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ABSTRACT

Efficient algorithms are being developed to search for strong gravitational lens systems owing to increasing large imaging
surveys. Neural networks have been successfully used to discover galaxy-scale lens systems in imaging surveys such as the
Kilo Degree Survey, Hyper-Suprime Cam (HSC) Survey, and Dark Energy Survey over the last few years. Thus, it has become
imperative to understand how some of these networks compare, their strengths and the role of the training data sets which are
essential in supervised learning algorithms used commonly in neural networks. In this work, we present the first-of-its-kind
systematic comparison and benchmarking of networks from four teams that have analysed the HSC Survey data. Each team has
designed their training samples and developed neural networks independently but coordinated a priori in reserving specific data
sets strictly for test purposes. The test sample consists of mock lenses, real (candidate) lenses, and real non-lenses gathered from
various sources to benchmark and characterize the performance of each of the network. While each team’s network performed
much better on their own constructed test samples compared to those from others, all networks performed comparable on the
test sample with real (candidate) lenses and non-lenses. We also investigate the impact of swapping the training samples among
the teams while retaining the same network architecture. We find that this resulted in improved performance for some networks.
These results have direct implications on measures to be taken for lens searches with upcoming imaging surveys such as the
Rubin-Legacy Survey of Space and Time, Roman, and Euclid.

Key words: gravitational lensing: strong —methods: data analysis —surveys.

1 INTRODUCTION

Machine learning applications in astronomy have been growing
within the last decade including the field of gravitational lensing.
In strong gravitational lensing, multiple lensed images of the same
distant galaxy or a quasar are observed owing to the gravitational
deflection by a massive galaxy or a cluster in the foreground.
Since this requires sufficient line-of-sight alignment between the

* E-mail: anupreeta.more @ gmail.com (AM); kewong19 @ gmail.com (KCW)
© 2024 The Author(s).

distant source and the foreground lens with the observer, such lens
systems are rare occurrence. However, with increasing number of
large imaging surveys with sufficiently deep observations, discovery
of large lens samples has become feasible, for instance, from the
Dark Energy Survey (Diehl et al. 2017; O’Donnell et al. 2022),
Survey of Gravitationally lensed Objects in HSC Imaging (SuGOHI,
e.g. Sonnenfeld et al. 2018, 2020; Jaelani et al. 2021; Wong et al.
2022; Chan et al. 2024), Kilo Degree Survey (KiDS, e.g. Petrillo
et al. 2017; Khramtsov et al. 2019; Li et al. 2020), and DECam
Legacy Survey (DECaLS, e.g. Huang et al. 2020; Storfer et al. 2022).
Searching for lens systems is a classical pattern-recognition problem

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
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as it involves identifying specific configurations, morphologies, and
colours that are expected as a result of lensing. Additionally, the
rarity of the lens systems requires sifting through hundreds of images
before a promising candidate lens system is discovered. Thus, this
is an apt challenge that can be addressed with machine learning
algorithms.

Supervised, deep learning algorithms based on convolutional
neural networks (CNNs) are favourable as the majority of astronomy
data include analysis of multiwavelength imaging. In the last few
years, the CNNss have been successfully implemented for searching,
primarily, galaxy-scale lenses (e.g. Jacobs et al. 2017; Petrillo et al.
2017, 2019; Canameras et al. 2020; He et al. 2020; Rojas et al.
2023). A few studies have attempted to make a comparison between
different neural network algorithms with other lens search methods
with real survey data. For instance, Jacobs et al. (2017) compared
the results of a CNN search on Canada—France-Hawaii Telescope
Legacy Survey (CFHTLS) data to the results from a purely visual-
inspection-based search conducted via Space Warps (Marshall et al.
2016; More et al. 2016), a citizen science program. It is worth noting
that the Space Warps results from CFHTLS data are also produced
using a supervised-learning approach. Similarly, More et al. (2016)
citizen-science-based results are also compared with non-machine-
learning algorithms (Gavazzi et al. 2014; More et al. 2012). Such
comparison studies have suggested that each of these approaches and
algorithms tend to find a subset of lens systems with some overlap
with each other.

