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Abstract

The micropolar fluid system is a model based on the Navier-Stokes equations which considers two coupled
variables: the velocity field # and the microrotation field &. Assuming an additional condition over the variable
@ we will first prove that weak solutions (@, ) of this system are smooth. Then, we will present a concentration
effect of the L3 norm of the velocity field @ near a possible singular time.

Keywords: micropolar equations; regularity; blow-up.
Mathematics Subject Classification: 35Q30; 35D30; 35B65; 35B44.

1 Introduction

In this paper we are interested in studying some properties of weak solutions of the micropolar fluid
equations. Recall that these equations are given by the following coupled system

—_

£

Ot = At — (@- V)i — Vp+ =V AZ,  div(@) =0, (1.1)

2
. . 1

0 = A& + V div(d) — J — (ﬁ-V)cU+§V/\ﬁ, (1.2)

(0, ) = do(z), @(0,z)=do(z) and div(d) =0, =eR3

In the previous equations the initial data are @y and &y and the variables are (, p, J) where the vector
field i : [0, +0o[xR3 — R3 is the velocity field of the fluid, the scalar function p : [0, +00[xR3 — R
is the internal pressure and the vector field & : [0, +oo[xR?® — R3 is the angular velocity or the
microrotational velocity. It is worth to remark here that the first equation above is related to
the incompressible 3D Navier-Stokes system (we have div(#) = 0) while the second equation
gives the evolution of the microrotational velocity field &.

This system of PDEs was introduced in 1966 by Eringen in [14] and it has been studied by many
authors, see e.g. [B], [I1], [I7], [22], [36], [37] and the references therein. Apart from the various
applications of this model (see for example [4], [I8] and [26]), a very interesting feature from the
mathematical perspective of this micropolar fluid system is the fact that the variable & is not a

* diego.chamorro@univ-evry.fr (corresponding author)
david. llerena@univ-evry. fr



divergence-free vector field, and this makes its study quite different from other systems of PDEs based
on the Navier-Stokes equations (such as the magneto-hydrodynamic equations, see e.g. [10]).

Let us start with two simple remarks concerning the system ([1.1)-(1.2)). First, it is easy to observe
that the equation related to the variable 4 in (1.1]) is invariant according to the following scaling

ix(t, x) = Mi(\%t, \z),  pat,z) = Mp(A\2t,Ax) and &y = MN2G(\%t, Az)  where A > 0,

however the triplet (i), px,@)) is no longer a solution for the whole micropolar system since the
second equation does not have a “natural” scaling that preserves the structure of the equation
(due to the presence of the term &), and his fact reveals one of the major differences between these
two equations.

We continue by observing that the information about the pressure p can be easily obtained from the
variable @: indeed, by formally applying the divergence operator in the equation (1.1f), since div(@) = 0
and div(V A @) = 0, we obtain the following equation for the pressure:

— Ap = div((@ - V)iD), (1.3)

so we can write p = ﬁ div((@ - V)@) and then pressure p is only related to the velocity field 4,

therefore we will consider the pair (#,d) as the main variables. These two simple remarks will be
essential in the sequel.

Note now that Leray-type weak solutions of the previous system ((1.1)-(|1.2)) can be easily obtained:
indeed, from two L? initial data iy, dJy and by a classical mollification argument we can construct
global solutions i, € L{°L2 N L? H! that satisfy some energy inequalities:

Definition 1.1 (Leray-type weak solutions). Let g,y € L?(R3) with div(dp) = 0.
We will say that (4,p,d) is a Leray-type weak solution of the micropolar fluid equations
and with initial value @y and Gy if @€ L®(]0,+oo[, L2(R?)) N L2(]0, +oo[, H' (R?)),
@ € L>(]0, +oo[, L2(R3)) N L2(]0, +oo[, H(R3)) and if for every t €]0,+oc[ we have the following
enerqy inequality

t
e, ')||%2+W(t7')”%2+/0 (s, )12 +206(s, 716 (s, 2242 div(@) (s, ) Z2ds < lldoll 2+ 1oz

Leray-type weak solutions will constitute the main framework of this work, however, just as for the
Navier-Stokes equations, the complete study of the properties of these solutions remains a challenging
open problem for the micropolar fluid equations.

In this article, we first want to perform a separate study for each variable @ and & in order to
obtain, by considering a hypothesis on the single variable #, some regularity for the couple (u,d).
Then we will deduce a concentration phenomenon for the L3 norm of @ when approaching a potential
blow-up time. Let us stress here that we will avoid as much as possible any additional information
over @ (except for the LL2 N L2H! framework). To do so, we need now to introduce some definitions
that underline this separation of the information between the variables 4 and &:

Definition 1.2 (Partial suitable solution). We will say that the triplet @, :]0, T[xR3 — R3 and
p:]0, T[xR3® — R is a partial suitable solution of the micropolar fluid equations (1.1)) and (1.2)) over
a regular open set 0 CJ0, T[xR3 with 0 < T < +o0, if:

: 3
1) we have @, € LPL5(Q) N LiHL(Q), p € L2, () and the variables (i, p,d) satisfy in the weak
sense the equations (1.1 and (1.2)) over Q,



2) for all ¢ € D(R) the following local energy inequality is satisfied

—12 d 9 v © idl2odrd A 2dud 5 SV
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+/s<t /R3 e V)(ﬁdxds—i—/Kt /RP»(V/\W) (¢u)dyds. (1.4)

Let us observe that the previous inequality is only related to the structure of the first equation (|1.1))
and it is not related to the evolution of & given in . This notion of partial suitable solution
was introduced in our previous work [13], where we studied the interdependence of the variables in
the e-regularity theory (based on the celebrated work of Caffarelli, Kohn and Nirenberg [8] for the
Navier-Stokes system).

Now we introduce the following definition of partial regular points.

Definition 1.3 (Partial regular point/Partial singular point). A point (to, 7o) € Q CJ0, T[xR3
s a partial regular point for the micropolar fluid equations and if there exists v > 0 small
enough such that Jto —r?, to[X By, C Q and such that @ € LY, (Jto— 12, to[X Byy,r). On the other hand,
we will say that a point (to,xo) is partially singular if it is not partially regular.

In the two previous definitions we do not impose any constraint in the variable . However, as we shall
see, it will be enough to impose some conditions to the velocity field « to obtain a gain of information
(regularity or integrability) for both variables @ and &. Concerning this last notion of partial regular
points, the regularity of the variables @ and & will be obtained from the local hypothesis @ € L{°LS°.
Although this is a rather “reasonable” result, to the best of our knowledge it was not studied in detail
before, so we give a proof in the Theorem below.

As we aim to study the behavior of the variable « around some potential blow-up point, we need
to establish some very specific regularity results that were not treated before. Thus, our first result
explore a gain of integrability when assuming a local Lg°L3 hypothesis for the velocity field :

Theorem 1.1 (Partial interior regularity). Consider (4,p,d) a partial suitable solution over a
regular set 0 C]0, T[xR3 with 0 < T < 400 of the micropolar fluid equations and i the
sense of the Deﬁm’tion above. Assume that for some point (to,zo) € ) there exists R > 0 such that
we have |tg— R%, to[x By, .r C Q and such that we have the information i € L>(Jto— R2,to[, L*(Bay.r))-
Then there exists 1> 0 with 0 < r < & such that @ € L3 (Jto — 12, to[ X Bry,r), 1-€. the point (to,xo) is
partially reqular in the sense of the Definition above.

Some remarks are in order here. First note again that we only impose some additional information on
# and not on the variable & (which is consistent with the general spirit of this article), however the
conclusion applies only to @. Remark next that this additional control, namely the fact that @ € L{® Li
(locally), is reminiscent of the endpoints of the Serrin criterion for the classical Navier-Stokes system
where it is traditional to assume locally @ € LYLL with % + % < 1 (see [31], [32]). The case when
]% + 2 = 1 with ¢ > 3 was obtained by [33] and [34] while the endpoint p = 400 and ¢ = 3 (which
is the case studied in the Theorem above) was obtained for the Navier-Stokes equations in [I5].
Note also that for the Navier-Stokes equations some of these results were generalized to the framework
of parabolic Morrey spaces Mf}’g in [27] (these spaces will constitute one of the main tools of this
article, see the expressions and below for a precise definition of Morrey spaces). For the
micropolar fluid equations see our recent works [12] and [I3] where we assumed a local control of the
velocity field in terms of the parabolic Morrey space Mf;g with 2 < p < qgand 5 < ¢ < 6. Let us
mention finally that the treatment of the endpoint p = +00 and ¢ = 3 as announced in Theorem



above seems to be new in the context of the micropolar fluid equations.

In our next result, assuming a global in space L3 control, we will characterize the continuity in
time information for the velocity field @ in terms of partial regular points. More precisely we have:

Theorem 1.2. Let (ii,p,&) be a weak Leray-type solution over |0, +0o[xR3 of the micropolar system
and with @,& € L°L2 N LEH! such that for some time 0 < § < T < 400 we have
@ € L>(]6,T[, L*(R3)). Then the velocity field @ satisfies @ € C(]5, T[, L*>(R?)) if and only if each point
(to,x0) €]0,T] is a partial regular point in the sense of Definition .

One of the main differences between this result and the previous Theorem [I.1] lies in the fact that
we no longer require here the partial suitability condition . Indeed, as we shall see later on, the
global in space hypothesis @ € L°°(]0, T, L3(R?)) is strong enough to ensure an interesting global
estimate. Again, the variable @ seems to play no particular role in the statement of the result, but
must be studied very carefully in the computations.

To the best of our knowledge, Theorem|[I.1]and Theorem [I.2] are new in the setting of the micropolar
fluid equations and . These results, although interesting for their own sake, are however
merely preliminary results: indeed, our first main theorem states a blow-up criterion for Leray-type
weak solution of the micropolar fluid equations and :

Theorem 1.3 (Blow-up). Let (i, p,&d) be a Leray-type weak solution of the micropolar fluid equations
and (L.2). Let0 < T < +00 be the mazimal time so that we have the control @ € C(]0, T[, L*(R?)).
If T < 400, then
sup ||u(t, )]s = +o0.
0<t<T

The proof of this theorem will heavily rely on the previous results stated above. With all these results
at our disposal, we can now tackle our second main theorem which is related to a refinement of the
blow-up criterion stated in Theorem above: indeed, we want now to study the concentration of the
L3-norm of the velocity field @ on balls centered at a singular point (7, 0) whose radius shrinks to zero
as t tends to 7.

Theorem 1.4 (L? concentration effect). Let (i, p, &) be a Leray-type weak solution of the micropolar
fluid equations and . Assume that 0 < T < 400 is the mazimal time such that we have
@ € C(]0,T[,L>®(R?)). Assume that the point (T,0) is a partial singular point in the sense of the
Definition and the time T satisfies the following condition: for some ro > 0 such that 0 < T — 7“[2),

we have )
sup sup sup  — / |i(t, z)|*dx = M < +oo. (1.5)
zoER3 7”6]077‘0} tE]T*T’Z,ﬂ r Baco,r

Then, there exists e >0, & = S(M) >0 and 0 < § < T such that for all t €]T — 06, T[, we have

/ it 2)[Pdz > e. (1.6)
B, T

Of course, with the estimate above it is quite straightforward to observe the announced
concentration phenomenon of the L3 norm for the velocity field @ when ¢ tends to the “blow-up” time
T. Let us remark now that the constraint given in the expression is known in the literature of
the Navier-Stokes equations as the type I condition (see [2], [3], [20] and the references therein) and it
can be interpreted in terms of Morrey spaces. Indeed, if @ satisfies the condition , then we have
ie LM C ./\/lfg As it might be expected, the fact that @, € Mp] with p =2 and ¢ = 5 falls
outside the scope of the Serrin regularity criterion stated in terms of Morrey spaces where we need to



impose that 2 < p < g and 5 < ¢ < 6 (see [12]). This suggest that the values p = 2 and ¢ = 5 may
constitute a threshold: above these values the additional parabolic Morrey information will provide
enough “integrability” to deduce a gain of regularity, while at p = 2 and ¢ = 5 (or below) the parabolic
Morrey control will not produce a consequent gain of information.

We also note that, although it is not difficult to exhibit a “domination” of the variable @ over
the variable ¢ when considering regularity results (in the sense that it is enough to impose some
conditions on @ to obtain a gain for both variables @ and &), the techniques developed in this article
do not seem to provide any information about the behavior of & close to a potential blow-up point.
However, we can possibly conjecture that a blow-up for the variable ¢ will impact the behavior of the
velocity field i, but the complete study of this problem would probably require some additional work
which is beyond the scope of this article.

The plan of the paper is as follows: Theorem will be studied in Section 2] and in Section [3| we
prove Theorem Section |4 is devoted to the proof of Theorem while the L3-norm concentration
effect stated in the Theorem [I.4]is treated in the Seccion[5] In the appendix [A] and the appendix [B] we
present some regularity results related to the system — that were not explicitly proven before
and that are needed here to perform some computations.

Notations

Throughout this paper we fix the following notation for two different types of parabolic balls centered
in a point (tg, zg) €]0, +0o[xR3: we define the sets Q. (to, zo) and Q. (to,zo) by

Qr(tOwTO) = ]tO _T27t0+r2[XBJ»‘0J’7 (1'7)
and Qr(to,ﬂfo) = ]to - T25t0[XBCC0,T7 (18)

for some 0 < r? < tg and By, = B(zo,7). When the context is clear we will write Q, (or Q,) instead
of Q. (to, zo) (or Q,(to,x0)). Note that we clearly have Q,(to,xo) C Q,(to,xo)-

Morrey spaces ME?(R3) with 1 < p < ¢ < 400 are defined as the set

MPARS) = {7 RS — RS : Fe L (R, || Fll v < +00},

loc

where

1
. 1 . P
| fllpma = sup <3(1p)/ \f(ﬂﬁ)\pd%)- (1.9)
r 2’ J Bzg,r

To€ER3 r>0

For 1 < p < q < +0o0, the parabolic Morrey spaces Mﬁ (R x R3) are defined as the set of measurable
functions f: R x R3 —s R3 that belong to the space (LY 2 )1oc such that ||ﬂ|Mf‘q < 400 where

. 1 . »
Flaga = sw (i [ (fwardar) (1.10)
' z0€R3,toeR,r>0 \ T a7 J|t—to|<r? J Byy,r

Although not explicitly present in the statement of our results, Morrey spaces will play a crucial role
in our computations. Indeed, these functional spaces are a very useful tool when addressing problems
related harmonic analysis or to the regularity of a large class of PDEs, see e.g. [1], [13], [21], [24], [28]
and the references therein for some interesting applications of these spaces.



2  Proof of Theorem [1.1]

Recall that we plan to prove that u € LgS, (Qr(to, o)) for some 0 < r < %. For this purpose we begin by
introducing some useful preliminary results and important properties satisfied by any partial suitable
solution (@, p,d) of the micropolar fluid equations and such that @ € L°L3(Qgr(z0,t0))
where QR(.T(), t()) :]to — RQ, tO[XBxO,R~

e First, under the hypotheses given in Theorem over (@, p,d), we can obtain the following infor-
mation

— R2 5
dec([to-2t], L5 (B, 5)). (2.1)
For proving this result, we will need the following lemma given in [35] Lemma 9.6, pg 177].

Lemma 2.1. Let 1 < s < ¢ < +00. If (¥,p) is a weak solution of the time-dependent Stokes system,
07— AT+ Vp=f, div(d)=0,

such that for R >0, ¥ € L;LL(QRr), p € L{LL(QR) with an external force f € L;LL(QRg). Then, for
all 0 <r < R, we have

10:0] s 22,y + 1AV sy + IVPIsLa @) < CUsra@r) + 110lLsi@p) T IPILsi(@p))-

This lemma is known in the literature as the coercive estimates for the Stokes system, for further
details about these estimates we refer to [28, Theorem 5.4] or [30, Proposition 6.7].

Now, we will see how to deduce ({2.1]) by using the aforement'ioned lemma. Notice that by the Holder
inequality with % = 13—0 + %, and since @ € L°L2(Qr) N L?H(QR) by hypothesis, we obtain

. - 3 2 -
@Yl 5 5 o0 S T2 e IVEElzzs < Tz g @ 12 r2@) IV Sl 2120 < Ho0-
. 3 3
Furthermore, since & € L?H(QRr), @ € L°L3(Qr) and p € L} L% (QRr) by hypotheses and since Qr
- 5 5 5
is a boun(fgedgset, we ob‘gain that VA G € LIL2(Qr) C LA L (Qr), @ € LPL3(Qr) C LI LL(QR)
and p € L7 L2 (Qr) C L} LL(QR). Thus, since (i, p) satisfies the system

i — AL+ Vp=(i-V)i+=VAZ, div(d)=0,

N

oo 5 5 5
and we have deduced that (@- V)@, VAG € L} Li (Qg) and i, p € L} LL(QR), then from the Lemma
above, we obtain the following information over the time derivative of the velocity field:

5
ol € Lém(Qg).

With this information at hand we obtain for almost all ¢ €]ty — RTQ, to[ that there exists a vector field
t
U e L%(RB’) such that we have the expression w(t, ) = / , Outi(t,-)dt + U from which we can
to—RT
deduce that 4 € C <[t0 — RTQ,tO} ,L%(on g)) (see for instance 35, Lemma 3.2] and [9, Corollary
2
1.4.36)).

It is worth noting that from (2.1) we are able to study the behavior of the solution in the closed
interval [ty — RTQ, to] even though some of the initial hypotheses are stated in the bigger (but open)
interval Jtg — R?, to].



e Secondly, observe that from the hypothesis @ € L;’OL?E(QR) we have that u(¢,-) E L (Bgy,r) for
almost all t €]ty — R2, tg[, however we will deduce, using (2.1]), that for any ¢ € [to — T’ to], we have
u(t,-) € L3(Bx0 r) (and not only for almost all ¢ G]to—R;, to[). Indeed, let t € [tO—RTQ, to] and (t)ken

2
be a sequence in |ty — %2,750[ such that tj N t. Since ||@(t, -)HLs(BIO%) < [ld@ll o3 (@p), using
the Banach-Alaoglu theorem, there exists a subsequence (x;)jen such that (u(ty,,-))jen converges
weakly-* to some ¥(t,-) in L3(Bx0 r). On the other hand, by the continuity in the time variable
2
given in (2.1), we have (ty,,-) — (t,-) strongly in L%(BZ, r). Hence by uniqueness of the
j—+o0 0,3
limit, one has u(t,-) = ¥(t,-) € LS(B:cO r)N LE(BQC0 r), and then we have proved that
I’ 2 k) 2
R? 3
for any t € [tg — T,to], we have w(t,-) € L (Bwo%)' (2.2)

Similar to the previous point, we remark that we are able to deduce some information on the
. — . . 2
behavior of @ in the closed interval [t — £-, #].

e We give now some remarks about the pressure. Notice that we can decompose the pressure p into
two parts
p=p+II, (2.3)
where p = (_—lA)(diV(diV(qﬁU ® 1)) with ¢ a positive test function supported in By, , such that ¢ =1
in Bwo’g, for 0 < p < R, and II is defined by II = p — p. From the definition of p we have,
div(div(¢d @ @))

90,30 < WPl s ey = o

L (o= tol, L3 (B9))
Using the fact that the Riesz transforms are bounded in L%(R?’) and supp(¢) C By, ,, We can write

9] < Cl¢u @l

LooLg(Qp) L (Jto—p2,to], L?(Rii) C||¢||L°°(R3 ||U ® UH

L (Jto—p2 tol. L2 (Bag )’
Thus, since @ € L{°L3(Qr) by hypothesis, we obtain

12 -y
Il s < Cllall e 13, t0m0)) < CNUl Lo 13 (Qp(t0,m0)) < T0°- (2.4)
Now, since IT = p — p and p satisfies the equation (1.3]), we have for all ¢ €]ty — RTQ, tol,

1
All(t,-) = Ap(t, ) — Ap(t,-) = —div(div(d @ @)) — Am(div(div(gbﬁ@ w))).
Thus, since ¢ =1 in B, ¢, we observe that for all ¢ €lto — ﬁ,to[ we have AII(t,-) = 0 over B, r
Now, by the local estimates for harmonic functions (see [16, Theorem 7]) we have for any 0 < p < R

the estimate [|IL(t,-)||rep ) < C|(E, )] 3 . Moreover, since II = p — p, we have
205 L2 (Bzg,p)

L, Mo, o) < Cllp(t ) T ClInCt; - (2.5)

3 3 3 3 3
Finally, as p € L7 Lz (Q,) by hypothesis and since p € L§°L§ (@) C Lf L% (Q,) by (2.4), by taking

2
the L3-norm in the time interval to — %, to[ in the expression above, we obtain

HHIILz <Clpl +Clpl 4

=~ 3 3 3
t2 L (Q%) Lt2 L% (Qp) Lt2 Lz2 (Qp)

The decomposition (2.3]) of the pressure as well as the controls . will be useful in the sequel.

