1. The inclusion of Ising-like interaction
gives values of m1 different from zero for hx = 0, but it does not
affect what happens in orbital 2. Increasing J′ increases the critical
value where mz

1 goes to zero, and consequently, the region where mx
1

is different of its saturated value.

to fix JK = 1.0 which correspond to h⋆K ≈ 0.036. The evolution
of the magnetizations of the two orbitals as well as the f − c
effective hybridization as a function of the magnetic field hx
are depicted in figure 4.We consider that the intersite magnetic
exchange between electrons in orbital 1 is of the same order
of magnitude as the critical field h⋆K. The results for J

′ = 0.05
in 4(a), and J ′ = 0.1 in 4(b) are presented in figure 4.

The Kondo lattice formed by electrons in the orbital 2 is
discussed in detail in section 3.1 with the three regimes, lin-
ear, plateau, and saturation. We now focus on the analysis of
orbital 1, which is saturated to its maximal value ∥m1∥= 1/2,
but not necessarily in the same direction as m2. The Ising-
like interaction J′ favors a magnetization along the z direction,
while the transverse magnetic field favors alignment along x.
By exploiting the fact that orbital 1 is decoupled from other
electrons we can solve exactly the mean-field equation for
m1 at zero temperature. Indeed, for JH = 0 and with a field
oriented along x axis, equation (10) has two possible solu-
tions: either mz

1 = 0 and mx
1 = 1/2, which is realized at suffi-

ciently large field. Ormx
1 = hx/J ′ andmz

1 =

√
1
4 −

( hx
J ′
)2
at fields

hx lower than a critical value h⋆M = J ′/2. This linear increase
of mx

1 with hx is depicted in figure 4(a), corresponding to a
gradual rotation of the magnetization until its complete align-
ment along x axis at hx ⩾ h⋆M. The model parameters used for
the plots in figure 4(a) correspond to h⋆M = 0.025, which is
slightly lower than the other critical field h⋆K ≈ 0.036 charac-
terizing the vanishing of the Kondo f − c hybridization and
the full magnetization of orbital 2. However, by increasing the

Figure 5. Variation of magnetization and Kondo coupling as a
function of hx for different values of JK and JH for fixed J ′ = 0.1.
(a) JK = 1.0 and JH = 0.02 ; h⋆K < h⋆M in this case. (b) JK = 1.3 and
JH = 0.07; h⋆K > h⋆M. (c) JK = 1.0 and JH = 0.1. When JH is tuned,
all parameters are linked. The Hund’s coupling allows ta non-zero
component of magnetization in z direction for the orbital 2. This
effect increases the global magnetization and can destroy the Kondo
coupling.

value of the Ising interaction J′, the alignment of m1 along x
axis can also be obtained for higher critical field, inside the
non-Kondo regime (h⋆M > h⋆K), as can be seen in figure 4(b).

3.3. Effect of Hund’s coupling

Wenow extend our study by considering the effect of the trans-
verse magnetic field in the presence of local Hund’s coupling
and intersite Ising interaction. In this case, orbital 1 and 2 inter-
act by the Hund’s coupling and orbital 2 is coupled with the
conduction electrons by Kondo interaction. In the presence of
magnetic field, the magnetization of orbital 2 will no longer
be in the field direction because it is coupled to the magnet-
ization of orbital 1. Moreover, the Weiss mean-field resulting
from Hund’s coupling will add to the applied field and it is
expected to weaken the effective Kondo hybridization , des-
troying it for a critical field smaller than h⋆K defined above.

The evolutions of the various mean-field parameters as
functions of the magnetic field hx are depicted in figure 5.
We consider two set of parameters corresponding to either
h⋆M > h⋆K (figure 5(a)) or h⋆K > h⋆M (figure 5(b)) described
previously for JH = 0.
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Figure 6. (a) Variation of m2 as function of hx for different values
of conduction electrons and, (b) Variation of m2 as function of the
conduction electron number and different values of hx for JK = 1.0,
J ′ = 0.1, and JH = 0.02.