Others have compared diverse lens search methods which include
pure visual inspection and algorithms with/without machine learning
on simulated space-based and ground-based data sets (Metcalf
et al. 2019). They highlighted that multiband imaging plays an
important role in increasing the efficiency of lens identification.
Further study by Magro et al. (2021) on the same data sets
but after applying modified data pre-processing and augmentation
showed an improved performance of the various neural networks
and emphasized the adaptability of CNNs. In Knabel et al. (2020),
lens search methods such as machine learning, visual inspection,
and spectroscopy are compared by analysing the data from the
KiDS - Galaxy Mass Assembly (GAMA). They find that each of
the methods had distinct selection functions resulting into hardly
any overlapping candidates in spite of analysing the same footprints
across three different fields. Surveys from upcoming telescopes
such as Vera Rubin Observatory,! Euclid,” and Nancy Grace Ro-
man® will increase the rate of detection of lenses by an order
of magnitude. The need for efficient and robust machine learning
algorithms is stronger ever than before given the challenge of big
data.

In this work, we attempt to do the first systematic comparison of
multiple networks and training sets which are tested on a common
and diverse test data set. Such a study is crucial in identifying the
strengths and weaknesses of the network architectures along with
construction strategies of different training-validation data sets and
thus enabling the development of a superior and robust approach that
will produce lens searches with high efficiency. In Holloway et al.
(2024), a companion study, we combine different machine learning
networks and Space Warps with the goal of constructing a unified,
superior ensemble classifier that will be much more efficient than
any of the individual methods.

Uhttps://www.lsst.org
Zhttps://sci.esa.int/web/euclid
3https://roman.gsfc.nasa.gov
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The paper is structured as follows. In Section 2, we briefly
introduce the various networks and methodologies used in generating
the training-validation data sets. In Section 3, we describe the
construction of the various common test data sets. In Section 4,
we list the metrics used in our comparison study. In Section 5, we
present the results and give conclusions in Section 6.

2 OVERVIEW OF NEURAL NETWORKS

Below we give a brief overview of the different neural networks that
are used for comparison in this work. The participating teams have
used the data from the HSC SSP Public Data Release 2 (PDR2)
(Aihara et al. 2019) for this study.

2.1 Canameras et al.

The classification in Canameras et al. (2021, hereafter C21) uses
a residual neural network (ResNet) inspired from the ResNet-18
architecture (He et al. 2016). After the 64 x 64 x 3 input layer, it
comprises a total of 18 layers, starting with a convolutional layer
with 3 x 3 convolutional kernels and 64 feature maps, followed by
eight residual blocks, an average pooling layer, a flattening layer,
and closed by a fully connected layer with 16 neurons, and the
last single-neuron output with sigmoid activation. Each residual
block comprises two convolutional layers with 3 x 3 kernel sizes and
stride = 1 or 2, batch normalization and non-linear ReLU activations.
Convolutional layers within these blocks have 64, 128, 256, and 512
feature maps, respectively.

The network was trained and validated on gri images of the HSC
Survey, augmented with small random shifts ranging between —5
and +5 pixels, and square root stretch (after clipping negative pixels
to zero), resulting in a balanced data set of 40000 mock lenses
and 40 000 non-lens galaxies. The optimization was performed with
mini-batch gradient descent and we used a batch size of 128 images,
a learning rate of 0.0006, a weight decay of 0.001, and a momentum
fixed to 0.9. The binary cross-entropy loss was computed over the
training and validation sets at each epoch, and we used early stopping
to save the best model at minimal validation loss.

In C21, this ResNet was chosen among a range of networks to
optimize lens identification over all extended galaxies in DR2 with
i-band Kron radius >0.8", and without photometric pre-selection. It
was tested on sets of 202 grade-A or B galaxy-scale lens candidates
from SuGOHI, and 91 000 non-lens galaxies in the COSMOS field,
with both sets restricted to Kron radii >0.8". This specific network,
and the score threshold of 0.1 were chosen to reach contamination
rates as low as 0.01 per cent while ensuring a recall >50 per cent over
the SuGOHI test sample. The results from C21 illustrate the ability of
this network to efficiently select new strong lens candidates from an
extended input sample of 62.5 million galaxies, with moderate visual
inspection. Output scores tend to shift to higher values in regions with
seeing full width at half-maximum simultaneously higher in r band
and lower in 7 band, as found over the GAMAOQ9H field. This seeing
dependence is discussed in more details in Canameras et al. (2023).