< +o0. (2.6)



These three points finishes the preliminary results. Now, we will prove that @ € L{5,(Q,) for some
0<r< %. For this, we proceed by contradiction, assuming that for all 0 < r S %, we have
¢ L®(Qr(to,x0)) i.e., the point (tp,zo) is partially singular in the sense of the Definition The
strategy will consist in applying a scaling argument around the point (g, zp) and to study the behavior
of some limit functions in order to exhibit a contradiction. Thus, let us consider, for any k € N the

sequence
Ak = Vio — t,
where (t;)ren is a sequence such that for all £ € N, 0 < ¢ < tp and g k—> to. Notice that
——+o00
(M)ken — 0 and it is a bounded sequence.
k—+o0

We extend now the functions (@, p,d) by 0 outside Q (to,z0) and we denote them by (i, p,d).

For any k € N, consider now i, & and py the following scaled functions: for any (s,y) € [0,1] x R3,

i (s,y) = Mty + Aps, o + \ky),  pr(s,y) = Aep(te + ARs, 2o + Agy) o)
2.
and G = N2 (tg + Ais, 20 + Mry).

Remark 2.1. The support of the functions (U, pr,Jx) is included in Q (1 0). In the following

we will consider k large enough such that (ty — tx) < —2 and therefore 1 < 2)\ (recall that (Ag)ken

converges to 0). Hence the values of the functions iy, pr and &y in 10, 1[xR3 correspond to the ones
of (it,p, @) in [ty to[ < B, n.

It is worth noting that (i, pg,Jx) is not a solution of the micropolar fluid systems (1.1]) and ( -
due to the lack of scaling of these two equations, as it was pointed out in the page[2]of the mtroductlon
Nevertheless the triplet (@, px, Jx) satisfies the equation

_ . L 2. s lg .
Oty = Aty — (g - Vi)Up — Vi, + iv N Wi, (2.8)
which can be seen as the classical Navier-Stokes equations with an external force V A &, which is
“given” and belongs to the space L?L2. Now, we want to prove the following convergences

VAG ——0, pp——— P and U —— o,
k—+o00 k—+o00 k—+o00

in order to deduce that (@, Peo) is a solution of the Navier-Stokes equations in ]0, 1[xR3,
Oyling = Al — div(lis @ Ung) — Voo,

and then a careful study of the properties of the solution (., pso) Will leads us to the wished
contradiction.

e First, we study the convergence of the sequence (V A @i)ren in the domain ]0,1[xR3. By the
definition of @, given in (2.7)), since supp(V A &) C Q (1 0) =]1— 1[x B, B and 1— /\2]% <0

by Remark 2.1 we have

2

)\27

19 A @22 0,11 22 / / |V/\wk\2dyds—/ / !A3 T A G) (b + N2, 70 + My 2dyds.
R

Now, by a change of variable and since ty — RT < tx by Remark m we can write

A — )\k/ / ¥ A &2dyds < )\k/ 2 / ¥ A &2dyds.
IR R tk Bzo,ﬁ t 7% BZO»%



=

Using the fact that VA G = VA &Q 4 (to,z0) DY construction, we obtain
2

IV A&dyds < Ak/ IV A& 2dyds.  (2.9)

”6 /\CD’kH%2(]O’1[7L2(R3)) < Ak/
Qr(to,z0)

Q g (to,xo)
z

Since & € L%H% (Qr) by hypothesis, and (A;)ren converges towards zero when k — +o0, we have

VAG, — 0 stronglyin L%(]0,1[, L*(R?)).

k—+4o00

Now, we study the convergence of (pg)ien- Recall that for any k& € N, we have
pr(s,y) = M\ep(ty + )\is, xo + Agy), where p = p|QR(to,xo)- Since we can split the pressure p = p +II
- - 2
by (2.3)), we can write for any k € N, pp = p  + I, where
pi(s,y) = \ip(te + As, 2o + Aky), 111 (s,y) = AIL(t, + Ais, 20 + Aky),

with p = plg , (t,20) and IL = 11| . (19,2)- Thus, by homogeneity, one has
- 2 2

198l g1 sy = B CEE + A0+ M), sy = PRl g 2y

Since we have |t to[C|to — RTQ, to[ by Remark H we write

= [Ipll

< .
[[px HLOOGOJ[,L% ®) = ||EHLoo(}to—RT2,to[,L% (B, ») LeoLd (@ g (t0.0))

3
Using the fact that p = plg , (19,20) and p € L°L3 (Qg(to,aco)) by (2.4)), we obtain the following
2

uniform bound

<C< . 2.10
It < P gy < € <+ (2.10)
Hence, by the Banach-Alaoglu theorem there exists a subsequence (pi,)jen and po, €
L*(]o, 1], L%(R:s)) such that
Ph, —— P in L(0,1[, L3(R)). (2.11)
j=+oo
Let us study now the sequence (IIj)xen. Since supp(Ily) € @ = (1,0), we have
225
217 2
T 0100 msyy = IREECER - Ao @0 + MM g3 sy
0 2%,
3
and by the homogeneity of the space L7 L5°, we obtain
2
— 3 3
It kHL?(]O 1[,L>°(R?)) =A H*HLFZ (trotolLL>=(B, | &) = kH*”Lf(]t *R*to[L“(Bzo,%))'
3
Now, since II = H|Q§(t0m) and IT € L? L°(Q % by ., one gets
2 2
< CN T <CA2. 2.12
M0 goagaoeqasyy = ML gy = O 212
2



Since (Ag)ken tends to zero as k — 400 we can deduce that (ITg)gen converges to zero strongly in
L2(J0, 1[, L (R?)).

We have proved so far that (pg,)jen converges to pe by (2.11) and (Ilj)ken tends to zero. Now,
since pr = px + Iy, we may obtain, up to a subsequence, the weak convergence of (pg)ren t0 Poo
in L°L3. However, for our purposes we need to study more in detail the convergence of (py)ren-

Indeed, let us prove that (pg)ren is uniformly bounded in (L%(]O, 1], L%(R3)))loc. For showing this
claim, we will use again the decomposition pi = pi + Il and the previous estimates obtained on py,
and II;. Thus, for any compact set Q = [a,b] x B C]0, 1[xR3, since p, = pi + I, we have

1 1
/ Ipx| 2 dyds < 0/ / |pk|gdyds—|—0/ / ITT4| 2 dyds.
Q 0 B 0 B

Since supp(pr) C @ 2 (1,0) and Mg ﬁ 0, we can consider k large enough such that Q C
22p —+00
Q%(l,O). Now, by using the fact that (px)ren is uniformly bounded in L°°(]0, 1[,L%(R3)) by
2 A
(2.10), we have

3
2

1 3 1 3
2dyds = BIE ds < <
/0 /B ol 3 dyds /O lous g ds < Cllell gy <€

2
< CA} by (2.12)), we obtain

Moreover, since ||Hk||Lg(]0’1[’Loo(R3))

1 3 1 3 3 2
H2dd8§B/ (s, )||? osmds < C||Tg|| 2 <CA\ < C|
|l auds < 1Bl [ s < OISy <06

where we have used that (A\g)ren is a bounded sequence. Then, from the previous two estimates we
obtain

/ Ipi| 2 dyds < C. (2.13)
0

Thus, (pr)ken is uniformly bounded in (L%(]O, 1], L%(R3)))ZOC and by the Banach-Alaoglu theorem
and the uniqueness of the limit, there exists a subsequence (pkj )jen such that

3 3
— oo i (L7 L) (2.14)

Pk,
jo+

Notice that we have obtained a refinement of the weak-* convergence of (py)ren given in (2.11)).

Now, let us study the convergence of (u)ren. First, observe that (@j)gen is uniformly bounded
in L>(]0, 1[, L3(R3)), indeed using the definition of @ given in (2.7), by homogeneity and since
t— %2 <t by Remark we have

k|| oo go,1,13(R2)) = 1Atk + AR+ T0 + M) || oo g0,1],L3(R2))
= ||l Loo e o], L3 (R3Y) < HQHLoo(]to_RT{to[’Ls(Rs))-
Then, since @ = 1i|q , (t9,20) and U € L¥L3(Qg) by hypothesis, we have
2

|tk || oo qo,11,23(R3)) < ||17||L;>°Lg(c2§(to,xo)) < +o0, (2.15)

10



then from the Banach-Alaoglu theorem, there exists a subsequence (i, );en such that

— s Wl € L(]0, 1], L3 (R?)). (2.16)

ki j—+oo

Nevertheless, this convergence it is not enough to conclude that (@, poo) satisfies the Navier-Stokes
equations ([2.24]) and we need to use the local energy inequality in order to obtain stronger conver-
gences. For this purpose, we fix ¢ € C§°(]0, 1[xR?) such that supp(¢) Cla,b[x B with 0 < a < b < 1

and B a bounded set of R3. For any k € N, we define ¢(-,-) = Lp(';#, ). Since the extended
k

functions (i, p,J) satisfy the local energy inequality (1.4]), we have for any ¢ €]ty — R2 1],

t t
[aatade v [ [ Foafads< [ [ @ aplatads
—0o0

t t
42 / / p(@ - Vpp)dyds + / @P(@ - ) rdeds + / / - (pril)dyds.
—c0 JR3 T —c0 JR3 R3

s—1tg

By applying the change of variable 7 = N Y= z :0 and since supp(y¢) Cla, b[x B, we have

b b
/]1@3 AR y)dy+2/ /RS IV ® g |*pdydr S/ /Rs(&:cp+ Ap)|iy|*dydr

n'g

(1)

+2/ / (@i - Vo) dydT—i-/ / |y, (i cpdydT—l—/ V/\wk) (pty)dydr . (2.17)
R3 R3
(IIT) (Iv)
Since supp(ux) C Q_r (1,0) =]1 — 12\2 , 1[><B0 i, We consider k large enough such that B C B, r_
2Xp N ’2*k

(recall the sequence (Ag)ren converges tovvards zero). Now, our aim consists in obtaining uniform
estimates of (@ )ken, for which we shall control each term of the right-hand side of (2.17)).

+ For (I) by the Hélder inequality (1 = § + 2), since supp(y) Cla,b[x B CJ0,1[xB and (i) ren
is uniformly bounded in L°°(]0,1][, L? ]RS by ([2-15), we obtain

b 1
| [ o+ AepiaPavar < [ owo+ Aplusi (e My dr < Cllilery < €. 218

+ For the term (II) in (2.17), by the Hélder inequality (1 =2 + % + L), we have

/ / o, - Vo) dydr < / Ilpe(r (s s |90 (7, )| o)
R3 (B)

Then, by the Holder inequality in the time Variable (1 = % + 5+ ), and since (U)gen
is umformly bounded in LOO(]O 1[, L3(R3)) by ( and (pg) keN is unlformly bounded in

(LQ(]OJ[ L2 (R%)))i0c by (2:13), one has

/ / Pl - Vp)dydr < Cllpell 3 el 21 ¥l < . (2.19)

ng(] b[xB
* The term (/1I) in (2.17) follows immediately from the fact that () )ken is uniformly bounded

in L>°(]0,1[, L3(R?)), indeed we have
[ [t Dgiar < [ [ a9 < 1ol s <0 20

11



« For the last term (IV) of (2.17), by the Hélder inequality (1 = 3 + £ + %) we have

b 1
| @ na - eiavr < € [ 19 A8 lelr sl sy

now, by the Cauchy-Schwarz inequality in the time variable we obtain
b = —
| (@ na) - (pidydr < O Adilip el Il
a
Since, ||V A@kz2r2 < Al|V A 22 by [2.9) and ||tk Leers < C by (2.15), we obtain

b . 1
/ /RS(V A Gy) - (@ty)dydr < CAZ ||V /\wHwa < C, (2.21)

where we have used the fact that (Ag)ren is @ bounded sequence.

Thus, from the estimates (2.18))-(2.21]), we deduce that there exists a constant C' > 0 ( independent

b
of k) such that the left-hand side of ([2.17)) satisfies / |ﬁk|2<,0dy+/ / IV @ iy |*pdydr < C.
R3 a JR3
Therefore, we obtain that for any test function ¢ € D(]0, 1[xR?) the sequence

(¢ilx)keny  remains uniformly bounded in  L{°L2 N LZH}. (2.22)

Moreover, since (i, py) satisfies the Navier-Stokes equations ([2.8)), it is possible to obtain that
3 3

(pO4tiy)ren remains uniformly bounded in LZ H, 2, (see for instance Step 3 in the proof of the
Theorem 14.1 of the book [24]). Thus, by the Rellich-Lions theorem (see [24] Theorem 12.1]), we
may find a subsequence (i, ) jen such that in the domain ]0, 1[xR? we have on the one hand that iy,
converges weak-* to oo in (L{°L2 N L?H!)j0. and on the other hand that Ug; is strongly convergent
t0 Uso in (L2L2)1p. Furthermore, we can deduce that we have

— Wl in (L2L3)0e, (2.23)

x.
Jj—+oo

J

indeed, since (@y,)jen is uniformly bounded in (L{°LZ N L7LS)ie by ([2.22) and in LFL3 by
1 1
(2.15), using an interpolation argument we obtain ||t ||paza < ||k, |75 61Ukl oo s < C < +o00.
z tHx t Mz

Thus, (i, )jen is uniformly bounded in (L{L%)1o.. This fact together with the strong convergence
in (LZL2);,c, which is given by the Rellich-Lions theorem, imply the strong convergence in (L3 L3);,..

We have now ended the study of the sequence (@ )ken.

Summarizing, we have obtained, up to a subsequence, that the triplet (@, px, vV A Wg) converges to
(oo, Poo, 0) in some (strong or weak) sense, from which we can deduce that (U, Pso) is a weak solution
of the Navier-Stokes equations in ]0, 1[xR?

Oylie = Allne — div(line ® Tiso) — Vioo. (2.24)

Moreover, from the weak-x convergence of (pkj)jeN given in and the strong convergence of
(t;)jen in (L?L3)10c given in , it is possible to deduce that (U, peo) is a suitable solution of
the Navier-Stokes equation in ]0, 1[xR3, in the sense of Definition 6.9 of [24]. This fact can be seen
with all details in the Step 4 in the proof of Theorem 14.1 of the book [24].

12



We will exploit this “suitable” property in the sequel but we need more properties on (o, Poo)
in order to obtain the desired contradiction. Indeed, we will show that on one hand, this solution
is a nontrivial solution of the Navier-Stokes equations, and on the other hand, using the backward
uniqueness theory developed in [I5], [24] or [30], we will deduce that this solution must be identically
zero, leading us to the wished contradiction.

Let us prove now that (s, Poo) is nontrivial and for this we will study in a particular manner
the limit that leaded us to (U, Pso). Consider first 0 < a < % a small parameter. Since (4, p,d) is
a partial suitable solution with (¢g,zp) a partial singular point, we can consider k big enough such
that 0 < a); < % and we can use Proposition in the appendix |B| (which is valid for all radius
0 < al\; < 1) to obtain the existence of a small parameter € > 0 such that

1 3
0<e< / @ + |3 dyds.
(a)‘k)Q aXp (to,xo)

Now, observe that by a change of variable, we have

1 1 [t
< —— @ + |p|2dyds = — |Gk|® + |pi| 2 dyds. (2.25)
( by )2 2
AAk)” JQax,, (to,xo) a* Ji-a? /By,

For studying more in detail the previous expression we need to obtain some estimates about the pressure
(pk)ken- Since (U, px) is a solution of the system ([2.8)) which can be seen as the Navier-Stokes equations
with an external force V A &g, the pressure satisfies —Apy, = div(div(uy ® ty)). Hence, following the
same arguments as in (2.3]), we can split the pressure py, = py +1I; where py = ﬁ(div(div(gbﬁk ® 1))
with ¢ a positive test function supported in By 24 such that ¢ = 1in By 4, and f[k is a harmonic function

defined by ﬁk = pr, — Pr. Now, using the boundedness of the Riesz transform in L%(Rg), we have

pr(t, - < ||px(t,- = div(div(guy @ dy))(t, -
5 ) S B3y = | gy v aopie | |
S o 2
< Clloti o w0y
Moreover since supp(¢) C By 2q, we have
[px(t, Il s < O]l oo @) Tt M s (5o ) < ClTRE 1735600 (2.26)

LZ (Bo,2a)

Furthermore, since IIj is a harmonic function, by the same arguments as in (2.5)), i.e., the local
estimates for harmonic functions, we obtain

L, )l oemo.0) < O g o< OllokE g 0+ CllorE g
and using the estimate (2.26]), we have
6, )y < Clntts ) By + Cllontts My (227

Now, coming back to (2.25)), using that p = pp + ﬁk, we have

1 L . 1 1 . 3 ~ 3
e < 2/ / G4® + |pa|Sdyds < 2/ / @l + Clpel? + O|iy 3 dyds
a 1—a? BO,a a 1—a2 BO,a

1 1 C 1 . C 1 .
e< 2/ / [ty |*dyds + 2/ / [Pkl dyds + 2/ / ITT,| 2 dyds. (2.28)
a® J1—a2 /By, a% J1—a2 /By, 4% J1-a2 /By,

13



Let us study each term of the expression above. For the first one, it is easy to see that

1 1
a12/1_a2 /Bo,a [k dyds < c112/1_(2a)2 /BMG |@x|*dyds = %Hﬁkllim(%(l?o)). (2.29)
For the second term in , from the estimate , we have
3 c ! B ;
/1 N il < / ey s g [ G M
<z HUkHLSm (Q24(1,0))" (2.30)
For the third term in , since ||ﬁk(5”)”L°°(Bo,a) < O|tg(s, ')Hif’(Bo,Za) + C|lpx(s, .)HL%(BQ%) by

(2.27)), we obtain

s L
— ;| 2dyds < Ca/ I0.(¢, )| 2 ds
a2 Ji a2 JBo.| | g 0 M
1 , 1 5
< Ca / (s, - —I—/ 5,412 ds)
([ 1 M+ [ Ity

< Ca(lltr e 13 + HpkH“’ )-
LE L2 (Qaa(1.0)

Jken is uniformly bounded in L®°(]0, 1[, L3(R?)) by (2.15) and (pg)ren is uniformly
(0,1[, L% (R?)))1oc by (2-I3), we obtain that

1t ~
2/ / I | 2 dyds < Ca. (2.31)
a 1—a2 J Boa

Then, gathering all the estimates (2.29))-(2.31]) in (2.28]), we obtain

Thus, since (4,
bounded in (L

k
§
2

o3 !
e < llurlzzrs @m0y + €0

which we rewrite in the following manner a’c — C'a® < C'HukHLSL3 Now, by considering a

(Q24(1,0))"
such that a < &, we can find a constant 0 < &, < a%e — C'a3, such that

0 < ex < ClliklIZs | (@,u(1.0)

Thus, from the strong convergence in (L7 ,)ioc of (iik;)jen given in (2.23)), we obtain
0<er< / |t |2 dyds. (2.32)
2a

We have thus proven that (@, pso) is a nontrivial solution of the Navier-Stokes equations.

