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SYZ AND OPTIMAL TRANSPORT STABILITY OF WEYL

POLYTOPES

THIBAUT DELCROIX AND JAKOB HULTGREN

Abstract. We prove optimal transport stability (in the sense of Andreasson
and the second author) for reflexive Weyl polytopes: reflexive polytopes which

are convex hulls of an orbit of a Weyl group. When the reflexive Weyl polytope
is Delzant, it follows from work of Li, Andreasson, Hultgren, Jonsson, Mazzon,
that the weak metric SYZ conjecture holds for the Dwork family in the cor-
responding toric Fano manifold. In particular, we show that the weak metric
SYZ conjecture holds for centrally symmetric smooth Fano toric manifolds.

1. Introduction

In this note, we observe that the optimal transport plan, with respect to the am-
bient duality bracket, between two measures invariant under a pair of dual oriented
hyperplane reflections, must be supported on the union of corresponding positive
half-spaces. Our goal is then to apply this simple observation to prove the weak
metric SYZ conjecture for certain hypersurfaces in toric Fano manifolds which ad-
mit a large group of torus equivariant automorphism, by applying the results of
Yang Li [Li23, Li22, Li24], Andreasson, Hultgren, Jonsson, Mazzon, McCleerey
[HJMM24, AH23, AHJ+24].

This group of torus equivariant automorphisms acts on the associated character
latticeM , and on the associated vector spaceMR. A reflection point group (a group
generated by linear reflections) which preserves a lattice is called cristallographic,
and is the Weyl group of a root system [Bou07, Chapitre VI, § 2, n°5], as follows
from the classification of discrete reflection groups by Coxeter [Cox34]. We consider
reflexive polytopes which are vertex-transitive under such a reflection point group
(necessarily cristallographic). Such polytopes are called Weyl Polytopes and our
main result establishes optimal transport stability for such polytopes (see [AH23]).

In addition, the arguments give enough control of the optimal transport map that
the arguments for regularity in [AH23, Theorem 3] and [AHJ+24] can be applied.
Consequently, the solution is smooth and satisfies a global C1,α-bound away from
a co-dimension 2 set.

Theorem 1.1. A reflexive Weyl polytope is optimal transport stable. Consequently,
it admits (along with its dual) a solution to the real Monge-Ampère equation on its
boundary. Moreover the solution on the Weyl polytope is smooth and satisfy a global
C1,α-bound away from a piecewise affine set of co-dimension 2 and the solution on
its dual is smooth and satisfy a global C1,α-bound on the open faces.
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Although reflexive polytopes in general have few symmetries, we highlight several
infinite families of examples of Weyl polytopes from [VK85, MR23]. For illustration,
consider the Gorenstein toric Fano variety Xd given by the face fans of the polytope

∆∨
d = Conv{±e0, . . . ,±ed,±

d∑
j=0

ej}

for d ≥ 2. Then the moment polytope ∆d of Xd (which is the polytope dual to
∆∨

d ) is a Weyl polytope for the root system Ad. If d is even, then ∆d is Delzant
or, equivalently, Xd is smooth. Recall that a toric variety X is centrally symmetric
if there exists a torus-equivariant automorphism σ of X which restricts to the
inversion on the open-dense torus orbit. By [VK85, Theorem 6], a smooth and
Fano centrally symmetric toric variety is a product of varieties of the form Xd with
d even, or P1.

Any toric Fano variety X has a special family of Calabi-Yau hypersurfaces given
by

Yt = {f0 + t
∑

fm = 0}

where d+1 is the dimension of X , f0 is the unique (C∗)d+1 invariant anti-canonical
section and the sum is taken over the anti-canonical sections corresponding to
the vertices of the moment polytope of X . Extending terminology from the case
Y = Pd+1, we will refer to this family as the Dwork family in Y . As a consequence
of our main result, we obtain for example the following:

Corollary 1.2. The weak metric SYZ conjecture holds for the Dwork family in
centrally symmetric smooth Fano toric manifolds, in other words, for each δ > 0,
there is t0 > 0 such that if t < t0, then Yt admits a special Lagrangian torus fibration
on a subset of relative volume (1− δ).

