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ABSTRACT

We address parameter estimation in second-order stochastic differential equations (SDEs), prevalent
in physics, biology, and ecology. Second-order SDE is converted to a first-order system by introducing
an auxiliary velocity variable raising two main challenges. First, the system is hypoelliptic since the
noise affects only the velocity, making the Euler-Maruyama estimator ill-conditioned. To overcome
that, we propose an estimator based on the Strang splitting scheme. Second, since the velocity is
rarely observed we adjust the estimator for partial observations. We present four estimators for
complete and partial observations, using full likelihood or only velocity marginal likelihood. These
estimators are intuitive, easy to implement, and computationally fast, and we prove their consistency
and asymptotic normality. Our analysis demonstrates that using full likelihood with complete
observations reduces the asymptotic variance of the diffusion estimator. With partial observations,
the asymptotic variance increases due to information loss but remains unaffected by the likelihood
choice. However, a numerical study on the Kramers oscillator reveals that using marginal likelihood
for partial observations yields less biased estimators. We apply our approach to paleoclimate data
from the Greenland ice core and fit it to the Kramers oscillator model, capturing transitions between
metastable states reflecting observed climatic conditions during glacial eras.

Keywords Second-order stochastic differential equations, Hypoellipticity, Partial observations, Strang splitting
estimator, Greenland ice core data, Kramers oscillator

1 Introduction

Second-order stochastic differential equations (SDEs) are an effective instrument for modeling complex systems
showcasing both deterministic and stochastic dynamics, which incorporate the second derivative of a variable - the
acceleration. These models are extensively applied in many fields, including physics (Rosenblum and Pikovsky, 2003),
molecular dynamics (Leimkuhler and Matthews, 2015), ecology (Johnson et al., 2008; Michelot and Blackwell, 2019),
paleoclimate research (Ditlevsen et al., 2002), and neuroscience (Ziv et al., 1994; Jansen and Rit, 1995).
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The general form of a second-order SDE in Langevin form is given as follows:

Ẍt = F(Xt, Ẋt,β) +Σξt. (1)

Here, Xt ∈ Rd denotes the variable of interest, the dot indicates derivative with respect to time t, drift F represents the
deterministic force, and ξt is a white noise representing the system’s random perturbations around the deterministic
force. We assume that Σ is constant, that is the noise is additive.

The main goal of this study is to estimate parameters in second-order SDEs. We first reformulate the d-dimensional
second-order SDE (1) into a 2d-dimensional SDE in Itô’s form. We define an auxiliary velocity variable, and express
the second-order SDE in terms of its position Xt and velocity Vt:

dXt = Vt dt, X0 = x0,

dVt = F (Xt,Vt;β) dt+ΣdWt, V0 = v0,
(2)

where Wt is a standard Wiener process. We refer to Xt and Vt as the smooth and rough coordinates, respectively.

A specific example of model (2) is F(x,v) = −c(x,v)v −∇U(x), for some function c(·) and potential U(·). Then,
model (2) is called a stochastic damping Hamiltonian system. This system describes the motion of a particle subjected
to potential, dissipative, and random forces (Wu, 2001). An example of a stochastic damping Hamiltonian system is the
Kramers oscillator introduced in Section 2.1.

Let Yt = (X⊤
t ,V

⊤
t )

⊤, F̃(x,v;β) = (v⊤,F(x,v;β)⊤)⊤ and Σ̃ = (0⊤,Σ⊤)⊤. Then (2) is formulated as

dYt = F̃ (Yt;β) dt+ Σ̃dWt, Y0 = y0. (3)

The notation ˜ over an object indicates that it is associated with process Yt. Specifically, the object is of dimension 2d
or 2d× 2d.

When it exists, the unique solution of (3) is called a diffusion or diffusion process. System (3) is usually not fully
observed since the velocity Vt is not observable. Thus, our primary objective is to estimate the underlying drift
parameter β and the diffusion parameter Σ, based on discrete observations of either Yt (referred to as complete
observation case), or only Xt (referred to as partial observation case). Diffusion Yt is said to be hypoelliptic since the
matrix

Σ̃Σ̃⊤ =

[
0 0
0 ΣΣ⊤

]
(4)

is not of full rank, while Yt admits a smooth density. Thus, (2) is a subclass of a larger class of hypoelliptic diffusions.

Parametric estimation for hypoelliptic diffusions is an active area of research. Ditlevsen and Sørensen (2004) studied
discretely observed integrated diffusion processes. They proposed to use prediction-based estimating functions, which
are suitable for non-Markovian processes and which do not require access to the unobserved component. They proved
consistency and asymptotic normality of the estimators for N → ∞, but without any requirements on the sampling
interval h. Certain moment conditions are needed to obtain results for fixed h, which are often difficult to fulfill for
nonlinear drift functions. The estimator was applied to paleoclimate data in Ditlevsen et al. (2002), similar to the data
we analyze in Section 5.

Gloter (2006) also focused on parametric estimation for discretely observed integrated diffusion processes, introducing
a contrast function using the Euler-Maruyama discretization. He studied the asymptotic properties as the sampling
interval h → 0 and the sample size N → ∞, under the so-called rapidly increasing experimental design Nh → ∞
and Nh2 → 0. To address the ill-conditioned contrast from the Euler-Maruyama discretization, he suggested using
only the rough equations of the SDE. He proposed to recover the unobserved integrated component through the finite
difference approximation (Xtk+1

−Xtk)/h. This approximation makes the estimator biased and requires a correction
factor of 3/2 in one of the terms of the contrast function for partial observations. Consequently, the correction increases
the asymptotic variance of the estimator of the diffusion parameter. Samson and Thieullen (2012) expanded the ideas of
(Gloter, 2006) and proved the results of (Gloter, 2006) in more general models. Similar to (Gloter, 2006), their focus
was on contrasts using the Euler-Maruyama discretization limited to only the rough equations.

Pokern et al. (2009) proposed an Itô-Taylor expansion, adding a noise term of order h3/2 to the smooth component in
the numerical scheme. They argued against the use of finite differences for approximating unobserved components.
Instead, he suggested using the Itô-Taylor expansion leading to non-degenerate conditionally Gaussian approximations
of the transition density and using Markov Chain Monte Carlo (MCMC) Gibbs samplers for conditionally imputing
missing components based on the observations. They found out that this approach resulted in a biased estimator of the
drift parameter of the rough component.
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Ditlevsen and Samson (2019) focused on both filtering and inference methods for complete and partial observations.
They proposed a contrast estimator based on the strong order 1.5 scheme (Kloeden and Platen, 1992), which incorporates
noise of order h3/2 into the smooth component, similar to (Pokern et al., 2009). Moreover, they retained terms of
order h2 in the mean, which removed the bias in the drift parameters noted in (Pokern et al., 2009). They proved
consistency and asymptotic normality under complete observations, with the standard rapidly increasing experimental
design Nh → ∞ and Nh2 → 0. They adopted an unconventional approach by using two separate contrast functions,
resulting in marginal asymptotic results rather than a joint central limit theorem. The model was limited to a scalar
smooth component and a diagonal diffusion coefficient matrix for the rough component.

Melnykova (2020) developed a contrast estimator using local linearization (LL) (Ozaki, 1985; Shoji and Ozaki, 1998;
Ozaki et al., 2000) and compared it to the least-squares estimator. She employed local linearization of the drift function,
providing a non-degenerate conditional Gaussian discretization scheme, enabling the construction of a contrast estimator
that achieves asymptotic normality under the standard conditions Nh → ∞ and Nh2 → 0. She proved a joint central
limit theorem, bypassing the need for two separate contrasts as in Ditlevsen and Samson (2019). The models in
Ditlevsen and Samson (2019) and Melnykova (2020) allow for parameters in the smooth component of the drift, in
contrast to models based on second-order differential equations.

Recent work by Gloter and Yoshida (2020, 2021) introduced adaptive and non-adaptive methods in hypoelliptic diffusion
models, proving asymptotic normality in the complete observation regime. In line with this work, we briefly review
their non-adaptive estimator. It is based on a higher-order Itô-Taylor expansion that introduces additional Gaussian
noise onto the smooth coordinates, accompanied by an appropriate higher-order mean approximation of the rough
coordinates. The resulting estimator was later termed the local Gaussian (LG), which should be differentiated from LL.
The LG estimator can be viewed as an extension of the estimator proposed in Ditlevsen and Samson (2019), with fewer
restrictions on the class of models. Gloter and Yoshida (2020, 2021) found that using the full SDE to create a contrast
reduces the asymptotic variance of the estimator of the diffusion parameter compared to methods using only rough
coordinates in the case of complete observations.

The most recent contributions are Iguchi et al. (2023a,b); Iguchi and Beskos (2023), building on the foundation of the
LG estimator and focusing on high-frequency regimes addressing limitations in earlier methods. Iguchi et al. (2023b)
presented a new closed-form contrast estimator for hypoelliptic SDEs (denoted as Hypo-I) based on Edgeworth-type
density expansion and Malliavin calculus that achieves asymptotic normality under the less restrictive condition of
Nh3 → 0. Iguchi et al. (2023a) focused on a highly degenerate class of SDEs (denoted as Hypo-II) where smooth
coordinates split into further sub-groups and proposed estimators for both complete and partial observation settings.
Iguchi and Beskos (2023) further refined the conditions for estimators asymptotic normality for both Hypo-I and
Hypo-II under a weak design Nhp → 0, for p ≥ 2.

The existing methods are generally based on approximations with varying degrees of refinements to correct for possible
nonlinearities. This implies that they quickly degrade for highly nonlinear models if the step size is increased. In
particular, this is the case for Hamiltonian systems. Instead, we propose to use splitting schemes, more precisely the
Strang splitting scheme.

Splitting schemes are established techniques initially developed for solving ordinary differential equations (ODEs)
and have proven to be effective also for SDEs (Ableidinger et al., 2017; Buckwar et al., 2022; Pilipovic et al., 2024).
These schemes yield accurate results in many practical applications since they incorporate nonlinearities in their
construction. This makes them particularly suitable for second-order SDEs, where they have been widely used. Early
work in dissipative particle dynamics (Shardlow, 2003; Serrano et al., 2006), applications to molecular dynamics
(Vanden-Eijnden and Ciccotti, 2006; Melchionna, 2007; Leimkuhler and Matthews, 2015) and studies on internal
particles (Pavliotis et al., 2009) all highlight the scheme’s versatility. Burrage et al. (2007), Bou-Rabee and Owhadi
(2010), and Abdulle et al. (2015) focused on the long-run statistical properties such as invariant measures. Bou-Rabee
(2017); Bréhier and Goudenège (2019) and Adams et al. (2022) used splitting schemes for stochastic partial differential
equations (SPDEs).

Despite the extensive use of splitting schemes in different areas, statistical applications have been lacking. We have
recently proposed statistical estimators for elliptic SDEs (Pilipovic et al., 2024). The straightforward and intuitive
schemes lead to robust, easy-to-implement estimators, offering an advantage over more numerically intensive and less
user-friendly state-of-the-art methods. We use the Strang splitting scheme to approximate the transition density between
two consecutive observations and derive the pseudo-likelihood function since the exact likelihood function is often
unknown or intractable. Then, to estimate parameters, we employ maximum likelihood estimation (MLE). However,
two specific statistical problems arise due to hypoellipticity and partial observations.

First, hypoellipticity leads to degenerate Euler-Maruyama transition schemes, which can be addressed by constructing
the pseudo-likelihood solely from the rough equations of the SDE, referred to as the rough likelihood hereafter. The
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Strang splitting technique enables the estimator to incorporate both smooth and rough components (referred to as the
full likelihood). It is also possible to construct Strang splitting estimators using only the rough likelihood, raising
the question of which estimator performs better. Our results are in line with Gloter and Yoshida (2020, 2021) in
the complete observation setting, where we find that using the full likelihood reduces the asymptotic variance of the
diffusion estimator. We found the same results in the simulation study for the LL estimator proposed by Melnykova
(2020).

Second, we suggest to treat the unobserved velocity by approximating it using finite difference methods. While
Gloter (2006) and Samson and Thieullen (2012) exclusively use forward differences, we investigate also central and
backward differences. The forward difference approach leads to a biased estimator unless it is corrected. One of the
main contributions of this work is finding suitable corrections of the pseudo-likelihoods for different finite difference
approximations such that the Strang estimators are asymptotically unbiased. This also ensures consistency of the
diffusion parameter estimator, at the cost of increasing its asymptotic variance.

When only partial observations are available, we explore the impact of using the full likelihood versus the rough
likelihood and how different finite differentiation approximations influence the parametric inference. We find that the
choice of likelihood does not affect the asymptotic variance of the estimator. However, our simulation study on the
Kramers oscillator suggests that using the full likelihood in finite sample setups introduce more bias than using only the
rough marginal likelihood, which is the opposite of the complete observation setting. Finally, we analyze a paleoclimate
ice core dataset from Greenland using a second-order SDE.

The main contributions of this paper are:

1. We extend the Strang splitting estimator of (Pilipovic et al., 2024) to hypoelliptic models given by second-order
SDEs, including appropriate correction factors to obtain consistency.

2. When complete observations are available, we show that the asymptotic variance of the estimator of the
diffusion parameter is smaller when maximizing the full likelihood. In contrast, for partial observations, we
show that the asymptotic variance remains unchanged regardless of using the full or marginal likelihood of the
rough coordinates.

3. We discuss the influence on the statistical properties of using the forward difference approximation for imputing
the unobserved velocity variables compared to using the backward or the central difference.

4. We evaluate the performance of the estimators through a simulation study of a second-order SDE, the Kramers
oscillator. Additionally, we show numerically in a finite sample study that the marginal likelihood for partial
observations is more favorable than the full likelihood.

5. We fit the Kramers oscillator to a paleoclimate ice core dataset from Greenland and estimate the average time
needed to pass between two metastable states.

The structure of the paper is as follows. In Section 2, we introduce the class of SDE models, define hypoellipticity,
introduce the Kramers oscillator, and explain the Strang splitting scheme and its associated estimators. The asymptotic
properties of the estimator are established in Section 3. The theoretical results are illustrated in a simulation study on
the Kramers Oscillator in Section 4. Section 5 illustrates our methodology on the Greenland ice core data, while the
technical results and the proofs of the main theorems and properties are in Section 6 and Supplementary Material S1,
respectively.

Notation. We use capital bold letters for random vectors, vector-valued functions, and matrices, while lowercase
bold letters denote deterministic vectors. ∥ · ∥ denotes both the L2 vector norm in Rd. Superscript (i) on a vector
denotes the i-th component, while on a matrix it denotes the i-th column. Double subscript ij on a matrix denotes
the component in the i-th row and j-th column. The transpose is denoted by ⊤. Operator Tr(·) returns the trace of a
matrix and det(·) the determinant. Id denotes the d-dimensional identity matrix, while 0d×d is a d-dimensional zero
square matrix. We denote by [ai]

d
i=1 a vector with coordinates ai, and by [bij ]

d
i,j=1 a matrix with coordinates bij , for

i, j = 1, . . . , d. For a real-valued function g : Rd → R, ∂x(i)g(x) denotes the partial derivative with respect to x(i) and
∂2
x(i)x(j)g(x) denotes the second partial derivative with respect to x(i) and x(j). The nabla operator ∇x denotes the

gradient vector of g with respect of x, that is, ∇xg(x) = [∂x(i)g(x)]di=1. H denotes the Hessian matrix of function g,
Hg(x) = [∂x(i)x(j)g(x)]di,j=1. For a vector-valued function F : Rd → Rd, the differential operator Dx denotes the
Jacobian matrix DxF(x) = [∂x(i)F (j)(x)]di,j=1. Let R represent a vector (or a matrix) valued function defined on
(0, 1)×Rd (or (0, 1)×Rd×d), such that, for some constant C, ∥R(a,x)∥ < aC(1+ ∥x∥)C for all a,x. When denoted
by R, it refers to a scalar function. For an open set A, the bar A indicates closure. We write P−→ for convergence in
probability P.

4
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2 Problem setup

Let Y = (Yt)t≥0 in (3) be defined on a complete probability space (Ω,F ,Pθ) with a complete right-continuous
filtration F = (Ft)t≥0, and let the d-dimensional Wiener process W = (Wt)t≥0 be adapted to Ft. The probability
measure Pθ is parameterized by the parameter θ = (β,Σ). Rewrite equation (3) as follows:

dYt = Ã(β)(Yt − b̃(β)) dt+ Ñ (Yt;β) dt+ Σ̃dWt, (5)

where

Ã(β) =

[
0d×d Id
Ax(β) Av(β)

]
, b̃(β) =

[
b(β)
0d

]
, Ñ(x,v;β) =

[
0d

N(x,v;β)

]
. (6)

Function F in (2) is thus split as F(x,v;β) = Ax(β)(x− b(β)) +Av(β)v +N(x,v;β).