We will now exhibit a contradiction by showing that i@, = 0. For this purpose, we recall that the
limit solution (#s, Poo) satisfies the Navier-Stokes equations and therefore we may consider the
backwards uniqueness and unique continuation theories developed in [15], which can be summarized
in the following proposition

14



Proposition 2.1. Let (7,h) be a solution of the Navier-Stokes equations on ]0,1[xR3, i.e., we have
07 = AT — (7- V)T —Vh, div(?) =0

Assume moreover that ¥ € L°L2 N L7HY and for any ¢ € C5°(]0,1[xR3), the pair (T,h) satisfies the
following local energy inequality

Lo aez [ [ 9@ itoayas< [ [ @0+ solotayas (2.33)

+2/ / (7 V) dyds+/ 27 - ¥)gdyds.
<t JR3 s<t JR3
If v € L>®(]0,1[, L3(R?)) and ©(1,-) = 0, then ¥ = 0 on ]0,1] x R3.

For a proof of this proposition we refer to the article [I5] and the books [30], [35].

Let us now verify that the pair (@, poo) satisfies the hypotheses of the previous proposition.
First, notice that (@, poo) satisfies the local energy inequality since it is a suitable solu-
tion of the Navier-Stokes equations (2.24). Moreover we also have that @ € L(]0,1[, L3(R?))
by , thus it is enough to proof that iy (1,-) = 0. For this purpose, remark that for
any j € N, we have i, € L>(]0,1[, L*(R?)) c L'(]0,1], Hfg(R?’)) due to the spaces inclusions
L2(R%) C H'(R%) C H 2(R®) and that we have dyily, € L2(]0,1[, H™2(R?)) € L'(]0,1[, H 2 (R%)).
Therefore, by following the same lines that leaded us to deduce (2.1)), (see as well [24] pg 402]), we can
obtain that

iy, € C([0,1], H 7 (R?)).

Thus, if we consider ¢ € C*°(R) such that ¢ =1 on ] — oo, 3[ and ¢ = 0 on ]2, +-00[, by writing for any

te0,1],
2
—/ at(gbﬁk])ds
t

we can obtain that (%, -) is the weak-* limit of g, (¢, ) in H3 (R3). It follows that for any ¢ € [0, 1],
oo (t, ) is well defined in a distributional sense. In particular, tiw(1,) is the weak-* limit of (1, )

in Hfg(R?’) Moreover, for any t > 0, since @(1,-) = A\g@(to, xo + Ax-) and by the change of variable
z = xo + Ak, y, we have

R / A li(to, 20+ o)dy = [ o, 2) e
Bo"- BO,r

By oy, ¢
0:2k;

Notice that i(to, ) € L3( B, =) by ([2:2) and since @ = g , (19,40), We have that w@(to,-) € L*(R?).
7
Thus, since A\g, = |/to — tk — 0, the function ]IB

]—) o0
Hence by the dominated convergence theorem, we have

/ i, (1) dy = / s, ()it 2)Pdz — 0.
Boyt RS 0> kj

converges pointwise to 0 as j — 4o0.

k.t
J

j—+o0

Therefore, the sequence (i, (1,))jen converges weakly-* to 0 in L?(R?) and then by the uniqueness
of the limit, we obtain that uoo( ) =0.

We have now all the hypotheses needed to apply Proposition (i.e. (oo, Poo) 18 a suitable solution,
oo € L°°(]0,1[, L3(R3)) by (2.16]) and @ (1, ) = 0) so we obtain that @ = 0 on ]0, 1[xR3. Thus, we

have
/ |too|dxds = 0,
2a
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which is a contradiction to (2.32)), and this allows to conclude that @ is actually bounded in Q,(to, o)
forall 0 < r < %. This ends the proof of the Theorem |

3 Proof of Theorem 1.2

We recall the bettlng of thlb theorem Let (@, p,d) be a Leray-type weak solution of the micropolar
fluids equations and ( such that @,d € L®(]0, 400, L2(R%)) N L%(]0, +oo[, H(R?)) and we
assume that for O < (5 < T < +oo, we have @ € L*°(]6, T[, L3(R3)). Our aim consists in proving that
under the previous assumptions the condition @ € C(]6, T[, L3(R3)) is equivalent to the fact that any
point (to,xo) €]9, T'[ is partially regular in the sense of Definition

To do so, first we will establish some properties of the weak solution (@, p,d) in this framework.

e We prove here that i(t,-) € L3(R3) for any t € [4,T]. For showing this claim, in contrast to the
proof of Theorem [L.1] we take advantage of the properties of weak solutions of the Navier-Stokes
equations. Indeed, since (i, p) is a weak solution of the equation which can be seen as the
Navier-Stokes equations with an external force VAG € Lf’z, it is possible to deduce that 4 is
L?(R3)-weakly continuous in time i.e., for any ¢ € [§, T] the application

b= | i(t, z)p(x)dx, (3.1)

is continuous for every ¢ € L2(R3). See for instance Theorem 3.8 in the book [28] or Lemma 3.4 in

[35] for a proof of this fact and more details. Now, fix t € [0, 7] and we consider a sequence (tx)ien

in |6, 7] such that o t. Since [|d(ty,")||rs < ||t@llppers, by the Banach-Alaoglu theorem,
—+o00 z

there exists a subsequence (i(ty;,))jen such that @(ty;,-) — 0(t,-) weakly-x in L?(R?). On
the other hand, since the application (3.1 is continuous for every ¢ € L?(R3), in particular it is

continuous for any 1 € C5°(R?), and hence we have / U(ty,, v)Y(z)de — / w(t, x)(z)de.
R3 R3

Jj—+o00o
Since C§°(R?) is dense in L%(RS), by the uniqueness of the limit, we obtain u(t, ) = ¥(t,-) €
L3(R?). We have thus proved that

for any t € [5,T), i(t,-) € L3(R3). (3.2)

e We prove now that, for any open set B C R3, the triplet (i, p,d) is a partial suitable solu-
tion of the micropolar fluids equations in |4, T[XB in the sense of Definition [.2] Indeed, since
,& € L=(]0, +00[L*(R3)) N L3(]0, +-00[, H'(R?)) we immediately have

i,& € L6, T[, L*(B)) N L*(]6,T[, H*(B)).

)
Thus, it is enough to show that p € L%(](S,T[,L
energy inequality: for any ¢ € C5°(]0, T[xB),

/ || (t, dx+2/ / IV @ i ¢dxds</ / 8t¢+A¢)]u2dyds+2/ / (i - V)dyds
<t JR3 <t <t JR3
+/ |u! (@ -V gbd:z:ds+/ / - (p)dyds. (3.3)
s<t <t JR3

For proving that p € Lﬁ(]d,T[,LE(B)), recall that the pressure satisfies the equation

(B)) and (u,p,d) satisfies the following local

p= ﬁ div div(# ® @) over R®. Hence, using the boundedness of the Riesz transforms in L3 (R3),
we have

div div (@ @ @)(t, -) < Olla@(t, ) 3 gy < ClEE s es)-

1
. < ||

3
2

L% (R3)
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By considering the L3-norm in the time interval 10, T[, in the expression above, and since
@ € L>(]6, T[, L3(R3)) by hypothesis, one has

< Cla|? < @)
||p”L§L§(}5,T[xB) < C||U||L%(]57T[7L3(R3)) < Ol oo o7, L3 (m3y) < +00- (3.4)

Now, let us prove that (u,p,d) satisfies the local energy inequality (3.3]). First notice that since
@€ L2H C L2LS and @ € L°°(]6, T[, L3(R?)) by hypothesis, by using an interpolation argument,
we have

1 1 1 1
lll zaqsrrzacmyy < W@l Eoe oy, Loy 190 22 g 28 (3y) < 18l oo .7 0 oy 1€ E2 g5 1y 16 enyy < F00-

Thus, since (u,p,d) satisfies the first equation of the micropolar fluids equations , and
we have deduced that @ € L4(|6,T[,L*(B)) and p € L3(]8,T[,L(B)), it is then possible
to see that each term in the local energy inequality is well defined. Therefore, since
i@, & € L®()8,T[, L2(B)) N L2(|6, T[, HY(B)), p € L2(]5,T[, L2 (B)), and the local energy inequal-
ity is satisfied, we obtain that for any open set B C R3, the triplet (i, p, &) is a partial suitable
solution on |4, T'[x B.

Having proved the previous two points about the weak solution (@, p,d) in the general framework
considered in this section, we continue with the proof of Theorem

First let us show that if @ € C(]5, T[, L3(R?)) N L*°(]6, T[, L*>(R3)) then any (tg,xo) €]3, T[xR3 is
partially regular in the sense of Definition Indeed, notice that since @ € L>(]§, T[, L>(R3), for
any (tg, zg) €]6, T[xR3, there exists 0 < R < /g — 0 such that @ € L{°L3(Qg(to, 0)). Moreover, we
have seen that (u,p,d) is a partial suitable solution on Qg(tp,xo) in the sense of Definition then
by using Theorem there exists a radius 0 < r < g such that @ € LS, (Qr(to, o)) and therefore the
point (¢, zo) is partially regular in the sense of Deﬁnition Thus we have proved the first implication.

We turn now to the other direction: assume that any (tg,zq) €]6, T[xR3 is a partial regular point
in the sense of Definition [I.3] and we aim to prove that we have

i € C(]6, T[, L3(R?)).

To do so, first, we will deduce that the velocity @ satisfies that @ € L{%(]6, T[xR?) and
@ € (5, T), L*(R%)).

Indeed, let us prove that @ is bounded on |6, T[xR3. Fix tg €]6,T[ and 0 < R < v/tg — d. Since
@ € L°°()6, T, L3(R3)) by hypothesis and p € L2(]5,T[, L2 (R3)) by (3.4), we have that

1
lim R2/ |i|® + ]p\%dyds =0.
|zo]—>+o0 Qr(to,z0)

Thus, for ¢ > 0 there exists K > 0 such that for any |zg] > K, we have
1

R?
Qr(to,z0)
in the appendix E there exists 0 < r < % such that HUHL;”I(QT(

|| + |p]%dyds < e. Therefore, using the e- regularity theory developed in Theorem |B.1

20)) < C. Since this bound is valid

to,
for any |zg| > K, we deduce that

i € L35, (Jto — v, to[x B - (3.5)
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Now, we will show that @ is bounded on |ty — p?, to[x By k¢, for some p > 0 to be defined later. Notice
that for any y € By k, the point (to,y) is partially regular by hypothesis and hence there exists

0 < v, <+/tp — 0 such that
i € Ly, (Qr, (to,y)),  where Q,(to,y) =]to — 5, to[x By, - (3.6)

Remark that the family {B,, v Y € By K} forms a cover of B() k- Thus, by the compact-

ness of By and by the information given in ., there exists a finite sub-cover {Bty (to,yi) :

i = 1,...,n} of Bok such that for all 1 < i < n, 4 € Ly (Q, (to,yi)).  Setting
n

p=min{t,,,...,t,, }, we have @ € L (Jto — P2, to[x U By, v, ). Now, since Box C U By, v, we
~ i=1 i=1

have o € L5 (Jto — p* to[xBo k). Therefore, from the previous information and (3.5]), we can easily

deduce that @ € L>(Jtg — min{p, r}?, to[xR?). Moreover, since tq €]8, T| was arbitrary, one has

@ € Lg%, (]6, T[xR?). (3.7)

Now, let us prove that @ € C([6,T], L?(R?)). For this, we remark that it is known that it is sufficient
to verify that @ € L%(]6, T[, H'(R3)) and o0& € L*(]6,T[, H (R3) to obtain this fact (see for instance
[28, Theorem 1.33]). Thus, since @ € L*®([0, +oc[, L2(R3)) N L2(]0, +oo[, H'(R?)) by hypothesis, we
have

HUHL2(5T[ H(R3)) = ”UHL2(5T[ 2®3) T HUHLz (16,7, HH1(R3))

< CHUHLOO(]&T[,LQ(H@)) + Hu||L2(]6,T[,H1(R3)) < +o0.

and hence we obtain that @ € L?(]6, T[, H'(R?)). Now, for proving d,i € L?(]5,T[, H1(R?), recall
that @ satisfies the equation ;i@ = A@ — P(div(@ ® @) + 3V A & where P(-) is the Leray projector.
Thus, since H}(R?) ¢ H~1(R?) and P is a bounded operator in H~(R?), we have

[0vii(t, ) -1 (r3) < Hatﬁ(t,‘)HH—l(Rg)
HAﬁ@,')”H—l(Ri%)"‘H]P(div(ﬁ@ﬁ))( N g1 L(R3) +15 V/\W( M g1 1(R3)

[AG(E, )| -1 (gay + Cll div(@ @ @) (¢, )| -1 sy + H§V NGt ) -1 sy

IN

IN

and we can write
10cti(t, ) -1 (rsy < N ) g1 (rsy + CN(E @ @) (¢, )| 2(rsy + ClS(E, ) 2 (rs)-
By considering the L2%norm in the time interval ]6,7[ in the expression above, since

i,& € L=(]6,T[, L*(R3)) N L*(]6, T[, H'(R?)) by hypothesis and since @ € L>(]8, T[, L®(R?)) by (3.7),

we have

. . - L.
19et L2571 11 2y) < Nl 25,1 oy + 19 @ @l 252y + 16122050 L2(09))

o rey) T Clill e gs,ry,poo o)) 8l oo 16,71, 22 (R3)) + ClIG| Loo 05,71, L2(R3)) < +00.

Thus, since we have proved that @ € L(]6, T[, H(R?)) and 0yii € L*(]6, T[, H (R?)), it is possible to
deduce that @ € C([0, T], L?(R3)).

18



Having established that @ € Lg%, (]0, T[xR?) and @ € C([6,T], L*(R?)), we will now prove that
@ € C()6,T[, L3(R?)) i.e. we will study the continuity of the function

16, T[ — L*(R3)

t— d(t,-) (3:8)

Remark that the previous function is well-defined since for any t € [6,T], we have i(t,-) € L3(R3) by
(3.2). Now, let ¢ > 0 and t1,t2 €]6, T[. Since i@ € L>(]§, T[, L>°(R?)) by (3.7), we have

|(t1,-) — u(ta, ')H?i:a(R:a) = /5 ity x) — (te, 2)|>dx = /3 @y, x) — @(te, 2) || @t @) — U(te, x)|dx
R R
< 2[|@@| oo (15,77, Lo (R3Y) /R3 |i(t1, @) — G(ta, x)*da.

On the other hand since @ € C([6,T], L?(R?)), there exists 6 = d(¢) such that if [t; — ta| < &, we have

e

/ ity 2) — (s, @) Pde < o :
R3 2|l oo g5,71, L= (R3))

Hence, there exists § = d(¢) such that if [t; — t2| < 0, we have
lii(t1, ) — @2, M sgus, < . (3.9

Thus, the function (3.8)) is continuous and therefore we conclude that @ € C(], T[, L3(R?)), which
finishes the proof of Theorem [1.2} [ |

4 Proof of Theorem [1.3

Let us recall the framework: we consider (@,p,d) a Leray-type weak solution of the micropolar
equations (T.1]) and (T.2) and let 0 < 7 < 400 be the maximal time such that @ € C(]0, T, L3(R?)).
We thus want to prove that if 7 < 400, then sup ||u(t,-)|| s = +oo.

0<t<T

To this end, we will need the following proposition.

Proposition 4.1. Let (i, p,d) be a Leray-type weak solution of the micropolar equations (1.1) and
(T.2) such that for some 0 < T} < +o0 we have @ € C(J0,T1[, L3(R3)). Then, the following assertions
are equivalent:

1) For some 0 < Ty < +oo such that Th < Ts, the velocity i may be extended to the time interval
10, [ such that we have the control @ € C(]0, Ty[, L3(R?)).

2) For every xo € R3, any point (T1,xz0) is partially reqular in the sense of Definition .

Proof. Let us prove that 1) implies 2). Assume that for some 0 < 77 < T» < +o00, the velocity
@ may be extended to ]0,T3[ such that i@ € C(]0, T[, L>(R?)). Notice that since Ty < +oo we have
@ € L>°(]0, T5[, L*(R?)) and that we also have @,& € L°°(]0,+oo[, L*(R3)) N L2(]0, +oc[, H'(R?))
since it is a Leray-type weak solution. We can thus apply Theorem [I.2] and we obtain that any point
(t,z) €]0, To[xR3 is partially regular in the sense of Definition Since 0 < T} < T> by hypothesis,
it follows that for any xg € R3, the point (T}, o) is partially regular, and this completes the proof of
the first implication.

Now, we show the converse i.e., we will prove that 2) implies 1) and we assume that for every
zo € R3, the point (73, z¢) is partially regular in the sense of Definition First, we remark that
any point (¢,z) €]0,T1] x R? is also partially regular in the sense of Definition : indeed since
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@ € C(J0,T1[, L3(R3)) by hypothesis, and T} < 400, we have @ € L>(]0, Ti[, L3(R3)). Since ,d is a
Leray-type solution we have @, & € L>(]0, +oo[, L2(R?)) N L%(]0, +oo[, H'(R?)). Thus, by Theorem
any point (t,x) €]6,Ti[xR? is partially regular. Recall that the case t = T} follows from the
assumption 2).

By using the same arguments as the ones used to deduce (3.7)), we have that L7%,(]0,71] x R?) and
similarly we can deduce that @ € C([0,T}], L?(R3)). Therefore, following the same lines as in (3.9)), we
have @ € C(]0, T1], L3(R?)). It is worth noting that we are considering now the interval ]0, T1].

To continue and in order to extend the solution beyond t = T} < +00, we will use the following useful
result.

Lemma 4.1. Let f :0,T[xR3> — R3 be an exterior force with div(f) = 0, such that
f e Lr()0,T[, LY(R3)) with % + % =3 and 3 < q < 3. Consider ¥y be a divergence-free initial data
in L3(R3). Then, there exists 0 < Ty < T and an unique solution (¥,h) of the forced Navier-Stokes
equation

07 = AT — (T-V)T—Vh+ f, div(d) =0,

17(07 ) = 7o,

such that © € C([0, To[, L3(R3)) N L*(J0, Ty[, L5 (R3)).

For a proof of this result, we refer to Theorem 15.5 in [24]. Remark that, since & € L?([0, +-00[, H(R?))
by hypothesis, we have for any 1 < k < 400 that V A& € L2(]0, kT3], L2(R?)) C L%(}O, kT1[, L3(R3)).
Therefore, by considering the previous proposition with @(71,-) € L3(R?) as initial data and V A& as

4
external force in L} (JTy, kT1[, L*>(R3)), there exists 0 < T} < T < kT and a solution (¥,h) of the
forced Navier-Stokes equations such that ' € C([T1, Tz[, L3(R?)). Since, (i, p) can be seen as a Leray-
type weak solution of the same equation satisfied by (7, h) (starting from the same initial data and the
same external force), by a weak-strong uniqueness argument we have that @ = v € C([Ty, Ts[, L*>(R3))
and hence the solution can be extended beyond ¢ = Ty such that @ € C(]0, T»[, L3(R?)). This completes
the proof of the second implication and this proves Proposition |

Proof of Theorem|[L.3] Let 0 < 7 < 400 be the maximal time such that @ € C(]0, 7], L3(R?)). Recall
that we want to prove that if 7 < 400, then sup |[[u(¢,-)||;s = +oo. Assume the contrary, i.e., we
0<t<T

have @ € L>(]0, T[, L3(R?)). Since 0 < T < +oo0 is the maximal time such that @ € C(]0, T, L3(R?)),
from Proposition there exists a point zg € R? such that (7, 2g) has to be a partial singular point
in the sense of Definition .3

On the other hand, for the same point (7, zg) since @ € L>(]0, 7|, L3(R?)) by assumption, we can
find 0 < R < v/T such that @ € L¥L3(QRr(T,x0)). Moreover, since (i, p,&) is a Leray-type solution
we have #@,d € LPL2(QRr(T,x0)) N L2HL(QRr(T,x0)). Then, since we have moreover that (i, p,d)
is a partial suitable solution in Qr(T,7¢) and @ € L{°L3(Qr(T, o)), we can apply Theorem
and it follows that (7, x¢) is actually a partial regular point in the sense of Definition . This is a
contradiction since we have seen that (7, x) is partially singular. Thus, the quantity L L3 should
explode and this finishes the proof of the Theorem |

5 The L3-norm concentration effect

In this section we will prove Theorem More precisely, we will deduce the concentration effect of
the L3-norm of the velocity @ around a partial singular point (7,0) when @ € C([0, 7|, L°(R?)). Thus,
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if we assume that for 79 > 0 such that 0 < T — r2 we have

1

sup sup sup / |i(t, z)[Pdx = M < 400,
zo€R3 7€]0,r0) t€)T—72,T) T J Boy

we will deduce that there exists ¢ > 0, & = &(IM) and 0 < § < T such that for all ¢ €]T — 6, T, we

have

/ |i(t, z)|*dx > €.
B

T_t
[

Before beginning the proof of Theorem [I.4] we need to introduce the following notion and some
propositions.