In addition to this, we determine precisely which three dimensional reflexive
polytopes are Weyl polytopes. In conjunction with Yang Li’s sufficient condition
(see [Li24]), we deduce that, among three dimensional reflexive polytopes with au-
tomorphism group of order strictly larger than 8, only three may not satisfy optimal
transport stability: polytopes number 3036, 735 (wich are dual to each other) and
2355 (which, incidentally, is not Kähler-Einstein). The numbers here and in the
body of the paper refer to the identifier of a three-dimensional reflexive polytope
as classified by Kreuzer and Skarke [KS97, KS98], as encoded in Kasprzyk’s grdb
database [Kas10, Kas] of canonical Fano polytopes (reflexive polytopes are canon-
ical). Note that the numbering starts at 1 instead of 0 so that polytope number 1
is the (dual of the moment) polytope of P3.

Acknowledgements. The first author is partially funded by ANR-21-CE40-0011
JCJC project MARGE. The second author is partially funded by the Swedish Re-
search Council Starting Grant 2023-05485. The first author thanks Pierre-Louis
Montagard for various discussions related to [MR09] and [MR23]. The second au-
thor thanks Rolf Andreasson, Mattias Jonsson, Yang Li, Enrica Mazzon and Nick
McCleerey for many discussions on the subject.
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2. Reflexive Weyl polytopes

2.1. Reflexive polytopes. We fixM ≃ Z
d+1 a lattice, we denote byN = hom(M,Z)

the dual lattice, and we let MR = M ⊗ R and NR = N ⊗ R be the associated real
vector spaces. We denote by 〈·, ·〉 : MR ×NR → R the duality bracket.

A lattice polytope ∆ ⊂ MR is the convex hull of a finite set of elements of M .
We denote by V (∆) the set of vertices of ∆. If 0 ∈ Int(∆), the dual polytope ∆∨

is the convex polytope in NR defined by

∆∨ = {n ∈ NR | ∀m ∈ V (∆), 〈m,n〉 ≤ 1}

Given m ∈ V (∆), we denote by

τm = {n ∈ ∆∨ | 〈m,n〉 = 1}

the facet of ∆∨ defined by m. We also let Star(m) be the closed star of m, that is,
the union of all closed faces of ∂∆ containing m.

+

•
m

∆

Star(m)

+

∆∨

τm

Definition 2.1. A lattice polytope ∆ ⊂ MR is reflexive if it contains the origin in
its interior and its dual ∆∨ is also a lattice polytope.

Finally, let us highlight the sufficient condition of optimal transport stability
obtained by Yang Li [Li24] for future reference.

Definition 2.2. We say that a reflexive polytope ∆ satisfies the vertex condition
if for every pair (m,n) where m is a vertex of ∆ and n is a vertex of ∆∨, one has

〈m,n〉 6= 0

2.2. Weyl polytopes. We recall basic definitions and properties of root systems,
using [Bou07, Chapitre VI] as a reference, and introduce Weyl polytopes.

Definition 2.3. A set Φ is a root system in MR if

(1) 0 /∈ Φ ⊂ MR,
(2) Φ spans MR as a vector space,
(3) for every α ∈ Φ, there exists an α∨ ∈ NR such that 〈α, α∨〉 = 2, the

reflection σα : m 7→ m − 〈m,α∨〉α sends Φ to Φ, and for any α ∈ Φ,
α∨(Φ) ⊂ Z.

We denote the group generated by the σα by W = W (Φ), it is called the Weyl
group of the root system. The α∨ are uniquely determined, they form the dual root
system Φ∨ ⊂ NR, and (α∨)∨ = α. The Weyl group W∨ of the root system Φ∨
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Figure 1. Weyl polytopes for the root system B2

+

∆

+ +

is isomorphic to W via σα 7→ σα∨ , and this correspondence preserves the duality
bracket: for any m ∈ MR and n ∈ NR, we have 〈σα(m), n〉 = 〈m,σα∨(n)〉.