2.2 Shu et al.

Two lens classifiers were presented in Shu et al. (2022, hereafter
S22), both of which were constructed based on the deep residual
network, DEEPLENS_CLASSIFIER, pre-built in the CMU DEEPLENS
package (Lanusse et al. 2018). The main difference between those
two lens classifiers was the mock lens population in the training
set. For Classifier-1, the mock lenses in the training set covered a
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lens redshift range of 0-1.0 with a peak at &~ 0.55. For Classifier-
2, the lens redshift distribution was relatively uniform from 0.4 to
1.0. It was shown by S22 that, as a result of the different choices
of the training set, Classifier-1 delivered an overall high recall for
strong-lens systems up to lens redshift of ~ 0.8, while Classifier-2
was more optimized for discovering strong-lens systems with high-
redshift (z 2 0.7) lens galaxies. As the strong-lens systems used in
this work span a wide lens redshift range, we only consider Classifier-
1 from S22 in the following analyses.

A full description of how Classifier-1 was built, trained, and tested
can be found in S22. Here, we only summarize a few aspects that
are relevant for comparing with the other networks. Classifier-1 was
trained and validated on HSC gri images of 43 500 mock lenses and
43 500 non-lens objects. The mock lenses were created in the same
way as in C21 and were therefore qualitatively similar to the mock
lenses used for training the network in C21. The non-lens objects
were from a random subset of the parent sample that Classifier-1
was eventually applied to. Since the key motivation of S22 was to
search for strong-lens systems with high-redshift lens galaxies, the
parent sample was selected to contain relatively red galaxies using
the g —r and g — i colours. There was no cut on the Kron radius,
and in fact about two-thirds of the parent sample had i-band Kron
radius smaller than 0.8".

Classifier-1 was optimized based on a test set consisting of 92
grade-A or B strong-lens candidates from the SuGOHI project that
were also in the parent sample and 50 000 non-lens objects randomly
selected from the parent sample. In S22, the probability threshold
was chosen to be ppresn = 0.9731, which corresponded to a TPR of
0.85 and an FPR of 0.001 on the test set.

2.3 Jaelani et al.

The lens classification in J23 uses a classical CNN inspired from
the CNN architecture used in Jacobs et al. (2017). The network
comprises five convolutional layers with 11 x 11,7 x 7,5 x 5,5
x 5, and 3 x 3 kernel sizes; and 64, 128, 128, 256, and 256 filters,
respectively. It is followed by four fully connected hidden layers with
1024, 1024, 512, and 512 neurons, and a single-neuron output layer
with sigmoid activation. Three Max-pooling layers with 2 x 2 kernel
sizes and stride = 2 are inserted in between the convolutional layers
and are essential to make the CNN invariant to local translations of the
relevant features in gri image cut-outs while reducing the network
parameters. Five dropout regularizations are performed in between
convolutional and fully connected layers to reduce the chance of
overfitting by randomly dropping a 0.2 of the output neurons during
training with ReLU non-linear activations.

The CNN was trained and validated on HSC gri images of 18 660
mock lenses and 18 660 non-lens objects. The augmentations have
been applied to the data set by following: (i) a random rotation in the
range [—30 deg, 30 deg]; (ii) a random resizing zoom_range in the
range [0.8, 1.2]; (iii) a random horizontal flipping; (iv) and a random
channel_shift_ range = 0.9. The Adam optimization algorithm was
chosen to minimize the cross-entropy error function over training
data with a learning rate of 0.00005. The CNN was trained for 52
epochs (with 100 epochs are the maximum allowed) using mini-batch
stochastic gradient descent with 128 images per batch. We used early
stopping after patience five epochs if the network did not give better
accuracy or loss.

The parent sample of 2.3 million galaxies that we used in J23 was
selected based on criteria on, e.g. multiband magnitudes, stellar mass,
star formation rate, extendedness limit, and photometric redshift
range.

Comparison of neural network algorithms 527

2.4 Ishida et al.

This strong lens classifier (Ishida et al. 2024 in preparation; hereafter
124) uses a classical CNN architecture. The CNN is composed of six
blocks. Each block consists of two convolutional layers with an equal
number of filters and a batch normalization layer. Convolutional
layers within these blocks have 32, 64, 64, 64, 128, and 128 filters,
respectively, with ReLU activation. The first layer uses a 7x 7 kernel
for convolution, and subsequent layers use a 3 x 3 kernel. Three max-
pooling layers with a kernel size of 2x2 are inserted in between
blocks with different numbers of filters, as well as after the last
block. These are followed by two fully connected layers with 128
and 64 neurons with ReLLU activation, and a single-neuron output
layer with sigmoid activation. Dropout layers with a dropout rate of
0.4 are inserted between the two fully connected layers, as well as
between the fully connected and output layer.