Definition 5.1 (Partial local Leray solution). We will say that @,& :]0,T[xR?® — R3 and
p:]0, T[xR3 — R is a partial local Leray solution of the micropolar fluids equations (1.1)) and (1.2)
with initial data iy, Gy € L?(R3) if:

T
1) we have sup sup/ || 2 dy + sup/ / IV @ @2 dydt < 400,
0<t<T zeR3 By z€R3 JO Bz

2) the triplet (i, p,d) is a partial suitable solution on |0, T[xR3 in the sense of Deﬁnition
3) for every compact subset K of R®, we have

t—0+

im, | [7(.) ~ o(s) Py =0 (5.1)

min{R2,T}
4) for any R >0 we have lim / |i|?dyds = 0.
|zo|—+00 Jo Bzo,R

This notion of local Leray solution is borrowed from the theory of the Navier-Stokes problem. See in
particular [24, Definition 14.1], and [30, Appendix B| where the global setting considered there (the

2
Luloc
setting stated above is enough. Note again that in the previous definition, we are not imposing any
particular hypothesis over the variable &, leading us to the previous “partial” notion of local Leray

solutions.

space) is slightly more general than the one considered here. However, for our purposes the L2

Remark 5.1. [t is worth noting that if (4, p, &) is a partial local Leray solution of the micropolar fluids
equations and in the sense of Deﬁnition we may say that (i, p) is a local Leray solution
of the forced Navier-Stokes equations in the sense of the Definition 14.1 of the book [2]|] where the
quantity %6/\@' IS Lgm can be considered as an external force, i.e., Oy = At — (U - ﬁ)ﬁ— Vp+ %6/\@3,
div(@) = 0.

We present now some lemmas to highlight some properties of the partial local Leray solutions intro-
duced above. First, we remark that the pressure can be studied in the same way as in the classical
Navier-Stokes equations since the variable @ is not present in the equation . Thus, we have the
following local decomposition

Lemma 5.1. Let (i, p,&) be a partial local Leray solution in the sense of Definition of the mi-
cropolar fluids equations (1.1) and (1.2)). Then, the pressure p can be decomposed as follows: for all
xo € R® and r > 0, there exists h € L2(]0,T|) such that

Pl ) ~H(0) = gy v, TOD) + [ (K —y) K)o i)y

where K is the kernel of the singular integral operator ﬁ(div(div)).
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For a proof of this lemma in the setting of the Navier-Stokes equations, we refer to [19, Lemma 3.4],
see also |2, Theorem 4] and the article [30].

Now, we observe that since @ satisfies the condition (5.1)), it is possible to rewrite the local energy
inequality (1.4) in terms of the initial data as follows.

Lemma 5.2. Let (4, p,d) be a partial local Leray solution in the sense of Deﬁmtzon on |0, T[xR3.
For all ® € C3°(R3) and for all t €]0, T[ we have

t t t
/|ﬁ]2¢>dy+// |€®ﬁ|2<1>dydsg/ yﬁo|2<1>dy+// |ﬁ|2A<I>dyds+/ V AG - @®dyds
R3 0 JR? R3 0 JRr3 0 JR3
t
s [ @R + 2oy + palya- Gy (5.3
0 JR

It is worth noting that we are able to take here test functions constant in time in the local energy
inequality. We refer to [25, Remark 1.2| for a proof of this result (the term V A & is considered here
as an “external force”).

Having announced these previous results, we present now the main tool to prove the concentration
effect of the L3—norm stated in Theorem

Lemma 5.3. Let (u,p,d) be a partial local Leray solution of the micropolar fluids equations on
10, 1[xR? associated to the initial data iy, Sy € L?(R3) in the sense of Definition such that there
exists M > 0 with

sup sup/ |i(t, z)|*dy + Sup/ / IV @ @) >dyds < M. (5.4)
0<t<1zeR3 J B, 1 z€R3 By

Assume moreover that for some 0 < R < % and S > 0 we have

<112
1611 2ee £2 (1 (1,0)) < CR- (5.5)
and )
sup / |iio|*dy = S < +oc. (5.6)
R<t<1 Vv JBy,

Then, there exists Ty = Th(M,S) < 1 and a universal constant ¢ > 1 such that for all v > 0 with

R<rt S and for t > 0 such that 0 <t < T* = min{T}, cAr? b with A = HSQ, we have the control

t ¢

E.(t) = sup 1/ |2 dy + 1/ / IV ® i >dyds + 12/ / Ip — h]%dyds < CS. (5.7)
0<s<t v JBy, v Jo JBo. ¥ Jo JBo.

This result was originally established within the framework of the classical Navier-Stokes equations

without force in [20, Theorem 3.1]. In our case, since we are dealing with the micropolar fluids equations

and , we need to take into account the term V A @ in the equation related to the evolution

of @ and this lead us to the condition .

Remark 5.2. This result will be applied later on to a suitable re-scaled system. In particular, the
smallness hypothesis will be a consequence of this re-scaling. See formula below for more
details.

Proof of Lemma Let » > 0 such that R <r < % be a fixed radius and 0 < ¢t < T* < 1 for some
T* to be fixed later. First, notice that by the local decomposition of the pressure given in the Lemma
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we have p — h = p; + po where p; and py are given in (5.2). Then E,.(f) can be written in the
following manner

1 1 [t - 1 [t
E.(t) = sup / |i@|2dy + / / |V @ i|2dyds + 2/ / Ip1 + pa| 2 dyds.
0<s<tT JBg, " Jo JBo, ™ Jo JBo,

Moreover it is easy to see that

1 - 1 [t - c [t 3 3
E.(t) < | sup / i dy + / / IV @ d*dyds | + 2/ / 1|2 + [pol2dyds.  (5.8)
0<s<t T JBg,, ™ Jo JBo, = Jo JBoar

In order to control the expression above in terms of the initial data , we will study more in detail
the terms inside the parentheses above. For this, we may use the local energy inequality by
considering a well-chosen test function. Indeed, let ¢ € C{)X’(R3) be a positive function such that ¢ =1
in By, supp(¢) C Boa, and for all k£ € N and all multi-index o € N3, such that |o| < k we have
|D%¢|| o« < Cpr—*. Now, with this auxiliary function in the local energy inequality , one has

t t t
/ ]ﬁ\2¢dy+/ / |V®ﬁ|2¢dyds</ ]ﬁ0|2¢dy+/ / 16\2A¢dyds+/ / VA& - (ilg)dyds
R3 0 JR3 R3 0 JR3 0 JR3
t
—I-/ /3(|ﬁ]2+2[p1 + p2))U - Vdyds.
0 JR

Since by integration by parts we have

t t
/ VAG- (up)dyds = / VAT (Wo)dyds + / / ) A Védyds,
0 JR3 0 JR3 R3

we obtain that the terms inside parentheses in the left-hand side of the expression (5.8]) can be bounded
as follows:

sup ]u| ¢dy+// IV ® i qbdyds</ | do] qbdy+// || Agbdyds// VAT (S)dyds
0<s<t

/ /Rs @) A Vgdyds + / / @ - V gdyds + / / 2[p1 + pol@ - Vpdyds.

Now, by the properties of the test function ¢ we obtain

t . C t
sup/ |ﬂ’|2dy+// IV @ i)?dyds < C/ |z_[02dy+2// |2 dyds
0<s<tJ By, 0 JBo, Bo,2r ™ Jo JBoar
t . C t
+c// \VA@\|wydyds+// @[] dyds
0 JBo2r T Jo JR3
c [t . c [t . .
5 [ [ atdyds + 5[ el + el aldys.
™ Jo JRr3 " Jo JR3

Note that from the Holder inequality (1 = % + %) and the Young inequality, one has for the last term

t t .
above the estimate/ / lp1||d] + |p2||d|dyds < C/ / ]pﬂ% + \pg\% + |@®dyds, hence, by applying
0 JR3 0 JR3

the previous estimate in the inequality above, we have
t . C t
sup / |ﬁ|2dy—|—/ / |V ® id|*dyds < C |1Ig|2dy—|—2/ / || 2 dyds
0<s<t.JBy, 0 JBo, Bo,2r r=Jo JBoa2r
t . C t
+C// |V/\ﬁ|]u7\dyds+// ||| dyds
0 JBor r Jo JR3
c [t . c [t 3 c [t 3
+/ / |u|3dyds+2/ / \p1]2dyds+2/ / Ip2|2dyds.
™ Jo JR3 " Jo JBoar ™ Jo JBoar
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Now, by multiplying by % in the expression above, we obtain that the following bound for the terms
in parentheses in (5.8))

1 o I = . C L c [t 9
sup — |d|“dy + - IV ® d|*dyds < — |to|"dy + — |d|“dyds
o<s<t T Bo,r T Jo Bo,» r Bo,2r r 0 J Bo,2r
c [t - c [t . c [t . c [ 3
+/ / |V/\u||w|dyds+2/ / |w||u|dyd8+2/ / |u|3dyds+2/ / |p1|gdyds
™ Jo JBoar = Jo JBoar " Jo JBoar = Jo JBoar
c [ 3
+ 2/ / |p2|2dyds.
" Jo JBoar

Thus, by replacing the previous estimate in (5.8), one has

C C [t c [t -
E.(t) < </ |t |2dy + 3/ / || dyds + / / |V A ||| dyds
T JBo2r ™ Jo JBoar " Jo JBoar
c [t c [t c [t
+ 2/ / ||| dyds + 2/ / || dyds + 2/ / ]pﬂ%dyds
r 0 Bo,2r T 0 Bo,2r r 0 Bo,2r
c [t 3 Cc [t 3 3
+2/ / Ip2|2dyds>+2/ / 1|2 + |p2|2dyds
™ Jo JBoar ™ Jo JBoar

C
<= |u0]2dy+// || dyder// ]V/\u]|w|dyds+// |w[|u|dyds
r BOQT BOQr BO2’V‘
/ / @Pdyds + / / il dyds + / / pal Flyds (5.9)
BO27- BO27 BOQT’

Now, in order to obtain the wished estimate 1' and for R <t < %, we will study the following

expression

Et(t) = sup Er(t)'

r<r<t

Remark that we have by construction E.(t) < &(t), and to study the term &(t) we split the previous

supremum into two parts:
E(t) < sup Er(t)+ sup E,(t). (5.10)

<r< L 5<r<s
In the following, we study each one of the terms above separately.

e Assume v < r < 75: Note that from , we have

6
sup FE,.(t) < sup ¢ |tio|*dy + sup ZI- (5.11)

1 1T 1
t<r<{5 <r<45 Bo,2r v<r<{5 j—1

For the term I of (5.11), by the definition of E,(¢) and since v < 2r < % < %, we have

C [t 2C [*1
sup I) = sup 3/ / |@|?dyds = sup 2/ / |2 dyds
t<r<i r Bo,2r t<r<i r 0 2r Bo,2r

r<r< &
sup / Es.(s ds</ & (5.12)

t<r< 1
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For the term I in (5.11)), by the Cauchy-Schwarz and Young inequalities we can write

¢
sup I» = sup C// |V A d)|&|dyds
0

1 1T
<r<i5 <r<i5

ot ) 3 3
sup / / IV Ad|*dy / G2dy | ds
<r<s ™ Jo Bo,2r Bo,2r

< sup / / IV Adi)2dyds + sup / / &2 dyds.
<r< L 16r Bo,2r r<r< Bo,2r

Since |V Adl]? < 2|V @ @? and Boa, C By due to the fact that 2r < 1, we have
1/t > c [t ~
sup I < sup — |V ® i|*dyds + sup — |5 *dyds
r<r< r<r< 8 Jo JBoar v<r< b 7 J0 JBoar

- c ..
<o & [ Weatis s s S [ 106, i
t<r<1 r Bo,2r r<r< rJo '

Now, by using the definition of FE,.(t), we obtain

IN

1 Ct,
sup Io < sup —FEo(t)+ sup 7”“”%;’%3(@1(1,0))-
e<r<s r<r< b r<r< b r

Then, since % < % and by the definition of &, we have

Ct, .2
sup I < 5 + N9l r2 011,00
r<r<i5 1

Furthermore, since H(D’H%OOLQ(Ql(l o) < CR < Ct by the hypothesis (5.5) (and since we are
t x )
assuming that R <t < %), we finally obtain

sup I < 8 + Ct. (5.13)
r<r<i5 1

For the term I3 in (5.11]), notice that it can be rewritten as follows

c [ 1
sup I3 = sup 2/ / || |t|dyds = sup C/ / — |d|— \u!dyds
e<r< L e<r< L 77 J0 JBor e<r<d Bo,2r T2 7“2

Hence, by the Cauchy-Schwarz and Young inequalities, we have

sup I3 < sup // |&2dyds +  sup 3// || dyds
r<r< r<r< L r Bo,2r r<r< b 2r Bo,2r

< sup // |G dyds + sup 2/ Es(s)ds
’C<r<1 r Bo,2r rgrgﬁr 0

Again, since Bgo, C Bp,1 we write

1 t
sup I3 < sup // |&|*dyds + sup 2/ Es(s)ds
r<r< s R<r< L T Bo,1 v<r< L 77 J0

Ct
< sup HW||L°°L2(Q1(10) + sup /E%
r<r<
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Therefore, since ||LUH%?QL%(Q1(LO)) < CR < Ct by (5.5) and by the definition of &, we have

t
sup Is < Ct+ :2/ E(s)ds. (5.14)
0

1
t<r<{5

For the term Ij in (5.11f), first notice that by the classical Gagliardo-Niremberg inequality with
1 =0(3 — %)+ 552 (see [7]), we obtain

1
1t 13 (o o) < IV @ (- Iz Boan) 18 M L2 5y T 1T ) L2 (80,5,

Moreover, by the inequality above, one has

C [t . c [t
= s = 1 ALl
C "G o s 3 SRR SN
< 3 [ 19 @6 gy 175 My )+ 1705 (5.15)

Hence by the previous estimate and by the Young inequality for the sum (with 1 = % + i) we
obtain

sup Iy = sup // || dyds
tgrgﬁ <r<55 1 r?

- 3 3
< swp /0 19 @ s, Mo i,y 1805, M By + 1805 ) [ s

r<r< &

Lt L, (s, )2
<sup/V®Us- 2 — (s, )| 72 ds + sup /u T2(B
tSTS% 0 ’I“% ’ L (B()’2T)’I“g ’ L*(Bo,2r) t<r<— (Bo.2r)
< o o [T STyt + 5 [ 16 s+ 5 [ 155
t<r<1

and we can write
8C [ 1 ’
sup I < sup / IV @ (s,)]|2 (Bo.sr)@s + sup 2/ / |@2dy | ds
r<r<t r<r<t e<r< 7 Jo 2r Bo,2r

5 3
22C ([ 1 :
+ sup — / |@2dy | ds.
tgrgﬁ rz Jo 2r Bo,2r

Now, by the definition of E,(t), we have

1 C [t 4 c [t
sup Iy < sup ZEQT(t)‘i‘ sup — ; E5 (s)ds+ sup s E;3 (s)ds,

t§r§1—12 t§r§1—12 r<r<45 1 r r<r<i5 1

but since r < 1, it follows that - < % and we obtain
r2

1 C [t s
sup Iy < sup EEQT( )+ sup /EQT )ds + sup 2/ E3 (s)ds
0

tgrgﬁ tgrgﬁ r<r<55 1 <r<i; LT

using again the fact that % < % and by the definition of &(t), we finally have

3
sup Iy < 5 /83 ds+/ E2 (s (5.16)

r<r<
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Now we study the term I5 of - First, notice that by the definition of p; given in (/5.2))
and since the kernel K(-) = &) A) divdiv(-) is bounded on L3 (R3) (since the Riesz transforms are
bounded in such spaces), one has

3
—12112 _ -3
< Cltpy laPl?y =C [ lafdy.

a2, <
(R3) ) Bo,3r

i < | Ay (T )

3
L2

Thus, we obtain

sup Iy = sup // ]pl 2ds< sup. / i3 dy. (5.17)

t<r< L r<r< b r<r<s

Furthermore since 3r < % <3 (recall v <r < &), we can use the same arguments as for the term

=12
I, and we have

sup I < 5 /53 )ds + — /52 (5.18)

t<r< 1

Now, we study the term I of ([5.11]). This term is the most technical one, and we will follow the
same lines given in the proof of [20, Theorem 3.1|. Thus, first recall the following estimate for the
kernel K: for all x € By, and y € R3 \ By 3, we have

|z|

‘K((L’- >_ ( )‘ = ’y|4

By the definition of py given in (5.2]) and since x € By 2, we have |z| < 2r and

<[ Ehapa,
R3\BO 3r ‘y’

< 2r/ || dy. (5.19)
R3\ By, 3, \y|4

Now, in order to estimate more in detail the expression above, we need to study the integration
domain of the previous integral. Remark that since 3r < i, it is possible to deduce that there
exists N'= N (r) € N such that

[p2(t, )| = ‘/ - (K(z —y) = K(=y)) (@ @)(t,y)dy

N
3 3
R3\ By, C kL_JlAk(r)U(R \ By 1),

where Ay (r) = By g, \ By ar-1, and such that for any 1 <k < N we have 2Fp < 1. Thus, from
(5.19)) one has

*\2 2
pa(s,z)| < 2r/ u| dy < 2r / Tady +2r i) dy.
[pa(s, )] \Z/|4‘ Z R3\B, 1 |y!4 |

Since Ag(r) = By ok, \ Bpgr-1,, and 2r < & <1 we have

& ]2 1
pats o) < 302 | Drdy+ar [ ity
k=1 R

By i \By i1, 1YI* g,y [

< fj _ / @2dy + / Ly
a 24(k_1)T4 021%\30,2’9*% R3\lel |y‘

k=1 By,
C Y 1
_ d — dy. 5.20
24(k—1)y-3 /B . [ dy + /RS\Bi lyl [afdy (5:20)

1 0,2

o1 Ap (r)y( R3\B

M-

3
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Now, we study each term of the expression above separately. For the first one, notice that by the
definition of E,.(t), one has

s [ty - [ laPdy) < B o)
24(k=1)p3 [ 923ky2 \ 9k By oh 23k 272

0,2Fr

Thus, since for any 1 < k < N we have 2Fr < %, and % < % it follows that

N N

ZW%&/,B ity < Z ooy (5) < Er(5) Y oo < ().
k=1 0,2k k=1
+o0
Now, let us study the second term of (5.20). Since R?\ Bo,% C U By or—1\ By gr—2 we have
k=0
2 ~ 1 12
/RS\B | TERRE Z/ T Al < 2 oy /B oy 52)

Notice that by a change of variable and since @ satisfies the estimate (5.4)), we obtain

[Py =@ [ it gl <2 sup sup [ ity < 20
By ok Bo,1 2% 0<t<1z€R3 J By 1

By considering the previous equality in ([5.21]), we have

/ ! |i]2d <§:O (2°)° LM< CMZ < CM. (5.22)
—|ulTay < — .
R9\B, 1 ly|* (2k=2)

k=0
Therefore, by applying (5.21)) and the expression above in (5.20)), for any v < r < % we obtain
C
Ipa(s, z)| < T—Z&(s) +CM.
From the previous estimate it follows that for the term I of (5.11)) we have
1/t 3
sup I = sup — \m\?dyds
e<r< e<r< by T