Let S = {α1, · · · , αd+1} ⊂ Φ denote a set of simple roots, that is, such that each

α ∈ Φ writes as
∑d+1

i=1 xiαi with either all 0 ≤ xi ∈ Z or all 0 ≥ xi ∈ Z. It always
exists, and W acts simply transitively on the set of sets of simple roots. Given a
fixed choice of S, we define:

Definition 2.4. The positive Weyl chamber C+
M in MR is the set

C+
M = {m ∈ MR | ∀α ∈ S, 〈m,α∨〉 ≥ 0}.

The positive dual Weyl chamber C+
N in NR is the set

C+
N = {n ∈ NR | ∀α ∈ S, 〈α, n〉 ≥ 0}.

Example 2.5. The figure below represents the root system B2. The roots are the
ends of the arrows, the two positive roots α1 and α2 are indicated, and the positive
Weyl chamber is indicated in dashed lines. The Weyl group of this root system is
the dihedral group of order 8 which is the group of isometries of a square.

α1

α2

Proposition 2.6. [Bou07, Chapitre VI, §1, n°5] The positive Weyl chamber is a
fundamental domain for the action of W on MR.

Definition 2.7. Given m ∈ MR, the polytope

∆W (m) := Conv{w ·m | w ∈ W}

is called the Weyl polytope associated with m. We denote by ∆∨
W (m) the polytope

dual to ∆W (m)

Examples of Weyl polytopes for the root system B2 are given in Figure 1. Note
that, since C+

M is a fundamental domain for the action of W on MR, any Weyl

polytope has a vertex in C+
M , and we may always assume that m ∈ C+

M . However,
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this vertex can (and will often in our examples) be on the boundary of C+
M . Note

also that, although aWeyl polytope always contains the origin in its relative interior,
in general, the dual of a Weyl polytope is not a Weyl polytope.

The weight lattice Λw ⊂ MR is the set of elements m ∈ MR such that for any
α ∈ Φ, 〈m,α∨〉 ∈ Z. The fundamental weights are the elements of the dual basis
(ω1, . . . , ωd+1) of the basis of simple coroots (α∨

1 , . . . , α
∨
d+1). They generate the

lattice Λw. The root lattice Λr ⊂ MR is the lattice generated by Φ. We fix a root
system Φ in MR, with the additional condition that Λr ⊂ M ⊂ Λw.

We will be interested in Weyl polytopes which are reflexive, and we will exhibit
several families of examples.

Proposition 2.8. If m ∈ M∩C+
M , then ∆W (m) is a W -invariant, vertex-transitive

lattice polytope which contains the origin in its interior. Furthermore,

∂∆W (m) ∩ C+
M ⊂ Star(m)

The dual ∆∨
W (m) is invariant under the action of W∨, and the action induced

by W∨ on facets of ∆∨
W (m) is transitive. Furthermore,

∂∆∨
W (m) ∩C+

N ⊂ τm

Proof. Most properties follow readily from the definition, and the fact that C+
M

is a fundamental domain for the action of W . Let us expand on the properties
∂∆W (m) ∩ C+

M ⊂ Star(m) and ∂∆∨
W (m) ∩ C+

N ⊂ τm. For this, we rely on [MR23,
Section 4] who provide a precise description of ∆∨

W (m).
Set L = {i | 〈α∨

i ,m〉 = 0}. Let WL be the subgroup of W generated by the
reflections σαi

, for i ∈ L. Then the vertices of τm are on the extremal rays of the
cone

CL =
⋃

w∈WL

w · C+
N

and each extremal ray does contain a vertex. Since CL contains C+
N , we obtain the

property ∂∆∨
W (m) ∩ C+

N ⊂ τm.
As another consequence, by vertex transitivity on ∆W (m), any vertex of ∆∨

