
HAL Id: hal-04600058
https://hal.science/hal-04600058

Submitted on 4 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Breaking the Memory Wall with a Flexible Open-Source
L1 Data-Cache

Davy Million, Noelia Oliete-Escuín, César Fuguet

To cite this version:
Davy Million, Noelia Oliete-Escuín, César Fuguet. Breaking the Memory Wall with a Flexible Open-
Source L1 Data-Cache. DATE 2024, Mar 2024, Valencia, Spain. �hal-04600058�

https://hal.science/hal-04600058
https://hal.archives-ouvertes.fr


Breaking the Memory Wall with a Flexible
Open-Source L1 Data-Cache

Davy Million
Univ. Grenoble Alpes, CEA, List,

F-38000 Grenoble, France
davy.million@cea.fr

Noelia Oliete-Escuı́n
Barcelona Supercomputing Center,

Universitat Politècnica de Catalunya,
Barcelona, Spain

noelia.oliete@bsc.es

César Fuguet
Univ. Grenoble Alpes, CEA, List,

F-38000 Grenoble, France
cesar.fuguettortolero@cea.fr

Abstract—The lack of concurrency and pipelining in the mem-
ory sub-system of recent open-source RISC-V processors, such as
the CVA61, is increasingly becoming the performance bottleneck.
Recent updates to the new RISC-V High Performance L1 Data-
cache (HPDcache), now fully integrated with the CVA6, bring
significant (up to +234%) speedups in key benchmarks with a
negligible 5.92% area impact. In this short paper, we detail these
improvements, compare performance with existing caches and
highlight the benefits of this new, open-source data-cache.

Index Terms—RISC-V, Non-blocking Data-cache, Open-Source

I. INTRODUCTION

Currently, the open-source computer architecture community
is focused on designing CPUs and accelerators, but there is
less activity directed at the cache hierarchy which is the main
bottleneck in computing systems.

For example, although the CVA6 core can be configured to
issue up to 8 outstanding instructions, when there is a single
cache read miss, the processor is stalled due to the blocking
nature [1] of the existing L1 data-cache. The problem arises
if another load miss happens since the core must wait for
the previous response before it issues the second load to the
cache (miss under miss). This has a significant negative impact
on memory-intensive programs, especially those using data-
structures with indirection such as linked-lists, sparse matrices,
and graphs. Conversely, non-blocking data-caches, such as the
High Performance Data-cache (HPDcache) [2], can pipeline
multiple miss requests without stalling, considerably improving
their average throughput [3]. When the HPDcache was initially
released, the performance was not quantified. In this paper, we
demonstrate its benefits through application benchmarks.

To improve the performance of the RISC-V processors in
the open hardware community, the first version of a new
non-blocking data-cache was released on GitHub in 2023
(HPDcache2) and recent updates, outlined in this paper, have
significantly improved the performance of this new cache.

II. BACKGROUND

A. HPDcache Core Characteristics

The HPDcache has (1) a three stage pipeline, (2) supports
wide memory interfaces (up to 64 bytes, which improves both

1https://github.com/openhwgroup/cva6
2https://github.com/openhwgroup/cv-hpdcache

bandwidth and latency), (3) has a configurable Miss Status
Holding Register (MSHR) to support multiple outstanding read
miss requests to the memory, and (4) is able to re-order requests
from the processor to serve the ones whose data is available
first, thus minimizing processor stalls. The cache is write-
through (WT), meaning that store requests are forwarded to the
next level of the memory hierarchy, simplifying its integration
in a multi-core environment [3]. To reduce this write traffic,
the HPDcache implements a coalescing write-buffer to merge
adjacent store requests into a single transaction.

The HPDcache is flexible as it has over 25 significant
SystemVerilog parameters that the user can fine-tune at compi-
lation/synthesis time. For example, the number of requesters is
configurable to support high-performance processors with mul-
tiple load-store units and tightly-coupled accelerators. Nonethe-
less, it can also be used in a lean configuration for small,
embedded processors.

Since its initial open-source release [2], there have been
multiple improvements to the HPDcache, including:

• Ability to index data using virtual addresses (virtually-
indexed physically-tagged), which shortens the request
latency by 1 cycle ;

• Improvements in the selection policy of the re-ordering
mechanism, to prioritize dependent on-hold requests ;

• Improvements in the coalescing policy of the write buffer
to virtually increase its size.

These improvements bring a significant performance benefit
with respect to the previous version.

B. CVA6 Integration and its Data-Caches

The HPDcache is now publicly available, integrated with the
CVA6 and the Sargantana3 cores, two of the most mature RISC-
V 64-bit open-source processors, proving its high-degree of
versatility for application cores capable of booting Linux.

In this paper, we compare the performance of the HPDcache
to the two existing CVA6 blocking data-caches: the standard
write-back data-cache (STDcache) and another WT data-cache
(WTDcache) initially implemented to support the OpenPiton
multi-core framework [4]. As they share the same writing
policy, we focus on comparing the performance between HPD-
cache and WTDcache, demonstrating speedups up to 234%.