3

< sup / / —& E2(s)dyds + sup / CM2 dyds.
tgrg— Boor T <r< 1 r? Bo,2r

Moreover, since |Bog;| = Cr3 and r < & < 1 we have

sup Ig < sup /5 s)ds+ sup rCM2t<tg &2 ()ds+C’M%t. (5.23)

tgrgé <r<55 1 r? <r<55 1

We have finished the study of each term I; with 1 < j < 6 given in (5.11). Thus, gathering the

C
estimates (5.12)-(5.14)), (5.16]), (5.18) and (5.23) in (5.11), and since sup — |ilo|*dy < S
r<r< T JBoar
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by (5.6) (recall also that we have R < t), we have proved that for all v < r < 75 we have
C [ 1
sup E.(t) < S+ 5 &(s)ds + =&+ Ct
1 v 4
tSr<i3
+Ct+ - /5 )ds + 5 /53 ds+/52

/53 ds+/£ ds+CM2t+/53

3
2

<S+Ct+CMat+ 5 /5 )+ E3(s) + £2 (s)ds,

and we rewrite the previous estimate as follows:

3
2

sup E,(t) < S+ & (M)t + 8 /8 )+ E3(s) + £ (s)ds. (5.24)

1
<r<{5

Now, let us study the second term of the right-hand side of (5.10]).

e Assume 1—12 <r< %: similar to the previous case, notice that from (5.9)), we have

C
sup FE,(t) < sup — |tio|2dy + sup le (5.25)
$<r§% 1—12<r§% r Bo,2r L<7’§l —_

For the term I; of (5.25) as we have Bgo, C By, since 2r < % < 1, since % < 12 and since
]WHQL?OL%(QI(LO)) < M by the hypothesis (5.4)), it follows that

sup I} = sup / /B |2 dyds < C/ / |@|?dyds < CMt. (5.26)
0,27

1 1 1 T
ﬁ<7’§§ <T<

For the term Iy in (5.25)), by the Cauchy-Schwarz inequality and since % <12 and By, C By,
one has

oot B ; B 3 3
sup Iy = / / |V A d]|@]dyds < C’/ / |V Al dy / &2dy | ds
1—12<r§% " Jo JBoor 0 Bo,2r Bo,2r
¢
SCWHL;OL%(QI(LO))/O IV A(s, ) 2By ) ds-

Moreover, since |§ ANG? < 2|§ ® i|? and by the Cauchy-Schwarz inequality in the time variable
we obtain

1
sup Iz < Cll& e r2 @i 10) / IV @ i(s, ) r2(Boryds < Cll& Lo r2 @ 1o IV @ ll 122204 (1,082
f<r<

Therefore, since HV@UHLQLQ (@ (10) < M by (5.4), HwHLwLQ @0 <CR <Cby (5.5)) (recall
R < 1), we have

sup Iz < CMzts. (5.27)
fers)
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For the term I3 of -, since - < 12 and by the Hélder inequality we have

t
sup I3 = sup 2/ / \wHu\dyds <C sup / / |& |2 dy / @]2dy | ds.
%<T§% <7“<1 r —<r< 0 Bo,2r Bo,2r

Then, since B2, C By, 1, one has

(NI
[

t
sup I <C /O 165 | 20 1y 175, ) 200,15

st
Thus, using the fact that ||ﬁ|]i?oL%(Ql(L0)) < M by (5.4) and ||&| g r2(q;(1,0y) < €' one has

sup I3 < CMzt. (5.28)
hered

For the term I4 in (5.25)), using the same arguments as in (5.15)) we have.

C Il s C M s
swp L= s [ japayds < s S5 [0 @ s g, 16,
0,2r

1 1 1 1T 1 1
E<T‘S§ ﬁ<7’§§ E<T‘S§

C e e
+ sup ﬁ 0 Hu(sﬁ')HLQ(BOQT) S.

1 1
15<r<3

Using the fact 5 < C and By 2, C By1, we obtain

sup L I4 < CHuHLooLz (@1 )/ ||v @ u ||L2(Bo 1)d3 + t||u”L°°L2 (@1)°
f<r<

Thus, by the Holder inequality (1 = % + i) in the time variable, and since 2r < 1, and ¢ < 1, one
has

t 1
sup I < O[] o) ( / umu(s,-)H%z(Bo,mds) 1@ 3 01

—<r<1

1,03 S ~
< O |l e 130, IV @ @l Es 12 ) + T 1201
Since ||ﬁH%§OL%(Q1(LO)) < M and ||V ®u||L2L2 Qo) = M by (5.4), we have

sup Iy <CM2ti + Mst. (5.29)
hered

For the term I5 of (5.25)), recall that from (5.17)), we obtain

C [t c [t
sup I5 = 2/ / [p1|2 dyds < 2/ / |@*dyds.
%<r§% " Jo JBoar ™ Jo JBosr

Since 3r < 1, we can apply the same arguments as in (5.29)), and we have

3 1 3
sup I5 < Mz2ts + M2t. (5.30)
hered
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For the last term Jg of (5.25)), first notice that by the estimate (5.19) and since I < 3r, we get

[p2(s, 2)[ < C j@*dy < C IUIQdy

\|4

R3\Bo 3, 1Y R3\B, 4 |y’4

Therefore, using the same arguments as in (5.22), one has |pa(s, z)| < CM. Hence, sincer < £ < 1,
it follows that

I : :
sup Ig = 1“2/ / \pg\%dyds < sup rCMst < CMst. (5.31)
0

1 1 1 1
5<r<sg 15<r<sg

C
Thus, gathering the estimates (5.26)-(5.31) in (5.9), since — / |tio|?dy < S by (5.6), and
T JBoar

t < t% < ti due to t < 1 it follows that for all % <r< %, we have

sup E,(t) < S+ CMt+CMz2tz + CMz2t+ CM2ti + CM2t + CMat
fersd
1

< 54 &y(M)tT, (5.32)

w\»—‘

and this finishes the study of the previous quantity in the case when ﬁ <r

Thus, applying the estimates (5.24]) and (5.32)) in (5.10]), we have proved that

&(t) < sup En(t) 4+ sup Ei(t)

tgrgﬁ i<r<l
3
<SS+ G (M)t + 8 /8 )+ E3(s) + E2 (5)ds + S + Co(M)th
3
<28 + €1 (M)t + Co(M)t1 + 5 /5 )+ E3(s) + E2 (s)ds.

Fix now the time 0 < 7; < 1 such that

s st

1= mingL, 55 2@4}

(5.33)

Notice that for all ¢ < 77, we have €t < % and Q:gt% < g, hence it follows that

3
2

1 c [t
Z&(t) <35+ t2/0 Ec(s) 4+ E3(s) + E2(s)ds.

3 3
Observing that if & > 1 we have £2 < &2 and if & < 1 we have &2 < &, it is then enough to study
for any t < 77 the expression

E(t) <128 + g /t E(s) + E3(s)ds. (5.34)
0

In order to estimate more in detail the expression above, we can use the following Gronwall-type
inequality
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Lemma 5.4. Let f € L2 ([0,T1[) be a function such that for all t €]0,T1[, for some a,b > 0 and
m > 1, we have

f(H) <atb /0 (F(s) + F7(s))ds

Then, there exists a universal constant ¢ > 1 such that for all t €]0,T] with T = min {Tl, b(lT‘m,l)},
we have f(t) < 2a .
For a proof of this result we refer to [6, Lemma 2.2|. Now, by applying the previous lemma to the

expression (5.34) with a = 125, b = t%, m = 3 and T = 71 given in 1) there exists a universal
constant ¢ > 1 such that for

T* = min{77, cAt?}, where = (14—152)’
we have for all 0 < ¢ < T™ the estimate
&E(t) < 248.
Since we have Ey(t) < &(t) = plE (1), we finally obtain
r<r<l
E(t) < CS8, (5.35)
which finishes the proof of the Lemma |

Corollary 5.1. Under the hypothesz's of Lemma forany R <r < g, such that v/ Ar < % where
T1 is given in , A= 1+52 and ¢ > 1, we have

1 Ar2 3 3 3
- |4|]° + |p — bl2dyds < C(Sz + S).
™ Jo Bo,r

Proof. First note that we have 0 < R < % is arbitrary and it can be chosen arbitrarily small, so the

conditions R < r < % and VAr < are compatible. Now, remark that from the estimate (5.15),
we have

Ar? Ar? 3 1 Ar?
af [, s s [T 9 e )HLz(BMH( g A LD

3
<L s s )3 / 19 @ a(s, sy ds
2 gcsrr? L2(Bos) [, L2(Bo,r)

+CA sup |, )[I72(p, -
0<s<Ar2 ’

Using the Hoélder inequality in the time variable (1 = % + %), one has

Ar? 5 3 Ar2 . )
i) dyds < < (s, )2 / IV @ @225 ds
r? / /Bw % 0<s<Ar2 2B \ Jo L*(Bo.r)

+CM\ sup ||ﬂ(s,-)||?,{2(BOT)7
0<s<Ar2 '

]

which can be rewritten as follows

)\7‘2 1 1 1 )\7'2 . %
/ ji@dyds < CX7 sup / |@*dy / / IV ® i|2dyds
0 Bo,r o<s<ir2 \ T JBg,,. ™ Jo Bo,r
3 1 :
+CArz  sup / |ii(s,y)|*dy
o<s<ixr2 \ T JBy,,
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0<s<t T
set t = Ar2, we thus can write

1 1 [t = I
Since E,.(t) = sup / |2 dy + / / IV @ > dyds + 2/ / lp — h(t)]%dyds, and if we
Bo,r "Jo JBo, " Jo JBo,

1 Ar? 3 3 s
7«2/ / @ dyds < CAiEE (M) + CAr2 B2 (Ar?) < C(AT + 12 A\ EZ (Ar?).
0 BO,’I‘

Moroever, since r < 1 and A < 1, we have

1
72

)\7‘2 3
/ |i]3dyds < CE? (\r?).
0 BO,T

3 3
Since E,(t) is an increasing fonction in ¢, and ¢ > 1 we have E? (A\r?) < E? (¢cAr?). Thus, since we have
considered 0 < 7 < 1 such that ¢\r? < 77, and it follows from (5.35) that E,.(cAr?) < C'S and then

1 Ar? 3 3
— / / |i]3dyds < CE? (¢Mhr?) < CS2.
r 0 BO,'r
On the other hand, from the definition of F, we immediately have
1 3
2/ / lp — b|2dyds < E.(\r?) < E.(cAr?) < CS.
= Jo Bo,r
Gathering the previous two estimates we find that for A = ﬁ and for any R < r < % such that
Var < 71, one has
1 3 3 3
7'2/ / |@]” + |p — bl2dyds < C(S2 + S),
0 Bo,»
which finishes the proof of Corollary [

Remark 5.3. [t is worth noting that throughout the proofs of the Lemma and Corollary we
treated &J as an external force and we can simply consider that (d,p) is a local Leray solution as in
Remm"k such that the hypotheses (5.5)) over & are satisfied.

Proof of the Theorem Let (i, p,d) be a Leray-type weak solution of the micropolar fluids
equations and (L.2). Let 7 > 0 be the maximal time such that @ € C(]0, T[, L>(R?)) and the
point (7,0) is a partial singular point in the sense of the Deﬁnition Assume that for a fixed g > 0
with 0 < 7 — rZ, we have

1
sup sup sup / |i(t, z)|?dz = M < +oo0. (5.36)
Bzo,r

20€R3 r€)0,ro] te]T—12,T] r

Our aim consists in proving that there exits e > 0, & = &(9) and § > 0 such that for all t €]T — 4, T
we have

/ |i(t, z)|*dx > e. (5.37)
B

First, notice that it is enough to show that there exits ¢, > 0, & = &(9) and ¢ > 0 such that for all
t €]T —9,T], we have

1
/ |i(t, z)|*dx > e, (5.38)
B



indeed, if (5.38) holds, by the Holder inequality (1 = 2 + 1) we have

win

2 c a 3
ﬁ/ i) s < S /B it 2)Pdx |
ﬁ o/ TSt

S

(S
N

which in turn implies ((5.37) with e = (5*)0

Now, for proving (5.38) we will use a contradiction argument. Thus, assume that for all €, > 0, for
3
all 0 < & < 1 and for 6 = min{,/ %, mgQ } there exists 7 — 02 <ty < T such that

m/ ii(to, z)2dz < e.. (5.39)

G

The strategy consists in applying a particular scaling limit procedure to the solution (i, p,d) in order
to obtain that the point (7,0) is partially regular in the sense of Definition leading us to the
wished contradiction.

Thus, let 0 < & < 1 to be fixed later and consider v = \/M Notice that since T — 6% < tg < T
and 62 < r3&3 < 136 (recall 0 < & < 1), we have

F \/><r0 (5.40)

Now, we scale the functions , p and & as follows: for all (s,y) € [0, 5[xR3, we consider

@ (s,y) = vii(to + v*s,7y), p'(s,y) =¥°p(to +7*s,vy) and CU'Y(s, y) = & (to + ¥, 7y),

recall that the first equation of the micropolar fluids equations is invariant under the previous
scaling. Remark also that since @ € C(]0, T[, L°(R?)), we have that (u,pY) is a strong solution of
the system above.

We want now to apply Lemma [5.3] and Corollary [5.1] in order to obtain that there exists & > 0 and

p > 0 such that
1 6 3 3
s [ P -y agas <
P”J&—p2 JBy,

where h7 = 42h(72-), and b is given by the local decomposition of the pressure (see Lemma .
Then by re-scaling back to the variables (u,p) and using the e-regularity theory developed in the
appendix we will be able to deduce that the point (7, 0) is partially regular which is a contradiction.

Since we want to apply Lemma we need some information on the initial data and for this, since
@ € C(]0, T[, L>(R?)), we can consider %} (-) = vi(to,7-) as initial data such that (@7, p?) is a solution
of the forced Navier-Stokes equations

—

il = AwY — (@7 - V)@ — Vp? + iV A D, -
5.41
w7 (0, - )—ug

Furthermore, to deduce that (@”,p7) is a local Leray solution of the system above, it will convenient
to write V A @Y = div(W?) where we have

0 wg —wg
WY=1| w] 0 —wi], (5.42)

P
Wy Wy 0
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and we thus obtain that the pair (@7, p?) is a solution of the following system

=

i = AdY — (@7 - V)@ — Vp? + L div(W),

a(0,-) = .

At this point, we can apply the theory of local Leray solutions of the Navier-Stokes equations which is
given in the following result:

Lemma 5.5. Let ¥y be an initial data and F be a tensor field such that

sup / [Uo(y)|?dy < M* and  sup / / IF|2dyds < M*.
on 1 Bacol

zo€ER3 zo€ER3

Then, there exists a local Leray solution (U, q) in the sense of the Definition 14.1 of the book [Z])] of the
forced Navier-Stokes equations

80 = AT — (7- V)T — Vg + div(F),

on )0, T[xR3, such that T = min{1, ol 1+M* 1 } and

T
sup sup/ [U(t,y)|*dy + Sup/ / IV @ #2dy < C(M*).
0<t<T zeR3 J B 1 z€R3 JO By

For a proof of the previous lemma we refer to [24, Theorem 14.1, pg 455 |. As we can see, with this
lemma at hand we can construct a local Leray solution as long as we have some mild decay on the
initial data @} and on the external force W” and for this we only need to verify the following uniform
controls

sup / | (y)[dy < +oc, (5.43)
o€R3 J Bag 1
and
1
sup / / |WY|2dyds < +oo. (5.44)
zo€R3 JO Brol

Let us study the initial data. Since g (-) = vi(to,-), by a change of variable, we obtain

1 . 1 .
sup / T (y)Pdy = sup ~ / li(to, y)Pdy = sup - / [@(to, ) dy.
xn,1 z

20€R3 J By, 20€R3 Y J Bz 4 z€R3 Y JB,

On the other hand, recall that by (5.40)) we have v < rg and T —~2 < to < T. Thus, by the hypothesis
(5.36)), we have

1 1
sup / |i(to,y)|*dy < sup sup sup / |ii(t, 2)|*dr < IM < +oo0,
zeR3 YV JB, zo€R3 r€]0,rg] T—r2<t<T T Bag,r

and we obtain the following control on the initial data ]

:EoERB

sup / i3 (y)|2dy < M < +oc.
Bzo 1
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Let us study now the external force W7 defined in (5.42)). Since w](-,-) = v?w;(to +¥*,7-), one has

sup // |W7|?dyds = sup // Z2|w7| dyds
ro€ER3 101 ro€ER3 .

Bzg,1 i=1
= sup / / Z2lv wi(to +~2s,vy) [P dyds.
Z‘QER3 Ba.()l i=1

Moreover, by a change of variable, we have

1 to+v?
sup / / |W7?dyds = sup / / Z2[w (s,v)|>dyds,
zo€R3 JO J By 1 zo€R3 Y B

70,7 =1

and since v < rg by (5.40)), one has

1
sup / / W7|2dyds <Csup sup 72/ \(J(t,y)|2dy
ZO 1 B

zo€R3 2€R3 tg<t<tg+~2 Y oy

<Crosup  sup / |5 (t, y)|*dy.
2€R3 tg<t<to+v2 J Bz,

Then, since & € L{°L2, we obtain

sup / / |W7 2dyds < C’Hw||LooL2 < 00,
zo 1

zo€ER3

and we obtain the uniform control (5.44) on the external force.

Thus, from the estimate ([5.43]) and the previous control, we can apply the Lemma and therefore
for T = mln{l, m} with M = M(M, ||&]|3,2) > 0, there exists a local Leray solution (¥,q) of
t xT

the system (5.41) (recall div(W?) = V A &) on ]0, T[xR3, such that for some constant M; > 0,

sup sup / |5(t, 2)|*dy + sup / / IV ® #%dy < M. (5.45)
0<t<T z€R3 J B, 1 z€R3 B 1

It is worth noting that since (@”,p?) is a strong solution of by a weak-strong uniqueness
argument (see [24, Theorem 14.7]), it follows that @ = @ and p? = q on |0, min{&, T}[xR3. Thus,
instead of studying (@, p”) on ]0,S[xR3, we will apply Lemma [5.3} n and Corollary E to the pair
(7,q) on 0, T[xR? and later by fixing & < 1 small enough (in order to obtain the uniqueness on the
intervall |0, S[) we can come back to the variables (@7, p?).

Let us verify that the triplet (¥, q,d7) satisfies the hypotheses of Lemma . Notice that since
(¥, q) is already a local Leray solution by construction and we have the control (5.45)), we only need to
verify the following points:

e We have
”‘*_)WH%OO(}O,T[,H(BOJ)) < (6. (5.46)

e For all v > 0 such that V& < t < 1, we have

1
sup / i) Py < e (5.47)
V6E<i<1 v JBo.
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For obtaining (5.46)), since T < 1 by construction and &7 (,-) = v2&(to +v2-,7-), by a change of
variable we have

||‘~37”%°°(]0,T[’L2(30,1)) < HQ’YH%”GUJLLQ(BOJ))

2 2 2 -2
< Ivdtto + 97 vz goarzaso)) = WSl zoo gt 011212280

Since & € L¥L2 N L?H} by hypothesis, we obtain HwWH%OO(}O,l[,B(BO,l)) < fyH(Z)’H%?OL% < C~. Moreover,

3
since T — 62 < tg < T we have vy = \/% < % < 19S (recall § = min{ 75—, %}), and we can
write

157117 00 0,61, 22(Bo.1)) < CS

which is the wished estimate (5.46). As pointed out in Remark , the smallness condition to the
“external force” is obtained by a suitable rescaling over the variable @.