W (m)
is of the form w(ω∨

i ) for some w ∈ W and some fundamental coweight ω∨
i . Fur-

thermore, if n ∈ V (∆∨
W (m)) \ V (τm), then w is a non-trivial element of the Weyl

group.
Let us now prove that ∂∆W (m) ∩ C+

M ⊂ Star(m) by contradiction. Assume

that there exists a x ∈ C+
M ∩ ∂ such that x /∈ Star(m). Then by the above there

exists a non-trivial w ∈ W , an i ∈ {1, . . . , d + 1}, and a constant c > 0 such
that w(ω∨

i )(p) ≤ c for p ∈ ∆W (m), and w(ω∨
i )(x) = c. Since w is non-trivial,

w(ω∨
i ) /∈ C+

N , so there exists α ∈ S with w(ω∨
i )(α) < 0. Since ∆W (m) is W -stable,

σα(x) ∈ ∆W (m), and by convexity, tx+(1−t)σα(x) = x−(1−t)〈x, α∨〉α ∈ ∆W (m)
for all t ∈ [0, 1]. Now,

w(ω∨
i )(tx + (1− t)σα(x)) = w(ω∨

i )(x)− (1− t)〈x, α∨〉w(ω∨
i )(α)

= c− (1− t)〈x, α∨〉w(ω∨
i )(α)

> c

for t < 1, since x ∈ C+
M and w(ω∨

i )(α) < 0. This contradicts that w(ω∨
i )(p) ≤ c for

p ∈ ∆W (m). �
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Table 1. Montagard-Rittatore polytopes ∆W (m)

Type dimension m = variety smooth?

An n ≥ 1 (n+ 1)ω1 Pn Yes
An n ≥ 2 ω1 + ωn

A2k+1 k ≥ 1 2ωk+1 V2k+1

A2k k ≥ 2 (2k + 1)(ωk + ωk+1) V2k Yes
Bn n ≥ 2 ω1

Bn n ≥ 2 2ωn (P1)n Yes
Cn n ≥ 3 2ω1

Cn n ≥ 3 ω2

Dn n ≥ 4 2ω1

Dn n ≥ 4 ω2

E6 6 ω2

F4 4 ω4

G2 2 ω2 V2 Yes

2.3. Infinite families of examples. In [MR23], Montagard and Rittatore classi-
fied the reflexive Weyl polytopes when Φ is an irreducible root system and M = Λr,
obtaining eleven infinite families of examples plus some exceptional cases. In partic-
ular, they recover the smooth examples, which were previously classified by Voskre-
senskij and Klyachko in [VK85]. Using Bourbaki’s standard ordering of roots, the
families are summarized in Table 1.

Example 2.9. The variety Vn (corresponding to types An andG2), which is smooth
for even n and singular for odd n, is a toric variety which is isomorphic in codi-
mension 1 to the blow up of (P1)n at two points, and which may be described
(alternatively from the description of its moment polytope ∆ as in the table), as
the Gorenstein toric Fano variety such that ∆∨ is the convex hull

∆∨ = Conv{±e1, . . . ,±en,±(e1 + · · ·+ en)}

where e1, . . . , en is a basis of N . Note that all the points we take the convex hull
of turn out to be vertices of the polytope. Note that ∆, and not in general ∆∨, is
a Weyl polytope.

Let us describe one vertex of ∆ in this description. For this, consider the dual
basis e∗1, . . . , e

∗
n ofM , and the element e∗1+· · ·+e∗⌊n/2⌋−e∗⌊n/2⌋+1−· · · e∗n. One checks

readily that the duality bracket between this element and the vertices of ∆∨ is al-
ways less than 1, with equality exactly for the vertices e1, . . . , e⌊n/2⌋,−e⌊n/2⌋+1, . . . ,−en
if n is even, and the same vertices plus the vertex−e1−· · ·−e⌊n/2⌋+e⌊n/2⌋+1+· · ·+en
if n is odd. In case n is even, we have

〈e∗1 + · · ·+ e∗⌊n/2⌋ − e∗⌊n/2⌋+1 − · · · e∗n, e1 + · · ·+ en〉 = 0

so that the vertex condition is not satisfied.

2.4. Examples in low dimensions. In dimension 1, there is only one reflexive
polytope, the moment polytope of P1, which is indeed a Weyl polytope for the root
system A1.