The behaviors depicted in figure 5(a) for small JH = 0.02
is similar with the one depicted in figure 4(b) for JH = 0. For
example, both plateau and saturated regimes are observed for
the magnetization of orbital 2, but now for the modulus of
m2 (shown in figure 6(a)). Here, the small but non-zero z-
component comes from a combined effect of Hund’s coupling
with orbital 1 together with the Ising intersite interaction ; the
variation with field is no longer linear behavior as it was for
JH = 0. Also, some slight discontinuities are observed for the
magnetizations mx

1 and m
z
1 at the critical field h

⋆
K, which marks

the vanishing of the Kondo f − c hybridization.
The figure 5(b) obtained for JK = 1.3 and JH = 0.07 shows

an increase of h⋆K since the Kondo coupling is increased.
The discontinuities of mx

1 and mz
1 are not observed, and the

z-component of m2 is larger. Also, the stronger value of
JK allows stabilization of the mixed state with a magnetic
moments of orbital 1 completely aligned to the magnetic field
hx. The figure 5(c) is obtained for JK = 1.0 and JH = 0.1. The
resulting Weiss field induced by the fully polarized orbital 1
on the orbital 2 has stronger intensity than the previous cases
reported before.The presence of Ising interaction together with
Hund’s coupling favors magnetizations aligned along z direc-
tion for small hx, while the alignment is along x direction above
a critical field h⋆M. The rotations of the magnetizations induced
by the field are continuous and gradual.

The variation of the magnetization at orbital 2 as a function
of the transverse magnetic field and the number of conduction
electron is depicted in figure 6. For the three values of nc shown
in figure 6(a), we can see the presence of the plateau already
discussed at ∼ (1− nc)/2. In figure 6(b), the linear variation
of m2 is observed for some range of nc, where the plateau is
present.

The figure 7 shows the phase diagrams as a function of
occupation number, nc, and the transverse magnetic field,
hx, for fixed J ′ = 0.1 and four combinations of JK and JH.
Following the description made in the section 3.1, we can
relate the different phases with the schematic pictures presen-
ted in figure 1. In the white part of figure 7, the F1 phase is
defined as a ferromagetic phase where the z component of
the magnetization is non-zero. In the yellow region, the F2
phase corresponds to a magnetization completely aligned with
the applied field. It can be saturated for both orbitals, leading
to the fully polarized state. In the red region, FK1 indicates

Figure 7. Phase diagram as a function of the conduction electron
occupation, nc, and the transverse magnetic field, hx, for J ′ = 0.1,
T = 0.0001, and different values of JK and JH. Depending on the
interaction parameters different phases are stabilized:
ferromagnetism and Kondo effect may compete or coexist. Strong
values of the applied field always induce a fully polarized state, F2,
with magnetization aligned along the field. At zero field, a
ferromagnetic phase is always found due to the Ising interaction J′,
coexisting with Kondo screening in the FK1 state at sufficiently
large nc. (a) and (c) are obtained for relatively small JK = 1.0. Here,
h⋆K < h⋆M and the field-induced breakdown of Kondo effect, FK1-F1,
is realized in a ferromagnetic phase where the magnetization is not
fully aligned along the field. (b) is obtained for a slightly larger
value of Kondo interaction. Here, a direct transition FK1-F2 can be
realized, reflecting h⋆K = h⋆M, and corresponding to a simultaneous
breakdown of Kondo effect and allignement of the magnetizations
along the field direction. (d) is obtained for relatively stronger
values of JK and JH. Here, a cascade of transitions may be realized,
FK1-FK2-F2. In the intermediate mixed Kondo phase FK2, the
magnetization is aligned along the applied field.