For obtaining (5.47)), fix V& < v < 1. Since @ (0,-) = ~ii(tg, v-) and by the change of variable z = 7y,
we have

. 1 o
/B (0, ) Pdy = / o, )y = / i(to, 2)?dz.
0,v

Bo,« BO;’Yt

Moreover, since t < 1 and since 7 = % it follows from the assumption ([5.39) that

T—1g
S

NS
(0, y 2dyg/ (t, ) 2dz < Ve,
/Bo’tl (0,9)| 7 /s |u(t, )|
0,

1

Therefore, since V& < t one has . / |77 (0,y)|>dy < €. Since V& <t < 1 is arbitrary, we conclude
BO,t

that

1
sup / |12’g]2dy < Ex.
VS<i<1 V' JBo,

Thus, we have proved that (¥, q,d7) verifies the conditions (5.45)), (5.46) and (5.47). Then, we can
apply Lemma and Corollary and therefore there exists 71 = 71(T,9) > 0, and a constant ¢ > 1

such that for any v'& < r with A\r? < @ and A = H%’ we have

1 )\7‘2 . 3 3
S [ WP+l bgltdyds < 0(e v <)
= Jo Bo.»

Now, fix © <« 1 such that for r = %, we have V& < r and M2 < % Therefore, by choosing

r= \/§ in the expression above, we obtain

G [© - 3 3

S il balbdyds < Ce, <.

RS
Now, since @’ = @ and p” = g on ]0, S[xR3, we have
S (S 3 3
SL [ P -y < e <),
ROV
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Thus, since @7 (s,y) = yii(to+v2%s,7y), p'(s,y) = v*p(to+72s,7y), we obtain (recall that v = \/%)

A

T
7l )
0 to BO’\/?

3
[@l® + Ip — b|Zdyds < C(e. +£2).

Since A <1, we have B, 7= C BO:W and we can write

S
T —to JT—(vT=t0)? By, /i

3
[@® + p — b|2dyds < C(e. +€2),

which can be rewritten as follows

3

1 /T / 3 3 (e +e2)
e |d]” + [p — b|2dyds < C~——.
VT = t0)* JT—(vT=0)2 By, A

1
14e2?

3
that C(e, + 53)% < &, and for p = /T — ty, we obtain

Thus, since A = and 0 < g, < 1 can be considered small enough, we can find 0 < £ < 1 such

1 T - 3 3 ~
— |i(s,y)|” + |p — b|2dyds < €.
P~ JT—p2 JBy,,

Now, since (u,p — h,d) is also a partial suitable solution of the micropolar fluids equations, we can
apply Theorem in the appendix Bl and it follows that (7,0) is a partial regular point in the
sense of Deﬁnition which is a contradiction to the fact that (7, 0) is partially singular by hypothesis.

We thus have proved that there exists e, > 0, & = &(9) and § > 0 such that for all ¢ €]T — 4, T,
we have

—_— |Uu(t, x)|"dx > e,.
VT —1t
T BO, /Tgt
which as we mentioned before, implies the L3-norm concentration effect of the velocity around the
singular point (7,0). This finishes the proof of Theorem [

Remark 5.4. In all the previous computations, it might seem that the variable & is only considered
as an external force via the term V AG in the first equation , however a very detailed study of
its properties is essential to perform all the arguments given above. This fact will appear clearly in the
pages below.

A A Serrin criterion for the micropolar fluid equations

As pointed out in the page [3| of the introduction, in this appendix we establish a partial Serrin
reqularity criterion for the micropolar fluids equations. The main idea consists in deducing a gain of
regularity for both variables @ and & by assuming only the local boundedness of .

Since we are interested in the local behavior of a weak solution (@, p,d) of the system (1.1)) and

(T.2) around a point (tg,zg) €]0,+0o[xR3, we will examine its regularity within the parabolic ball
Qr(to, zo) defined in (1.8)) for some fixed 0 < R? < tg. We thus have:
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Theorem A.1. Let (i,p,d) be a weak solution of the micropolar fluids equations ([1.1)) and (1.2)) over
the parabolic ball Qr(to, xo) given in (1.8)) such that

i,& € L L2 (Qr(to, z0)) N L Hy(Qr(to,0)) and  p € D ,(Qr(to, 0))-

If we assume moreover that i € L{S(Qr(to, o)), then for all 0 <r < R, and for all k € N we have
i, € L=(Jto — 2, to[, H*(Buy»)) N L2 (Jto — 72, to[, H* T (Byy.r)-

Let us mention here that in order to obtain the wished gain of regularity, it will necessary to establish
a dialogue between the variables # and & as it was pointed out in the Remark above. Indeed, we
will see first how to obtain a small gain of regularity for @, which will depend of the information we
have over . Then we will transfer this new information from @ to &, which in turn will imply a new
gain of regularity of the velocity. Hence, by iterating this process we can obtain the whished conclusion.

Proof of Theorem Let us study the regularity of «. For this, recall that this variable satisfies
the equation (1.1]) i.e., we have

. L 1.

Notice that the system above may be seen as the forced Navier-Stokes system where the external
force is given by the term V A& which belongs to L?L2(QRr(to, z0)) (recall that by hypothesis we have
W e Lfol(QR(to, x0))). Thus, since @ is bounded on Q (o, zo) by hypothesis, we can apply the Serrin
criterion of the Navier-Stokes equations (see for instance |24, Theorem 13.1, pg 397]), and therefore
for some 0 < r; < R, we have

(RS LOO(]tO - T%7t0[7 Hl(BIOJ“l) N L2(]t0 - T%7t0[7 H2(B$077“1))' (Al)

It is worth noting that we have obtained a gain of regularity in the space variable for the veloc-
ity u, however we cannot expect any further information since the regularity of « is linked to the
external force represented here by the term %V/\(D’ and therefore we need to improve the regularity of &.

Thus, let us prove now that we can obtain the same gain of regularity given in for &. For
this, we need some technical lemmas. First, we will recall a previous result given in [I2] that gives
us an explicit gain of integrability for both variables @ and & as long as i belongs to some parabolic
Morrey spaces. Next, we will establish that the divergence of & belongs to L§ . (Qy(to, x0)) for some
0 <7 < R and then we will show that the variable & is bounded within Q,(to, zo). Finally, with these
informations at hand we will be able to deduce the gain of regularity for & with respect to the space
variable by considering the usual smoothing effects of the heat kernel.

Proposition A.1. Let (4, p,d) be a weak solution of the micropolar fluids equations and
over the parabolic ball Qg(to, zo) given in the expression such that we have the usual information
i,& € L=(Jto — R? to + R2[, L*(Byy,r)) N L*(Jto — R?, to + R*[, H'(By,,r)) and p € D; ,(Qr(to, 0)).
If moreover we have the following local hypothesis

1 (to )8 € MEG™ (R X R3)  with 2 < po<qo, 5< qo <6,

then
1) for a parabolic ball Q, (to, x0) C Qr(to,x0) we have

i€ Lg,oz(QTl (thxO)), 5 < qo < 6.
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2) For a parabolic ball Qr,(ty, o) C Qr (to, z0), we have
RS Ltq,OI(QTQ(tO7x0)); 5 < qo < 6.

Remark A.1. It is important to note that the previous proposition essentially extends O’Leary’s result
in [27)] for the Navier-Stokes equations to the context of the micropolar fluid equations. In the statement
above, the balls Q, of the type are considered, however, the proof given in [12] can be easily adapted
to the balls Q, given in where only the time variable lies in a slightly different interval. With no
loss of generality, we will frequently replace the balls Q, by Q, in the sequel. See also [21l], [27]] and
|24, Theorem 13.3] for a similar treatment.

With this result at hand we now study the integrability of div(«) within the parabolic ball Qr(to, zo).

Lemma A.1. Under the hypotheses of Theorem for all Q, (to,x0) C Qr(to, o) we have
]ler (to,20) le( ) S L (R X Rs)

Proof. First, notice that since @ is bounded over the set Qr(to, zo) by hypothesis, we obviously obtain
that 1g,u € ./\/lf;,3 (R x R3). Therefore, by Remark we can consider Proposition over balls of
the type @, and thus there exists 0 < rg < R such that

1o, @ € Ly ,(R x R?). (A.2)

Now, with this additional information over the variable &, we may study the local integrability of
div(@). Let ¢ : R x R® — R be a test function such that for 0 < r; < rg < R,

=1 on |ty — r%,to + 7“%[><Baw1 and  supp(p) Cltg — 7“(2),150 + r%[szO,ro.

Given that we are interested in the local information of div(d), we set W = ¢ div(d). By applying
formally the divergence operator to the equation ([1.2)) we obtain the following:

Oy div(d) = 2A div(&) — div(d) — div(div(d @ @)). (A.3)

Moreover we easily deduce that (recall that we have W = ¢ div(d)):
AW — 2AW = (8,0 — 2A¢) div( +4Za (950) div(@)) + @(9; div(&) — 2A div(&)).
Hence, we get for any ¢ € [0, to],

W = 2AW + (Opp — 2Ap — ) div(d) + 428 Oip) div(W)) — ¢ div(div(& ® 1)),
W(0,-) =0.

Thus, by the Duhamel’s formula we obtain

W(t,z) = /Ote2<f8>ﬁ<(at¢ 20 — ) div(@ >ds—|—4z / 2= S>A< 8g0)div(c3))ds>

(Iw) (ITw)
t
- /0 2t=s)A <¢ div(div(d ® ﬁ))) ds . (A.4)

(ITIy)

We shall prove that each term of the right-hand side of the expression above belongs to L{ ,(]0, to[xR?).
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e For the first term (Iw) in (A.4)), by setting ¢ = dyp — 2A¢ — ¢ we can write
t
(1) = [ 93 ((010 ~ 280 = ) div@) ) s = Z / 20502 (00) s
0
3 t
= Z/o (8i62(t_S)A)(wwi)ds — /0 eQ(t_S)A(((?ﬂ/J)wi)ds. (A.5)
i=1

Now, since 9 € C§°(R x R?) and supp(v)) Clto — rg,to + 1&[x Bugry, for the first term of the
right-hand side of ([A.5)) we obtain

t ¢
Hﬂ{o<t<to}/0 (2 2) (i) (s, )ds| < ]1{o<t<to}/0 10i82(t—s) | 1 [Ywi(s, )l o ds

L6

t
< Cligcicn) /0 (t - 5)°F |1, (s, )] ds,

where we have used the Young inequality for the convolution (recall that the action of the operator
e2(t=9)A ig given by a convolution with the heat kernel g2(t—s)) and the usual LP-estimates of the

heat kernel. Thus, by the Holder inequality in the time variable with 1 = % + %, we obtain

IN

t N
Cllblle 10,1l ( / <t—s>-wds)

< COllg, @l -

t
sty [ (@:ct=92) )5, )

LG

Hence, by taking the LS-norm in the time variable and since 1o, & € LY (R x R?) by (A.2), we
have

t
H]l{0<t<to}/0 (aj€2(t_s)A)(¢wi)(3,‘)d5

<C ||11QT0¢3HL% < o0 (A.6)

t,x

For the second term of (A.5|), again by the properties of the test function ¢ and the Young
inequality for the convolution we obtain

t
H]1{0<t<t0}/0 2R ((9h)w;) (s, -)ds

< Ty | Toseallo l0whe(s,lisds
L

< 0 [" 10, @0ats. usds.

Hence, by taking the LS-norm as well as the Holder inequality in the time variable and from ([A.2)
we obtain

[tcicin [ 3 (@) 0| < Clowler, 10,8l <+ (&)

t,x

Therefore from (A.5)), (A.6) and the estimate above, we conclude that the term (Iyw) in (A.4)
belongs to LY ,(]0,to[xR?).

e For the term (Ilw) in (A.4)), it is enough to study the following expression
t
/ 9;e=2) ((0ip)Ojw;)ds = / 9;0;2(t=9)A ((Oip)w;)ds —/ 8¢62(t75)A((8j8i4p)wj)ds, (A.8)
0

41



for all 1 < 4,7 < 3. Thus, by the maximal regularity of the heat kernel (see |23, Theorem 7.3|)
and by the support properties of the function ¢, we have

IN

t
H]1{0<t<t0} /0 ({“)iajez(t_s)A ((ai‘P)wj (s, -))ds

Clltq,, @Gi)dl
8,

A

Cl0;

QHL?@ < 400.

Since the second term of the right-hand side of (A.8]) can be treated in a similar fashion as (A.6)),
by replacing 1 for 9;0;¢, we can conclude that the term (/Iw) in (A.4) belongs to L, (]0, to[xR?).

e For the third term (I1Iyw) of (A.4]), notice that for all 1 <i,j < 3, we have
t t t
/0 2(t=s)A (¢0;(0j(wju;)))ds = / 9;0;e21=9)A (pwjug)ds — /0 aiGQ(t_S)A((ajcp)wjui)ds

t

/ Oje 2(t=s) ((Oip)wjus)ds + / 62(t_s)A((ai8jgp)wjui)ds. (A.9)
0

For the first term of the expression above by using the maximal regularity of the heat kernel, the

hypothesis 1% € Ly, and ( , we can establish that

< |1,y (wwyus)lg,

t
H]1{0<t<to}/0 ajaiBZ(t_s)A(@Wjui)dS .
Lt,z

< Cllellzse MQptll s, 1, Dl < +o0.

Since the second and third terms in the right hand-side of (A.9) share the same structure, it is
enough to study only one of them. Thus, by the same arguments as in (A.6)), we have

t
H Lio<t<to) /0 ;e2(t=s)A ((8j9)wjui) (s, -)ds

< [, (Oj)wsuil|
L?,z t,x

< Clojelces, 1anil s (1o, 5 < +oo.

Finally the last term of (A.9)), we can use the estimate (A.7)) and we obtain

t
/ e2(t=s)A ((ﬁjaigo)wjui) ds

0

<||1q,, (@@@)wjuiHL?m

t,x

< Cl10;0i0 ] Lzs, IMgll e Nl < +o0.

Consequently, we find that (I1Iyw) in (A.4) belongs to L ,(]0, to[xR3)

Hence, we have proved that the quantities (Iyy), (IIW) (I1Iw) given in (A.4) belong to LY ,(]0, to[xR?)
and therefore we obtain that the function W e LY (]0,#o[xR?). By usmg the propertles of the test
function (recall ¢ =1 on Jtg — 7%, to + 73[X By ) we finally conclude that

||]1Qr1 (to,xo0) le(Q)Hng < +00,

and this finishes the proof of the Lemma [ |

Having obtained this gain of information over div(&), we can now deduce the boundedness of &.

Proposition A.2. Let (i,p,d) be a weak solution of the micropolar fluids equations (1.1) and (1.2)
such that @,& € L (Jto — R?, to[, L*(Bay,r)) N L*(Jto — R?, to[, H' (Bao,r)) and p € Dj (Qr(to, x0)).
If i € LS. (QR) then & € L{S,(Qr,) for all Qr, C Qr.
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Proof. Notice that from Remark Proposition and Lemma we can establish the existence
of rg and 71 such that 0 < r; < ryp < R and such that

lg, @ €Ly, and 1g, div(d) e Lf,. (A.10)

We consider now a positive test function ¢ : R x R3 — R such that for some radius r, we have
O0<rg<ri<rg<Rand

=1 on ]to - 7‘%, to + T%[XBIO,TQ and supp(gb) C]tO - T%, to + T%[XB:co,m'
Define W = ¢@. By using the dynamics of the variable &, i.e. the equation (1.2), we have for any
te [07 tO[a

3
. . . 1.
O = AW + (8 — MGG + 2 0:((9:0)) + & [v div(@) - & — div(@ © @) + 5V A ﬁ] ,
=1

w(0,-) = 0.
By Duhamel’s formula we obtain

—

t 3 t t
W(t,z) = /0 IOy — Ap — ¢)dds +2 /0 et =20, ((0¢)3)ds + /0 =2V div(d)ds
=1

(Is) (IT3) (111,5)
t t
_ / =98¢ div(S @ @)ds + / e(t’s)Agﬁ A tids ds. (A.11)
0 0

Thus, we shall prove that every term in the right-hand side of (A.11)) is bounded on [0, #o[xR3. We
study each term above separately.

e For the term (/)5) in (A.11)) by setting ® = ;¢ — Ap — ¢ we can write

t t

(I,y) = / 9288, — Ap — ¢)Dds = / e =2 PG ds.
0 0

Note that ® € C°(R x R3) and supp(®) Cltg — r7,to + r7[x Bygry- Recall that e=9)2 is given

by a convolution operator with the heat kernel g(;_), hence by the Young inequality for the

convolution and the LP-estimates of the heat kernel, we have

t t
Hn{omo} [ et yis| < Cligercan [ laa-ol 41980 s

oo

¢
_1 -
§01{0<t<to}/0 (t—s) 4||]1QTOCI’W(57‘)HL6dS-

Moreover, by applying the Holder inequality in the time variable with 1 = % + % we have

- t _3 6
< Cllpcrca o, 8l ( [ (¢ s oas)

. 7
< C]l{o<t<t0}Hq)||Lff’w H]]'Qro(")”Lf,%t12 :

t
H]1{0<t<to}/0 e(t_s)Aq)a"(Sf)dS

LDO

Therefore, by taking the supremum in the time variable and from (A.10]), one has

t

< Cl®]l1zs 10,15, < +oo. (A.12)

[eS]
Lt,z
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For the term (I1)3) in (A.11), the Young inequality for the convolution and the LP— estimates of
the heat kernel imply the following control for all 1 <+ <3

t t
Hn{o<t<to} [ o5 001505, 95| < Cliparcay [ 10i0-al gl1te,, G013 s

L
t
_3 N
< Clygcrcny /O (t - 5)"F|[1q,, (0:0)3(s, )| pods

Thus, by the Holder inequality in the time variable, we have

B ! _o o\ ©
< C]l{o<t<to}H]lQroaﬂWHng (/0 (t—s) 1 ds)

o 1
< Clgo<t<tobl|Oidl iz, 1., Wl g 172

t
H]1{0<t<to}/o 9,92 (9;0)3 (s, -)ds

L

Therefore, by considering the supremum in time and from (A.10)) we obtain

t
Hn{o«to} /0 8;e! )8 (9, ¢)wds

< Cloidllie g, Bllzs. < +oo.  (A3)
Lff’z ’

Now, we consider the term (I11,;) in (A.11). For this, we write

t t !
/ et =R $V div(@)ds = —/ eI=)%(Vg) div(@)ds —|—/ Vell=9)% 6 div(&)ds.
0 0 0

Therefore, since 1q,, div(d) € LY, we can apply the same arguments as in (A.12)) and (A.13)) to

t,x)
obtain

< CI90]lzs g, div(@) g, < +oo.

oo
Lt,z

t
H]1{0<t<t0}/0 =92 (V) div(@)ds

t
H]l{0<t<to} /0 Ve(t_S)A(zﬁ div(d)ds

< Clllug g, div@)lys, < +oo.

[eS)
Lt,z

Finally, we turn our attention to the terms (IV};) and (V) in (A.11)), both of which involve the
presence of the velocity 4. Let us begin with the term (IV}3), for which is enough to study the
expression

t t t
/Oe(t_s)Aqbﬁj(wiuj)ds:/o 8je(t_S)A¢wiujd5—/0 e(t_s)A(ajgb)wiujds, (A.14)

for all 1 <4,5 < 3. For the first term of the right-hand side in the expression above, by using the
same arguments as in (A.13]) we obtain

< Cllollzge, [T winglrs

o0
Lt,x

t
H]1{0<t<t0} /0 8j€(t_s)A¢wiu3‘d8

< CH¢HL,§O’OZH]]‘QRTZHL?,O:DH]IQTOQHL?,Z < Foo.

In addition for the second term of (A.14)), by the same arguments of (A.12)) we have

< Cl9i9l Lge, 1@ wiuslizs |

o0
Lt,x

t
H]1{0<t<to}/0 e(t_s)A(8j¢)wiujd8

< Cliqptll Ly, Q. @l < +oo.
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The last term (V}3,) of (A.11) follows easily. Indeed, since we can write
t . ¢ . t
/ =92V A dids = — / =92 (Vo) A tids + / V A et9)2gids,
0 0 0

and since 1g,u € Lgx(R x R3), we can treat each term above by using the same arguments as in
(A.12)) and (A.13]) respectively.