The training and validation data are the same as for the J23
network, comprising 18660 mock lenses and 18 660 non-lenses.
We scale the fits image data using an algorithm (hereafter ‘SDSS
normalization’) based on Lupton et al. (2004). We first scale the
g-, r-, and i-band images by multiplicative factors of 2.0, 1.2, and
1.0, respectively. These values were determined through testing of
various scaling factors and were found to give the best results. We
then apply the normalization described by the equations

;-8 +r+i ’
3
sinh '(e'"x I) B
Biom = —————— x — 4+ 0.05, 1
o = T h ) T M

where B are the fluxes of each pixel in the respective bands, while
Bnom represents the fluxes of each pixel after scaling for each of the
bands g, r, and i. We choose this normalization as opposed to the
square-root stretch as it performs slightly better in our tests.

We then apply data augmentation to the data set as follows:

(i) a random shift ranging between —6 and +6 pixels in both the
x and y directions;

(i) a random horizontal and vertical flip, each with 50 per cent
probability;

(iii) a random rotation in the range [—36,36] deg;

(iv) a random adjustment of the image contrast in the range [0.9,
1.1];

(v) arandom scaling of the image brightness in the range [—0.1,
0.1].

The data augmentation is applied directly to the input training
and validation data at the start of the training (i.e. it does not create
duplicate objects) and is not re-applied at each epoch. The data
augmentation steps can result in the transformed images containing
points outside the original cut-outs of the input images, so we fill these
regions with zeros to maintain 64 x 64 pixel cut-outs. We tested other
fill modes, including reflection, wrap, and nearest pixel and found
that they gave similar results. The Adam optimization algorithm was
chosen to minimize the binary cross-entropy error function over the
training data with a learning rate 0.001. We use a batch size of 64
images. Early stopping is used to save the best model to minimize
the influence of overfitting if the network does not improve within
five epochs. We originally used a 70/15/15 train/validation/test split
for both the mock lenses and the non-lenses. However, we decided
to use a set of ~ 200 real galaxy—galaxy lenses from the SuGOHI
sample combined with the 15 per cent of excluded non-lenses for our
test sample with which we evaluate the performance of the network,
so the 15 per cent of mock lenses was returned to the training sample.

MNRAS 533, 525-537 (2024)
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Table 1. Summary of various test data sets.

Data set Data set Data set Data set
name size name size
L1 (Real) 42 N1 (SW) 2996
L2 (Real) 138 N2 (C21) 3000
L3 (Mock-C21) 3000 N3 (S22) 3000
L4 (Mock-J23) 3000 N4 (J23) 3000
L1+1L2 180 N5 (SW) 727
L (all) 6180 N (all) 12723

This effectively results in a 85/15 train/validation split for the mock
lenses and a 70/15/15 train/validation/test split for the non-lenses.

3 CONSTRUCTION OF THE COMMON TEST
SAMPLES

Here, we describe the various real and simulated lens and non-
lens samples used in constructing the common test data sets for
the networks to be compared systematically and to benchmark their
performances. The participating teams had agreed that all of the
HSC data from the GAMAO9H field be reserved for testing and
comparison of various networks. A summary of sample sizes of the
various data sets are given in Table 1 and their further details are
given in the following.

3.1 Known galaxy-scale lenses - L1

Each network is tested on an observational data set of 42 galaxy-scale
strong lenses in GAMAO9H that have been either spectroscopically
confirmed or listed as high-quality candidates. First, we use all
systems listed as galaxy—galaxy systems with grade A or B in
SuGOHI papers (Sonnenfeld et al. , 2020; Wong et al. 2018; Jaelani
et al. 2020), which corresponds to four grade A and 32 grade B.
These lenses were found in HSC Wide imaging from a range of data
releases up to PDR2 either with Yattalens, an arc-finder combining
lens light subtraction and lens modelling, or with crowdsourcing. All
high-quality candidates were also validated by experts. Secondly, we
consider the galaxy-scale lens candidates identified in GAMAO9H
with deep learning classification of images from Data Release 4 of
the Kilo-Degree Survey (LinKS, Petrillo et al. 2017, 2019). We only
consider the subset classified as highest quality, with a visual score
larger than 28 in the grading scheme adopted by the authors.

