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Abstract
This paper describes the contribution of the CONILIUM team
in the Odyssey Emotion Recognition Challenge. Our system
focuses on predicting categorical emotions from speech record-
ings in the MSP-Podcast corpus. Focusing on the training pro-
tocol, we investigated several approaches to improve emotion
recognition accuracy. Different pre-trained models (WavLM-
large, Wav2vec2-large, Hubert-large) were evaluated as feature
extractors. An agreement-aware loss functions based on all sec-
ondary annotations is proposed that consider the disagreement
among annotators and the ambiguity of emotional labeling dur-
ing training.

An idea of keeping only samples with high agreement anno-
tation in the training process shows the benefit of using all anno-
tations by all annotators. Our best performing system utilized
WavLM-large as the upstream model, weighted binary cross-
entropy with secondary labels as the loss function, and a post-
processing step that adjusted the decision threshold. This model
achieved an F1-Macro score of 0.361 on the development set,
0.335 on the test set, which is a significant improvement com-
pare to the provided baseline. We also explore characteristics
of Easy and Difficult samples based on their prediction perfor-
mance consistency across different models.

1. Introduction
Speech emotion recognition (SER) aims at the identification of
an emotion category or an affective dimension in a speech sig-
nal. According to Batliner et al. [1], obtaining large amounts of
real-life data is one of the most important hurdles. Since many
situations must be represented in real-life data, the collection of
real-life emotions requires having large panels of speakers, sev-
eral different acoustic environments, different emotional and so-
cial contexts, which are expensive to set up. Available corpora
for emotion recognition in real tasks, currently contains more
and more instances. However, in real-life contexts, emotions
are quite sparse, neutral speech is predominant and emotions are
shaded [2]. The proposed Odyssey Challenge aims at predicting
the emotional category of a speech segment on MSP-Podcast
dataset [3]. This dataset can be considered as ecological, and
thus is biased towards the neutral state.

The collection and annotation of emotional databases are
crucial issues in SER and many studies have already been real-
ized in the framework of HUMAINE a decade ago [4]. While
most of the databases are annotated with discrete categories or
affective dimensions on a pre-segmented speech excerpt [3, 5],
some authors claim for continuous detection of emotion with
time [6]. In the first case, SER consists in the prediction of a
single value or category at the segment level, while in the sec-

ond case, a value is predicted at each time frame such as valence
and dominance [7], or satisfaction [8]. The MSP-Podcast data
falls in the first pre-segmented case.

As emotion perception is subjective by nature, many anno-
tators are usually involved in the annotation process. To enable
the annotator to capture the complex nature of emotion, emo-
tional segments are evaluated along an annotation scheme in-
spired by the MECAS (Multi-level Emotion and Context Anno-
tation Scheme) [2]. This scheme enables the representation of
complex and realistic emotions using a primary and a secondary
emotion label for each instance. Taking into account both pri-
mary and secondary labels can help in the definition of more
robust target labels [9, 10] than the traditional majority vote.

In the past, most SER systems were based on the extrac-
tion of high-level prosodic and spectral features [11] such as
the well-known eGeMAPS feature set [12]. Many recent stud-
ies [13, 14] have shown that self-supervised pre-trained models
(such as Wav2Vec [15] or HuBERT [16]) are able to capture both
non-verbal and linguistic information from the signal.

The CONILIUM team participation to the Odyssey Emo-
tion Challenge addresses three main challenges. First, what
is the best pre-trained model for SER regarding MSP-Podcast
data. Second, how to deal with the serious imbalance of the
emotional categories within the loss function. And finally, we
propose to benefit from the secondary labels to strengthen the
number of low represented categories. The present article de-
tails the three contributions we made for this challenge.