Therefore by the previous points, the terms ([3)-(V};) given in (A.4) are bounded, and
thus W e L%([0,t9[xR?).  Hence, by using the properties of the test function (¢ = 1 on
Jto — 73,0 + 73[X Byy.ry), We obtain that & is bounded on Qy,(to, o) and this finish the proof of
Proposition [A22] |

We now state the last technical result. Here, we will prove that whenever 4 is more regular than &
we can transfer this information to & in smaller balls.

Proposition A.3. Under the general hypothesis of Theorem [A] if we assume that

@€ L>®(Jto — 73, to[, H(Byg.ry ) N L*(to — 2, tol, H*(Bugr)),s
then for some radius r3 such that 0 < r3 <1y <riy < R, we have

& € L®(Jto — 3, to[, H (Bug.rs)) N L*(to — 73, tol, H*(Bugrs))-
Proof. First, notice that from Proposition [A:2] we have for 0 < ry <7 < R,

1q,,@ € LS. (A.15)
Let ¢ : R x R3 — R be a test function such that for 0 < r3 <t < ry < 1 < R,
¢=1 on |tg— r%,to + 7“§[><Bgco77~3 and  supp(¢) Clto — v2,to + tQ[XBmM.

By using the equality A(¢w;) = A¢w; + 2div(6¢>wi) — ¢Aw;, we have for any 1 < < 3,

;= ——— [—Aqﬁwi — 2div(Vew;) + pAwi] - (A.16)

Thus, in order to improve the regularity of &, we may prove that the expression above belongs to
LHL N LZH2. For this, we will deduce a gain of information for the laplacian of &, and later we will
study the regularity of &.

* A local gain of information for the laplacian of &J. By considering the identity

AG =V div(@) — VA (VAD), (A.17)

it is clear that we can obtain information for the laplacian of @ from the its divergence and its
curl. Thus, let ¢ : R x R3 — R be a test function such that for 0 < r3 <t < 7y < R,

Pp=1 on Jtp— 2ty + t2[><Bgm,r and supp(y) Clto — T%,to + T%[XBIL"(),TQ'

Define now 2 = 1/)6 A& and W = 9 div(d). Note that the dynamics of these variables are
straightforward to compute, indeed, by taking formally the curl operator to the equation (|1.2)),
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we obtain ,VAG = AVAG—VA((@-V)&) - VAGS+ %6 AV A i and recall the dynamics of
div(&) was already obtained in (A.3)). Hence, from these equations we can deduce

w

0 = AW + (9,0 — Ap — )V Z (0;0)V A &) NA((@@)@H%WA(@M),

(Ia) - (ITy) (II11,)

(V) (A.18)

3
W = 2AW + (9p) — 2A1) — ) div(&) +4>  0i((9:v) div(@)) — v div((@ - V),

(1) i=1

(I1,) (I11,)

such that 25(0,-) = W(0,-) = 0 due to the properties of the test function.

We claim now that the each one of the term of right-hand side of (A.18) belongs to L?H; .
Indeed we have the following points:

e First, we consider the terms ([,) and (I,). Note that they share the same structure, therefore
we study only the first one. Hence, we have

1@ = A = )V AG(E 1 < 1O — A = $)V AGB(E, )] g
< Cllowy — A — ¢t )l z2 IV AS(E ) 2B,y )

where we have used the embedding Ls (R3) ¢ H~'(R?) and the Hélder inequality (% = %—i— ).
Moreover, by taking the L?-norm in the time variable we obtain

(8 — Ap — )V A Gz < Cllowp — A — ¢||L§°L§||6 NG| p212(Qg) < 00

e For the terms (I1,) and (II,) in (A.18), again since they share the same structure, it is
enough to study only the first one. Notice that for any 1 <4 < 3,

100V NG 21 S N0V NG p2pe < N0illLes IV A G212 (Qp) < +00,
since & € L2HN(QR).

e For the terms (I11,) and (II1,) in (A.18), since we can write (@ - V)& = div(@ ® @), it is
enough to study the following expression for any 1 <i,m,j <3

V0;(05(wmuyj)) = 0;0j(Ywmuj) — 0j((9ih)wmuy)
—0;((0j¢)wmug) + (9;01) (wimuy). (A.19)

By taking the L%H; ! norm in the expression above we obtain

1900 (wmui)l 2z < 00 (pwmus)ll g2 g1 + 105 (d)(wWmui)) 20 (A20)

(n) @)
+110i((059) (wmu ) 12 g1+ 11(050500) (W)l 2 g1 -

(3) )

For the term (1) in the expression above, since @ is bounded on Qg(tg, zo) by hypothesis, &
is bounded on @, (to, o) by (A.15) and since supp(v)) Clto — r3,to + r3[X Byg.ry, We easily
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observe

00y Wl g < Il = 3 10° Gz
la|=1
= D (D )wmuj + (D )uj + Pwm (D)l 1212
lor|=1
< C Z (DY) WmHL‘” ||UJ||L2 +(QR) +CH¢“JHL meHLZHl(QR)
or|=1
""HT/’WmHL"O HU]HL2H1 Qgr) < 100 (A.21)

For the terms (2) and (3) in (A.20) since they have the same structure, we only study the
first one. Thus, again by using the boundedness of & on @, (t9, zo), we have

10 (@) wmuiD 2t < @j)wmusll 2z
< ClO)wmllge 1wl rz(@ny < +00- (A22)

For the last term (4) of (A.20)), by the embedding Ls(RS) C H~'(R?), and the Holder
inequality (2 = 3 —|— ) one has

150 )womujl 2 < ||(3j3iw)mejllL$L§
< COllyjllneerz(@p 10;0i¢)wml| 213
< Cllujlingerz@m 19l Lge, @) 10500l 218 < +00.  (A.23)

Hence, from (A.21)-(A.22)-(A.23), using the expression (A.19) we can see that the terms
(II1,) and (I11,) in (A.18) belong to L?H;' (recall that by Proposition we have
161l 222 (@ry) < +00)-

For the last term (IV,) of (A.18) we have
YV ANAG) =V AWV AT — (V) AV AD).
Thus, by taking the H~'(R3) norm in space variable we obtain

19V AV AD) g1 < IV A @Y AD g+ 1V AT A D) E ]
< [0V At e + (Vo) AV Ad)E g

5

where we have used the embedding L3 (R?’) C H~'(R3). Now, by integrating in time and by
the Holder inequality in space with % 3 + we conclude

169 A (F A Dl < el IV ATz on
+C||V¢||L§L3”V A ﬁHLfL%(QR) < Fo0.

Therefore, from the previous points, we have proven that each term of the right-hand side of
(A18) belong to L2([0,to[, H~'(R?)). Thus, by the theory developed in [24] Section 13, page 398]
(which is essentially the Serrin regularity criterion for the Navier-Stokes equations) we have

M, W e L>([0, to[, L2(R?)) N L2([0, to[, H*(R?)).

Furthermore, from the identity (A.17)), we can deduce that

PAG € L>=([0,to[, HH(R?)) N L2([0, to[, L*(R?)). (A.24)
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* A gain of regularity in the space variable for &. Recall that from (A.16) we have for all
1<:<3 )
= [—AW — 2div(Vew;) + ¢sz} . (A.25)

Now, we will prove that each term in the expression above belongs to L°H! N L2H?. Firs, by
considering the L? H2-norm in (A.25)), we have

l6will 22 < | = Aduw; — 2div(Vwr) + pAw;| 212

Notice that
[2div(Fown)llors < 2 Adwill s + 2196 - Vol oz,
and thus by the triangular inequality and since supp(¢) Cltg — R2, to + r?[X By, r, it follows that
lgwill 2 < CligAwillzzrs + ClAdwillzzz + ClIVS - Ve 212
< CloBuillizrz + Cldllzrzion + CIVGli2@m < +00r  (A.26)

where we have used (A.24)) and the fact that & € L{°L2(Qg(to, z0)) N LZHX(QRr(to, z0)).

On the other hand, by considering the H'(R*)-norm in (A.25)), we obtain
it Mg < [IAGwilt, ) +2div (Fowi)(t, ) + SAwi(t, )l s
< 1 AGwi(t, ) g1 + IV Gwilt, )12 + | pAwi(t, )| -1 (A.27)
From the embedding H ' (R3) ¢ Lg(R3) and the Holder inequality, we have

[AGwi(t, )l g1 < 1Agwilt, )l g < 1AGE, ) Lsllwi(t, ) 28, 5
and therefore by taking the supremum in time in and by , one has
[¢will oo 1 < Cllwill Lo 12(@r) + Cllwill Lo 12(@p) + CllOAW| oo g1 < o0
Therefore, from and the expression above we obtain ¢ € LHLI N L7 H?2, i.c.,
&G € L>®(Jtg — 3, to], Hl(onyrg)) N L2(Jtg — 3, tol, H2(Bx07r3)),

and thus the proof of Proposition is finished. |

End of the proof of Theorem

Recall that we have proved that for some 0 < r; < R, we have
S LOO(]tO - T%? tD[? HI(BIO,H) N L2(]t0 - T%? to[, H2(B$077“1))'

Thus, we can apply Proposition [A73] and therefore it follows that for some 0 < r3 < r9 < r; < R we
have . .
&€ L=(to = 73, tol, H' (Bug,rs)) N L2 (Jto — 3, tol, H (Bagrs))-

In particular, since VAGE L%H; (Qrs), we can apply again the Serrin criterion for the Navier-Stokes
equations to ¢ and therefore it follows that for some radius r4 such that 0 < r4 < r3 < R, we have

(TAS LOO(]tO - ri>t0[? HQ(BZO,M) N Lz(]to - riatOL H3(Bafoﬂ"4))~

Thus, by following the same arguments given as in Proposition [A.3] we can improve as well the
regularity of & and since we can iterate this process, we obtain the wished regularity for (u,d) and
hence the proof of Theorem is finished. [
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B Partial regularity theory for the micropolar equations

This section is devoted to the partial regularity theory of the micropolar equations and . Let
us point out that in [I3], this theory was already developed in the framework of the micropolar system
when considering partial suitable solutions in the sense of Definition Indeed, it was proven that if
for some 0 < € < 1 we have
lim sup/ IV @ i *dyds < e,

Qr(to,z0)

r—0

then the variables (@, &) are Holder continuous in time and space around the point (¢, z).

Thus, following essentially the same ideas, we will prove in this section that the “second” criterion
of the Caffarelli, Kohn and Nirenberg theory remains valid for the micropolar fluid equations i.e., we
will deduce a gain of regularity for the variables (i, ) when only assuming some conditions over the
velocity i and the pressure p.

Theorem B.1. Let (i, p,d) be a partial suitable solution in the sense of Deﬁnitionfor the microp-
olar equations (1.1) and (1.2) in Q1(to,zo). Assume there exists a constant € > 0 small enough such
that for some 0 < R? < min{1,#y}, we have

to

1 o 3
ig . / @ + |p|2dzds < e. (B.1)
R2 B, n

to—
Then, there exists some 0 <1 < R such that i, € LS, (Qr(to, 0)).

Following the same ideas than [I3], in order to prove the previous theorem, we will first deduce from
the hypothesis (B.1)) a gain of Morrey information for the velocity 4. Indeed, we have

Proposition B.1. Let (i,p,d) be a partial suitable solution in the sense of Definition of the
micropolar system (L.1)) and (1.2)) over the parabolic ball Q1(tg, xo). Assume there exists a sufficiently

small constant € > 0 such that for some 0 < R? < min{1,t}, we have

1
2/ |i@® + |p| 2 dzds < e.
R QRr(to,zo0)

Then, there exists a radius 0 < v < R such that for any —2— < 19 < % with 0 < a <

-«
3 70
2072

]lQr(tOw’UO)ﬂ: € M?:TO (R X RS) and ]lQr(to,xo)p € Mt (R X RS)

T

1
5, we have
L

Proof. Our aim consists in proving that for some 0 < v < R, we have for all 0 < » < v and
(tv l’) € Qr(to,ﬂfo),
3 . 3
/ ]lQr(tO,zO)’l_l:‘dedS < Cr5(1_%) and / ]lQr(to,xo)’p‘%dde < CT5(1—%) (B2)
QT(t7x) Qr(t,l‘)

which is the definition of Morrey spaces (see for instance ((1.10])). For this, we will consider the following
quantities: for a point (¢,z) € R x R? and for r > 0 we write

1 1 S
At = s [ iRy, arlt) = [V wils,y)Pdyds
t—'l’2<s<t r B:co,'r' r Q'f“(tvx)
1 1 3 (B.3)
Ar(t,x) = 2/ ]ﬁ(s,y)|3dyds, Pr(t,x) = 2/ Ip(s,y)|2dyds.
r Qr(t,x r Qr(t,x)

If Qr(t,z) N Q% # 0 then the above quantities are replaced by @, (t,z) N Q. Moreover, for simplicity
we introduce the following notations

1&.7’ —_ $>\ I[r —_ %
3(1-2)
r T0

IR
S0-2)

P, and O, = A, + xP,. (B.4)
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where 0 < k < 1 is a small fixed parameter to be defined later. Therefore it is easy to see that (B.2)
is equivalent to prove that for all 0 < r < v and for all (¢,z) € Q,(to,x0), we have

O,(t,z) < C. (B.5)

Now, in order to obtain (B.5]), we will proceed by an iterative argument for which we need to introduce
some technical lemmas. First, let us point out the following relationship between the quantities given

in (53).
Lemma B.1. For any 0 < r < R, the quantities defined in (B.3|) verify that
1
AP < C(A + a2,
where C' is a constant that does not depend on r

Proof. By using the definition of A, given in 1) above and by the Holder inequality (% = % + %)
we have

L 1 C s
/\3=fU3 <*37ﬁm = C—||d|l 10 .
b= Sl 00 < Srbla = Ol g
2 3
Since by interpolation we have ||(t, )”Llso(B < Hﬁ(t")”ZQ(BIO,T)Hu(t")HEG(BIO,T)’ we can easily
deduce that ||| ;Z(Qr) || HLOOLQ @) ||uHL2L6 @) Now, we use the classical Gagliardo-Nirenberg

inequality (see [7]) to obtain ||| 216(q,) < C(HV ®dlr212(q,) + H@’HL?OL%(QT)) and by using Young’s
inequalities we have

2 - 3 3 -
Il 3 S Clilsaion (19 @ sy ) + Wi s2() < CUT20 + 19 ®Tisz000)

1 - 1
By noting that [|@|zer2(q,) = rz A2 and IV ®illp22(q,) = rza, we finally obtain the desired
estimate. ]

We now present a first estimate linked to the local energy inequality that allows us to control the
terms in (B.3]) within smaller balls.

Lemma B.2. Under the hypotheses of Proposition for any radius 0 <r < & < R we have the
imequality

7“2 2 p2 p% 1

Proof. The main idea for proving this lemma consists in plugging a well chosen test function in the
local energy inequality which we recall in the following lines: for all ¢ € Dy (R x R3)

iyt V @ i) ) -
Latv ez [ ] Geatvanis< [ [ @weaviras+2 [ [ p Foprds
120 = .
+ / . /R i@ - V)ypdeds + / (V AG) - (pid)dyds. (B.6)

s<t JR3

Regarding the test function to be chosen, we can mention Scheffer’s work in [29] where it was introduce
the following one: consider ¢ € C§°(R x R3) a test function such that

s—1yp y—= s—1
(ZS(S,y) = 7,2,-)/ < p2 07 P O> 0 <T20> g(4r2+t0—5)($0 - y)7

where v € C5°(R x R?) is positive function whose support is in Q1(0,0) and equal to 1 in Q%(O, 0). In

addition 6 is a non negative smooth function such that § = 1 over | — oo, 1] and 6 = 0 over ]2, 40|
and g¢(-) is the usual heat kernel. Then, we have the following points.

50



1) the function ¢ is a bounded non-negative function, and its support is contained in the parabolic
ball @, and for all (s,y) € @,(to, o) we have the lower bound ¢(s,y) > %

2) for all (s,y) € Q, we have ¢(s,y) <
3) for all (s,y) € Q, we have IV (s,y)| < r%,
4) moreover, for all (s,y) € Q,(t,x) we have [(0s + A)p(s,y)| < C;—i.
A detailed proof of the properties above can be found for instance in [24].
Now, by considering the aforementioned function ¢ in the local energy inequality , we easily
obtain

—

A + a / (0sp + A@) |u]2dyds+2/ / (i - Vo)dyds
<t R3 <t R3

(1) (2)

—|—/ @)% (i - V) pdads +/ (VAG) - (¢pid)dyds . (B.7)
s<t JR3

s<t JR3
—

3) (4)

Let us study each term of the right-hand side above.
e For the first term (1) in (B.7]), by the forth property of the function ¢ and by the Hélder inequality
(1 =12+ 2) we have

2 2
512 T 12 r 5., 2
/Kt RB(aﬂf) + Ag)|ul"dyds < Cp*g) /Qp i "dyds < C;PR’ Hu”Lix(Q )

-2 4 %
Moreover, by lb we have ”uHLf,I(Qp) = p3 ), and then
r? 2
/ (¢ + Ag)|ii|*dyds < C— A}
s<t JR3 P

e For the term (2) in (B.7)), by the third property of the test function ¢ and by the Holder inequality,
we obtain

- C C
- Vodyds < 5 [ pllaldyds < Sl y 1l 0,
[, fLptFoas < 5 [ pitduds < Gl 1 o

4 2 9 1
— 3 3 e — 3 )3
By (B.3|) we have ”pHL%I(Qp) = psPj and ”uHLix(Qp) = p3\;, we can thus write by the Young

o

inequality that
i S C (a3 (piad) < cZopind < o2

e For the term (3) in (B.7)), by the second property of the function ¢, one has

C 2
/ /|u| Vpdyds < 2/ j@Pdwds = CZA,.
<t R3 r Qp T

2),.

where by (B.3) we can write HﬁHig @) =P
t,x P
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e Finally, for the term (4) in (B.7)), by the properties of the function ¢ and by the Holder inequality
(1= % + % + %), we write

ot

3
v 0 7 PSS - o p2 1
/s<t /Rs(vw)'wwdyds < OV AGlL, @l < O

- 2,3 ~ P 3
where we have'z used the fact that HuHng(QP) = p3)\; and HV/\wHL%I(Qp) < HVAWHL%@(QR) < 400,
since @ € L?HL(QR).
By gathering all the previous estimates we obtain
'rQ 2 p2 p% 1
A+ ap < Cp—Z)\g + C’T—2 (P, + Ap) + CT)\S’
and this ends the proof of Lemma [
As it was pointed out in the e-regularity theory for the Navier-Stokes equations (see [8], [2I] or
[24]), we need to study more in detail the pressure p, which only appears in the first equation of the

micropolar system. Following the same ideas presented in our previous works [11], [13] (also refer to
[21], |24, Lemma 13.3]), we derive the following lemma.

Lemma B.3. Under the hypotheses of Propositionfor any 0 <r < & < R, we have the inequality

2 4 4 % 2
3 PN\3 3 r 3
rhee((9(5)'4) s

Proof. First, let us prove the following estimate

- 2
Il <€ (1l + o el 5 o) (B.9)

where @, and @ are parabolic balls of radius o and 1 respectively. Later, we will derive (B.8]) by a
change of variable.