In summary, strong lenses in data set L1 have been found either
via non-machine-learning techniques applied to HSC multiband
imaging, or via supervised CNNs applied to KiDS imaging, but
none has been identified by neural networks from the HSC Wide
images we are testing the networks on. They cover a large variety
of multiple-image configurations and angular separations, as well as
various source over lens flux ratios (see Fig. 1).

3.2 Lens candidates from our own networks - L2

The data set L2 contains lens candidates found in HSC PDR2
images of GAMAO9H with three of our networks.* After removing
duplicates and galaxy-scale systems part of data set L1, we obtained
138 grade A or B candidates with visual grades >1.5. A small fraction
of these candidates are already published in the literature, including

4124 network is yet to be run on the entire HSC footprint and does not yet
have a corresponding sample of lens candidates.

MNRAS 533, 525-537 (2024)

a few group-scale lenses from SuGOHI that were not considered for
dataset L1. A total of 80, 79, and 36 systems were originally selected
by the neural networks from C21, S22, and J23, respectively. We
noticed that reclassifying these 138 strong lens candidates results
in the recovery of 94, 89, and 93 systems for C21, S22, and J23,
respectively (see Figs 2 and 3). This discrepancy is likely mainly
coming from different selections of the parent samples and different
CNN selection functions, and partly from the uncertainties inherent
to the human inspection process. For instance, of the 58/138 systems
in L2 and out of the grade A and B sample from C21, eight were
discarded from the selection of the parent sample, 42 were excluded
by the ResNet, and only eight were assigned low grades <1.5 by
visual inspection.

3.3 Mock lenses from Canameras et al. - L3

The data set L3 includes 3000 mock lenses generated following the
methodology of C21 except the GAMAO9H field which was excluded
during training. In short, the simulations follow the procedure
described in Schuldt et al. (2021) and Cafiameras et al. (2020) by co-
adding lensed sources to HSC Wide images of LRGs in GAMAO9H
with SDSS DR16 spectroscopy. We used the spectroscopic redshifts
Zspee and velocity dispersions vgisp from SDSS as a proxy to model
the lens mass distributions with Singular Isothermal Ellipsoids (SIE),
and we deduced the SIE centroids, position angles, and orientations
from the i-band light profiles with some scatter. Multiband cut-outs
of high-redshift background sources were taken from the Hubble
Ultra-Deep Field (HUDF, Inami et al. 2017), with neighbouring
galaxies masked with SEXTRACTOR (Bertin & Arnouts 1996), and
random flux boosts applied to all three bands in order to ensure
all arcs are detectable in the image plane. Given the lens and
source properties, pairs were matched iteratively to ensure a flat
Einstein radius distribution between 0.75 and 2.5 arcsec. During
this process, we gave more weight to lens galaxy at z > 0.7 in
order to boost the fraction of distant lenses relative to the input
lens (LRG) redshift distribution peaking at z ~ 0.4-0.6. The lens
galaxies were used up to four times, in which they were rotated
by k 7/2, to ensure they appeared only once with a given orienta-
tion.

For each lens system, the HUDF-selected source was randomly
centred at positions with © > 5 in the source plane, lensed to the
image plane with GLEE (Suyu & Halkola 2010; Suyu etal. 2012). The
lensed images were convolved with the subsampled HSC PSF model,
scaled to the HSC pixel size, photometric zero-point accounted for,
degraded with Poisson noise, and finally coadded with the lens galaxy
image cut-out. New source positions were drawn until the lensed arcs
reached S/N > 5 with respect to the local sky background around
the lens galaxy, and until their peak flux exceeded the lens brightness
at the peak image position, either in g or i band. These thresholds
discard all mocks with faint multiple images or strong lens-source
blending. The process also guarantees that resulting mocks reproduce
the local variations in depth and seeing, and include line-of-sight
objects and artefacts.