2. MSP-Podcast Dataset
The dataset utilized in this paper was provided by the organizer
of the emotion recognition challenge. It consists of a subset
derived from the MSP-Podcast corpus [3]. This corpus com-
prises segments extracted from podcast recordings, each an-
notated by external annotators. The annotations enclose both
attribute-based descriptors, such as activation, dominance, and
valence, as well as categorical labels indicating emotions like
anger (A), happiness (H), sadness (S), disgust (D), surprise (U),
fear (F), contempt (C), neutral (N), and other (O). The organiz-
ers of the challenge have included all annotations conducted by
the annotators, who not only identify the primary emotion in
each segment but also provide annotations for secondary emo-
tions. In the latter case, annotators are permitted to select multi-
ple emotions for a given segment. This paper will delve into the
comprehensive analysis conducted using all annotations from
each annotator for every sample in the dataset.

In this study, we excluded samples lacking a clear majority
voting winner among the available emotions or identified with
the primary emotion label as ”other”.
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Figure 1: Duration distribution of audio samples in seconds
across each subset. All the results presented in this paper were
obtained by truncating samples with a duration exceeding 8 sec-
onds.

The training set includes 68,360 samples with a mean dura-
tion of 5.8 seconds (standard deviation of 2.4 seconds). The
development set comprises 19,815 samples, with an average
duration of 5.76 seconds (standard deviation of 2.3 seconds).
Additionally, the test set, which lacks labeled data, consists of
2,347 samples with a mean duration of 6 seconds (with a stan-
dard deviation of 2.34 seconds).

The baseline proposed by the challenge organizer [17] uti-
lized a maximum audio duration of 12 seconds during the train-
ing process. As illustrated in Figure 1, they did not truncate
any samples in the process. Due to resource constraints, specif-
ically, the unavailability of a computer capable of executing ex-
periments with audio files of this length, we opted for a more
manageable approach. Previous research [18, 19] demonstrated
that it humanly possible to detect the emotion in less than one
second. While we did not find it imperative to significantly trun-
cate the audio, we chose to work with only the initial 8 seconds
of each sample.

3. Training Protocol
In this research, we utilized the baseline system provided by
the organizers of the challenge. This system comprises a pre-
trained upstream model, following by an attentive statistics
pooling, along with a linear head for classification 1 [17]. The
model takes the raw waveform of the given audio as input to
predict 8 different emotional classes. Throughout all the exper-
iments detailed in this study, we used AdamW as the optimizer,
setting the learning rate to 1e − 5, and used a batch size of 16,
with a maximum of 40 epochs. Subsequently, we selected the
best checkpoint based on the development set in terms of macro
average F1 score as our final model.

Our training was conducted on a machine equipped with a
GPU RTX8000, which required approximately 2 days (variation
may occur depending on the upstream model and training set
size) for complete training on all data.

The primary focus of our team, CONILIUM, has been on
exploring the training protocol to assess the effectiveness of
various annotation and training samples. In the following, we
provide details on several ideas and experiments which are ex-
plored:

• Comparison of using different pre-trained upstream
models as feature extractors.

1https://github.com/MSP-UTD/MSP-Podcast_
Challenge

• Detailed proposition for changing the training objective
in terms of loss function and desired output prediction
during the training phase.

• Study of the problem of imbalanced classes (different
frequency of training samples in each class) along with a
solution of using a sampler.

• Examination of how annotator agreements can impact
the quality of the training set, including testing the us-
age of only samples with high agreement as the training
data.

3.1. Upstream model

While the baseline system [17] utilized the WavLM-large2 [20]
as its upstream model, we conducted a comparison of its perfor-
mance (F1-scores on the development set) by replacing it with
Hubert-large3 [16], Wav2vec2-base [15] and Wav2vec2-large4

[21], which is the robust large version of Wav2vec2-base.
Table 1 presents the comparison of the performance of

the system using these different upstream models in terms of
F1-Scores. Using WavLM-large outperformed both Wav2vec2-
large, Wav2vec2-base and Hubert-large, leading to the decision
to retain WavLM-large as the upstream model for the remainder
of this study.

Table 1: F1-scores on development set for different upstream
models.