Let Θβ ×ΘΣ = Θ denote the closure of the parameter space with Θβ and ΘΣ being two convex open bounded subsets
of Rr and Rd×d, respectively. The function N : R2d ×Θβ → Rd is assumed locally Lipschitz; functions Ax and Av

are defined on Θβ and take values in Rd×d; and the parameter matrix Σ takes values in Rd×d. The matrix ΣΣ⊤ is
assumed to be positive definite, shaping the variance of the rough coordinates. As any square root of ΣΣ⊤ induces
the same distribution, Σ is identifiable only up to equivalence classes. Hence, estimation of the parameter Σ means
estimation of ΣΣ⊤. The drift function F̃ in (3) is divided into a linear part given by the matrix Ã and a nonlinear part
given by Ñ.

The true value of the parameter is denoted by θ0 = (β0,Σ0), and we assume that θ0 ∈ Θ. When referring to the
true parameters, we write Ax,0, Av,0, b0, N0(x), F0(x) and ΣΣ⊤

0 instead of Ax(β0), Av(β0), b(β0), N(x;β0),
F(x;β0) and Σ0Σ

⊤
0 , respectively. We write Ax, Av, b, N(x), F(x), and ΣΣ⊤ for any parameter θ.

2.1 Example: The Kramers oscillator

The abrupt temperature changes during the ice ages, known as the Dansgaard–Oeschger (DO) events, are essential
elements for understanding the climate (Dansgaard et al., 1993). These events occurred during the last glacial era
spanning approximately the period from 115,000 to 12,000 years before present and are characterized by rapid
warming phases followed by gradual cooling periods, revealing colder (stadial) and warmer (interstadial) climate states
(Rasmussen et al., 2014).

To analyze the DO events in Section 5, we propose a stochastic model of the escape dynamics in metastable systems,
the Kramers oscillator (Kramers, 1940), originally formulated to model the escape rate of Brownian particles from
potential wells. The escape rate is related to the mean first passage time — the time needed for a particle to exceed the
potential’s local maximum for the first time, starting at a neighboring local minimum. This rate depends on variables
such as the damping coefficient, noise intensity, temperature, and specific potential features, including the barrier’s
height and curvature at the minima and maxima. We apply this framework to quantify the rate of climate transitions
between stadial and interstadial periods. This provides an estimate on the probability distribution of the ocurrence of
DO events, contributing to our understanding of the global climate system.

Following Arnold and Imkeller (2000), we introduce the Kramers oscillator as the stochastic Duffing oscillator - an
example of a second-order SDE and a stochastic damping Hamiltonian system. The Duffing oscillator (Duffing, 1918)
is a forced nonlinear oscillator, featuring a cubic stiffness term. The governing equation is given by:

ẍt + ηẋt +
d

dx
U(xt) = f(t), where U(x) = −a

x2

2
+ b

x4

4
, with a, b > 0, η ≥ 0. (7)

The parameter η in (7) indicates the damping level, a regulates the linear stiffness, and b determines the nonlinear
component of the restoring force. In the special case where b = 0, the equation simplifies to a damped harmonic
oscillator. Function f represents the driving force and is usually set to f(t) = η cos(ωt), which introduces deterministic
chaos (Korsch and Jodl, 1999).

When the driving force is f(t) =
√
2ηTξ(t), where ξ(t) is white noise, equation (7) characterizes the stochastic

movement of a particle within a bistable potential well, interpreting T > 0 as the temperature of a heat bath. Setting
σ =

√
2ηT, equation (7) can be reformulated as an Itô SDE for variables Xt and Vt = Ẋt, expressed as:

dXt = Vt dt,

dVt =

(
−ηVt −

d

dx
U(Xt)

)
dt+ σ dWt,

(8)
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where Wt denotes a standard Wiener process. The parameter set of SDE (8) is θ = {η, a, b, σ2}.

The existence and uniqueness of the invariant measure ν0(dx, dy) of (8) is proved in Theorem 3 in (Arnold and Imkeller,
2000). The invariant measure ν0 is linked to the invariant density π0 through ν0(dx, dy) = π0(x, v) dxdy. Here we
write π0(x, v) instead of π(x, v;θ0), and π(x, v) instead of π(x, v;θ). The Fokker-Plank equation for π is given by

−v
∂

∂x
π(x, v) + ηπ(x, v) + ηv

∂

∂v
π(x, v) +

d

dx
U(x)

∂

∂v
π(x, v) +

σ2

2

∂2

∂v2
π(x, v) = 0. (9)

The invariant density that solves the Fokker-Plank equation is:

π(x, v) = C exp

(
−2η

σ2
U(x)

)
exp

(
− η

σ2
v2
)
, (10)

where C is the normalizing constant.

The marginal invariant probability of Vt is thus Gaussian with zero mean and variance σ2/(2η). The marginal invariant
probability of Xt is bimodal driven by the potential U(x):

π(x) = C exp

(
−2η

σ2
U(x)

)
. (11)

At steady state, for a particle moving in any potential U(x) and driven by random Gaussian noise, the position x
and velocity v are independent of each other. This is reflected by the decomposition of the joint density π(x, v) into
π(x)π(v).

Fokker-Plank equation (9) can also be used to derive the mean first passage time τ which is inversely related to Kramers’
escape rate κ (Kramers, 1940):

τ =
1

κ
≈ 2π(√

1 + η2

4ω2 − η
2ω

)
Ω

exp

(
∆U

T

)
,

where xbarrier = 0 is the local maximum of U(x) and xwell = ±
√

a/b are the local minima, ω =
√
|U ′′(xbarrier)| =√

a, Ω =
√
U ′′(xwell) =

√
2a, and ∆U = U(xbarrier)− U(xwell) = a2/4b, . The formula is derived assuming strong

friction, or an over-damped system (η ≫ ω), and a small parameter T/∆U ≪ 1, indicating sufficiently deep potential
wells. For the potential defined in (7), the mean waiting time τ is then approximated by

τ ≈
√
2π√

a+ η2

4 − η
2

exp

(
a2η

2bσ2

)
. (12)

2.2 Hypoellipticity

The SDE (5) is said to be hypoelliptic if its quadratic diffusion matrix Σ̃Σ̃⊤ is not of full rank, while its solutions admit
a smooth transition density with respect to the Lebesgue measure. According to Hörmander’s theorem (Nualart, 2006),
this is fulfilled if the SDE in its Stratonovich form satisfies the weak Hörmander condition. Since Σ does not depend on
y, the Itô and Stratonovich forms coincide.

We begin by recalling the concept of Lie brackets: for smooth vector fields f , g : R2d → R2d, the i-th component of
the Lie bracket, [f , g](i), is defined as

[f , g](i) := D⊤
y g

(i)(y)f(y)−D⊤
y f

(i)(y)g(y).

We define the set H of vector fields by initially including Σ̃(i), i = 1, 2, ..., 2d, and then recursively adding Lie brackets

H ∈ H ⇒ [F̃, H], [Σ̃(1), H], . . . , [Σ̃(2d), H] ∈ H.

The weak Hörmander condition is met if the vectors in H span R2d at every point y ∈ R2d. The initial vectors span
{(0,v) ∈ R2d | v ∈ Rd}, a d-dimensional subspace. We therefore need to verify the existence of some H ∈ H with a
non-zero first element. The first iteration of the system yields

[F̃, Σ̃(i)](1) = −Σ(i),

[Σ̃(i), Σ̃(j)](1) = 0,

for i, j = 1, 2, ..., 2d. The first equation is non-zero, as are all subsequent iterations. Thus, the second-order SDE
defined in (5) is always hypoelliptic.

6
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2.3 Assumptions

The following assumptions are a generalization of those presented in (Pilipovic et al., 2024).

Let T > 0 be the length of the observed time interval. We assume that (5) has a unique strong solution Y = {Yt |
t ∈ [0, T ]}, adapted to F = {Ft | t ∈ [0, T ]}, which follows from the following first two assumptions (Theorem 2 in
Alyushina (1988), Theorem 1 in Krylov (1991), Theorem 3.5 in Mao (2007)). We need the last three assumptions to
prove the properties of the estimators.

(A1) Function N is twice continuously differentiable with respect to both y and θ, i.e., N ∈ C2. Moreover, it is
globally one-sided Lipschitz continuous with respect to y on R2d ×Θβ . That is, there exists a constant C > 0
such that for all y1,y2 ∈ R2d,

(y1 − y2)
⊤
(N(y1;β)−N(y2;β)) ≤ C∥y1 − y2∥2.

(A2) Function N exhibits at most polynomial growth in y, uniformly in θ. Specifically, there exist constants C > 0
and χ ≥ 1 such that for all y1,y2 ∈ R2d,

∥N (y1;β)−N (y2;β) ∥2 ≤ C
(
1 + ∥y1∥2χ−2 + ∥y2∥2χ−2

)
∥y1 − y2∥2.

Additionally, its derivatives exhibit polynomial growth in y, uniformly in θ.
(A3) The solution Y to SDE (5) has invariant probability ν0(dy).

(A4) ΣΣ⊤ is invertible on ΘΣ.
(A5) β is identifiable, that is, if F(y,β1) = F(y,β2) for all y ∈ R2d, then β1 = β2.

Assumption (A1) ensures finiteness of the moments of the solution X (Tretyakov and Zhang, 2013), i.e.,

E[ sup
t∈[0,T ]

∥Yt∥2p] < C(1 + ∥y0∥2p), ∀ p ≥ 1. (13)

Assumption (A3) is necessary for the ergodic theorem to ensure convergence in distribution. Assumption (A4) ensures
that the model (5) is hypoelliptic. Assumption (A5) ensures the identifiability of the drift parameter.

2.4 Strang splitting scheme

Consider the following splitting of (5):

dY
[1]
t = Ã(Y

[1]
t − b̃) dt+ Σ̃dWt, Y

[1]
0 = y0, (14)

dY
[2]
t = Ñ(Y

[2]
t ) dt, Y

[2]
0 = y0. (15)

There are no assumptions on the choice of Ã and b̃, and thus the nonlinear function Ñ. Indeed, we show that the
asymptotic results hold for any choice of Ã and b̃ in both the complete and the partial observation settings. This extends
the results in Pilipovic et al. (2024), where it is shown to hold in the elliptic complete observation case, as well. While
asymptotic results are invariant to the choice of Ã and b̃, finite sample properties of the scheme and the corresponding
estimators are very different, and it is important to choose the splitting wisely. Intuitively, when the process is close to a
fixed point of the drift, the linear dynamics are dominating, whereas far from the fixed points, the nonlinearities might
be dominating. If the drift has a fixed point y⋆, we therefore suggest setting Ã = DyF̃(y

⋆) and b̃ = y⋆. This choice is
confirmed in simulations (for more details see Pilipovic et al. (2024)).

Solution of SDE (14) is an Ornstein–Uhlenbeck (OU) process given by the following h-flow:

Y
[1]
tk

= Φ
[1]
h (Y

[1]
tk−1

) = µ̃h(Y
[1]
tk−1

;β) + ε̃h,k, (16)

µ̃h(y;β) := eÃh(y − b̃) + b̃, (17)

Ω̃h =

∫ h

0

eÃ(h−u)Σ̃Σ̃⊤eÃ
⊤(h−u) du, (18)

where ε̃h,k
i.i.d∼ N2d(0, Ω̃h) for k = 1, . . . , N . It is useful to rewrite Ω̃h in the following block matrix form,

Ω̃h =

[
Ω

[SS]
h Ω

[SR]
h

Ω
[RS]
h Ω

[RR]
h

]
, (19)
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where S in the superscript stands for smooth and R stands for rough. The Schur complement of Ω̃h with respect to
Ω

[RR]
h and the determinant of Ω̃h are given by:

Ω
[S|R]
h := Ω

[SS]
h −Ω

[SR]
h (Ω

[RR]
h )−1Ω

[RS]
h , det Ω̃h = detΩ

[RR]
h detΩ

[S|R]
h .

Assumptions (A1)-(A2) ensure the existence and uniqueness of the solution of (15) (Theorem 1.2.17 in Humphries and
Stuart (2002)). Thus, there exists a unique function f̃h : R2d ×Θβ → R2d, for h ≥ 0, such that

Y
[2]
tk

= Φ
[2]
h (Y

[2]
tk−1

) = f̃h(Y
[2]
tk−1

;β). (20)

For all β ∈ Θβ , the h-flow f̃h fulfills the following semi-group properties:

f̃0(y;β) = y, f̃t+s(y;β) = f̃t(f̃s(y;β);β), t, s ≥ 0.

For y = (x⊤,v⊤)⊤, we have:

f̃h(x,v;β) =

[
x

fh(x,v;β)

]
, (21)

where fh(x,v;β) is the solution of the ODE with vector field N(x,v;β).

We introduce another assumption needed to define the pseudo-likelihood based on the splitting scheme.

(A6) Inverse function f̃−1
h (y;β) is defined asymptotically for all y ∈ R2d and all β ∈ Θβ , when h → 0.

Then, the inverse of f̃h can be decomposed as:

f̃−1
h (x,v;β) =

[
x

f⋆−1
h (x,v;β)

]
, (22)

where f⋆−1
h (x,v;β) is the rough part of the inverse of f̃−1

h . It does not equal f−1
h since the inverse does not propagate

through coordinates when fh depends on x.

We are now ready to define the Strang splitting scheme for model (5).

Definition 2.1 (Strang splitting) Let Assumptions (A1)-(A2) hold. The Strang approximation of the solution of (5) is
given by:

Φ
[str]
h (Y

[str]
tk−1

) = (Φ
[2]
h/2 ◦ Φ

[1]
h ◦ Φ[2]

h/2)(Y
[str]
tk−1

) = f̃h/2(µ̃h(f̃h/2(Y
[str]
tk−1

)) + ε̃h,k). (23)

Remark 1 The order of composition in the splitting schemes is not unique. Changing the order in the Strang splitting
leads to a sum of 2 independent random variables, one Gaussian and one non-Gaussian, whose likelihood is not trivial.
Thus, we only use the splitting (23).

2.5 Strang splitting estimators

In this section, we introduce four estimators, all based on the Strang splitting scheme. We distinguish between estimators
based on complete observations (denoted by C when both X and V are observed) and partial observations (denoted
by P when only X is observed). In applications, we typically only have access to partial observations, however, the
full observation estimator is used as a building block for the partial observation case. Additionally, we distinguish the
estimators based on the type of likelihood function employed. These are the full likelihood (denoted by F) and the
marginal likelihood of the rough component (denoted by R). We furthermore use the conditional likelihood based on
the smooth component given the rough part (denoted by S | R) to decompose the full likelihood.

2.5.1 Complete observations

Assume we observe the complete sample Y0:tN := (Ytk)
N
k=1 from (5) at time steps 0 = t0 < t1 < ... < tN = T .

For notational simplicity, we assume equidistant step size h = tk − tk−1. Strang splitting scheme (23) is a nonlinear
transformation of a Gaussian random variable µ̃h(f̃h/2(Y

[str]
tk−1

)) + ε̃h,k. We define:

Z̃k,k−1(β) := f̃−1
h/2(Ytk ;β)− µ̃h(f̃h/2(Ytk−1

;β);β), (24)

8
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and apply change of variables to get:

p(ytk | ytk−1
) = pN (0,Ω̃h)

(z̃k,k−1 | ytk−1
)|detDyf̃

−1
h/2(ytk)|.

Using − log |detDyf̃
−1
h/2 (y;β) | = log |detDyf̃h/2 (y;β) | and detDyf̃h/2 (y;β) = detDvfh/2 (y;β), together

with the Markov property of Y0:tN , we get the following objective function based on the full log-likelihood:

L[CF](Y0:tN ;θ) :=

N∑
k=1

(
log det Ω̃h(θ) + Z̃k,k−1(β)

⊤Ω̃h(θ)
−1Z̃k,k−1(β) + 2 log |detDvfh/2(Ytk ;β)|

)
. (25)

Now, split Z̃k,k−1 from (24) into the smooth and rough parts Z̃k,k−1 = ((Z
[S]
k,k−1)

⊤, (Z
[R]
k,k−1)

⊤)⊤ defined as:

Z
[S]
k,k−1(β) := [Z̃

(i)
k,k−1(β)]

d
i=1 = Xtk − µ

[S]
h (f̃h/2(Ytk−1

;β);β), (26)

Z
[R]
k,k−1(β) := [Z̃

(i)
k,k−1(β)]

2d
i=d+1 = f⋆−1

h/2 (Ytk ;β)− µ
[R]
h (f̃h/2(Ytk−1

;β);β), (27)

where
µ

[S]
h (y;β) := [µ̃

(i)
h (y;β)]di=1, µ

[R]
h (y;β) := [µ̃

(i)
h (y;β)]2di=d+1. (28)

We also define the following sequence of vectors

Z
[S|R]
k,k−1(β) := Z

[S]
k,k−1(β)−Ω

[SR]
h (Ω

[RR]
h )−1Z

[R]
k,k−1(β). (29)

The formula for jointly normal distributions yields:

pN (0,Ω̃h)
(z̃k,k−1 | ytk−1

) = pN (0,Ω
[RR]
h )

(z
[R]
k,k−1 | ytk−1

)

· pN (Ω
[SR]
h (Ω

[RR]
h )−1z

[R]
k,k−1,Ω

[S|R]
h )

(z
[S]
k,k−1 | z[R]

k,k−1,ytk−1
).