In dimension 2, among the 16 reflexive polytopes, five are reflexive Weyl poly-
topes. These are the moment polytope of P2 and its dual, the moment polytope
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of P1 × P1 and its dual, and the moment polytope of the blow up of P2 at three
points, which coincides with the variety V2 defined in the previous section. Note
that they are all smooth. As noted before, the polytope of V2 does not satisfy the
vertex condition.

In dimension 3, we determine the Weyl polytopes and their dual as follows,
using the classification of three-dimensional reflexive polytopes by Kreuzer and
Skarke [KS97, KS98], as enumerated in Kasprzyk’s grdb database [Kas10, Kas] of
canonical Fano polytopes by reflexive ID.

Proposition 2.10. All 3-dimensional reflexive Weyl polytopes have automorphism
group of order strictly larger than 8. Furthermore, there are only 5 reflexive 3-
dimensional polytopes with automorphism group of order larger than 8 that are not
Weyl polytopes or dual of Weyl polytopes: polytopes number 735, 3036, 2355, 156
and 4249. Among these 5, only the last 2 satisfy the vertex condition.

Proof. In dimension 3, the possible root systems that can be used to construct Weyl
polytopes are A3, B3, C3, and products of lower rank root systems. In particular,
their automorphism group is of order at least 8 (and if it is equal to 8, the root
system is (A1)

3). Furthermore, by symmetry, the barycenter of a Weyl polytope is
the origin. This narrows down the list of candidates to 28.

It is not hard to check that the nine polytopes whose automorphism group have
order eight are not Weyl polytopes. Indeed, polytopes 9 and 3314 are simplices
hence they cannot be Weyl polytopes or dual of Weyl polytopes for (A1)

3. Polytopes
number 199, 3416, 2131, 610 are obviously not vertex transitive since for some but
not all of their vertices, the opposite lattice point is also a vertex. As a consequence,
they cannot be Weyl polytopes, and since their dual is in the same list, they cannot
be dual to Weyl polytopes. Polytope 1324 is not facet transitive (some facets have
four vertices and some have three), and self-dual, so it cannot be a Weyl polytope
or its dual. Finally, polytope 4167 is dual to polytope 25, and one can check that
their automorphism group is not abelian (which would be the case for the Weyl
group of (A1)

3, already of order 8). Apart from the two simplices, none of these
polytopes satisfy the vertex condition.

The four polytopes with automorphism group of order 12 are Weyl polytopes or
the dual of a Weyl polytope for the product root system A1 × A2. The polytope
number 4287 is the moment polytope of the smooth threefold P1×P2, it is a reflexive
Weyl polytope, whose dual is the polytope number 5. The polytope number 776 is
the product of the moment polytope of P1 with the dual of the moment polytope
of P2. It is a reflexive Weyl polytope whose dual polytope is the polytope number
769.

There are 4 polytopes with automorphism group of order 16. The polytopes
number 3036 and 735 are dual to each other, and none of the two are facet-transitive,
so none are Weyl polytopes. Furthermore, they do not satisfy the vertex condition.
On the other hand, polytope number 2078 is the product of the moment polytope
of P1 with the polytope dual to the moment polytope of P1×P1, and it is a reflexive
Weyl polytope for the root system A1 × B2 (or, also, (A1)

3). Its dual is polytope
number 510.

The five polytopes with automorphism group of order 24 all appear as Weyl
polytopes or duals of Weyl polytopes. Polytope number 3875 is the moment poly-
tope of P1 × V2, a Weyl polytope for the root system A1 ×G2 or A1 ×A2, and its
dual is polytope number 219. Note that these polytopes do not satisfy the vertex
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condition. Polytope number 4312 is the moment polytope of P3, a Weyl polytope
for the root system A3, and its dual is polytope number 1. The fifth polytope,
numbered 428, is a self-dual reflexive polytope. It appears as a Weyl polytope in
[MR09] as the regular simplex S3

2 .
Finally, the six polytopes with automorphism group of order 48 all appear as

Weyl polytopes from [MR23] or their duals. Polytope number 1530 is the Weyl
polytope ∆W (ω1 + ω3) for the root system A3, or the Weyl polytope ∆W (ω2) for
the root system C3. Its dual is polytope number 2356. These two polytopes do not
satisfy the vertex condition. Polytope number 3350 is the Weyl polytope ∆W (2ω2)
for the root system A3, or the Weyl polytope ∆W (2ω1) for the root system C3. Its
dual is polytope number 198. Finally, polytope number 31 is the moment polytope
of (P1)3. It is the Weyl polytope ∆W (ω1) for the root system B3 (or also a Weyl
polytope for the root systems (A1)

3 or A1×B2). Its dual is polytope number 4251,
which is as well a Weyl polytope: ∆W (2ω3) for the root system B3.