Upstream F1-Macro F1-Micro
WavLM-large 0.302 0.402
Wav2vec2-large 0.282 0.374
Wav2vec2-base 0.272 0.390
Hubert-large 0.297 0.424

3.2. Data augmentation

A data augmentation process, which involved adding MUSAN
noise [22] to randomly 80% of training samples, was imple-
mented. However, contrary to expectations, this process did
not enhance the performance of the three large models. Inter-
estingly, it did lead to an improvement for the Wav2vec2-base
model, with the F1-Macro score increasing from 0.272 to 0.286.

One potential explanation for this outcome could be that
incorporating the augmentation process during the training of
large models renders them inherently resilient to noise. Conse-
quently, including additional data with added noise in the fine-
tuning process of large models may not be relevant. However,
the fact that the performance with Wav2vec2-base when data
augmentation is applied, reached the same level as Wav2vec2-
large underscores the importance of training data.

3.3. Agreement aware loss function

The baseline model used Weighted Cross-Entropy (LWCE) as
the loss function (Equation 1), where wc is the weight of class
c, yi,c denotes the reference that the model should predict for a
given sample i, and ŷi,c represents the corresponding predicted

2https://huggingface.co/microsoft/wavlm-large
3https://huggingface.co/facebook/

hubert-large-ls960-ft
4https://huggingface.co/facebook/

wav2vec2-large-robust
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Figure 2: An example of obtaining P and S as reference label
for loss calculation.

pseudo-probability. wc is calculated as the inverse frequency of
the samples in the class c.

LWCE = − 1

N

N∑
i=1

C∑
c=1

wc · yi,c log(ŷi,c) (1)

Following the utilization of the aforementioned loss func-
tion as the training objective, the reference yc,i is a one-hot vec-
tor resulting from the majority vote (hard labels). This approach
disregards the annotation agreement labeling during training.

Therefore, drawing inspiration from [23, 24], we propose
the use of a Weighted Binary Cross-Entropy (LWBCE), where
yi,c captures the agreement between annotators for each class.
For a given class c, the agreement is the number of annotators
who perceived emotion c over all annotators. The LWBCE loss
function is expressed in Equation 2. Figure 2, displays an ex-
ample for taking into account the disagreement of annotator for
defining the reference label to calculate the loss during the train-
ing process. The ”other” label is ignored in this calculation. The
evaluation is always done on majority vote of primary labels
(hard-labels).

LWBCE = − 1

N

N∑
i=1

C∑
c=1

wc (yi,c log(ŷi,c)+

(1− yi,c) log(1− ŷi,c))

(2)

Additionally, Equation 3 presents the Kullback-Leibler di-
vergence (LKLD) as an alternative loss function, with a similar
definition of yi,c as in the LWBCE formulation.

LKLD =
1

NC

N∑
i=1

C∑
c=1

yi,c log
yi,c
ŷi,c

(3)

We conducted two analyses. The first analysis conducted
involves the primary (P ) emotional labels provided by all an-
notators, which are regarded as pseudo-probabilities of classes.
In this context, the training objective is to predict class labels
while considering the disagreement among annotators. Addi-
tionally, as highlighted in [10], a single emotion often fails to
adequately describe expressed speech, which may contain am-
biguous emotions. As depicted in Figure 3, the samples are in-
fluenced by more than one label. Notably, it is evident that sur-
prise, for instance, often encompasses another emotion, such as
happiness, with a notable presence. Then we propose addition-
ally to replace the primary label by the secondary labels when
it is reasonable to infer that most frequent classes are associated
with less frequent classes.

Therefore, more than one emotional labels can be incorpo-
rated into the training by utilizing all secondary (S) emotional
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Figure 3: In this analysis, the distribution of annotation pseudo-
probabilities for each emotion is examined based on the pri-
mary emotion selected by the annotators at each sample.

annotations, The secondary emotional labels are defined as all
the emotional classes that have been perceived, including the
primary emotions. In the preparation of the secondary label as
the reference, all labels are treated equally without any weight-
ing on primary emotions. As it can be observed in the example
of Figure 2, the values of the reference vector in this case would
lower due to the higher presence of different emotional labels
in secondary annotations. It should be mentioned that while
[24] employs both primary and secondary labels in multitasks
learning, we utilize only secondary labels for training and sub-
sequently evaluate the model on the hard labels resulting from
the primary task, as per the challenge objective.