This leads to dividing the full log-likelihood L[CF] into a sum of the marginal log-likelihood L[CR](Y0:tN ;θ) and the
smooth-given-rough log-likelihood L[CS|R](Y0:tN ;θ):

L[CF](Y0:tN ;θ) = L[CR](Y0:tN ;θ) + L[CS|R](Y0:tN ;θ),

where

L[CR] (Y0:tN ;θ) :=

N∑
k=1

(
log detΩ

[RR]
h (θ) + Z

[R]
k,k−1 (β)

⊤
Ω

[RR]
h (θ)−1Z

[R]
k,k−1 (β)

+ 2 log
∣∣detDvfh/2 (Ytk ;β)

∣∣), (30)

L[CS|R] (Y0:tN ;θ) :=

N∑
k=1

(
log detΩ

[S|R]
h (θ) + Z

[S|R]
k,k−1(β)

⊤Ω
[S|R]
h (θ)−1Z

[S|R]
k,k−1(β)

)
. (31)

The terms containing the drift parameter in L[CR] in (30) are of order h1/2, as in the elliptic case, whereas the terms
containing the drift parameter in L[CS|R] in (31) are of order h3/2. Consequently, under a rapidly increasing experimental
design where Nh → ∞ and Nh2 → 0, the objective function (31) is degenerate for estimating the drift parameter.
However, it contributes to the estimation of the diffusion parameter when the full objective function (25) is used. We
show in later sections that employing (25) results in a lower asymptotic variance for the diffusion parameter making it
more efficient in complete observation scenarios.

The estimators based on complete observations are then defined as:

θ̂
[obj]
N := argmin

θ
L[obj] (Y0:tN ;θ) , obj ∈ {[CF], [CR]}. (32)

Although the full objective function is based on twice as many equations as the marginal likelihood, its implementation
complexity, speed, and memory requirements are similar to the marginal objective function. Therefore, if the complete
observations are available, we recommend using the objective function (25) based on the full likelihood.

9
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2.5.2 Partial observations

Assume we only observe the smooth coordinates X0:tN := (Xtk)
N
k=0. The observed process Xt alone is not a Markov

process, although the complete process Yt is. To approximate Vtk , we define the backward difference process:

∆hXtk :=
Xtk −Xtk−1

h
. (33)

From SDE (2) it follows that

∆hXtk =
1

h

∫ tk

tk−1

Vt dt. (34)

We propose to approximate Vtk using ∆hXtk by any of the three approaches:

1. Backward difference approximation: Vtk ≈ ∆hXtk ;

2. Forward difference approximation: Vtk ≈ ∆hXtk+1
;

3. Central difference approximation: Vtk ≈ ∆hXtk
+∆hXtk+1

2 .

The forward difference approximation performs best in our simulation study, which is also the approximation method
employed in Gloter (2006) and Samson and Thieullen (2012).

In the field of numerical approximations of ODEs, backward and forward finite differences have the same order of
convergence, whereas the central difference has a higher convergence rate. However, the diffusion parameter estimator
based on the central difference (Xtk+1

−Xtk−1
)/2h is less suitable because this approximation skips a data point and

thus increases the estimator’s variance. For further discussion, see Remark 6.

Thus, we focus exclusively on forward differences, following Gloter (2006); Samson and Thieullen (2012), and all
proofs are done for this approximation. Similar results also hold for the backward difference, with some adjustments
needed in the conditional moments due to filtration issues.

We start by approximating Z̃ for the case of partial observations denoted by Z̃:

Z̃k+1,k,k−1(β) := f̃−1
h/2(Xtk ,∆hXtk+1

;β)− µ̃h(f̃h/2(Xtk−1
,∆hXtk ;β);β). (35)

The smooth and rough parts of Z̃ are thus equal to:

Z
[S]

k,k−1(β) := Xtk − µ
[S]
h (f̃h/2(Xtk−1

,∆hXtk ;β);β), (36)

Z
[R]

k+1,k,k−1(β) := f⋆−1
h/2 (Xtk ,∆hXtk+1

;β)− µ
[R]
h (f̃h/2(Xtk−1

,∆hXtk ;β);β), (37)

and
Z

[S|R]

k+1,k,k−1(β) := Z
[S]

k,k−1(β)−Ω
[SR]
h (Ω

[RR]
h )−1Z

[R]

k+1,k,k−1(β). (38)

Compared to Z
[R]
k,k−1 in (27), Z

[R]

k+1,k,k−1 in (37) depends on three consecutive data points, with the additional point

Xtk+1
entering through ∆hXtk+1

. Furthermore, Xtk enters both f⋆−1
h/2 and µ̃

[R]
h , rending them coupled. This coupling

has a significant influence on later derivations of the estimator’s asymptotic properties, in contrast to the elliptic case
where the derivations simplify.

While it might seem straightforward to incorporate Z̃, Z
[S]

k,k−1 and Z
[R]

k,k−1 into the objective functions (25), (30) and
(31), it introduces bias in the estimators of the diffusion parameters, as also discussed in (Gloter, 2006; Samson and
Thieullen, 2012). The bias arises because Xtk enters in both f⋆−1

h/2 and µ̃
[R]
h , and the covariances of Z̃, Z

[S]

k,k−1, and

Z
[R]

k,k−1 differ from their complete observation counterparts. To eliminate this bias, Gloter (2006); Samson and Thieullen
(2012) applied a correction of 2/3 multiplied to log det of the covariance term in the objective functions, which is
log detΣΣ⊤ in the Euler-Maruyama discretization. We also need appropriate corrections to our objective functions
(25), (30) and (31), however, caution is necessary because log det Ω̃h(θ) depends on both drift and diffusion parameters.
To counterbalance this, we also incorporate an adjustment to h in Ωh. Moreover, we add the term 4 log |detDvfh/2|
to objective function (31) to obtain consistency of the drift estimator under partial observations. The detailed derivation
of these correction factors will be elaborated in the following sections.
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We thus propose the following objective functions:

L[PF](X0:tN ;θ) :=
4

3
(N − 2) log det Ω̃3h/4(θ) (39)

+

N−1∑
k=1

(
Z̃k+1,k,k−1(β)

⊤Ω̃h(θ)
−1Z̃k+1,k,k−1(β) + 6 log |detDvfh/2(Xtk ,∆hXtk+1

;β)|
)
,

L[PR] (X0:tN ;θ) :=
2

3
(N − 2) log detΩ

[RR]
3h/2(θ) (40)

+

N−1∑
k=1

(
Z

[R]

k+1,k,k−1 (β)
⊤
Ω

[RR]
h (θ)−1Z

[R]

k+1,k,k−1 (β) + 2 log
∣∣detDvfh/2

(
Xtk ,∆hXtk+1

;β
)∣∣) ,

L[PS|R] (X0:tN ;θ) := 2(N − 2) log detΩ
[S|R]
h (θ) (41)

+

N−1∑
k=1

(
Z

[S|R]

k+1,k,k−1(β)
⊤Ω

[S|R]
h (θ)−1Z

[S|R]

k+1,k,k−1(β) + 4 log |detDvfh/2(Xtk ,∆hXtk+1
;β)|

)
. (42)

Remark 2 Due to the correction factors in the objective functions, we now have that

L[PF](X0:tN ;θ) ̸= L[PR](X0:tN ;θ) + L[PS|R](X0:tN ;θ). (43)

However, when expanding the objective functions (39)-(41) using Taylor series to the lowest necessary order in h, their
approximations will satisfy equality in (43), as shown in Section 6.

Remark 3 Adding the extra term 4 log |detDvfh/2| in (41) is necessary to keep the consistency of the drift parameter.
However, this term is not initially present in objective function (31), making this correction somehow artificial. This can
potentially make the objective function further from the true log-likelihood.

The estimators based on the partial sample are then defined as:

θ̂
[obj]
N := argmin

θ
L[obj] (X0:tN ;θ) , obj ∈ {[PF], [PR]}. (44)

In the partial observation case, the asymptotic variances of the diffusion estimators are identical whether using (39) or
(40), in contrast to the complete observation scenario. This variance is shown to be 9/4 times higher than the variance
of the estimator θ̂[CF]

N , and 9/8 times higher than that of the estimator based on the marginal likelihood θ̂
[CR]
N .

The numerical study in Section 4 shows that the estimator based on the marginal objective function (40) is less biased
than the one based on the full objective function (39) in finite sample scenarios with partial observations. A potential
reason for this is discussed in Remark 3. Therefore, we recommend using the objective function (40) for partial
observations.

3 Main results

This section states the two main results – consistency and asymptotic normality of all four proposed estimators. The key
ideas for proofs are presented in Supplementary Materials S1.

First, we state the consistency of the estimators in both complete and partial observation cases. Let L[obj]
N be one of the

objective functions (25), (30), (39) or (40) and θ̂
[obj]
N the corresponding estimator. Thus,

obj ∈ {[CF], [CR], [PF], [PR]}.

We use superscript [C·] to refer to any objective function in the complete observation case. Likewise, [·R] stands for an
objective function based on the rough marginal likelihood either in the complete or the partial observation case.

Theorem 3.1 (Consistency of the estimators) Assume (A1)-(A6), h → 0, and Nh → ∞. Then under the complete
observation or partial observation case, it holds:

β̂
[obj]
N

Pθ0−−→ β0, Σ̂Σ
[obj]

N

Pθ0−−→ ΣΣ⊤
0 .
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Remark 4 We split the full objective function (25) into the sum of the rough marginal likelihood (30) and the conditional
smooth-given-rough likelihood (31). Even if (31) cannot identify the drift parameter β, it is an important intermediate
step in understanding the full objective function (25). This can be seen in the proof of Theorem 3.1, where we
first establish consistency of the diffusion estimator with a convergence rate of

√
N , which is faster than

√
Nh, the

convergence rate of the drift estimators. Then, under complete observations, we show that

1

Nh
(L[CR]

N (β,σ0)− L[CR]
N (β0,σ0))

Pθ0−−−−−→
Nh→∞
h→0

∫
(F0(y)− F(y))⊤(ΣΣ⊤)−1(F0(y)− F(y)) dν0(y). (45)

The right-hand side of (45) is non-negative, with a unique zero for F = F0. Conversely, for objective function (31), it
holds:

1

Nh
(L[CS|R]

N (β,σ)− L[CS|R]
N (β0,σ))

Pθ0−−−−−→
Nh→∞
h→0

0. (46)

Hence, (46) does not have a unique minimum, making the drift parameter unidentifiable. Similar conclusions are drawn
in the partial observation case.

Now, we state the asymptotic normality of the estimator. First, we need some preliminaries. Let ρ > 0 and Bρ (θ0) =
{θ ∈ Θ | ∥θ − θ0∥ ≤ ρ} be a ball around θ0. Since θ0 ∈ Θ, for sufficiently small ρ > 0, Bρ(θ0) ∈ Θ. For
θ̂
[obj]
N ∈ Bρ (θ0), the mean value theorem yields:(∫ 1

0

HL[obj]
N

(θ0 + t(θ̂
[obj]
N − θ0)) dt

)
(θ̂

[obj]
N − θ0) = −∇θL[obj]

N (θ0) . (47)

Define:

C
[obj]
N (θ) :=


[

1
Nh∂

2
β(i1)β(i2)L

[obj]
N (θ)

]r
i1,i2=1

[
1

N
√
h
∂2
β(i)σ(j)L

[obj]
N (θ)

]r,s
i=1,j=1[

1
N

√
h
∂2
σ(j)β(i)L

[obj]
N (θ)

]r,s
i=1,j=1

[
1
N ∂2

σ(j1)σ(j2)L
[obj]
N (θ)

]s
j1,j2=1

 , (48)

s
[obj]
N :=

[√
Nh(β̂

[obj]
N − β0)

√
N(σ̂

[obj]
N − σ0)

]
, λ

[obj]
N :=

−
1√
Nh

∇βL[obj]
N (θ0)

− 1√
N

∇σL[obj]
N (θ0)

 , (49)

and D
[obj]
N :=

∫ 1

0
C

[obj]
N (θ0 + t(θ̂

[obj]
N − θ0)) dt. Then, (47) is equivalent to D

[obj]
N s

[obj]
N = λ

[obj]
N . Let:

[Cβ(θ0)]i1,i2 :=

∫
(∂β(i1)F0(y))

⊤(ΣΣ⊤
0 )

−1(∂β(i2)F0(y)) dν0(y), 1 ≤ i1, i2 ≤ r, (50)

[Cσ(θ0)]j1,j2 := Tr((∂σ(j1)ΣΣ⊤
0 )(ΣΣ⊤

0 )
−1(∂σ(j2)ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1), 1 ≤ j1, j2 ≤ s. (51)

Theorem 3.2 Let assumptions (A1)-(A6) hold, and let h → 0, Nh → ∞, and Nh2 → 0. Then under complete
observations, it holds: [√

Nh(β̂
[CR]
N − β0)√

N(σ̂
[CR]
N − σ0)

]
d−→ N

(
0,

[
Cβ(θ0)

−1 0r×s

0s×r 2Cσ(θ0)
−1

])
,[√

Nh(β̂
[CF]
N − β0)√

N(σ̂
[CF]
N − σ0)

]
d−→ N

(
0,

[
Cβ(θ0)

−1 0r×s

0s×r Cσ(θ0)
−1

])
,

under Pθ0
. If only partial observations are available and the unobserved coordinates are approximated using the

forward or backward differences, then[√
Nh(β̂

[PR]
N − β0)√

N(σ̂
[PR]
N − σ0)

]
d−→ N

(
0,

[
Cβ(θ0)

−1 0r×s

0s×r
9
4Cσ(θ0)

−1

])
,[√

Nh(β̂
[PF]
N − β0)√

N(σ̂
[PF]
N − σ0)

]
d−→ N

(
0,

[
Cβ(θ0)

−1 0r×s

0s×r
9
4Cσ(θ0)

−1

])
,

under Pθ0
.
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Here, we only outline the proof. According to Theorem 1 in Kessler (1997) or Theorem 1 in Sørensen and Uchida
(2003), Lemmas 3.3 and 3.4 below are enough for establishing asymptotic normality of θ̂N . For more details, see proof
of Theorem 1 in Sørensen and Uchida (2003).

Lemma 3.3 Let CN (θ0) be defined in (48). For h → 0 and Nh → ∞, it holds:

C
[CR]
N (θ0)

Pθ0−−→
[
2Cβ(θ0) 0r×s

0s×r Cσ(θ0)

]
, C

[PR]
N (θ0)

Pθ0−−→
[
2Cβ(θ0) 0r×s

0s×r
2
3Cσ(θ0)

]
,

C
[CF]
N (θ0)

Pθ0−−→
[
2Cβ(θ0) 0r×s

0s×r 2Cσ(θ0)

]
, C

[PF]
N (θ0)

Pθ0−−→
[
2Cβ(θ0) 0r×s

0s×r
8
3Cσ(θ0)

]
.

Moreover, let ρN be a sequence such that ρN → 0, then in all cases it holds:

sup
∥θ∥≤ρN

∥C[obj]
N (θ0 + θ)−C

[obj]
N (θ0)∥

Pθ0−−→ 0.

Lemma 3.4 Let λN be defined (49). For h → 0, Nh → ∞ and Nh2 → 0, it holds:

λ
[CR]
N

d−→ N
(
0,

[
4Cβ(θ0) 0r×s

0s×r 2Cσ(θ0)

])
, λ

[PR]
N

d−→ N
(
0,

[
4Cβ(θ0) 0r×s

0s×r Cσ(θ0)

])
,

λ
[CF]
N

d−→ N
(
0,

[
4Cβ(θ0) 0r×s

0s×r 4Cσ(θ0)

])
, λ

[PF]
N

d−→ N
(
0,

[
4Cβ(θ0) 0r×s

0s×r 16Cσ(θ0)

])
,

under Pθ0
.

Now, the two previous lemmas suggest

s
[obj]
N = (D[obj]

n )−1λ
[obj]
N

d−→ C
[obj]
N (θ0)

−1λ
[obj]
N .

The previous line is not completely formal, but it gives the intuition. For more details on formally deriving the result,
see Section 7.4 in Pilipovic et al. (2024) or proof of Theorem 1 in Sørensen and Uchida (2003).

4 Simulation study

This Section illustrates the simulation study of the Kramers oscillator (8), demonstrating the theoretical aspects and
comparing our proposed estimators against estimators based on the EM and LL approximations. We chose to compare
our proposed estimators to these two, because the EM estimator is routinely used in applications, and the LL estimator
has shown to be one of the best state-of-the-art methods, see Pilipovic et al. (2024) for the elliptic case. The true
parameters are set to η0 = 6.5, a0 = 1, b0 = 0.6 and σ2

0 = 0.1. We outline the estimators specifically designed for the
Kramers oscillator, explain the simulation procedure, describe the optimization implemented in the R programming
language R Core Team (2022), and then present and interpret the results.

4.1 Estimators used in the study

For the Kramers oscillator (8), the EM transition distribution is:[
Xtk
Vtk

]
|
[
Xtk−1

Vtk−1

]
=

[
x
v

]
∼ N

([
x+ hv

v + h
(
−ηv + ax− bx3

)] , [0 0
0 hσ2

])
.