3https://github.com/bsc-loca/sargantana

https://orcid.org/0009-0008-9727-6762
mailto:davy.million@cea.fr
https://orcid.org/0009-0003-2495-1134
mailto:noelia.oliete@bsc.es
https://orcid.org/0000-0003-0656-2023
mailto:cesar.fuguettortolero@cea.fr
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/cv-hpdcache
https://github.com/bsc-loca/sargantana


III. COMPARISON AND PERFORMANCE RESULTS

We used a hardware simulation platform consisting of a
CVA6 core, a typical L1 data-cache size of 32 KB, and a
main memory with a fixed access latency of 100 cycles (typical
for DDR memory interfaces). For comparison purposes and
due to the limitation of the other L1 caches, the width of the
HPDcache memory interface is artificially restricted to 8-bytes.
We focused on two highly memory-intensive benchmarks:

• Sparse Matrix Vector (SpMV) performs a matrix vector
product on a matrix in the Compressed Sparse Row
format. We evaluated three matrices, of dimensions 1000,
2000 and 4000, with a density of 1% (uniform distribution
of the non-zero elements) and two real world matrices ;

• RaiderSTREAM [5] is a synthetic test which generates
memory accesses typical of modern high-performance
workloads. It reports achieved bandwidth for kernels with
400 KB arrays. We focus on the Add kernels, but results
are similar with the other kernels.

A. Results Discussion

The results for SpMV and RaiderSTREAM are given in
Fig. 1 and Fig. 2, respectively.

1000 2000 4000 DWT 2680 GEMAT12
Input Sparse Matrix

0

2

4

6

8

Cl
oc

ks
 p

er
 In

st
ru

ct
io

n

-16%

-31%

-43%

-10% -9%

Lo
we

r i
s B

et
te

r HPDcache
WTDcache
STDcache

Fig. 1. Performance Comparison Based on Clocks per Instruction for SpMV

STREAM Add Gather Add Scatter Add Scatter/Gather Add
RaiderSTREAM Add kernels

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Su
st

ai
ne

d 
Ba

nd
wi

dt
h 

(B
yt

e/
cy

cle
)

<1%
+234%

+120%

+164%

Hi
gh

er
 is

 B
et

te
r HPDcache

WTDcache
STDcache

Fig. 2. Bandwidth Measurements using Add Kernels from RaiderSTREAM

On SpMV, taking the original WTDcache as a baseline,
the HPDcache delivers speedups ranging from 9% to 43%
(gmean=18%), which shows that the HPDcache is more suitable
for memory-intensive scientific applications than the other
caches. On RaiderSTREAM, the HPDcache outperforms (up to
+234%) the original data-caches on the three memory intensive
variants (Gather, Scatter and Scatter/Gather) of the Add kernels.
These tests provoke frequent read misses and the results show

that the HPDcache can simultaneously serve these misses, and
thus hide the memory latency. Regarding the STREAM variant,
where the accesses are less random, the HPDcache exhibits the
same performance as the original WT data-cache.

B. Area and Timing Evaluation

We compared the post-synthesis silicon area and the max-
imum clock frequency of the HPDcache to the ones of the
WTDcache in the GF22FDX technology (SSG 0.72V/125C
corner). We considered the area and frequency of the CVA6
core plus the cache subsystem. The CVA6-HPDcache is 5.92%
larger but has a 2.06% faster clock frequency than the CVA6-
WTDcache (0.386mm2@950MHz vs 0.364mm2@931MHz).
The width of the memory interface of the HPDcache can easily
be increased up to 512 bits with virtually no area impact (<1%
based on synthesis). This is because the sizing of internal
buffers is independent of the memory bus width. This 512-bit
memory interface improves the performance of the HPDcache
up to 10% (RaiderSTREAM) and 6% (SpMV).

CONCLUSION AND FUTURE WORK

We have demonstrated that memory-intensive applications
exhibiting irregular memory access patterns benefit significantly
from the HPDcache, on an in-order core, and have observed
speedups of up to 234% with a small area increase of 5.92%.

Modern computer systems are multi-core and the HPDcache
is now successfully integrated into OpenPiton [4], a widely
adopted multi-core cache coherency system. This contribution
has been validated by booting Linux in a 16-core configuration
and the code is already available as open-source4. Future work
will focus on evaluating the performance benefit of HPDcache
for large, multi-core applications.

ACKNOWLEDGMENT

This work has received funding from the Key Digital
Technologies Joint Undertaking (KDT JU) TRISTAN project
under Grant Agreement nr. 10109594. It has been also par-
tially supported by the European HiPEAC Network of Ex-
cellence, by the Spanish Ministry of Science and Innova-
tion MCIN/AEI/10.13039/501100011033 (contracts PID2019-
107255GB-C21 and PID2019-105660RB-C22), by the General-
itat de Catalunya (contract 2021-SGR-00763), by the Ministry
of Economic Affairs and Digital Transformation, and by the
European Union - Next Generation EU.

REFERENCES

[1] D. Kroft, “Lockup-free Instruction Fetch/Prefetch Cache Organization,” in
Proc. 8th Ann. Int’l Symp. Comput. Architect., 1981.

[2] C. Fuguet, “HPDcache: Open-Source High-Performance L1 Data Cache for
RISC-V Cores,” in Proceedings of the 20th ACM International Conference
on Computing Frontiers, Association for Computing Machinery, 2023.

[3] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth Edition:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., 6th ed., 2017.

[4] J. Balkind et al., “OpenPiton+Ariane: The first Open-Source, SMP Linux-
booting RISC-V System Scaling From One to Many Cores,” in Workshop
on Computer Architecture Research with RISC-V (CARRV), 2019.

[5] M. Beebe et al., “RaiderSTREAM: Adapting the STREAM Benchmark to
Modern HPC Systems,” in IEEE High Performance Extreme Computing
Conference, 2022.

4https://github.com/PrincetonUniversity/openpiton/pull/136

https://github.com/PrincetonUniversity/openpiton/pull/136

	Introduction
	Background
	HPDcache Core Characteristics
	CVA6 Integration and its Data-Caches

	Comparison and Performance Results
	Results Discussion
	Area and Timing Evaluation

	References