Table 2: F1-scores on development set for different loss func-
tions, with the configuration of the best model in Table 1.

Loss F1-Macro F1-Micro
LWCE 0.302 0.402
LWBCE(P ) 0.340 0.503
LWBCE(S) 0.350 0.517
LKLD(P ) 0.322 0.481
LKLD(S) 0.337 0.502

The results of training with different objective functions
are presented in Table 2. Utilizing all primary (P ) annota-
tions leads to an improvement in performance compared to the
hard-labeling objective function (LWCE loss function). Defin-
ing secondary (S) labels as the training objective demonstrates
the highest performance in terms of F1-scores even for predict-
ing the majority votes (hard-labeling) of primary classes. This
outcome reveals the importance of keeping all annotations of all
annotators for training.

A significant difference between performances of LKLD

and LWBCE loss functions is apparent. Unlike LWBCE , the
LKLD loss function is implemented without weights calculated



from the class distribution in the training set. Therefore, the
necessity of addressing class imbalance becomes evident when
class weights are not considered in the loss calculation.

3.4. Balancing classes

The significant difference between F1-Macro and F1-Micro in
development set, in all the previous results presented until now,
confirm the impact of imbalanced number of samples in differ-
ent classes. Given that the primary evaluation metric of the chal-
lenge is defined as macro average F1 score, there is a concerted
effort to ensure equal importance of the model’s performance
across all classes. The implementation of class frequency as
the weight in the loss calculation addresses this requirement.
We observed a 1% degradation in F1-Macro when unweighted
LBCE(P ) is used as the loss function instead of LWBCE(P ) in
the WavLM-large upstream model.

To address this issue, specially in the case of LKLD , we
propose implementing a data loader sampler that provides sam-
ples with statistically balanced classes during training. This
sampler assigns a weight of 1/fCi to each sample during its
selection for the construction of the training set in each batch.
Here, fCi represents the frequency of the class to which the
sample belongs. In the case of LWBCE , the weights would be
ignored, since the frequency of classes is already accounted for
by the sampler.

While the use of the sampler demonstrates a slight improve-
ment in F1-Macro when employing the unweighted LBCE

(from 0.331 to 0.334 on development set), the performance of
this approach is lower than LWBCE for both P and S training
sets. Conversely, the sampler proves beneficial in enhancing
the performance of LKLD(S), achieving an F1-Macro score of
0.347. As a result, it has been determined to utilize the sampler
in the case of LKLD loss for the remainder of this study.

3.5. Annotation agreement

Another hypothesis that has been tested is the utility of sam-
ples with lower annotator agreement in the training process. To
explore this, we propose two variations of the P and S sets,
where only samples with high agreement in terms of annota-
tion are retained. A sample set containing primary labels with
higher consensus in annotation is denoted as P ∗. The P ∗ is a
subset of P comprising only samples with the same primary la-
bels agreed upon by at least 60% of annotators. Similarly, S∗ is
a subset of S containing only samples with a secondary labels
list, where at least 50% of the labels list are the same. This fil-
tering of training samples reduces the number of samples in the
training set from 54,651 in P (respective 53,523 in S) to 30,647
in P ∗ (respective 25,514 in S∗).

Table 3: F1-scores on development set, when only samples with
high agreement annotation are used for training.

Loss F1-Macro F1-Micro
LWBCE(P ∗) 0.317 0.491
LWBCE(S∗) 0.312 0.511
LKLD(P ∗) 0.314 0.483
LKLD(S∗) 0.326 0.487

Table 3 presents the F1-scores obtained using samples with
high annotation agreements. A comparison of these results with
those in Table 2 reveals a degradation in F1-scores, particularly
in F1-Macro. This decline can be attributed to the model’s per-

formance on less frequent classes e.g. disgust (D) and fear (F),
due to the removal of more than three-quarters of samples with
less frequent labels from the training set. Conversely, the dele-
tion of samples in the most frequent classes, e.g. neutral (N),
is less than one-third. From these observations, it can be con-
cluded that in a naturalistic emotionally balanced corpus such
as the MSP-Podcast, retaining all samples, even in cases of dis-
agreement in their annotation, proves beneficial.