The ill-conditioned variance of this discretization restricts us to an estimator that only uses the marginal likelihood of
the rough coordinate. The estimator for complete observations directly follows from the Gaussian distribution. The
estimator for partial observations is defined as (Samson and Thieullen, 2012):

θ̂
[PR]
EM = argmin

θ

{
2

3
(N − 3) log σ2 +

1

hσ2

N−2∑
k=1

(∆hXtk+1
−∆hXtk − h(−η∆hXtk−1

+ aXtk−1
− bX3

tk−1
))2

}
.

To our knowledge, the LL estimator has not previously been applied to partial observations. Given the similar theoretical
and computational performance of the Strang and LL discretizations, we suggest (without formal proof) to adjust the LL
objective functions with the same correction factors as used in the Strang approach. The numerical evidence indicates
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that the LL estimator has the same asymptotic properties as those proved for the Strang estimator. We omit the definition
of the LL estimator due to its complexity (see Melnykova (2020); Pilipovic et al. (2024) and accompanying code).

To define S estimators based on the Strang splitting scheme, we first split SDE (8) as follows:

d

[
Xt

Vt

]
=

[
0 1

−2a −η

]
︸ ︷︷ ︸

A

([
Xt

Vt

]
−
[
x⋆
±
0

]
︸ ︷︷ ︸

b

)
dt+

[
0

aXt − bX3
t + 2a(Xt − x⋆

±)

]
︸ ︷︷ ︸

N(Xt,Vt)

dt+

[
0
σ

]
dWt,

where x⋆
± = ±

√
a/b are the two stable points of the dynamics. Since there are two stable points, we suggest splitting

with x⋆
+, when Xt > 0, and x⋆

−, when Xt < 0. This splitting follows the guidelines from (Pilipovic et al., 2024). Note
that the nonlinear ODE driven by N(x, v) has a trivial solution where x is a constant. To obtain Strang estimators, we
plug in the corresponding components in the objective functions (25), (30), (39) and (40).

4.2 Trajectory simulation

We simulate a sample path using the EM discretization with a step size of hsim = 0.0001 to ensure good performance.
To reduce discretization errors, we sub-sample from the path at wider intervals to get time step h = 0.1. The path has
N = 5000 data points. We repeat the simulations to obtain 250 data sets.

4.3 Optimization in R

For optimizing the objective functions, we proceed as in Pilipovic et al. (2024) using the R package torch (Falbel
and Luraschi, 2022), which allows automatic differentiation. The optimization employs the resilient backpropagation
algorithm, optim_rprop. We use the default hyperparameters and limit the number of optimization iterations to 2000.
The convergence criterion is set to a precision of 10−5 for the difference between estimators in consecutive iterations.
The initial parameter values are set to (−0.1,−0.1, 0.1, 0.1).

4.4 Results

The results of the simulation study are presented in Figure 1. Figure 1A) presents the distributions of the normalized
estimators in the complete and partial observation cases. The S and LL estimators exhibit nearly identical performance,
particularly in the complete observation scenario. In contrast, the EM method displays significant underperformance
and notable bias. The variances of the S and LL rough-likelihood estimators of σ2 are higher compared to those derived
from the full likelihood, aligning with theoretical expectations. Interestingly, in the partial observation scenario, Figure
1A) reveals that estimators employing the full likelihood display greater finite sample bias compared to those based on
the rough likelihood. Possible reasons for this bias are discussed in Remark 3. However, it is noteworthy that this bias is
eliminated for smaller time steps, e.g. h = 0.0001 (not shown), thus confirming the theoretical asymptotic results. This
observation suggests that the rough likelihood is preferable under partial observations due to its lower bias. Backward
finite difference approximations of the velocity variables perform similarly to the forward differences and are therefore
excluded from the figure for clarity.

We closely examine the variances of the S estimators of σ2 in Figure 1B). The LL estimators are omitted due to their
similarity to the S estimators, and because the computation times for the LL estimators are prohibitive. To align more
closely with the asymptotic predictions, we opt for h = 0.02 and conduct 1000 simulations. Additionally, we set
σ2
0 = 100 to test different noise levels. Atop each empirical distribution, we overlay theoretical normal densities that

match the variances as per Theorem 3.2. The theoretical variance is derived from Cσ2(θ0) in (51), which for the
Kramers oscillator in (8) is:

Cσ2(θ0) =
1

σ4
0

. (52)

Figure 1 illustrates that the lowest variance of the diffusion estimator is observed when using the full likelihood with
complete observations. The second lowest variance is achieved using the rough likelihood with complete observations.
The largest variance is observed in the partial observation case; however, it remains independent of whether the full or
rough likelihood is used. Once again, we observe that using the full likelihood introduces additional finite sample bias.

In Figure 1C), we compare running times calculated using the tictoc package in R. Running times are measured from
the start of the optimization step until convergence. The figure depicts the median over 250 repetitions to mitigate the
influence of outliers. The EM method is notably the fastest; however, the S estimators exhibit only slightly slower
performance. The LL estimators are 10-100 times slower than the S estimators, depending on whether complete or
partial observations are used and whether the full or rough likelihood is employed.
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Figure 1: Parameter estimates in a simulation study for the Kramers oscillator, eq. (8). The color code remains
consistent across all three figures. A) Normalized distributions of parameter estimation errors (θ̂N − θ0)⊘ θ0 in both
complete and partial observation cases, based on 250 simulated data sets with h = 0.1 and N = 5000. Each column
corresponds to a different parameter, while the color indicates the type of estimator. Estimators are distinguished
by superscripted objective functions (F for full and R for rough). B) Distribution of σ̂2

N estimators based on 1000
simulations with h = 0.02 and N = 5000 across different observation settings (complete or partial) and likelihood
choices (full or rough) using the Strang splitting scheme. The true value of σ2 is set to σ2

0 = 100. Theoretical normal
densities are overlaid for comparison. Theoretical variances are calculated based on Cσ2(θ0), eq. (52). C) Median
computing time in seconds for one estimation of various estimators based on 250 simulations with h = 0.1 and
N = 5000. Shaded color patterns represent times in the partial observation case, while no color pattern indicates times
in the complete observation case.
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Figure 2: Ice core data from Greenland. Left: Trajectories over time (in kilo years) of the centered negative logarithm
of the Ca2+ measurements (top) and forward difference approximations of its rate of change (bottom). The two vertical
dark red lines represent the estimated stable equilibria of the double-well potential function. Green points denote up-
and down-crossings of level ±0.6, conditioned on having crossed the other level. Green vertical lines indicate empirical
estimates of occupancy in either of the two metastable states. Right: Empirical densities (black) alongside estimated
invariant densities with confidence intervals (dark red), prediction intervals (light red), and the empirical density of a
simulated sample from the estimated model (blue).

5 Application to Greenland Ice Core Data

During the last glacial period, significant climatic shifts known as Dansgaard-Oeschger (DO) events have been
documented in paleoclimatic records (Dansgaard et al., 1993). Proxy data from Greenland ice cores, particularly stable
water isotope composition (δ18O) and calcium ion concentrations (Ca2+), offer valuable insights into these past climate
variations (Boers et al., 2017, 2018; Boers, 2018; Ditlevsen et al., 2002; Lohmann and Ditlevsen, 2019; Hassanibesheli
et al., 2020).

The δ18O ratio, reflecting the relative abundance of 18O and 16O isotopes in ice, serves as a proxy for paleotemperatures
during snow deposition. Conversely, calcium ions, originating from dust deposition, exhibit a strong negative correlation
with δ18O, with higher calcium ion levels indicating colder conditions. Here, we prioritize Ca2+ time series due to its
finer temporal resolution.

In Greenland ice core records, the DO events manifest as abrupt transitions from colder climates (stadials) to approx-
imately 10 degrees warmer climates (interstadials) within a few decades. Although the waiting times between state
switches last a couple of thousand years, their spacing exhibits significant variability. The underlying mechanisms
driving these changes remain largely elusive, prompting discussions on whether they follow cyclic patterns, result from
external forcing, or emerge from noise-induced processes (Boers, 2018; Ditlevsen et al., 2007). We aim to determine if
the observed data can be explained by noise-induced transitions of the Kramers oscillator.

The measurements were conducted at the summit of the Greenland ice sheet as part of the Greenland Icecore Project
(GRIP) (Anklin et al., 1993; Andersen et al., 2004). Originally, the data were sampled at 5 cm intervals, resulting in a
non-equidistant time series due to ice compression at greater depths, where 5 cm of ice core spans longer time periods.
For our analysis, we use a version of the data transformed into a uniformly spaced series through 20-year binning and
averaging. This transformation simplifies the analysis and highlights significant climatic trends. The dataset is available
in the supplementary material of (Rasmussen et al., 2014; Seierstad et al., 2014).
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To address the large amplitudes and negative correlation with temperature, we transform the data to minus the logarithm
of Ca2+, where higher values of the transformed variable indicate warmer climates at the time of snow deposition.
Additionally, we center the transformed measurements around zero. With the 20-year binning, to obtain one point
per 20 years, we average across the bins, resulting in a time step of h = 0.02kyr (1kyr = 1000 years). Additionally,
we addressed a few missing values using the na.approx function from the zoo package. Following the approach of
Hassanibesheli et al. (2020), we analyze a subset of the data with a sufficiently good signal-to-noise ratio. Hassanibesheli
et al. (2020) examined the data from 30 to 60kyr before present. Here, we extend the analysis to cover 30kyr to
80kyr, resulting in a time interval of T = 50kyr and a sample size of N = 2500. We approximate the velocity of
the transformed Ca2+ by the forward difference method. The trajectories and empirical invariant distributions are
illustrated in Figure 2.

We fit the Kramers oscillator to the − logCa2+ time series and estimate parameters using the Strang estimator. Following
Theorem 3.2, we compute Cβ(θ0) from (50). Applying the invariant density π0(x, v) from (10), which decouples into
π0(x) (11) and a Gaussian zero-mean and σ2

0/(2η0) variance, leads us to:

Cβ(θ0) =


1

2η0
0 0

0 1
σ2
0

∫∞
−∞ x2π0(x) dx − 1

σ2
0

∫∞
−∞ x4π0(x) dx

0 − 1
σ2
0

∫∞
−∞ x4π0(x) dx

1
σ2
0

∫∞
−∞ x6π0(x) dx

 . (53)

Thus, to obtain 95% confidence intervals (CI) for the estimated parameters, we plug θ̂N into (52) and (53). The
estimators and confidence intervals are shown in Table 1. We also calculate the expected waiting time τ , eq. (12), of
crossing from one state to another, and its confidence interval using the Delta Method.

Parameter Estimate 95% CI
η 62.5 59.4− 65.6
a 296.7 293.6− 299.8
b 219.1 156.4− 281.7
σ2 9125 8589− 9662
τ 3.97 3.00− 4.94

Table 1: Estimated parameters of the Kramers oscillator from Greenland ice core data.

The model fit is assessed in the right panels of Figure 2. Here, we present the empirical distributions of the two
coordinates along with the fitted theoretical invariant distribution and a 95% confidence interval. Additionally, a
prediction interval for the distribution is provided by simulating 1000 datasets from the fitted model, matching the size
of the empirical data. We estimate the empirical distributions for each simulated dataset and construct a 95% prediction
interval using the pointwise 2.5th and 97.5th percentiles of these estimates. A single example trace is included in blue.
While the fitted distribution for − logCa2+ appears to fit well, even with this symmetric model, the velocity variables
are not adequately captured. This discrepancy is likely due to the presence of extreme values in the data that are not
effectively accounted for by additive Gaussian noise. Consequently, the model compensates by estimating a large
variance.

We estimate the waiting time between metastable states to be approximately 4000 years. However, this approximation
relies on certain assumptions, namely 62.5 ≈ η ≫

√
a ≈ 17.2 and 73 ≈ σ2/2η ≪ a2/4b ≈ 100. Thus, the accuracy

of the approximation may not be highly accurate.

Defining the current state of the process is not straightforward. One method involves identifying successive up- and
down-crossings of predefined thresholds within the smoothed data. However, the estimated occupancy time in each
state depends on the level of smoothing applied and the distance of crossing thresholds from zero. Using a smoothing
technique involving running averages within windows of 11 data points (equivalent to 220 years) and detecting down-
and up-crossings of levels ±0.6, we find an average occupancy time of 4058 years in stadial states and 3550 years in
interstadial states. Nevertheless, the actual occupancy times exhibit significant variability, ranging from 60 to 6900
years, with the central 50% of values falling between 665 and 2115 years. This classification of states is depicted in
green in Figure 2. Overall, the estimated mean occupancy time inferred from the Kramers oscillator appears reasonable.

6 Technical results

In this Section, we present all the necessary technical properties that are used to derive the main results of the paper.
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We start by expanding Ω̃h and its block components Ω[RR]
h (θ)−1,Ω

[S|R]
h (θ)−1, log detΩ[RR]

h (θ), log detΩ
[S|R]
h (θ)

and log |detDfh/2 (y;β) | when h goes to zero. Then, we expand Z̃k,k−1(β) and Z̃k+1,k,k−1(β) around Ytk−1
when

h goes to zero. The main tools used are Itô’s lemma, Taylor expansions, and Fubini’s theorem. The final result is
stated in Propositions 6.6 and 6.7. The approximations depend on the drift function F, the nonlinear part N, and some
correlated sequences of Gaussian random variables. Finally, we obtain approximations of the objective functions (25),
(30), (31) and (39) - (41). Proofs of all the stated propositions and lemmas in this section are in Supplementary Material
S1.

6.1 Covariance matrix Ω̃h

The covariance matrix Ω̃h is approximated by:

Ω̃h =

∫ h

0

eÃ(h−u)Σ̃Σ̃⊤eÃ
⊤(h−u) du

= hΣ̃Σ̃⊤ +
h2

2
(ÃΣ̃Σ̃⊤ + Σ̃Σ̃⊤Ã⊤) +

h3

6
(Ã2Σ̃Σ̃⊤ + 2ÃΣ̃Σ̃⊤Ã⊤ + Σ̃Σ̃⊤(Ã2)⊤)

+
h4

24
(Ã3Σ̃Σ̃⊤ + 3Ã2Σ̃Σ̃⊤Ã⊤ + 3ÃΣ̃Σ̃⊤(Ã2)⊤ + Σ̃Σ̃⊤(Ã3)⊤) +R(h5,y0). (54)

The following lemma approximates each block of Ω̃h up to the first two leading orders of h. The result follows directly
from equations (4), (6), and (54).

Lemma 6.1 The covariance matrix Ω̃h defined in (54)-(19) approximates block-wise as:

Ω
[SS]
h (θ) =

h3

3
ΣΣ⊤ +

h4

8
(Av(β)ΣΣ⊤ +ΣΣ⊤Av(β)

⊤) +R(h5,y0),

Ω
[SR]
h (θ) =

h2

2
ΣΣ⊤ +

h3

6
(Av(β)ΣΣ⊤ + 2ΣΣ⊤Av(β)

⊤) +R(h4,y0),

Ω
[RS]
h (θ) =

h2

2
ΣΣ⊤ +

h3

6
(2Av(β)ΣΣ⊤ +ΣΣ⊤Av(β)

⊤) +R(h4,y0),

Ω
[RR]
h (θ) = hΣΣ⊤ +

h2

2
(Av(β)ΣΣ⊤ +ΣΣ⊤Av(β)

⊤) +R(h3,y0).

Building on Lemma 6.1, we calculate products, inverses, and logarithms of the components of Ω̃h in the following
lemma.

Lemma 6.2 For the covariance matrix Ω̃h defined in (54) it holds:

(i) Ω
[RR]
h (θ)−1 = 1

h (ΣΣ⊤)−1 − 1
2 ((ΣΣ⊤)−1Av(β) +Av(β)

⊤(ΣΣ⊤)−1) +R(h,y0);

(ii) Ω
[SR]
h (θ)Ω

[RR]
h (θ)−1 = h

2 I−
h2

12 (Av −ΣΣ⊤Av(β)
⊤(ΣΣ⊤)−1) +R(h3,y0);

(iii) Ω
[SR]
h (θ)Ω

[RR]
h (θ)−1Ω

[RS]
h (θ) = h3

4 ΣΣ⊤ + h4

8 (Av(β)ΣΣ⊤ +ΣΣ⊤Av(β)
⊤) +R(h5,y0);

(iv) Ω
[S|R]
h (θ) = h3

12ΣΣ⊤ +R(h5,y0);

(v) log detΩ
[RR]
h (θ) = d log h+ log detΣΣ⊤ + hTrAv(β) +R(h2,y0);

(vi) log detΩ
[S|R]
h (θ) = 3d log h+ log detΣΣ⊤ +R(h2,y0);

(vii) log det Ω̃h(θ) = 4d log h+ 2 log detΣΣ⊤ + hTrAv(β) +R(h2,y0).

Remark 5 We adjusted the objective functions for partial observations using the term c log detΩ
[·]
h/c, where c is a

correction constant. This adjustment keeps the term hTrAv(β) in (v)-(vii) constant, not affecting the asymptotic
distribution of the drift parameter. There is no h4-term in Ω

[S|R]
h (θ) which simplifies the approximation of Ω[S|R]

h (θ)−1

and log detΩ
[S|R]
h (θ). Consequently, this makes (41) a bad choice for estimating the drift parameter.
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6.2 Nonlinear solution f̃h

We now state a useful proposition for the nonlinear solution f̃h (Section 1.8 in (Hairer et al., 1993)).