a mixed state: ferromagnetic (non fully polarized) order and
Kondo hybridization coexist. Another mixted state is obtained,
FK2, which appears in the orange region: here, the magnetiz-
ation oriented along x direction coexists with Kondo hybridiz-
ation. The two diagrams represented by figures 7(a) and (c),
which mimic two different values of JH, represent qualitat-
ively similar situations: in both cases, FK1 can be present for
sufficiently large value of electronic filling nc and small field;
this phase is limited by the critical field h⋆K above which the
field always abruptly destroys the Kondo hybridization. Also,
here, an increase of JH results in a decrease of h⋆K, which van-
ishes at small nc where non Kondo state can be formed. In
all cases, a fully polarized non-Kondo state F2 is realized for
strong applied magnetic field. We now focus onto the dia-
grams obtained for larger values of Kondo interaction. In 7(b),
an intermediate situation is observed with JK slightly stronger
than the one in 7(a). In this case, a direct transition from FK1
to F2 may be realized by applying a magnetic field if nc is
sufficiently large. Such a FK1-F2 transition corresponds to
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h⋆K = h⋆M and, as a consequence, all parameters are expected
to vary abruptly, especially magnetization (value and orienta-
tion), electronic density of states, Fermi-surface. Figure 7(d)
depicts a situation obtained where both Kondo and Hund inter-
actions are relatively stronger than in other figures. In this case,
a cascade of transitions FK1-FK2-F2 can be induced by the
magnetic field: as a first step, from FK1 to FK2, the magnetic
field continuously turns the magnetization to x direction, pre-
serving continuously the non-zero Kondo hybridization just
above h⋆M. Then, in the intermediate Kondo phase FK2, the x
component of m2 reaches the plateau behaviour. The break-
down of Kondo effect can then be realized (FK2-F2 transition)
at the critical field h⋆K > h⋆M.

4. Discussion and conclusion

The description presented in this paper is intended to shed
light on the discussion of the metamagnetic transition in the
URhGe compound. With this proposal in mind, we studied
the effect of the transverse magnetic field in a model with
two f -electron orbitals that interact with onsite and intersite
exchange, and are in contact with a background of conduction
electrons. Here, the interplay between Kondo effect and ferro-
magnetic order has a strong influence on the properties of the
system. We focused on the tunability of the ground state prop-
erties by applying a transverse external magnetic field. The
two main possible effects that might be induced by applying
a transverse magnetic field in this system are: breaking of the
Kondo effect, and rotating the magnetization axis along the
direction of the field. We obtained and characterized differ-
ent scenarios for the predicted field-induced transitions. When
the critical field h⋆K (field necessary to destroy Kondo effect) is
smaller than h⋆M (field necessary to rotate the spins along x axis)
(see, e.g. figure 7(a)), the Kondo effect is destroyed before the
field completes the rotation of the magnetization along x. In
this case, we predict an abrupt transition from phase FK1 to
phase F1 (at h⋆K), followed by a continuous rotation of the mag-
netization as a function of the transverse field (ended at h⋆M) up
to the fully polarized F2 phase. On the other hand, when h⋆K
is bigger than h⋆M (see, e.g. figure 7(d)), the complete rotation
of the spins occurs inside the Kondo phase (mz

2 is zero but mx
2

is not saturated) from phase FK1 to phase FK2 and the meta-
magnetic transition indicating the breakdown of Kondo effect
is obtained only when the magnetization is already along the
x direction, from phase FK2 to F2. For an intermediate set of
parameters (see, e.g. figure 7(b)), the critical fields can coin-
cide, h⋆K = h⋆M, and the complete rotation of the magnetization
is expected to occur at the same field as the Kondo breakdown
metamagnetic transition, from phase FK1 to phase F2.

These different situations, resulting from different values of
the dimensionless ratio h⋆K/h

⋆
M, correspond to different scen-

arii, which are associated with different experimental signa-
tures: focusing on the magnetic signatures, Kondo breakdown
at h⋆K is expected to be revealed by a metamagnetic transition,
while h⋆M marks the full rotation of the magnetization along
the direction of the applied field. Analyzing magnetization

curves as a function of transverse field should thus provide a
clear way to discriminate between the different scenarii. Other
signatures of Kondo effect, like the expected increase of the
effective mass, also need to be analyzed coherently with the
magnetization.