To prove the second part of the statement, we observe that there are only three
reflexive polytopes with automorphism goup of order strictly larger than 8 and
barycenter different from the origin. These are polytopes number 156 and 4249,
which satisfy the vertex condition, and polytope number 2355, which does not
satisfy the vertex condition. �

3. Optimal transport stability of reflexive Weyl polytopes

3.1. Reflections and optimal transport. We consider a (linear) reflection σ
of MR, that is, an isomorphism MR → MR which is an involution, and leaves
stable a linear hyperplane H ⊂ MR. For consistency with the previous section, we
introduce a root formalism. Let α be an eigenvector for the eigenvalue −1, which is
well-defined up to multiple, and let α∨ be the element of NR such that 〈h, α∨〉 = 0
for h ∈ H , and 〈α, α∨〉 = 2. Then for m ∈ MR, we can write

(1) σ(m) = m− 〈m,α∨〉α

Furthermore, σ defines a corresponding reflection σ∨ of NR, obtained by exchanging
the roles of α and α∨, such that for n ∈ NR, σ

∨(n) = n− 〈α, n〉α∨.
We consider a (convex) polytope ∆ ⊂ MR containing the origin, and stable under

σ. Then the dual polytope ∆∨ ⊂ NR is stable under σ∨.
We further consider finite measures µ on ∂∆ and ν on ∂∆∨ which are respectively

σ and σ∨ invariant. We consider a (σ, σ∨)-invariant optimal transport plan from µ
to ν, for the cost function

c : ∂∆× ∂∆∨ → R, (m,n) 7→ −〈m,n〉

This means the transport plan is a (σ, σ∨)-invariant minimizer of

γ 7→

∫
∂∆×∂∆∨

cγ

and, consequently, that the support of the transport plan is c-cyclically monotone,
i.e.

c(m1, n1) + . . . + c(mk, nk)− (c(m1, n2) + . . .+ c(mk − 1, nk) + c(mk, n1)) ≤ 0

for all set of pairs (m1, n1), . . . , (mk, nk) in the support of the transport plan.



OPTIMAL TRANSPORT STABILITY OF WEYL POLYTOPES 9

Proposition 3.1. For any (m,n) in the support of a W -invariant optimal transport
plan, we have

〈m,α∨〉〈α, n〉 ≥ 0

Proof. This is a direct consequence of c-cyclical monotonicity. Indeed, by unique-
ness, the transport plan is invariant under the involution (σ, σ∨), so if (m,n) is in
the support of the optimal transport plan, then (σ(m), σ(n)) is as well. Applying
c-cyclical monotonicity to these two points of MR ×NR, we have

c(m,n) + c(σ(m), σ∨(n)) ≤ c(m,σ∨(n)) + c(σ(m), n)

or, by substituting c(·, ·) by −〈·, ·〉 and rearrangeing,

〈m− σ(m), n− σ∨(n)〉 ≤ 0

Going back to the explicit expressions σ, we have

〈m− σ(m), n− σ∨(n)〉 = −〈〈m,α∨〉α, 〈α, n〉α∨〉 = −2〈m,α∨〉〈α, n〉

hence the result. �

3.2. Optimal transport stability of reflexive Weyl polytopes. Given a lat-
tice polytope of dimension d + 1, its integral surface measure is the measure sup-
ported on the open faces of its boundary defined by the following two facts:

• it restricts to a multiple of d-dimensional Lebesgue measure on each open
face

• it assigns volume 1/d! to any simplex spanned by a set of generators of the
sublattice contained in the affine subspace spanned by the open face.