Proposition 6.3 Let Assumptions (A1), (A2) and (A6) hold. When h → 0, the h-flow of (15) approximates as:

f̃h(y) = y + hÑ(y) +
h2

2
(DyÑ(y))Ñ(y) +R(h3,y), (55)

f̃−1
h (y) = y − hÑ(y) +

h2

2
(DyÑ(y))Ñ(y) +R(h3,y). (56)

Applying the previous proposition on (21) and (22), we get:

fh(y) = v + hN(y) +
h2

2
(DvN(y))N(y) +R(h3,y), (57)

f⋆−1
h (y) = v − hN(y) +

h2

2
(DvN(y))N(y) +R(h3,y). (58)

The following lemma approximates log |detDfh/2 (y;β) | in the objective functions and connects it with Lemma 6.2.

Lemma 6.4 Let f̃h be the function defined in (21). It holds:

2 log |detDfh/2 (Ytk ;β) | = hTrDvN(Ytk−1
;β) +R(h3/2,Ytk−1

),

2 log |detDfh/2

(
Xtk ,∆hXtk+1

;β
)
| = hTrDvN(Ytk−1

;β) +R(h3/2,Ytk−1
).

An immediate consequence of the previous lemma and that DvF(y;β) = Av(β) +DvN(y;β) is

log detΩ
[RR]
h (θ) + 2 log |detDfh/2 (Ytk ;β) | = log dethΣΣ⊤ + hTrDvF(Ytk−1

;β) +R(h3/2,Ytk−1
).

The same equality holds when Ytk is approximated by (Xtk ,∆hXtk+1
). The following lemma expands function

µh(f̃h/2(y)) up to the highest necessary order of h.

Lemma 6.5 For the functions f̃h in (21) and µ̃h in (28), it holds

µ
[S]
h (f̃h/2(y)) = x+ hv +

h2

2
F(y) +R(h3,y), (59)

µ
[R]
h (f̃h/2(y)) = v + h(F(y)− 1

2
N(y)) +R(h2,y). (60)

6.3 Random variables Z̃k,k−1 and Z̃k+1,k,k−1

To approximate the random variables Z[S]
k,k−1(β),Z

[R]
k,k−1(β), Z

[S]

k,k−1(β), and Z
[R]

k+1,k,k−1(β) around Ytk−1
, we start

by defining the following random sequences:

ηk−1 :=
1

h1/2

∫ tk

tk−1

dWt, (61)

ξk−1 :=
1

h3/2

∫ tk

tk−1

(t− tk−1) dWt, ξ′k :=
1

h3/2

∫ tk+1

tk

(tk+1 − t) dWt, (62)

ζk−1 :=
1

h5/2

∫ tk

tk−1

(t− tk−1)
2 dWt, ζ′

k :=
1

h5/2

∫ tk+1

tk

(tk+1 − t)2 dWt. (63)

The random variables (61)-(63) are Gaussian with mean zero. Moreover, at time tk they are Ftk+1
measurable and

independent of Ftk . The following linear combinations of (61)-(63) appear in the expansions in the partial observation
case:

Uk,k−1 := ξ′k + ξk−1, (64)

Qk,k−1 := ζ′
k + 2ηk−1 − ζk−1. (65)
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It is not hard to check that ξ′k + ηk−1 − ξ′k−1 = Uk,k−1. This alternative representation of Uk,k−1 will be used later
in proofs.

The Itô isometry yields:

Eθ0
[ηk−1η

⊤
k−1 | Ftk−1

] = I, Eθ0
[ηk−1ξ

⊤
k−1 | Ftk−1

] = Eθ0
[ηk−1ξ

′⊤
k−1 | Ftk−1

] =
1

2
I, (66)

Eθ0
[ξk−1ξ

′⊤
k−1 | Ftk−1

] =
1

6
I, Eθ0

[ξk−1ξ
⊤
k−1 | Ftk−1

] = Eθ0
[ξ′kξ

′⊤
k | Ftk−1

] =
1

3
I, (67)

Eθ0
[Uk,k−1U

⊤
k,k−1 | Ftk−1

] =
2

3
I, Eθ0

[Uk,k−1(Uk,k−1 + 2ξ′k−1)
⊤ | Ftk−1

] = I. (68)

The covariances of other combinations of the random variables (61)-(63) are not needed for the proofs. However, to
derive asymptotic properties, we need some fourth moments calculated in Supplementary Materials S1.

The following two propositions are the last building blocks for approximating the objective functions (30)-(31) and
(40)-(41).

Proposition 6.6 The random variables Z̃k,k−1(β) in (24) and Z̃k+1,k,k−1(β) in (35) are approximated by:

Z
[S]
k,k−1(β) = h3/2Σ0ξ

′
k−1 +

h2

2
(F0(Ytk−1

)− F(Ytk−1
)) +

h5/2

2
DvF0(Ytk−1

)Σ0ζ
′
k−1 +R(h3,Ytk−1

),

Z
[R]
k,k−1(β) = h1/2Σ0ηk−1 + h(F0(Ytk−1

)− F(Ytk−1
))− h3/2

2
DvN(Ytk−1

)Σ0ηk−1

+ h3/2DvF0(Ytk−1
)Σ0ξ

′
k−1 +R(h2,Ytk−1

),

Z
[S]

k,k−1(β) = −h2

2
F(Ytk−1

)− h5/2

2
DvF(Ytk−1

)Σ0ξ
′
k−1 +R(h3,Ytk−1

),

Z
[R]

k+1,k,k−1(β) = h1/2Σ0Uk,k−1 + h(F0(Ytk−1
)− F(Ytk−1

))− h3/2

2
DvN(Ytk−1

)Σ0Uk,k−1

− h3/2DvF(Ytk−1
)Σ0ξ

′
k−1 +

h3/2

2
DvF0(Ytk−1

)Σ0Qk,k−1 +R(h2,Ytk−1
).

Remark 6 Proposition 6.6 yield

Eθ0 [Z
[R]
k,k−1(β)Z

[R]
k,k−1(β)

⊤ | Ytk−1
] = hΣΣ⊤

0 +R(h2,Ytk−1
) = Ω

[RR]
h +R(h2,Ytk−1

),

Eθ0
[Z

[R]

k+1,k,k−1(β)Z
[R]

k+1,k,k−1(β)
⊤ | Ytk−1

] =
2

3
hΣΣ⊤

0 +R(h2,Ytk−1
) =

2

3
Ω

[RR]
h +R(h2,Ytk−1

).

Thus, the correction factor 2/3 in (40) compensates for the underestimation of the covariance of Z
[R]

k+1,k,k−1(β).
Similarly, it can be shown that the same underestimation happens when using the backward difference. On the other
hand, when using the central difference, it can be shown that

Eθ0
[Z

[R],central

k+1,k,k−1(β)Z
[R],central

k+1,k,k−1(β)
⊤ | Ytk−1

] =
5

12
hΣΣ⊤

0 +R(h2,Ytk−1
),

which is a larger deviation from Ω
[RR]
h , yielding a larger correcting factor and larger asymptotic variance of the

diffusion parameter estimator.

Proposition 6.7 Let Z̃k,k−1(β) and Z̃k+1,k,k−1(β) be defined in (24) and (35), respectively. Then,

Z
[S|R]
k,k−1(β) = −h3/2

2
Σ0(ηk−1 − 2ξ′k−1) +

h5/2

12
(Av −ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)Σ0ηk−1

+
h5/2

4
DvN(Ytk−1

)Σ0ηk−1 −
h5/2

2
DvF0(Ytk−1

)Σ0(ξ
′
k−1 − ζ′

k−1) +R(h3,Ytk−1
),

Z
[S|R]

k+1,k,k−1(β) = −h3/2

2
Σ0Uk,k−1 −

h2

2
F0(Ytk−1

) +
h5/2

12
(Av −ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)Σ0Uk,k−1

+
h5/2

4
DvN(Ytk−1

)Σ0Uk,k−1 −
h5/2

4
DvF0(Ytk−1

)Σ0Qk,k−1 +R(h3,Ytk−1
).
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6.4 Objective functions

Starting with the complete observation case, we approximate objective functions (30) and (31) up to order
R(h3/2,Ytk−1

) to prove the asymptotic properties of the estimators θ̂
[CR]
N and θ̂

[CS|R]
N . After omitting the terms

of order R(h,Ytk−1
) that do not depend on β, we obtain the following approximations:

L[CR]
N (Y0:tN ;θ) = (N − 1) log detΣΣ⊤ +

N∑
k=1

η⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1Σ0ηk−1 (69)

+ 2
√
h

N∑
k=1

η⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1(F(Ytk−1

;β0)− F(Ytk−1
;β))

+ h

N∑
k=1

(F(Ytk−1
;β0)− F(Ytk−1

;β))⊤(ΣΣ⊤)−1(F(Ytk−1
;β0)− F(Ytk−1

;β))

− h

N∑
k=1

η⊤
k−1Σ

⊤
0 DvF(Ytk−1

;β)⊤(ΣΣ⊤)−1Σ0ηk−1 + h

N∑
k=1

TrDvF(Ytk ;β),

L[CS|R]
N (Y0:tN ;θ) = (N − 1) log detΣΣ⊤ + 3

N∑
k=1

(ηk−1 − 2ξ′k−1)
⊤Σ⊤

0 (ΣΣ⊤)−1Σ0(ηk−1 − 2ξ′k−1) (70)

− 3h

N∑
k=1

(ηk−1 − 2ξ′k−1)
⊤Σ⊤

0 (ΣΣ⊤)−1DvN(Ytk−1
;β)Σ0ηk−1

− h

N∑
k=1

(ηk−1 − 2ξ′k−1)
⊤Σ⊤

0 (ΣΣ⊤)−1(Av(β)−ΣΣ⊤Av(β)
⊤(ΣΣ⊤)−1)Σ0ηk−1

L[CF]
N (Y0:tN ;θ) = L[CR]

N (Y0:tN ;θ) + L[CS|R]
N (Y0:tN ;θ) . (71)

The two last sums in (70) converge to zero because Eθ0 [(ηk−1 − 2ξ′k−1)η
⊤
k−1|Ftk−1

] = 0. Moreover, (70) lacks the
quadratic form of F(Ytk−1

)−F0(Ytk−1
), that is crucial for the asymptotic variance of the drift estimator. This implies

that the objective function L[CS|R]
N is not suitable for estimating the drift parameter. Conversely, (70) provides a correct

and consistent estimator of the diffusion parameter, indicating that the full objective function (the sum of L[CR]
N and

L[CS|R]
N ) consistently estimates θ.

Similarly, the approximated objective functions in the partial observation case are:

L[PR]
N (Y0:tN ;θ) =

2

3
(N − 2) log detΣΣ⊤ +

N−1∑
k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1Σ0Uk,k−1 (72)

+ 2
√
h

N∑
k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(F(Ytk−1

;β0)− F(Ytk−1
;β))

+ h

N−1∑
k=1

(F(Ytk−1
;β0)− F(Ytk−1

;β))⊤(ΣΣ⊤)−1(F(Ytk−1
;β0)− F(Ytk−1

;β))

− h

N−1∑
k=1

(Uk,k−1 + 2ξ′k−1)
⊤Σ⊤

0 DvF(Ytk−1
;β)⊤(ΣΣ⊤)−1Σ0Uk,k−1 + h

N−1∑
k=1

TrDvF(Ytk ;β),

L[PS|R]
N (Y0:tN ;θ) = 2(N − 2) log detΣΣ⊤ + 3

N−1∑
k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1Σ0Uk,k−1 (73)

+ 6
√
h

N∑
k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1F(Ytk−1

;β0)

− 3h

N−1∑
k=1

U⊤
k,k−1Σ

⊤
0 DvN(Ytk−1

;β)⊤(ΣΣ⊤)−1Σ0Uk,k−1 + 2h

N−1∑
k=1

TrDvN(Ytk ;β),
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L[PF]
N (Y0:tN ;θ) = L[PR]

N (Y0:tN ;θ) + L[PS|R]
N (Y0:tN ;θ) . (74)

This time, the term with Av(β)−ΣΣ⊤Av(β)
⊤(ΣΣ⊤)−1 vanishes because

Tr(Σ0Uk,k−1U
⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(Av(β)−ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)) = 0

due to the symmetry of the matrices and the trace cyclic property.

Even though the partial observation objective function L[PR] (X0:tN ;θ) (40) depends only on X0:tN , we could
approximate it with L[PR]

N (Y0:tN ;θ) (72). This is useful for proving the asymptotic normality of the estimator since its
asymptotic distribution will depend on the invariant probability ν0 defined for the solution Y.

The absence of the quadratic form F(Ytk−1
)− F0(Ytk−1

) in (73) indicates that L[PS|R]
N is not suitable for estimating

the drift parameter. Additionally, the penultimate term in (73) does not vanish, needing an additional correction term of
2h
∑N−1

k=1 TrDvN(Ytk ;β) for consistency. This correction is represented as 4 log |detDvfh/2| in (41). Notably, this
term is absent in the complete objective function (31), making this adjustment somewhat artificial and could potentially
deviate further from the true log-likelihood. Consequently, the objective function based on the full likelihood (39)
inherits this characteristic from (73), suggesting that in the partial observation scenario, using only the rough likelihood
(72) may be more appropriate.

7 Conclusion

Many fundamental laws of physics and chemistry are formulated as second-order differential equations, a model class
important for understanding complex dynamical systems in various fields such as biology and economics. The extension
of these deterministic models to stochastic second-order differential equations represents a natural generalization,
allowing for the incorporation of uncertainties and variability inherent in real-world systems. However, robust statistical
methods for analyzing data generated from such stochastic models have been lacking, presenting a significant challenge
due to the inherent degeneracy of the noise and partial observation.

In this study, we propose estimating model parameters using a recently developed methodology of Strang splitting
estimator for SDEs. This estimator has demonstrated finite sample efficiency with relatively large sample time steps,
particularly in handling highly nonlinear models. We adjust the estimator to the partial observation setting and employ
either the full likelihood or only the marginal likelihood based on the rough coordinates. For all four obtained estimators,
we establish the consistency and asymptotic normality.

The application of the Strang estimator to a historical paleoclimate dataset obtained from ice cores in Greenland has
yielded valuable insights and analytical tools for comprehending abrupt climate shifts throughout history. Specifically,
we employed the stochastic Duffing oscillator, also known as the Kramers oscillator, to analyze the data.

While our focus in this paper has been primarily confined to second-order SDEs with no parameters in the smooth
components, we are confident that our findings can be extended to encompass models featuring parameters in the drift
of the smooth coordinates. This opens up directions for further exploration and application of our methodology to a
broader range of complex dynamical systems, promising deeper insights into their behavior and underlying mechanisms.
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S1 Supplementary Material

In this section, we provide proofs for all the nontrivial lemmas, propositions, and theorems presented in Sections 3 and 6.
The majority of these proofs, especially those in Section 6, heavily rely on Itô or Taylor expansions in h around Ytk−1

.
Additionally, we frequently employ Fubini’s theorem as a useful tool. Our initial focus is on the results from Section 6,
as they constitute technical auxiliary properties essential for understanding the main results outlined in Section 3.

S1.1 Proofs of results from Section 6

Proof of Lemma 6.2 To prove (i), calculate

Ω
[RR]
h (θ)−1 =

1

h
(ΣΣ⊤)−1(I+

h

2
(Av(β) +ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)−1) +R(h,y0)

=
1

h
(ΣΣ⊤)−1(I− h

2
(Av(β) +ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1) +R(h,y0)

=
1

h
(ΣΣ⊤)−1 − 1

2
((ΣΣ⊤)−1Av(β) +Av(β)

⊤(ΣΣ⊤)−1) +R(h,y0).

Proof of (ii):

Ω
[SR]
h (θ)Ω

[RR]
h (θ)−1 = (

h2

2
(ΣΣ⊤) +

h3

6
(Av(β)(ΣΣ⊤) + 2ΣΣ⊤Av(β)

⊤))
1

h
(ΣΣ⊤)−1

− h2

4
(ΣΣ⊤)((ΣΣ⊤)−1Av(β) +Av(β)

⊤(ΣΣ⊤)−1)) +R(h3,y0)

=
h

2
I− h2

12
(Av −ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1) +R(h3,y0).

To prove (iii), use the previous result to obtain:

Ω
[SR]
h (θ)Ω

[RR]
h (θ)−1Ω

[RS]
h (θ)

= (
h

2
I− h2

12
(Av −ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1))(
h2

2
(ΣΣ⊤) +

h3

6
(2Av(β)(ΣΣ⊤) +ΣΣ⊤Av(β)

⊤)) +R(h5,y0)

=
h3

4
ΣΣ⊤ +

h4

8
(Av(β)ΣΣ⊤ +ΣΣ⊤Av(β)

⊤) +R(h5,y0).

Proof of (iv) follows from (iii) and Lemma 6.1. To prove (v), approximate the log-determinant as:

log detΩ
[RR]
h (θ) = log det

(
hΣΣ⊤ +

h2

2
(Av(β)ΣΣ⊤ +ΣΣ⊤Av(β)

⊤)

)
+R(h2,y0)

= d log h+ log detΣΣ⊤ + log det

(
I+

h

2
(Av(β) +ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)

)
+R(h2,y0)

= d log h+ log detΣΣ⊤ +
h

2
Tr(Av(β) +ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1) +R(h2,y0)

= d log h+ log detΣΣ⊤ + hTrAv(β) +R(h2,y0). (S1)

To prove (vi), repeat the previous reasoning on (iv). The proof of (vii) follows from det Ω̃h = detΩ
[RR]
h detΩ

[S|R]
h

and properties (v) and (vi).