The previous theoretical results obtained using DMRG [43,
44] are partly consistent with what we get for certain para-
meter values. For example, both DMRG and our approach can
depict a rich phase diagram with ferromagnetic, Kondo plat-
eau, and fully polarized phases. However, the DMRG work
was dedicated to a one-dimensional model and it also pre-
dicted a Tomonaga–Luttinger liquid phase which we do not
obtain and which is unlikely to be observed experimentally
in these compounds. Furthermore, the phenomenological res-
ults of REF [47] also depict the suppression of the magnetiz-
ation along the easy axis when the transverse magnetic field
increases, followed by the metamagnetic transition. However
this theoretical approach neglected the possibility of Kondo
effect. Therefore, it could describe neither the ferromagnetic
Kondo phase that we predict nor theKondo plateau regime pre-
dicted both with DMRG and our approaches. Such a Kondo
plateau regime induced by a magnetic field was previously
found and predicted in REF [48]. It was also identified as a
spin-selective Kondo insulator [38], where a gap is found in
the density of states for the minority spin conduction electrons
(spin down) and a metallic behavior is found for the major-
ity spin electrons (spin up). In the mean-field approximation,
the plateau phase is related to the commensurated condition
(⟨nc↑⟩= ⟨nf↓⟩) emerging for ⟨Sf⟩+ ⟨Sc⟩= (1− nc)/2 [42]. While
it has been predicted by these various complementary theoret-
ical works, it would be interesting to investigate experiment-
ally the possible presence of such a Kondo plateau regime.

Regarding the discussion of the experimental results in
URhGe, we identify our theoretical parameter h⋆M with HR

(spin-reorientation field). This is consistent with the phe-
nomenological analysis given in [47], using Landau free
energy expansion. Experimentally, an increase of the effect-
ive mass around HR is revealed in different contexts: it is
reported by specific heat [49] that γ has a peak, and the con-
stant A of the T2 relation on the resistivity, has similar beha-
vior [50]. Assuming the Kadowaki–Woods relation

√
A∼ m∗

and considering that the effective mass has two main contri-
butions, a band mass mB and a magnetic contribution m∗∗,
m∗ = mB +m∗∗, it was proposed [49] that, when the effect-
ive mass increases, it is the magnetic part due to the mag-
netic fluctuations that is responsible of this increase. The band
mass contribution is considered as field independent and does
not change across the transition [51]. Also, the Fermi sur-
face presents a variation of around 7% detected by quantum
oscillations (Shubnikov–Das Haas experiment) at HR and it
is reported that the effective mass decreases when crossing
HR and stays constant for higher fields [52]. Measurements of
Hall effect also indicates a Fermi surface reconstruction [53],
together with the results of thermoeletric power that changes
sign around HR [50]. ARPES shows itinerant behavior for the
5f electrons in the ferromagnetic state [54], but there are no
result above to the metamagnetic transition.
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On the basis of these experimental results, we propose two
possible descriptions : first, a scenario with h⋆M < h⋆K as depic-
ted in figure 7(d), can be realized if experimentally Kondo
effect is established above and belowHR. However, in this con-
figuration, we would not observe any abrupt variation in the
magnetization at that field, and the metamagnetic transition
might occur only for higher values of the transverse field when
hx = h⋆K. The second scenario corresponds to h⋆K = h⋆M (see for
example 7(b)), where the rotation is accompanied with a sud-
den variation of the magnetization along the applied trans-
versal field. This could be the case if the effective mass has
an abrupt change across the metamagnetic transition.

The Das Haas-van Alphen experiment on URhGe could
help in understanding the nature of the metamagnetic trans-
ition discussed here, analyzing how the effective band mass
changes across HR. Finally, we did not take into account
any possible effect on the metamagnetic transition due to
the reentrant superconducting phase, but we strongly believe
that the interaction of the itinerant and localized electrons is
important for the description of the magnetic and supercon-
ducting effects in the uranium compounds.
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