In order to obtain , we introduce 7 : R® — R a smooth function supported in the ball By 1
such that 7 = 1 on the ball B s and n = 0 outside the ball Bj 1. Fix 0 < 0 < % and notice that
’5 ’5
p =np in By . Now, by using the identity

3
—A(np) = —nAp + (An)p — 2 0:((8im)p),

i=1
we deduce the inequality
(—nAp) (An)p
pll 3 = [npll 3 < e +
| L2, Q) L?,(Q) (=4) 2 on) =212 @)
(p1) (p2)
3
9;((9im)p)
+2) | : (B.10)
i=1 (=4) Lt%,x(QU)
(p3)
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3
For the first term of (B.10]), since we have the equation Ap = — Z 0;0;(uju ), we can write

i =1
—nAp
(p1) = H((—A)) . (7( Z@E)zm@)
LEw(QO‘) 1.7 1 % (Qg)
3
1
< ) (&) (0:0; (nuiu;) — 0 ((9m)uiv;) — 05 ((Dimuius) + (Bidjm)uivg ) ||
ij=1 LZ,(Qo)
2 1
< C Z ——0;0;(nujuy) +C Z ((9m)uiuy)
t,j=1 (_A) Lt%,x(QU) i,j=1 Léx(Qa)
3
1
0 | eay (@) o +C Z &y @0 | o (B.11)
i,j=1 Lt,z(QU i,j=1 t,z(QU)

Let us study each term of the expression above. Denoting by R; = \/% the usual Riesz transforms on

R3, by the boundedness of these operators in L3 (R3), and using the support properties of the auxiliary
function 7, we have for the first term above:

R

< [RiRj(nuiuy)(t

Cllmuiuy(t,

My o S

< Cllitt, )3s(s.):

3
L2 (Boyg)

By taking the L3-norm in the time variable in the previous inequality we obtain

|23,

< Clidtt, ) s oy (B.12)

3
L7(Qo)

The remaining terms of (B.11] - can all be studied in a similar manner. Indeed, noting that 0;n vanishes
on B 3 U BC by using the integral representation for the operator 0 6A) we have for the second term of

- ) the estlmate

&N ((ajn)uiuj)(t, ) Oo?

IN

9;

3
L7(Boﬁa) LOO(BO’U)

C o2

IN

/{ LY ((Qrmuug) (£ y) dy

scpyl<ty lz —yl?

L% (Bo,o)

Now, since z € By, and o < %, we have for any % <yl <z that 15 < |z —y| and since supp(n;) C Bo,1,
it follows that

IN

Clluin (¢, )2 (Bo.0) (B.13)

= ((@muiug)(t,) L2 (Boo)

IN

= 2
CHU(t, ) HLS(BOJ) .
By taking the L3-norm in the time variable in the expression above, we obtain

E -




A symmetric argument gives

< Clalls g (B.15)

Since the convolution kernel associated to the operator ﬁ is I%’ by following the same ideas as in

(B.13]), we easily obtain for the last term of (B.11]) that

(aiﬁjn)uiuj 112
— <C B.16
H ) 2 o = @) (B.16)
By merging the estimates (B.12)), (B.14]),(B.15)) and(B.16]) in (B.11]), we obtain
nAp _
L?,T(QU)

For treating the term (p2) in , by the properties of the auxiliary function n and the convolution
2Ol 1 ; . .
kernel associated to the operator =&y We can write (see )

H (An)p(t, )
(—4)

< Co?||p(t.- < Co?||p(t. -
sy < C7 I om0 < O

and thus, taking the L3-norm in the time variable we obtain:

(An)p
= < Co?|p B.18
(#2) H (=A) L%L%(QU) I ||L§LE(Q ) ( )
For the last term (p3) of (B.10)), following the same ideas developed in (B.13) we can write
9; > 2
. : < : < .
[y | <t M < O s
and therefore 3:((Bm)p)
i\\0i1)P 2
= ||l—— <Co 3 B.19
(o) = 222 i SC7 Y g (8B.19)

Now, gathering the estimates (B.17)), (B.18)) and (B.19)) we obtain the inequality

pll s < C’( i) +a2(p|| 2 >
I L{.(Qo) H HL?»“E(QI) | ||Lt2,z(Q1)

Now, with this estimate at hand, it is straightforward to deduce inequality (B.8)). Indeed, if we fix
o= % < % and by introducing the functions p,(t,z) = p(p*t, px) and @,(t,z) = @(p?t, pz) then the
previous estimate we have

2
.
3 <C | |a,3 + <> 2
HPPHLEI(Q%) (” Azzaon ;) el 3 g,

Hence by a convenient change of variable we obtain

2
10 10 T
Ipll s p3 <C|p =i} + () -5 IIPH
L2, (@n) L@ "\ p 2.(Qp)
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2 2
Moreover, by 1» we have the identities rEPS = Ipl 3 and pin = [l ), and therefore

2 I 3
we obtain P2 < C (£> : A+ C (T) P; and this finishes the proof of Lemma [ |
r p

End of the proof of the Proposition Now, in order to deduce (B.5), we remark that it is
equivalent to say that there exists 0 < vt < R and 0 < k < % such that for all n € N and for all
(t,z) € Qgne(to, z0), we have

Qpne(t, ) = Ane(t, ) + KOPene(t, ) < C, (B.20)
where )
A (t, ) = m)\r(t,x) and P.(t,z) = mﬂn(t,x). (B.21)
oo oo

Thus, for deducing (B.20)), we will apply an iterative argument and to do so we need to estimate A,
and P, in terms of A, and P, for any radius 0 < r < £ < R. Thus, by Lemmas and we have

IV S-S
7‘3(1_%) 3(1—=)

[

Q
=3
w
>
)
o
o

1
LY i (B

< 5
30-2) 3

- [ A
3(1_i) ,03 P 7“3(1_%) 3 (Pp + P)

Let us study more in detail each term of the right-hand side above.

5
e For the first term of (B.22)), since A\, = p3(1_5)Ap by (B.21)), we have

15

c r\ 70
—_ X, =C | - A,
sz = (5)

0
e For the second term of (B.22), by the definition of P, and A, given in by (B.21]), we obtain

1 3 3 6- 5. 15 9_5 3
77%(7%"‘)‘;7)2 - C(é) P 3+T°P21 TO)(Pp+Ap)2

p\6—7 3_15 3
e C (7) 0 p2 27 (Pp _'_ Ap)z
6——> 3 3

3_ 15
where we have used the fact that p2 270 <1 since % . % > 0 due to 19 > 5.

e Finally, for the last term of (B.22)), by (B.21]), we have

AN
Q
—~

—5
30-2)

Thus, by gathering all the previous estimates, we have

15

o 6—15 / 3 3 5 2-15 1
A, < C< (;) “A,+ (g) E <Pg +A,§> 42t (g) 2" Ag). (B.23)
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Let us study now the pressure term in (B.21]). From the estimate (B.8), we can write for any 0 <7 < £

1 C P\ 2 c r
Po=—"P < ——— (=) A+ ——-P,.
r3(1—%)P 30=5) (r> pt B30=7) pPp

5
For the first term of the right-hand side above, since A\, = pS(I_TO)Ap by (B.21]), we have

_ 15
s (0= s (P () o,

”
_15
Moreover, by using the fact that Tsuii%)% ) = (g)Q 7 [P, by (B.21)), one has
p 5_15 p 915
P, < C((r> T+ (B) Pp>. (B.24)

Hence, we have estimated A, and P, in terms of A, and PP,.

With this information at hand, let us study the expression O, given in (B.20)). Thus, notice that

. 1 . o o - .

ioirl any tOh<tr <L ifwefix0<k< 5 such that k = % , then from the estimates (B.23)) and (B.24)) it
ollows tha

15 _ga 15 3 3 3(_1,5 _3435
O, = A, + &P, < C(f@TOAp—i—ff M (Pg +A3> +p2 T2t 2*T0)A3>
54 15 _94 15
+CxS (n 5+T0Ap+/€ 2+70Pp>.

Moreover, by the definition of O, given in (B.4), we have A, < O, and P, < k750, and therefore one
has

1

15 TR 3 3 3145y g_345y 1
0, < Ck00,+Ck O (/1_9@)3 —i—@ﬁ) +Cp2zta) 2+TO)©p2

+C’m1+%@p + C/{QJF%(ODP.

1412 -2+
+Cr™ 00, +Ck ~ 00,
Rearranging the previous expression in a more convenient way, we obtain
15 15 15 15 15 3,5 1
15 1418 —2+18 —-15+12 —6+12 9(—3+ 3
0, < C(ko+x"m 45 )0+ 0 (n77 0 + 570 4477 00,
9 1 5
_'_pz(*aJF%)
15 15 o415 1 9 1,5
C (k0 + 50 4570 ) 0, + CrTP0F0, + pi 2 ),

IN

Moreover since —2 + 71_—(5) > 0, we take 0 < k < 1 small enough such that

15 1418 2+15) 1

C(k™ +Kk 70 4+k "7 gz, (B.25)
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and therefore for any 0 < r < £ we obtain the following estimation

1 91,5
0, < >0, + Cx 030, + p1 2" 7). (B.26)

| =

Now by using the estimate above, we can deduce , i.e., we will prove for 0 < kK < 1 given by the
condition (B.25)), there exists 0 < v < R such that for all n € N and for all (t,z) € Qun(to, o), we
have

Qpne(t, ) = Ane(t, ) + KOPgne(t, ) < C.

Indeed, let us define p = 79 = v and r» = r; = st with v = k™R where 0 < k < 1 is given by the
condition (B.25)), and 9t € N is such that 9% > 240. Thus, since r < 7’270’ we can rewrite (B.26)) as

follows

1 153 -3+2
Oy, (to,x0) < Z@TO—FCK_ 020y, + 7,

Since 19 = kMR, R < 1 and —% + % > 0 we have

T3+

1 1
Or(to,z0) < 70 + Ck P00, +51 (B.27)
In order to close the iterative argument, we need to study each term of the right-hand side above.
First, notice that since 0 < k < 1, the expression Cx~ ! can be large, nevertheless since £ > 0 is a
fixed parameter, we may consider a parameter 0 < e, < 1 small enough (to be defined later on) such

that we have 1
= . B.28

On the other hand by (B.3), (B.4) and since Q.mg)(to, 7o) C Qr(to, o), we have

* 0|

Cr B¢

1 1 K5 3
Oy (to, z0) = / |3 dyds + / |p|2dyds
’ (/ﬂmR)g(li%) (k1 R)? Q7 ) (t0,70) (k1 R)? QM ) (t0,0)
15
Rw 1 (1 / L 1 s
= —— | = | dyds—l—/ Ip|2dyds
KN R <R2 Qr(to,wo0) R? Qr(to;zo0)

1 1 1/ .3 3
< L1(L 7P + plEdyds |
RN RS <R2 Qr(to,wo)

Now, recall that by the hypothesis (B.1)), there exists 0 < e <« 1 such that
1

2 /QR(to,a:o) || + |p]%dyds < ¢ and thus by setting e such that 0 < ¢ < k°" R3¢, (where ¢, was given
by the condition (B.28)), it follows that
Oy, (to, z0) < 4. (B.29)
Then, by and the expression above, it follows that
Cn—lf’@éo@m < Cr15e3 Oy, < i@m. (B.30)

Now, let us study the last term in the right-hand side of (B.27)), notice that by (B.28]), we can write
1
k= Ce3® and therefore we have

MM 1,5
7(_%+%) _ Cgim( SRR
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Z we have S5L(—1 + T@) > 3, and therefore

Thus, since 9 > 240, recalling that —= + o> 0 and
we can take €, < 1 such that
M 1 5 i 9

P3+) o) o % (B.31)

70

Hence, by using ) and - in - we obtain

Oy, (tg, 29) < Z@T’O + 1@% + 5*

Furthermore, by (B.29)), it follows that
€
@T‘l(t()axo) S Z + Z + 5 = 6*-

”m?R = 5 we can apply the estimate (B.26)

(B.32)

Now, let us study the case ro = k2t = K2R, Since ro <

and hence we have
1 152 I(—1+2
Ory(to,z0) < =0y +Crk 020, + 1, .

Notice that since Oy, (tg, 7o) < e« by (B.28), we have Cx~ 1207, < C/i_l‘r’(s*)% < 1. Moreover, since
9 1 5
i(-3+5)
2l < 5. Then, one has

r1 = k7R < kY (recall R < 1) by (B.31)) we have r,

1 1 Ex
(O)’/‘Q (t07‘r0) S Z(O)’m + Z(O)’r‘l + 5

Again since Oy, (to, xo) < €, by (B.32)we have

Ex
@T‘z(t07x0) S Z + Z + 5 = 5*-
k" = k7R and we assume that Oy, < €. Thus, since

Finally, let us consider the case r,

by using (B.26]) we have

1 1
©7'n+1(t07$0) S Z(O)rn -+ 05_15(0)3”@7.”

L . 1 1
Similarly as we mentioned before, from (B.28)), we }QlaV(f C;/@_ls@ﬁn < Ok '(e,)2 < § and since
,(_,J’_T
2l < 5. Then, we have

ry = KR < k™ (recall R < 1) by (B.31]) we have 7,

%+@WM—Z

T'n+1 S %7
e )

+7n

€
Oy, (to,20) < +Z+5* = €.

Thus, we have proved that for all n € N, we have
@rn (th 330) < &,

which is the wished control (B.20]), but centered in the point (g, z). In order to treat the general case
(t,z) € Qp, (to, x0), notice that since Q,, (t,z) C Q2r, (to, o), we have

15
©T‘n (t, $) < 23 70 @an (to,xo) < C.

Then, we have proved that for 0 < kK < 1, there exists 0 < v < R such that for all n € N, we have

Oune(t,x) < C, and as it was mentioned before in (B.5)), this implies that for all 0 < r < v and for all
(B.33)

(t,z) € Qr(to,x0), we have
A (t,z) + KOP.(t, ) = O, (t,z) < C.
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Hence, by (B.3)), (B.4) and the previous estimate we have for all 0 < r < v and for all (¢,z) € Q,(to,x0),

1

B3 1Q. (t0.20) @ dyds = A (t, ) < C
S Jouaa o0

which means that
e 3,7
]th(to,aco)u € Mt7 O(R X R3),

xT

. 1 3
Moreover, again by (B.3)) and (B.4)) we have SA-E) /Q - 1. (to,00)IP(8,9)|2dyds = Pr(t, z), and by
r 70 r({l,T

(B.33]), (recall that « is a fixed parameter) we conclude

10, (to,00)P € ME,2 (R x R?),

3 70
2
and thus the proof of Proposition is finished. |

Corollary B.1. Under the hypotheses of Proposition[B.1], we have the following local control:

- 1 1 1
L, 2, 3 : _
1o (to.20)V @ G € My (RXR?) - with P
Proof. Let 0 < v < R be the radius given in Proposition [B:I} By using the definition of Morrey spaces
given in ((1.10]), we have to show that for all 0 < r < % and for all (t,z) € Q(to,zo) we have

o _2 1
1 V @ d2dyds < Cr° ), with — = — 4 -
/(Qr(t,CC) Qi(to@o)| ® | *dyds < Cr ' Wi T To * 5

For this, notice that by the definition of the quantity A, given in (B.3) and Lemma it follows for
any 0 < r < % and any (t,z) € Qr(to, o) that we have

1

/ ]lQL(to,wo)‘ﬁ@ﬁ’Zdyds < A(t,x) + ap(t,x)
" JQ (tw) 2

IN

C(Ai(t, ) + P (t, ) + Aoy (t, ) + (2r)%A§T(t, :c)). (B.34)

1
Let us study in more detail the terms Mg, and Po,. above. For the first one, since A\, = — / ]ﬂ’\?’dyds
r
Qr
(see (B.3)), we have

5(1—2)
_ 1 13 _ (2r) o 13
A27"(157'%') - (27,)2 /er(t,a:) ‘u| dde - (27.)2 (27“)5(1_%) \/er(t,:r;) ‘u| dde

(3-22)
2 ey
= @) n Z / it dyds.
2r)°1 77 JQar ()

Since 2r <vand 1, (y,2,)U € Mf’m (R x R3), we obtain

s

15 _15
Aor(t, ) < (zr)(3‘ro>\|11QtﬁHj4?,m <o@n)® ), (B.35)
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3 70

Let us get a similar estimate for the term Py, indeed by (B.3) and since 1g,p € M2, ? (R x R?), we
have

3
1 s 1 (2r)° ) s
Por(t, — p|2dyds = f p|2dyds
N T A (2r)? (9,y2(1= %) 2"
(3-22) 3 (3-12)
< (2r)" H]thpH/\/l%’321 < C(2r)" ™. (B.36)

t,z

Thus, by using the estimates (B.35) and (B.36) in (B.34), one has

1 - 2(3_15 _15 lig_15
/ 10, oanV @ @dyds < C((2r)7770) 4 (2700 + (203 (20)307 )
Qr(t,x) 2

15 3 5

< C(Az—% L pB) G TO))_

Notice,thatsince%S%<%Wehave0<2—%§3—l—§<%—%,andsince0<r<1weget

1 - _10
/ ’ )]lQE(tO’IO)\V@ﬁ\QddeSCT(2 ).

r

Now, using the fact that %0 = % — %, it follows that for any 0 < r < § and (¢,2) € Qr(to, o), we have
- _10 _2
/ ﬂQi(t07x0)|V X U\Zdyds < CT(5 o) = CT5(1 71),
Qr(t,it) 2

which implies that T, (t07x0)6 RUE M?’;l (R x R3) and this finishes the proof of Corollary |
? )

Proof of Theorem Let (i, p,d) be a partial suitable solution in the sense of Definition for
the micropolar equations (1.1)) and (1.2)) in Q1(to,xo). Recall that we want to show that there exists
some 0 <7 < R <1 such that 4,d € LS, (Qr(to, 20)).

First, notice that since by hypothesis we have

1 [t
R?

to—

/ || + Ip\%d:ﬁds <e,
R? B, r

for some € < 1, we can apply Proposition and Corollary and therefore there exists 0 <t < R

such that for 5 < 5 < % and ?10 = % — é we have

70

3
. 3, 3
Lo (to.a0)8 € Mt,;o (R x Rg)y L. (to,z0)P € M{3? (R x R3)

) - i (B.37)
and ]IQ%(tony)V ®U e Mt:xl (R x R?).

Note that the upper bound for 7 comes from the fact that we have the term VA in the equation (1.1)).

Now, for simplicity sake, we assume 79 = 6. Hence, by Proposition [A1] it follows that for some
0 < r; <t, we have

1o, (tow)@ € LY, (R X R?) and g, (19.2)@ € L, (R x R?). (B.38)

It is worth noting that the integrability we have obtained lies within the framework of the Serrin
criterion ( % + % < 1). However, instead of deducing directly the boundedness of the solution, we will
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apply the strategy given in [13]. Indeed, since we have (B.37) and (B.38]) we can apply [13, Proposition
2], and thus we can improve the Morrey information of the velocity @ i.e., for any ro < 11 < R, we
have that

— 3,60
]th(to,a?o)u € Mt,x .

Moreover, following the same steps as in Section 6 of [I3], we can deduce that (@,d) are Holder
continuous in time and space in @, (tg,xo) for some 0 < r < r9 < 11 < R. Since Q,(to,xo) is a
bounded set, the boundedness of (i, &) follows immediately, thus completing the proof of Theorem

B ]

Finally we present the following characterization of partial singular points, which is just a conse-
quence of the e-regularity theory.

Proposition B.2. Let (@, p,d) be a partial suitable solution on Q1. Then, for any (to,zo) € Q1(t, )
we have

e cither (to,xo) is partially singular and then for any 0 < r < 1,

1
c<l / [il? + pl 3 dyds,
T JQr(to,x0)

e cither (to,xo) is a partial reqular point and then

1
lim / i) + |&3dyds = 0.
Qr(t07x0)

r—0 T2

Proof. Let us prove the first point by contradiction. Hence, assume that (o, o) is a partial singular
point in the sense of Definition [I.3] such that there exists 0 < r < R with

1

3
- it 4 |p|2dyds < e.
r Qr(t07x0)

Since (4, p,d) is a partial suitable solution, we can use Theorem and therefore there exists 0 <
p < r such that (¢,d) is bounded on Q,(to, o), and hence (to, o) has to be a partial regular point
which is a contradiction. For the second point, since (tg,xo) is a partial regular point, there exists
some R > 0 such that @, € LS (Qr(to, 70)). Hence, it is easy to see that for all 7 < R

1 _ - L -
TQ/Q o j@® + | dyds < C(HUH%OO(QR) + HWH%OO(QR))TS-
The proof is completed by taking the limit when r goes to zero. |
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