Proof of Lemma 6.4 Using the same approximation as in the previous proof of (v), we obtain:

2 log |detDfh/2 (y;β) | = 2 log |det(I+ h

2
DN(y;β))|+R(h2,y)

= 2 log |1 + h

2
TrDN(y;β)|+R(h2,y)

= hTrDN(y;β) +R(h2,y) = hTrDvN(y;β) +R(h2,y). (S2)

In complete observation, put Ytk instead of y and use Itô’s lemma on N(Ytk) as in (S6). In partial observation, put
(Xtk ,∆hXtk+1

) instead of y and approximate N(Xtk ,∆hXtk+1
) as in (S7).

1
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Proof of Lemma 6.5 We use definition (6) and approximation (55), and plug them in (17) to obtain:

µ̃h(f̃h/2(y)) = eÃh(f̃h/2(y)− b̃) + b̃

=

(
I2d + hÃ+

h2

2
Ã2 +R(h3,y)

)
(f̃h/2(y)− b̃) + b̃

=

[
Id +

h2

2 Ax +R(h3,y) hId +
h2

2 Av +R(h3,y)

hAx +R(h2,y) Id + hAv +R(h2,y)

] [
x− b

v + h
2N(y) +R(h2,y)

]
+

[
b
0

]

=

[
x+ hv + h2

2 F(y) +R(h3,y)

v + h(F(y)− 1
2N(y)) +R(h2,y)

]
.

This concludes the proof.

To prove Proposition 6.6, we need the following lemma that provides expansion of ∆hXtk+1
−∆hXtk .

Lemma S1.1 For process ∆hXtk+1
(33) it holds:

∆hXtk+1
−∆hXtk =

√
hΣ0Uk,k−1 + hF0(Ytk−1

) +
h3/2

2
DvF0(Ytk−1

)Σ0Qk,k−1 +R(h2,Ytk−1
), (S3)

∆hXtk −Vtk−1
=

√
hΣ0ξ

′
k−1 +

h

2
F0(Ytk−1

) +
h3/2

2
DvF0(Ytk−1

)Σ0ζ
′
k−1 +R(h2,Ytk−1

). (S4)

Proof of Lemma S1.1 Proof of (S3). Equation (2) in integral form and (33) yield:

∆hXtk+1
−∆hXtk =

1

h

∫ tk+1

tk

Vt dt−
1

h

∫ tk

tk−1

Vt dt =
1

h

∫ tk+1

tk

(Vt −Vtk) dt+
1

h

∫ tk

tk−1

(Vtk −Vt) dt

=
1

h

∫ tk+1

tk

∫ t

tk

F0(Ys) dsdt+
1

h
Σ0

∫ tk+1

tk

∫ t

tk

dWs dt

+
1

h

∫ tk

tk−1

∫ tk

t

F0(Ys) dsdt+
1

h
Σ0

∫ tk

tk−1

∫ tk

t

dWs dt.

Apply Fubini’s theorem on double integrals to obtain:

∆hXtk+1
−∆hXtk =

1

h

∫ tk+1

tk

(tk+1 − t)F0(Yt) dt+
1

h

∫ tk

tk−1

(t− tk−1)F0(Yt) dt+
√
hΣ0Uk,k−1. (S5)

Applying Itô’s lemma on F0(Yt) yields the following approximation:

F0(Yt) = F0(Ytk) +DvF0(Ytk)Σ0

∫ t

tk

dWs +R(h,Ytk). (S6)

Plugging (S6) into (S5) gives:

∆hXtk+1
−∆hXtk = hF0(Ytk) +

1

h
DvF0(Ytk)Σ0

∫ tk+1

tk

∫ t

tk

(tk+1 − t) dWs dt

− 1

h
DvF0(Ytk)Σ0

∫ tk

tk−1

∫ tk

t

(t− tk−1) dWs dt+
√
hΣ0Uk,k−1 +R(h2,Ytk−1

).

Once again, apply Fubini’s theorem on the double integrals to get:∫ tk+1

tk

∫ t

tk

(tk+1 − t) dWs dt =
1

2
h5/2ζ′

k,

∫ tk

tk−1

∫ tk

t

(t− tk−1) dWs dt =
1

2
h5/2ζk−1.

So far, we have

∆hXtk+1
−∆hXtk =

√
hΣ0Uk,k−1 + hF0(Ytk) +

h3/2

2
DvF0(Ytk)Σ0(ζ

′
k − ζk−1) +R(h2,Ytk−1

).

To conclude the proof, use Itô’s lemma to get F0(Ytk) = F0(Ytk−1
) +

√
hDvF0(Ytk−1

)Σ0ηk−1 +R(h,Ytk−1
).

2
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Proof of (S4). As before, start with (33) and use (S6) to get:

∆hXtk −Vtk−1
=

1

h

∫ tk

tk−1

(tk − t)F0(Yt) dt+
1

h
Σ0

∫ tk

tk−1

(tk − t) dWt

=
√
hΣ0ξ

′
k−1 +

h

2
F0(Ytk−1

) +
1

h
DvF0(Ytk)Σ0

∫ tk

tk−1

∫ t

tk−1

(tk − t) dWs dt+R(h2,Ytk−1
).

This concludes the proof.

Proof of Proposition 6.6 The expansion of Z[S]
k,k−1 follows directly from Lemma 6.5 and S1.1. Indeed, it holds

Z
[S]
k,k−1(β) = Xtk −Xtk−1

− hVtk−1
− h2

2
F(Ytk−1

) +R(h3,Ytk−1
)

= h(∆hXtk −Vtk−1
)− h2

2
F(Ytk−1

) +R(h3,Ytk−1
).

To expand Z
[R]
k,k−1, we use definition (27) and approximations (58) and (60), as follows:

Z
[R]
k,k−1(β) = Vtk −Vtk−1

− hF(Ytk−1
)− h

2
(N(Ytk)−N(Ytk−1

)) +R(h2,Ytk−1
)

= Σ0

∫ tk

tk−1

dWt +

∫ tk

tk−1

F0(Yt) dt− hF(Ytk−1
)− h

2
(N(Ytk)−N(Ytk−1

)) +R(h2,Ytk−1
)

=
√
hΣ0ηk−1 + h(F0(Ytk−1

)− F(Ytk−1
))− h

2
(N(Ytk)−N(Ytk−1

))

+DvF0(Ytk−1
)Σ0

∫ tk

tk−1

∫ t

tk−1

dWs dt+R(h2,Ytk−1
).

In the last line, we used Itô’s lemma on F0(Yt) as in (S6). Again, apply Itô’s lemma on N(Ytk) to get:

Z
[R]
k,k−1(β) =

√
hΣ0ηk−1 + h(F0(Ytk−1

)− F(Ytk−1
))− h3/2

2
DvN(Ytk−1

)Σ0ηk−1

+ h3/2DvF0(Ytk−1
)Σ0ξ

′
k−1 +R(h2,Ytk−1

).

The expansion of Z[S]
k,k−1 follows from definition (36) and plugging (Xtk−1

,∆hXtk) in approximation (60):

Z
[S]

k+1,k,k−1(β) = Xtk −Xtk−1
− h∆hXtk − h2

2
F(Xtk−1

,∆hXtk) +R(h3,Ytk−1
)

= −h2

2
F(Xtk−1

,∆hXtk) +R(h3,Ytk−1
).

Use Taylor’s formula on F(Xtk−1
,∆hXtk) to get

F(Xtk−1
,∆hXtk) = F(Ytk−1

) +DvF(Ytk−1
)(∆hXtk −Vtk−1

) +R(h2,Ytk−1
). (S7)

Now, the rest follows from Lemma S1.1.

Finally, to expand Z
[R]

k+1,k,k−1, start with definition (37) and approximations (58), and (60):

Z
[R]

k+1,k,k−1(β) = ∆hXtk+1
−∆hXtk − hF(Xtk−1

,∆hXtk)

− h

2
(N(Xtk ,∆hXtk+1

)−N(Xtk−1
,∆hXtk)) +R(h2,Ytk−1

).

Lemma S1.1 yields:

Z
[R]

k+1,k,k−1(β) =
√
hΣ0Uk,k−1 + h(F0(Ytk−1

)− F(Xtk−1
,∆hXtk))

− h

2
(N(Xtk ,∆hXtk+1

)−N(Xtk−1
,∆hXtk)) +

h3/2

2
DvF0(Ytk−1

)Σ0Qk,k−1 +R(h2,Ytk−1
).

3
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Apply Taylor’s formula on F(Xtk−1
,∆hXtk), N(Xtk ,∆hXtk+1

), and N(Xtk−1
,∆hXtk), to get:

Z
[R]

k+1,k,k−1(β) =
√
hΣ0Uk,k−1 + h(F0(Ytk−1

)− F(Ytk−1
))− h

2
(N(Ytk)−N(Ytk−1

))

+
h3/2

2
DvF0(Ytk−1

)Σ0Qk,k−1 − h3/2DvF(Ytk−1
)Σ0ξ

′
k−1 −

h3/2

2
DvN(Ytk)Σ0ξ

′
k

+
h3/2

2
DvN(Ytk−1

))Σ0ξ
′
k−1 +R(h2,Ytk−1

).

Finally, applying Itô’s lemma on N(Ytk) yields

Z
[R]

k+1,k,k−1(β) =
√
hΣ0Uk,k−1 + h(F0(Ytk−1

)− F(Ytk−1
))− h3/2

2
DvN(Ytk−1

)Σ0ηk−1

+
h3/2

2
DvF0(Ytk−1

)Σ0Qk,k−1 − h3/2DvF(Ytk−1
)Σ0ξ

′
k−1 −

h3/2

2
DvN(Ytk−1

)Σ0ξ
′
k

+
h3/2

2
DvN(Ytk−1

))Σ0ξ
′
k−1 +R(h2,Ytk−1

)

=
√
hΣ0Uk,k−1 + h(F0(Ytk−1

)− F(Ytk−1
))− h3/2

2
DvN(Ytk−1

)Σ0Uk,k−1

+
h3/2

2
DvF0(Ytk−1

)Σ0Qk,k−1 − h3/2DvF(Ytk−1
)Σ0ξ

′
k−1 +R(h2,Ytk−1

).

This concludes the proof.

Proof of Lemma 6.7 Combining Proposition 6.6 and property (ii) of Lemma 6.2 yields:

Z
[S|R]
k,k−1(β) = Z

[S]
k,k−1(β)−Ω

[SR]
h (θ)Ω

[RR]
h (θ)−1Z

[R]
k,k−1(β)

= h3/2Σ0ξ
′
k−1 +

h2

2
(F0(Ytk−1

)− F(Ytk−1
)) +

h5/2

2
DvF0(Ytk−1

)Σ0ζ
′
k−1

−
(
h

2
I− h2

12
(Av −ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)

)(
h1/2Σ0ηk−1 + h(F0(Ytk−1

)− F(Ytk−1
))

−h3/2

2
DvN(Ytk−1

)Σ0ηk−1 + h3/2DvF0(Ytk−1
)Σ0ξ

′
k−1)

)
+R(h3,Ytk−1

)

= h3/2Σ0ξ
′
k−1 +

h2

2
(F0(Ytk−1

)− F(Ytk−1
)) +

h5/2

2
DvF0(Ytk−1

)Σ0ζ
′
k−1

− h3/2Σ0ηk−1 −
h2

2
(F0(Ytk−1

)− F(Ytk−1
)) +

h5/2

4
DvN(Ytk−1

)Σ0ηk−1

− h5/2

2
DvF0(Ytk−1

)Σ0ξ
′
k−1 +

h5/2

12
(Av −ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)Σ0ηk−1 +R(h3,Ytk−1
).

Additionally,

Z
[S|R]

k+1,k,k−1(β) = Z
[S]

k,k−1(β)−Ω
[SR]
h (θ)Ω

[RR]
h (θ)−1Z

[R]

k+1,k,k−1(β)

= −h2

2
F(Ytk−1

)− h5/2

2
DvF(Ytk−1

)Σ0ξ
′
k−1 −

(
h

2
I− h2

12
(Av −ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)

)
·

(
h1/2Σ0Uk,k−1 + h(F0(Ytk−1

)− F(Ytk−1
))− h3/2

2
DvN(Ytk−1

)Σ0Uk,k−1

+
h3/2

2
DvF0(Ytk−1

)Σ0Qk,k−1 − h3/2DvF(Ytk−1
)Σ0ξ

′
k−1

)
+R(h3,Ytk−1

)

= −h2

2
F(Ytk−1

)− h5/2

2
DvF(Ytk−1

)Σ0ξ
′
k−1 − h3/2Σ0Uk,k−1 −

h2

2
(F0(Ytk−1

)− F(Ytk−1
))

+
h5/2

4
DvN(Ytk−1

)Σ0Uk,k−1 −
h5/2

4
DvF0(Ytk−1

)Σ0Qk,k−1 +
h5/2

2
DvF0(Ytk−1

)Σ0ξ
′
k−1

4
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+
h5/2

12
(Av −ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)Σ0Uk,k−1 +R(h3,Ytk−1
).

S1.2 Proofs from Section 3

Before we start the proofs, we state the following ergodic property, which is proved in Kessler (1997) in case of
complete observations, and in Samson and Thieullen (2012) for both complete and partial observation.

Lemma S1.2 (Proposition 4 in Samson and Thieullen (2012)) Let Assumptions (A1), (A2) and (A3) hold, and let Y
be the solution to (3). Let g : R2d × Θ → R be a differentiable function with respect to y and θ with derivatives of
polynomial growth in y, uniformly in θ. If h → 0 and Nh → ∞, then,

1

N − 1

N∑
k=1

g (Ytk ;θ)
Pθ0−−−−−→

Nh→∞
h→0

∫
g (y;θ) dν0(y), (S8)

1

N − 2

N−1∑
k=1

g (Xtk ,∆hXtk ;θ)
Pθ0−−−−−→

Nh→∞
h→0

∫
g (y;θ) dν0(y), (S9)

uniformly in θ.

S1.3 Proof of consistency

Proof of Theorem 3.1 The proof of the consistency of the estimators follows a similar path as in Theorem 5.1 of
(Pilipovic et al., 2024). With σ := vech(ΣΣ⊤) = ([ΣΣ⊤]11, [ΣΣ⊤]12, [ΣΣ⊤]22, ..., [ΣΣ⊤]1d, ..., [ΣΣ⊤]dd), we
half-vectorize ΣΣ⊤ to avoid working with tensors when computing derivatives with respect to ΣΣ⊤. Since ΣΣ⊤ is a
symmetric d× d matrix, σ is of dimension s = d(d+ 1)/2. For a diagonal matrix, instead of a half-vectorization, we
use σ := diag(ΣΣ⊤) and s = d in that case.

We start by finding the limits in Pθ0
of

1

N − 1
L[C·]
N (β,σ) and

1

N − 2
L[P·]
N (β,σ), (S10)

for Nh → ∞, h → 0, uniformly in θ. We apply Lemma 9 in Genon-Catalot and Jacod (1993) to prove the convergence
and use Proposition A1 in Gloter (2006) to prove the uniform convergence. For more detailed derivations, see proofs in
Pilipovic et al. (2024). Taking the expectations of (69)- (74), we conclude that:

1

N − 1
L[CR]
N (β,σ) → log det(ΣΣ⊤) + Tr((ΣΣ⊤)−1ΣΣ⊤

0 ),

1

N − 1
L[CS|R]
N (β,σ) → log det(ΣΣ⊤) + Tr((ΣΣ⊤)−1ΣΣ⊤

0 ),

1

N − 1
L[CF]
N (β,σ) → 2 log det(ΣΣ⊤) + 2Tr((ΣΣ⊤)−1ΣΣ⊤

0 ),

1

N − 2
L[PR]
N (β,σ) → 2

3
log det(ΣΣ⊤) +

2

3
Tr((ΣΣ⊤)−1ΣΣ⊤

0 ),

1

N − 2
L[PS|R]
N (β,σ) → 2 log det(ΣΣ⊤) + 2Tr((ΣΣ⊤)−1ΣΣ⊤

0 ),

1

N − 2
L[PF]
N (β,σ) → 8

3
log det(ΣΣ⊤) +

8

3
Tr((ΣΣ⊤)−1ΣΣ⊤

0 ),

in Pθ0 , for Nh → ∞, h → 0, uniformly in θ. From here, the rest of the proof of consistency for Σ̂Σ
⊤[C·]
N and Σ̂Σ

⊤[P·]
N

is the same as in (Pilipovic et al., 2024). The coefficients in front of log det terms in the partial observation setup
correspond to the correcting factors in definitions of objective functions (39)-(41). They are needed to match coefficients
in front of Tr terms that come from the forward difference’s under- or over-estimation of the noise effects.