3.6. Ensemble voting

By comparing the predicted values on the development set ob-
tained from different upstream models with various loss func-
tions and training objectives, it is observed that different pre-
dictions can result from different upstream models. This dis-
crepancy is more pronounced than the variations caused by
loss functions or training objectives alone. Therefore, we
propose employing a voting process to predict the final label
based on the probability outputs of three upstream models with
WBCE(P ) as their loss function.

Following the ensemble voting of three models, different
upstream architectures with the best configuration, resulted in
F1-Macro of 0.338 and F1-Micro of 0.523. Compared to the
best result (WavLM-large), a degradation of F1-Macro has been
observed, regardless of whether the voting is weighted or not.
This observation convinces us to retain only the WavLM-large
model and not follow the ensemble voting process. The degra-
dation of F1-Macro and improvement in F1-Micro in ensemble
voting reveal that this process favors most frequent classes.

3.7. The best configuration

After conducting detailed experiments outlined in the previous
sections, we propose the utilization of WavLM-large as the up-
stream model and WBCE(S) as the loss function. As a final step
and post-processing measure, we suggest adjusting the decision
threshold for converting output probabilities to hard labels.

This adjustment is motivated by two key factors. Firstly, the
main evaluation metric of the challenge is F1-Macro. Secondly,
the equal scores of F1-Macro and F1-Micro indicate a balanced
distribution of samples in the test set. Consequently, we em-
pirically optimized the decision threshold on the development
set to enhance F1-Macro, thereby increasing the likelihood of
predicting less frequent classes. However, it’s important to note
that this adjustment results in a degradation of F1-Micro. Fol-
lowing this process, we successfully improved the performance
of the best model with a F1-Macro score of 0.361 (F1-Micro
score of 0.496) on development set.

Table 4: F1-scores of the best model at the two evaluation sets.
The results using the test sets were extracted from the leader-
board provided by the organizers of the challenge.

Split F1-Macro F1-Micro
Development 0.361 0.496
Test 0.335 0.347

Comparison of this result with the F1-scores on test set has
been displayed in the Table 4. A lower score of F1-Macro on
test set comparing to the development set indicates our system
is slightly over fitted on development set.

Figure 4 displays the confusion matrix on the develop-
ment set under different configurations. Comparing the use of



(a) Baseline system
F1-Macro=0.30

(b) LWBCE (P )
F1-Macro=0.34

(c) LWBCE (S)
F1-Macro=0.35

(d) LWBCE (S) + post-processing
F1-Macro=0.36

Figure 4: Confusion Matrix of different steps of finding the best configuration on development set (values are in % of reference hard-
labels).

LWBCE(P ) and the Baseline system (Figure 4a and 4b), it is
evident that the main improvement in F1-scores comes from en-
hanced performance on most frequent classes like happiness (H)
and neutral (N), while the model’s performance is diminished
for the classes angry (A) and surprise (S). An enhancement of
the model’s performance on less frequent classes can be seen
by comparing the impact of our threshold adjustment as post-
processing on the usage of LWBCE(S) as loss function (Figure
4c and 4d).

4. Easy versus Difficult Samples
To further analyze the results and investigate the causes or cor-
relations between the model’s performance and sample char-
acteristics, we examine the performance of our models on the
samples in the development set in this section.

While that the predictions of three models with different
upstream architectures (using their best configurations, see sec-
tion 3) differ more than 30% of the time in the development set,
their aggregation does not improve overall performance. Then,
it can be assumed that there are some samples that are consis-
tently predicted incorrectly regardless of the model used, while
others are consistently predicted correctly. Therefore, we intro-
duce the concept of Easy samples, which are predicted correctly
by all three models, and Difficult samples, which are predicted
wrongly by all three models. Out of the 15,341 samples in the
development set, 5,179 samples can be considered as easy and
5,433 as difficult.

In the following we analyze the characteristics of these two
types of samples in terms of length, inter-annotator agreement,
and Speakers.