We will use µM to denote the integral surface measure on ∂∆ and νN to denote
the integral surface measure on ∂∆∨. A central point is given by the real Monge-
Ampère equation

Φ : MR → R convex(2)

det(D2Φ|Int ∂∆) = µM

∂Φ(MR) = ∆∨

and its dual

Ψ : NR → R convex(3)

det(D2Ψ|Int ∂∆∨) = νN

∂Ψ(NR) = ∆.

Definition 3.2. A reflexive polytope ∆ is optimal transport stable if there exists
an optimal transport plan from µM to νN which is supported on

(4)
⋃

m∈V (∆)

Star(m)× τm ⊂ MR ×NR

Theorem 3.3. Assume that ∆ is a reflexive Weyl polytope, let W be the corre-
sponding Weyl group and m ∈ C+

M ∩ M be the lattice element used to generate
∆. Then the optimal transport plan for W -invariant measures on ∂∆ and ∂∆∨ is
supported on

(5)
⋃

w∈W

w(Star(m) ∩ C+
M )× w∨(τm ∩ C+

N )
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In particular, ∆ is optimal transport stable, and the corresponding Monge-Ampère
equations (2) and (3) admits solutions, which are smooth everywhere but on a
piecewise affine co-dimension 2 set and a co-dimension 1 set respectively.

Proof. Let γ be a W -invariant optimal transport plan (this always exist since the
optimal transport problem is convex and W -invariant). We will prove that γ is
supported on (5). Let (m,n) be a point in the support of γ. By W -invariance, we
may without loss of generality assume that m ∈ C+

M . For any α ∈ S we have by
Proposition 3.1 that the sign of 〈m,α〉 is the same as the sign of 〈α∨, n〉. Since
m ∈ C+

M we get that n ∈ C+
N , hence that (m,n) lies in (5). By Proposition 2.8 it

follows that γ is supported on (4). It follows by [AH23, Theorem 1] that (2) and
(3) admits solutions and if either ∆ or ∆∨ is Delzant, then the weak metric SYZ
conjecture holds for the Dwork family in the corresponding toric Fano manifold.

In order to get higher regularity, note that µM (C+
M ) = νN (C+

N ). It follows that
the optimal transport problem can be reduced to a collection of planar optimal
transport problems as in [AH23, Theorem 3] and [AHJ+24]. More precisely, let Um

be the relative interior in ∂∆ of ⋃
w

wC+
M

where the union is taken over all w ∈ W such that wC+
N ⊂ τm. Then the restriction

of γ to Um × τm is (after scaling) an optimal transport plan from µM |Um
to νN |τm .

This can be reduced to a planar optimal transport problem (useing the quotient
maps to d-dimensional vector spaces MR → MR/Rm and NR → NR/Rn for some
vertex n ∈ τm). It follows from [Caf92b, Caf92a] that Φ−n is smooth and globally
C1,α on Um. By W -symmetry of Φ the same conclusion holds on⋃

w∈W

wUm

and we get that the c-gradient ∂cΦ : ∂∆ → ∂∆∨ and ∂cΨ : ∂∆∨ → ∂∆ are Hölder
continuous homeomorphisms, one the inverse of the other. From this, it follows
that Φ and Ψ are convex, and hence smooth, when restricted to open faces of ∂∆
and ∂∆∨, respectively. Consequently, the discriminant locus of Φ is given by the
intersection of the boundary of

⋃
w∈W wUm with the d − 1 dimensional faces in

∆: a piecewise affine set of dimension d − 2. The discriminant locus of Ψ is the
image of this set under the Hölder continuous map ∂cΦ. This image lies in the
d− 1-dimensional faces of ∆∨. �

References

[AH23] Rolf Andreasson and Jakob Hultgren. Solvability of monge-ampère equations and trop-
ical affine structures on reflexive polytopes. arXiv:2303.05276, 2023.

[AHJ+24] Rolf Andreasson, Jakob Hultgren, Mattias Jonsson, Enrica Mazzon, and Nicholas Mc-
Cleerey. Regularity of the solution to a real monge-ampère equation on the boundary
of a simplex. arXiv:2403.01620, 2024.
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