To prove the consistency of the drift estimators β̂[CR]
N and β̂

[PR]
N , we start by finding the limits in Pθ0 of

1

(N − 1)h
(L[CR]

N (β,σ)− L[CR]
N (β0,σ)) and

1

(N − 2)h
(L[PR]

N (β,σ)− L[PR]
N (β0,σ)), (S11)

5
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for Nh → ∞, h → 0, uniformly in θ. Starting with expressions (69) and (72) we get

1

(N − 1)h
(L[CR]

N (β,σ)− L[CR]
N (β0,σ)) =

2

(N − 1)
√
h

N∑
k=1

η⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1(F0(Ytk−1

)− F(Ytk−1
))

+
1

N − 1

N∑
k=1

(F0(Ytk−1
)− F(Ytk−1

))⊤(ΣΣ⊤)−1(F0(Ytk−1
)− F(Ytk−1

))

− 1

N − 1

N∑
k=1

η⊤
k−1Σ

⊤
0 Dv(F(Ytk−1

)− F0(Ytk−1
))⊤(ΣΣ⊤)−1Σ0ηk−1

+
1

N − 1

N∑
k=1

TrDv(F(Ytk)− F0(Ytk)),

1

(N − 2)h
(L[PR]

N (β,σ)− L[PR]
N (β0,σ)) =

2

(N − 2)
√
h

N−1∑
k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(F0(Ytk−1

)− F(Ytk−1
))

+
1

N − 2

N−1∑
k=1

(F0(Ytk−1
)− F(Ytk−1

))⊤(ΣΣ⊤)−1(F0(Ytk−1
)− F(Ytk−1

))

− 1

N − 2

N−1∑
k=1

(Uk,k−1 + 2ξ′k−1)
⊤Σ⊤

0 Dv(F(Ytk−1
)− F0(Ytk−1

))⊤(ΣΣ⊤)−1Σ0Uk,k−1

+
1

N − 2

N−1∑
k=1

TrDv(F(Ytk)− F0(Ytk)).

To prove the convergence in probability of the previous two sequences, we use Lemma S1.2 and Lemma 9 in Genon-
Catalot and Jacod (1993). To apply Lemma 9 from Genon-Catalot and Jacod (1993), we need to show that the sum of
expectations converges to a certain value, while the sum of covariances converges to zero. Here, we only show the
former. Moreover, standard tools like Proposition A1 in Gloter (2006) or Lemma 3.1 in Yoshida (1990) can be used to
prove uniform convergence. Thus, we just look at the expectation to find the limits of these sequences. We use the
known covariances (66) and (68) to get:

1

Nh
(L[·R]

N (β,σ)− L[·R]
N (β0,σ))

Pθ0−−−−−→
Nh→∞
h→0

∫
(F0(y)− F(y))⊤(ΣΣ⊤)−1(F0(y)− F(y)) dν0(y)

+

∫
Tr(Dv (F0 (y)− F (y)) (ΣΣ⊤

0 (ΣΣ⊤)−1 − I)) dν0(y). (S12)

Thus, the consistency of the drift estimator in the partial case coincides with the complete case when using rough
objective functions. This is because the right-hand side of (S12) is non-negative when ΣΣ⊤ = ΣΣ⊤

0 , and the left-hand
side is non-positive, following the definition of the likelihood. The remainder of the proof is analogous to that in
Pilipovic et al. (2024), and is therefore not repeated here.

Here, we also illustrate why the objective functions based on the conditional likelihood of smooth given rough
coordinates do not provide identifiable drift estimators. Starting with the complete observations objective function (70)
and using that Eθ0 [(ηk−1 − 2ξ′k−1)η

⊤
k−1|Ftk−1

] = 0, we conclude::

1

Nh
(L[CS|R]

N (β,σ)− L[CS|R]
N (β0,σ))

Pθ0−−−−−→
Nh→∞
h→0

0. (S13)

In the partial observation case, we need to add the term 4 log |detDvfh/2| in (31). Due to this correction, we obtain
the consistency of the drift estimator from the following derivations and the fact that the diffusion estimator converges
faster:

1

(N − 2)h
(L[PS|R]

N (β,σ)− L[PS|R]
N (β0,σ)) =

2

N − 2

N−1∑
k=1

TrDv(N(Ytk)−N0(Ytk))

+
3

N − 2

N−1∑
k=1

Tr((ΣΣ⊤)−1Σ0Uk,k−1U
⊤
k,k−1Σ

⊤
0 Dv(N0(Ytk−1

)−N(Ytk−1
))⊤)

6
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Pθ0−−−−−→
Nh→∞
h→0

2

∫
Tr(Dv (N0 (y)−N (y)) (ΣΣ⊤

0 (ΣΣ⊤)−1 − I)) dν0(y).

Finally, the consistency of the estimators based on the full objective functions follows from the previous proofs, (71),
and (74). That concludes the proof of consistency.

Proof of Lemma 3.3 We start by proving the first part of the lemma, for both complete and partial cases using the
rough objective functions (69) and (72). First, we find their second derivatives with respect to β:

1

(N − 1)h
∂2
β(i1)β(i2)L[CR]

N (Y0:tN ;θ) =
2

(N − 1)
√
h

N∑
k=1

η⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1∂2

β(i1)β(i2)F(Ytk−1
;β)

+
1

N − 1

N∑
k=1

TrDv∂
2
β(i1)β(i2)F(Ytk ;β) +

2

N − 1

N∑
k=1

∂β(i1)F(Ytk−1
;β)⊤(ΣΣ⊤)−1∂β(i2)F(Ytk−1

;β)

− 2

N − 1

N∑
k=1

∂2
β(i1)β(i2)F(Ytk−1

;β)⊤(ΣΣ⊤)−1(F(Ytk−1
;β0)− F(Ytk−1

;β))

− 1

N − 1

N∑
k=1

η⊤
k−1Σ

⊤
0 Dv∂

2
β(i1)β(i2)F(Ytk−1

;β)⊤(ΣΣ⊤)−1Σ0ηk−1,

1

(N − 2)h
∂2
β(i1)β(i2)L[PR]

N (Y0:tN ;θ) =
2

(N − 2)
√
h

N−1∑
k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1∂2

β(i1)β(i2)F(Ytk−1
;β)

+
1

N − 2

N−1∑
k=1

TrDv∂
2
β(i1)β(i2)F(Ytk ;β) +

2

N − 2

N−1∑
k=1

∂β(i1)F(Ytk−1
;β)⊤(ΣΣ⊤)−1∂β(i2)F(Ytk−1

;β)

− 2

N − 2

N−1∑
k=1

∂2
β(i1)β(i2)F(Ytk−1

;β)⊤(ΣΣ⊤)−1(F(Ytk−1
;β0)− F(Ytk−1

;β))

− 1

N − 2

N−1∑
k=1

(Uk,k−1 + 2ξ′k−1)
⊤Σ⊤

0 Dv∂
2
β(i1)β(i2)F(Ytk−1

;β)⊤(ΣΣ⊤)−1Σ0Uk,k−1.

As in the proof of consistency, it holds:

1

Nh
∂2
β(i1)β(i2)L[·R]

N (Y0:tN ;θ)
∣∣∣
θ=θ0

Pθ0−−→ 2

∫
∂β(i1)F0(y)

⊤(ΣΣ⊤)−1∂β(i2)F0(y) dν0(y).

Now, we investigate the limit of 1
(N−1)

√
h
∂2
β(i1)σ(j2)L

[CR]
N (θ) and ∂2

β(i1)σ(j2)L
[PR]
N (θ):

1

(N − 1)
√
h
∂2
β(i1)σ(j2)L[CR]

N (Y0:tN ;θ) = − 2

N − 1

N∑
k=1

η⊤
k−1Σ

⊤
0 ∂σ(j2)(ΣΣ⊤)−1∂β(i1)F(Ytk−1

;β)

+
1

N − 1

N∑
k=1

R(
√
h,Ytk−1

)

1

(N − 2)
√
h
∂2
β(i1)σ(j2)L[PR]

N (Y0:tN ;θ) = − 2

N − 2

N−1∑
k=1

U⊤
k,k−1Σ

⊤
0 ∂σ(j2)(ΣΣ⊤)−1∂β(i1)F(Ytk−1

;β)

+
1

N − 2

N−1∑
k=1

R(
√
h,Ytk−1

)

Both previous sequences converge to zero due to Lemma 9 in Genon-Catalot and Jacod (1993). Next, we look at the
limits of 1

N−1∂
2
σ(j1)σ(j2)L

[CR]
N (θ) and 1

N−2∂
2
σ(j1)σ(j2)L

[PR]
N (θ):

1

N − 1
∂2
σ(j1)σ(j2)L[CR]

N (Y0:tN ;θ) = ∂2
σ(j1)σ(j2) log det(ΣΣ⊤)

7
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+
1

N − 1

N∑
k=1

∂2
σ(j1)σ(j2) Tr(Σ0ηk−1η

⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1) +

1

N − 1

N∑
k=1

R(
√
h,Ytk−1

)

= Tr((ΣΣ⊤)−1∂2
σ(j1)σ(j2)ΣΣ⊤)− Tr((ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1∂σ(j2)ΣΣ⊤)

− 1

N − 1

N∑
k=1

Tr(Σ0ηk−1η
⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1(∂2

σ(j1)σ(j2)ΣΣ⊤)(ΣΣ⊤)−1)

+
1

N − 1

N∑
k=1

Tr(Σ0ηk−1η
⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1(∂σ(j2)ΣΣ⊤)(ΣΣ⊤)−1)

+
1

N − 1

N∑
k=1

Tr(Σ0ηk−1η
⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j2)ΣΣ⊤)(ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1)

+
1

N − 1

N∑
k=1

R(
√
h,Ytk−1

),

1

N − 2
∂2
σ(j1)σ(j2)L[PR]

N (Y0:tN ;θ) =
2

3
∂2
σ(j1)σ(j2) log det(ΣΣ⊤)

+
1

N − 2

N−1∑
k=1

∂2
σ(j1)σ(j2) Tr(Σ0Uk,k−1U

⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1) +

1

N − 2

N−1∑
k=1

R(
√
h,Ytk−1

)

=
2

3
Tr((ΣΣ⊤)−1∂2

σ(j1)σ(j2)ΣΣ⊤)− 2

3
Tr((ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1∂σ(j2)ΣΣ⊤)

− 1

N − 2

N−1∑
k=1

Tr(Σ0Uk,k−1U
⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(∂2

σ(j1)σ(j2)ΣΣ⊤)(ΣΣ⊤)−1)

+
1

N − 2

N−1∑
k=1

Tr(Σ0Uk,k−1U
⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1(∂σ(j2)ΣΣ⊤)(ΣΣ⊤)−1)

+
1

N − 2

N−1∑
k=1

Tr(Σ0Uk,k−1U
⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j2)ΣΣ⊤)(ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1)

+
1

N − 2

N−1∑
k=1

R(
√
h,Ytk−1

).

Using the second moments of ηk−1 and Uk,k−1 with additional calculations, we can conclude that:
1

N − 1
∂2
σ(j1)σ(j2)L[CR]

N (Y0:tN ;θ)
∣∣∣
θ=θ0

Pθ0−−→ Tr((ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1∂σ(j2)ΣΣ⊤),

1

N − 2
∂2
σ(j1)σ(j2)L[PR]

N (Y0:tN ;θ)
∣∣∣
θ=θ0

Pθ0−−→ 2

3
Tr((ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1∂σ(j2)ΣΣ⊤).

To extend the previous results on the objective functions (70) and (73), we start by acknowledging that
1

Nh
∂2
β(i1)β(i2)L[·S|R]

N (Y0:tN ;θ)
∣∣∣
θ=θ0

Pθ0−−→ 0.

The reasons behind this are the same as in the proof of consistency. The same can be said for the limit of
1

N
√
h
∂βσL[·S|R]

N (θ). Finally, repeating the same derivations as before, we get:

1

N − 1
∂2
σ(j1)σ(j2)L[CS|R]

N (Y0:tN ;θ)
∣∣∣
θ=θ0

Pθ0−−→ Tr((ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1∂σ(j2)ΣΣ⊤),

1

N − 2
∂2
σ(j1)σ(j2)L[PS|R]

N (Y0:tN ;θ)
∣∣∣
θ=θ0

Pθ0−−→ 2Tr((ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1∂σ(j2)ΣΣ⊤).

This concludes the first part of the lemma. The second part follows from the fact that all limits are continuous in θ.

To prove Lemma 3.4, we state another useful property that provides a general formula to calculate moments of a product
of two quadratic forms with Gaussian vectors.

8
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Lemma S1.3 Let (αk)
N
k=1, (βk)

N
k=1, be two sequences of independent Ftk+1

-measurable Gaussian random variables
with mean zero. If Eθ0

[αk−1β
⊤
k−1 | Ftk−1

] is diagonal, and A and B are two symmetric positive definite matrices,
then:

Eθ0
[α⊤

k−1Aαk−1β
⊤
k−1Bβk−1 | Ftk−1

] = 2Tr(Eθ0
[αk−1β

⊤
k−1 | Ftk−1

]AEθ0
[αk−1β

⊤
k−1 | Ftk−1

]B)

+ Tr(AEθ0
[αk−1α

⊤
k−1 | Ftk−1

]) Tr(BEθ0
[βk−1β

⊤
k−1 | Ftk−1

]).

Proof We start with

Eθ0
[α⊤

k−1Aαk−1β
⊤
k−1Bβk−1 | Ftk−1

] =

d∑
i,j,l,m=1

AijBlmEθ0
[α

(i)
k−1α

(j)
k−1β

(l)
k−1β

(m)
k−1 | Ftk−1

]

=

d∑
i,j,l,m=1

AijBlm cov(α
(i)
k−1α

(j)
k−1, β

(l)
k−1β

(m)
k−1) (S14)

+

d∑
i,j,l,m=1

AijBlmEθ0 [α
(i)
k−1α

(j)
k−1 | Ftk−1

]Eθ0 [β
(l)
k−1β

(m)
k−1 | Ftk−1

].

We compute (S14) using the formula for the covariance of products of centered Gaussian random variables (Bohrnstedt
and Goldberger, 1969). Then we get

Eθ0
[α⊤

k−1Aαk−1β
⊤
k−1Bβk−1 | Ftk−1

] =

d∑
i,j,l,m=1

AijBlmEθ0
[α

(i)
k−1β

(l)
k−1 | Ftk−1

]Eθ0
[α

(j)
k−1β

(m)
k−1 | Ftk−1

]

+

d∑
i,j,l,m=1

AijBlmEθ0
[α

(i)
k−1β

(m)
k−1 | Ftk−1

]Eθ0
[α

(j)
k−1β

(l)
k−1 | Ftk−1

]

+

d∑
i,j,l,m=1

AijBlmEθ0 [α
(i)
k−1α

(j)
k−1 | Ftk−1

]Eθ0 [β
(l)
k−1β

(m)
k−1 | Ftk−1

]

= 2

d∑
i,j=1

AijBijEθ0 [α
(i)
k−1β

(i)
k−1 | Ftk−1

]Eθ0 [α
(j)
k−1β

(j)
k−1 | Ftk−1

]

+

d∑
i,j=1

AiiBjjEθ0
[α

(i)
k−1α

(i)
k−1 | Ftk−1

]Eθ0
[β

(j)
k−1β

(j)
k−1 | Ftk−1

].

That concludes the proof.

Applying the previous Lemma to our setup, corollary S1.4 follows immediately.

Corollary S1.4 Let (ηk)
N
k=1, (ξk)Nk=1, (ξ′k)

N
k=1 be random sequences as defined in (61) and (62). Let Bj1 and Bj2 be

two symmetric positive definite matrices. Then, it holds:

Eθ0 [η
⊤
k−1Bj1ηk−1η

⊤
k−1Bj2ηk−1 | Ftk−1

] = 2Tr(Bj1Bj2) + TrBj1 TrBj2 , (S15)

Eθ0 [ξ
⊤
k−1Bj1ξk−1ξ

⊤
k−1Bj2ξk−1 | Ftk−1

] =
2

9
Tr(Bj1Bj2) +

1

9
TrBj1 TrBj2 , (S16)

Eθ0 [ξ
′⊤
k−1Bj1ξ

′
k−1ξ

′⊤
k−1Bj2ξ

′
k−1 | Ftk−1

] =
2

9
Tr(Bj1Bj2) +

1

9
TrBj1 TrBj2 , (S17)

Eθ0 [ξ
⊤
k−1Bj1ξk−1ξ

′⊤
k−1Bj2ξ

′
k−1 | Ftk−1

] =
1

18
Tr(Bj1Bj2) +

1

9
TrBj1 TrBj2 . (S18)

Proof of Lemma 3.4 To prove the lemma, we need to compute λ
[obj]
N . The main part of the proof focuses only on the

rough estimators, while at the end of the proof we discuss how the same ideas can be adapted for other estimators. Thus,
we start with − 1√

Nh
∂β(i)L[·R]

N :

− 1√
(N − 1)h

∂β(i)L[CR]
N (Y0:tN ;θ) =

2√
N − 1

N∑
k=1

η⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1∂β(i)F(Ytk−1

;β)

9
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+ 2

√
h

N − 1

N∑
k=1

∂β(i)F(Ytk−1
;β)⊤(ΣΣ⊤)−1(F(Ytk−1

;β0)− F(Ytk−1
;β))

+

√
h

N − 1

N∑
k=1

η⊤
k−1Σ

⊤
0 Dv∂β(i)F(Ytk−1

;β)⊤(ΣΣ⊤)−1Σ0ηk−1 −
√

h

N − 1

N∑
k=1

TrDv∂β(i)F(Ytk ;β),

− 1√
(N − 2)h

∂β(i)L[PR]
N (Y0:tN ;θ) =

2√
N − 2

N−1∑
k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1∂β(i)F(Ytk−1

;β)

+ 2

√
h

N − 2

N−1∑
k=1

∂β(i)F(Ytk−1
;β)⊤(ΣΣ⊤)−1(F(Ytk−1

;β0)− F(Ytk−1
;β))

+

√
h

N − 2

N−1∑
k=1

(Uk,k−1 + 2ξk−1)
⊤Σ⊤

0 Dv∂β(i)F(Ytk−1
;β)⊤(ΣΣ⊤)−1Σ0Uk,k−1

−
√

h

N − 2

N−1∑
k=1

TrDv∂β(i)F(Ytk ;β).