4.1. Samples duration

In terms of duration, it’s observed that Difficult samples tend to
be slightly longer than Easy samples. On average, Easy samples
have a duration of 5.65 seconds ((standard deviation of 2.27
seconds), while Difficult samples have an average duration of
5.80 seconds ((standard deviation of 2.32 seconds). It means
that Difficult samples tend to be slightly longer than Easy ones.
Although this difference may not be significant, in the future
study, it can be proposed to potentially increase the maximum
duration of training samples. Such an adjustment might offer a
more comprehensive representation of Difficult samples during
training, potentially leading to improved model performance on
longer-duration samples.

4.2. Inter-annotator agreement

The inter-annotator agreement of Easy samples is significantly
higher than that of Difficult samples. The Krippendorff alpha
value for Easy samples is 0.54, indicating a relatively high level
of agreement among annotators. In contrast, the Krippendorff
alpha value for Difficult samples is 0.38, suggesting a lower
level of agreement among annotators. This discrepancy under-
scores the complexity and ambiguity present in Difficult sam-
ples, which pose challenges for consistent annotation across
multiple annotators.

4.3. Diversity of speakers

In the dataset, speakers can be categorized based on the diffi-
culty of their samples. When a speaker has more than 50% of
their samples classified as Easy samples, they are considered an
Easy speaker. Conversely, if more than 50% of their samples
are classified as Difficult samples, they are labeled as a Difficult
speaker. It’s observed that Easy speakers appear, on average,
10 times in the development set, while Difficult speakers appear
only around 2 times. This statistic shows, while the model does
not have any information about speakers in development set,
but still the rare speaker in development set are more difficult
than speaker with higher frequency of appearance. Indeed, ad-
ditional information concerning the selection process of speak-
ers in the dataset can allow more logical explanation.

Moreover, when examining the gender distribution of
speakers in the development set, with a balanced representa-
tion between genders (female: 7,619 samples, male: 7,421 sam-
ples), a comparison between the gender distributions of Difficult
and Easy speakers reveals interesting insights. The prediction
of samples with female speakers appears to be more challeng-
ing, with 2,586 Difficult samples of female speakers compared
to 1,794 Difficult samples of male speakers. Conversely, for
Easy speakers, there are 1,771 Easy samples of female speak-
ers and 2,414 Easy samples of male speakers. This discrepancy
in gender distribution further emphasizes the complexity and
challenges associated with accurately predicting the emotional
content of female speakers’ samples in the MSP-Podcast cor-
pus.

5. Conclusion
This paper is the description of our system named CONILIUM
team in the Odyssey 2024 Emotion Recognition Challenge for



the classification task. In this contribution, we explored various
aspects of training set design for speech emotion recognition,
focusing on training objectives, class balancing techniques, an-
notation agreement, and ensemble voting. Our findings high-
light the importance of considering the nuances of the dataset
and the training process to optimize model performance. Is has
been observed that utilizing all annotations, particularly sec-
ondary labels, as the training objective leads to improved per-
formance across multiple upstream models. This implies that
retaining all annotations from all annotators, regardless of any
disagreement, proves advantageous for training a system tasked
with predicting even the hard-label emotional class for a given
audio file.

The best result on the development set was obtained by us-
ing the WavLM-large as the upstream model and profiting from
all secondary labels in the training phase with a weighted binary
cross-entropy (WBCE) loss. Our proposed system achieved F1-
Macro of 0.361 and F1-Micro of 0.496, representing a 6% and
9% absolute improvement, respectively, compared to the base-
line system on the development set. The submitted predictions,
using our best model, on the test set achieved F1-Macro of 0.335
and F1-Micro of 0.347, placing our team in the 6th rank among
all team participants.

Our analysis of Easy versus Difficult samples revealed in-
sights into the characteristics of challenging samples, such as
longer duration, lower inter-annotator agreement, and the sam-
ples with female speaker. Addressing these challenges, such as
by incorporating longer-duration samples and exploring tech-
niques to more focus on female (or rare) speakers, may further
improve model performance.
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