Similarly, for − 1√
N
∂σ(j)L[·R]

N , we get:

− 1√
(N − 1)

∂σ(j)L[CR]
N (Y0:tN ;θ) = − 1√

N − 1

N∑
k=1

Tr((ΣΣ⊤)−1∂σ(j)ΣΣ⊤)

+
1√

N − 1

N∑
k=1

η⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j)ΣΣ⊤)(ΣΣ⊤)−1Σ0ηk−1

+ 2

√
h

N − 1

N∑
k=1

η⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j)ΣΣ⊤)(ΣΣ⊤)−1(F(Ytk−1

;β0)− F(Ytk−1
;β))

+

N∑
k=1

R(
h√
N

,Ytk−1
),

− 1√
(N − 2)

∂σ(j)L[PR]
N (Y0:tN ;θ) = − 2

3
√
N − 2

N−1∑
k=1

Tr((ΣΣ⊤)−1∂σ(j)ΣΣ⊤)

+
1√

N − 2

N−1∑
k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j)ΣΣ⊤)(ΣΣ⊤)−1Σ0Uk,k−1

+ 2

√
h

N − 2

N−1∑
k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j)ΣΣ⊤)(ΣΣ⊤)−1(F(Ytk−1

;β0)− F(Ytk−1
;β))

+

N−1∑
k=1

R(
h√
N

,Ytk−1
).

To prove the convergence in distribution of λ[·R]
N , we introduce the following triangular arrays that arise from the

previous calculations:

ϕ
[CR](i)
N,k−1 (θ0) :=

2√
N − 1

η⊤
k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−1

) (S19)

+

√
h

N − 1
(Tr(Σ0ηk−1η

⊤
k−1Σ

⊤
0 Dv∂β(i)F0(Ytk−1

)⊤(ΣΣ⊤
0 )

−1)− TrDv∂β(i)F0(Ytk−1
)),

ϕ
[PR](i)
N,k−1 (θ0) :=

2√
N − 2

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−1

) (S20)

+

√
h

N − 2
(Tr(Σ0Uk,k−1(Uk,k−1 + 2ξ′k−1)

⊤Σ⊤
0 Dv∂β(i)F0(Ytk−1

)⊤(ΣΣ⊤
0 )

−1)− TrDv∂β(i)F0(Ytk)),

10
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ρ
[CR](j)
N,k−1 (θ0) :=

1√
N − 1

(η⊤
k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1(∂σ(j)ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1Σ0ηk−1 − Tr((ΣΣ⊤
0 )

−1∂σ(j)ΣΣ⊤
0 )), (S21)

ρ
[PR](j)
N,k−1 (θ0) :=

1√
N − 2

(U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1(∂σ(j)ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1Σ0Uk,k−1 −
2

3
Tr((ΣΣ⊤

0 )
−1∂σ(j)ΣΣ⊤

0 )).

(S22)

Then, λ[·R]
N rewrites as:

λ
[·R]
N =

N∑
k=1



ϕ
[·R](1)
N,k−1(θ0)

...
ϕ

[·R](r)
N,k−1(θ0)

ρ
[·R](1)
N,k−1(θ0)

...
ρ
[·R](s)
N,k−1(θ0)


+

1

N

N∑
k=1

R(
√
Nh2,Ytk−1

). (S23)

Thus, to establish estimators’ asymptotic normality, we need an extra convergence condition Nh2 → 0. This is common
in literature, and it is necessary for most estimators.

To finish the proof, we apply the central limit theorem for martingale difference arrays (Proposition 3.1 in Crimaldi and
Pratelli (2005)). However, we can not apply the same reasoning in complete and partial observation cases.

First, we notice that in both complete and partial cases, ϕ[·R](i)
N,k−1(θ0) and ρ

[·R](j)
N,k−1(θ0) are centered conditionally to

Ftk−1
. Moreover, in the complete case, ϕ[CR](i)

N,k−1 (θ0) and ρ
[CR](j)
N,k−1 (θ0) are adapted to the filtration Ftk . Thus, the proof

follows directly by applying Proposition 3.1 in Crimaldi and Pratelli (2005). This proposition assumes a martingale
difference array centered conditionally to Ftk−1

and Ftk -measurable.

In the partial observation case, Uk,k−1 is Ftk+1
-measurable as it depends on random variables ξk−1 and ξ′k. Conse-

quently, to apply Proposition 3.1 in Crimaldi and Pratelli (2005), it is not enough for ϕ[PR](i)
N,k−1 (θ0) and ρ

[PR](j)
N,k−1 (θ0) to

be centered conditionally to Ftk−1
, they also need to be centered conditionally to Ftk . The previous condition, however,

does not hold. Thus, we use the idea of reordering the sum in λ
[PR]
N (S23) to obtain the Ftk -measurable and centered

conditionally on Ftk−1
, as proposed by Gloter (2000, 2006) and later used by Samson and Thieullen (2012).

First, use Lemma 9 from Genon-Catalot and Jacod (1993) to notice that:
N−1∑
k=1

ϕ
[PR](i)
N,k−1 (θ0) =

2√
N − 2

N−1∑
k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−1

) + oPθ0
(1).

Then, reorder the sum of ϕ[PR](i)
N,k−1 (θ0) as follows:

N−1∑
k=1

ϕ
[PR](i)
N,k−1 (θ0) =

2√
N − 2

(
ξ⊤0 Σ

⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Yt0) + ξ′⊤N−1Σ

⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(YtN−2

)
)

+
2√

N − 2

N−1∑
k=2

(
ξ⊤k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−1

) + ξ′⊤k−1Σ
⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−2

)
)
+ oPθ0

(1)

=
2√

N − 2

N−1∑
k=2

(
ξ⊤k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−1

) + ξ′⊤k−1Σ
⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−2

)
)
+ oPθ0

(1).

Now, the triangular arrays under the sum are centered conditionally on Ftk−1
and Ftk measurable. Thus, define:

ϕ
⋆[PR](i)
N,k−1 (θ0) :=

2√
N − 2

(
ξ⊤k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−1

) + ξ′⊤k−1Σ
⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−2

)
)
.

To apply Proposition 3.1 from Crimaldi and Pratelli (2005), we need the following limits in probability:

N−1∑
k=2

Eθ0
[ϕ

⋆[PR](i1)
N,k−1 (θ0)ϕ

⋆[PR](i2)
N,k−1 (θ0) | Ftk−1

]
Pθ0−−→ 4[Cβ(θ0)]i1i2 ,

11
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N−1∑
k=2

Eθ0
[(ϕ

⋆[PR](i1)
N,k−1 (θ0)ϕ

⋆[PR](i2)
N,k−1 )2(θ0) | Ftk−1

]
Pθ0−−→ 0.

The first limit follows from properties (66) and (67). The second limit follows due to an additional order of 1/N .

When looking at ρ[·R](j)
N,k−1, we repeat the same reasoning. For notational simplicity, start with defining:

Bj(θ0) := Σ0(ΣΣ⊤
0 )

−1(∂σ(j)ΣΣ⊤
0 )(ΣΣ⊤

0 )
−1Σ0.

It follows immediately that Tr(Bj(θ0)) = Tr((ΣΣ⊤
0 )

−1∂σ(j)ΣΣ⊤
0 ). Again, reorder the sum of ρ

[PR](j)
N,k−1 (θ0) as

follows:
N−1∑
k=1

ρ
[PR](j)
N,k−1 (θ0) =

1√
N − 2

N−1∑
k=1

(U⊤
k,k−1Bj(θ0)Uk,k−1 −

2

3
Tr(Bj(θ0)))

=
1√

N − 2

N−1∑
k=2

(
ξ⊤k−1Bj(θ0)ξk−1 + 2ξ⊤k−2Bj(θ0)ξ

′
k−1 + ξ′⊤k−1Bj(θ0)ξ

′
k−1 −

2

3
Tr(Bj(θ0))

)
+

1√
N − 2

(
ξ⊤0 Bj(θ0)ξ0 + 2ξ⊤N−2Bj(θ0)ξ

′
N−1 + ξ′⊤N−1Bj(θ0)ξ

′
N−1 −

2

3
Tr(Bj(θ0))

)
.

Since the last term in the previous equation is oPθ0
(1), we focus only on:

ρ
⋆[PR](j)
N,k−1 (θ0) :=

1√
N − 2

(
ξ⊤k−1Bj(θ0)ξk−1 + 2ξ⊤k−2Bj(θ0)ξ

′
k−1 + ξ′⊤k−1Bj(θ0)ξ

′
k−1 −

2

3
Tr(Bj(θ0))

)
.

Notice that ρ⋆[PR](j)
N,k−1 (θ0) is Ftk measurable and centered conditionally on Ftk−1

. Again, to apply Proposition 3.1 from
Crimaldi and Pratelli (2005), we need the following limits in probability:

N−1∑
k=2

Eθ0
[ρ

⋆[PR](j1)
N,k−1 (θ0)ρ

⋆[PR](j2)
N,k−1 (θ0) | Ftk−1

]
Pθ0−−→ [Cσ(θ0)]j1j2 ,

N−1∑
k=2

Eθ0 [(ρ
⋆[PR](j1)
N,k−1 (θ0)ρ

⋆[PR](j2)
N,k−1 )2(θ0) | Ftk−1

]
Pθ0−−→ 0.

Once again, the second limit follows trivially. To prove the first limit, start by noticing that:

Eθ0 [ξ
⊤
k−1Bj(θ0)ξk−1 | Ftk−1

] = Eθ0 [ξ
′⊤
k−1Bj(θ0)ξ

′
k−1 | Ftk−1

] =
1

3
Tr(Bj(θ0)).

Then, we multiply the expectation with N − 2 for notational simplicity and compute:

(N − 2)Eθ0
[ρ

⋆[PR](j1)
N,k−1 (θ0)ρ

⋆[PR](j2)
N,k−1 (θ0) | Ftk−1

]

= Eθ0
[ξ⊤k−1Bj1(θ0)ξk−1ξ

⊤
k−1Bj2(θ0)ξk−1 | Ftk−1

] + 4Eθ0
[ξ⊤k−2Bj1(θ0)ξ

′
k−1ξ

⊤
k−2Bj2(θ0)ξ

′
k−1 | Ftk−1

]

+ Eθ0 [ξ
′⊤
k−1Bj1(θ0)ξ

′
k−1ξ

′⊤
k−1Bj2(θ0)ξ

′
k−1 | Ftk−1

] + Eθ0 [ξ
⊤
k−1Bj1(θ0)ξk−1ξ

′⊤
k−1Bj2(θ0)ξ

′
k−1 | Ftk−1

]

+ Eθ0 [ξ
′⊤
k−1Bj1(θ0)ξ

′
k−1ξ

⊤
k−1Bj2(θ0)ξk−1 | Ftk−1

]− 4

9
Tr(Bj1(θ0)) Tr(Bj2(θ0)). (S24)

Applying Corollary S1.4 on (S24) yields:
N−1∑
k=2

Eθ0
[ρ

⋆[PR](j1)
N,k−1 (θ0)ρ

⋆[PR](j2)
N,k−1 (θ0) | Ftk−1

] =
5

9
Tr(Bj1(θ0)Bj2(θ0))

+
4

3

1

N − 2

N−1∑
k=2

ξ⊤k−2Bj1(θ0)Bj2(θ0)ξk−2.

Once again, applying Proposition 3.1 from Crimaldi and Pratelli (2005) yields:

4

3

1

N − 2

N−1∑
k=2

ξ⊤k−2Bj1(θ0)Bj2(θ0)ξk−2

Pθ0−−→ 4

9
Tr(Bj1(θ0)Bj2(θ0)),

12
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since

1

N − 2

N−1∑
k=2

Eθ0
[ξ⊤k−2Bj1(θ0)Bj2(θ0)ξk−2 | Ftk−2

]
Pθ0−−→ 1

3
Tr(Bj1(θ0)Bj2(θ0)),

1

(N − 2)2

N−1∑
k=2

Eθ0
[(ξ⊤k−2Bj1(θ0)Bj2(θ0)ξk−2)

2 | Ftk−2
]

Pθ0−−→ 0.

This concludes the convergence in distribution of λ[PR]
N .

To find the asymptotic distributions of λ[·S|R]
N , the main issue is the fact that − 1√

Nh
∂β(i)L[·S|R]

N → 0 in probability. The

proof of this follows the same ideas as in the proof of consistency. Thus, we focus only on − 1√
N
∂σ(j)L[·S|R]

N . This

is then used together with equations (71) and (74) to obtain the asymptotic distributions of λ[·F]
N . Thus, we start with

− 1√
N
∂σ(j)L[·S|R]

N :

− 1√
(N − 1)

∂σ(j)L[CS|R]
N (Y0:tN ;θ) = − 1√

N − 1

N∑
k=1

Tr((ΣΣ⊤)−1∂σ(j)ΣΣ⊤)

+
3√

N − 1

N∑
k=1

(ηk−1 − 2ξ′k−1)
⊤Σ⊤

0 (ΣΣ⊤)−1(∂σ(j)ΣΣ⊤)(ΣΣ⊤)−1Σ0(ηk−1 − 2ξ′k−1) +

N∑
k=1

R(
h√
N

,Ytk−1
),

− 1√
(N − 2)

∂σ(j)L[PS|R]
N (Y0:tN ;θ) = − 2√

N − 2

N−1∑
k=1

Tr((ΣΣ⊤)−1∂σ(j)ΣΣ⊤)

+
3√

N − 2

N−1∑
k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j)ΣΣ⊤)(ΣΣ⊤)−1Σ0Uk,k−1

− 6

√
h

N − 2

N−1∑
k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j)ΣΣ⊤)(ΣΣ⊤)−1F(Ytk−1

;β0) +

N−1∑
k=1

R(
h√
N

,Ytk−1
).

Once again, we define:

ρ
[CS|R](j)
N,k−1 (θ0) :=

1√
N − 1

(
3(ηk−1 − 2ξ′k−1)

⊤Σ⊤
0 (ΣΣ⊤

0 )
−1(∂σ(j)ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1Σ0(ηk−1 − 2ξ′k−1)

− Tr((ΣΣ⊤
0 )

−1∂σ(j)ΣΣ⊤
0 )

)
, (S25)

ρ
[PS|R](j)
N,k−1 (θ0) :=

3√
N − 2

(U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1(∂σ(j)ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1Σ0Uk,k−1 −
2

3
Tr((ΣΣ⊤

0 )
−1∂σ(j)ΣΣ⊤

0 ))

− 6

√
h

N − 2
U⊤

k,k−1Σ
⊤
0 (ΣΣ⊤)−1(∂σ(j)ΣΣ⊤)(ΣΣ⊤)−1F0(Ytk−1

). (S26)

We skip the proof of the complete case, but it can be shown analogously that:
N∑

k=1

Eθ0
[ρ

[PS|R](j1)
N,k−1 (θ0)ρ

[PS|R](j2)
N,k−1 (θ0) | Ftk−1

]
Pθ0−−→ [Cσ(θ0)]j1j2 ,

N∑
k=1

Eθ0
[(ρ

[PS|R](j1)
N,k−1 (θ0)ρ

[PS|R](j2)
N,k−1 )2(θ0) | Ftk−1

]
Pθ0−−→ 0.

Focusing on the partial case, we first notice:

ρ
[PS|R](j)
N,k−1 (θ0) = 3ρ

[PR](j)
N,k−1 (θ0) + oPθ0

(1).

Thus, the same derivations from before hold. Moreover,

ρ
[PF](j)
N,k−1 (θ0) = 4ρ

[PR](j)
N,k−1 (θ0) + oPθ0

(1),

which concludes the proof.

13


	Introduction
	Problem setup
	Example: The Kramers oscillator
	Hypoellipticity
	Assumptions
	Strang splitting scheme
	Strang splitting estimators
	Complete observations
	Partial observations


	Main results
	Simulation study
	Estimators used in the study
	Trajectory simulation
	Optimization in R
	Results


	Application to Greenland Ice Core Data
	Technical results
	Covariance matrix
	Nonlinear solution
	Random variables
	Objective functions

	Conclusion
	Supplementary Material
	Proofs of results from Section 6
	Proofs from Section 3
	Proof of consistency