3.4 Mock lenses from Jaelani et al. - L4

The data set L4 is a sample of 3000 mock lenses from GAMAQO9H
generated by J23 and excluded during their training. These mocks are
hybrid in nature, that is, simulated lensed features are superposed on
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Figure 1. Mosaic of grade A and B galaxy—galaxy lenses and lens candidates in data set L1. We list the neural networks that successfully classify them as
lenses, for the score threshold assumed in the corresponding lens search papers.

real images of HSC galaxies. We use the SIMCT pipeline (see More
et al. 2016, for details) for this purpose. Starting with a catalogue of
massive galaxies, we use the photometric redshifts and magnitudes
to determine the luminosity of the galaxies. Using standard relations,
we obtain the velocity dispersion and assuming mass follows light,
we characterize the lens mass model for each potential lens galaxy.
The background galaxies are drawn from luminosity functions,
colours are taken from real galaxy catalogues, and light profile
is parametrized with a Sersic model. Lensed arc-like images are
generated of the Sersic model for the background source which are
then merged with the griz images of the respective lens galaxy
facilitiating realistic noise, image quality, lens environments, and
so on. Finally, only those lens galaxies which have sufficient lensing
optical depth and lensed images that meet certain detectability criteria
are retained in the mock sample.

3.5 Random non-lenses - N1

We randomly selected 2996 non-lenses from the GAMAQ9H field
which were classified by the Space Warps citizens as low lensing
probability candidates. We ensure that none of the SuGOHI lenses
or the recently published grade A and B strong lens candidates are
part of this sample.

3.6 Selection of non-lenses following Canameras et al. - N2

This data set includes 3000 real galaxies from GAMAO9H selected
with the same recipe as non-lenses for training the network in C21.
Galaxies are selected from the HSC Wide DR2 catalogue to match
four different classes. First, a total of 33 percent spiral galaxies

Shttps://github.com/anumore/STMCT

from Tadaki et al. (2020) with i-band Kron radii below 2 arcsec
are selected. This size cut is intended to exclude the brightest, most
extended galaxies in the input catalogue to focus on spirals with arms
located at similar angular separation as multiple images of galaxy-
scale lenses. Secondly, 27 per cent LRGs from the input sample of
the lens simulation pipeline, namely isolated LRGs from data set L2
without lensed arcs, are selected. Thirdly, 6 per cent compact galaxy
groups are selected from Wen, Han & Liu (2012), with at least four
galaxies falling within the HSC cut-out. Lastly, 33 per cent random
galaxies with rg,on < 23 mag are selected.

3.7 Selection of non-lenses following Shu et al. - N3

The data set N3 includes 3000 real galaxies within the GAMAO9H
field that satisfy a data set of criteria defined in section 2 of S22,
which were used to construct the non-lens examples for training,
validation, and testing purposes. When selecting, we made sure that
none of the 3000 galaxies was included for training or validation
in S22 and none of them were reported as a strong-lens system or
candidate according to a strong lens compilation built by S22.

3.8 Selection of non-lenses following Jaelani et al. - N4

The data set N4 includes 3000 real galaxies from GAMAO9H
following the similar selection as non-lenses in J23. We selected
non-lens objects for the negatives, which contain 40 per cent galaxies
that are randomly selected with photometric redshift range between
0.2 and 1.2, and i —magnitude < 28; 30 per cent (tricky or merge)
spiral galaxies from Tadaki et al. (2020) combined with visual
investigation; 25 per cent galaxy groups or ‘crowded’ galaxies like
LRG + egde-on galaxy (or arc like feature); and 5 percent dual
point-like.
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Figure 2. Mosaic of grade A and B galaxy—galaxy lenses and lens candidates in data set L2, obtained from our four machine learning searches in HSC PDR2
We list the neural networks that successfully classify these cut-outs as lenses, for the score thresholds used in the corresponding papers.
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Figure 3. (Continued).

3.9 Tricky non-lenses - N5

The data set N5 comprise of a sample of 727 non-lenses in
GAMAO9H from SpaceWarps (found by YattaLens and visually
classified as FP; used for training Citizens), after excluding any
overlap with SUGOHI or with recently published grade A or B strong
lens candidates.

4 METRICS USED IN COMPARISON ANALYSIS

The performance of each network is evaluated with a range of
metrics, and various combinations of test data sets. First, the Receiver
Operating Characteristic (ROC) curves are computed by varying the
network thresholds between 0 and 1, as shown in Fig. 4, using the
following definitions of the true positive rate (TPR or recall) and
false positive rate (FPR or contamination):

TP FP
=———; FPR= ———.
TP + FN FP +TN

This allows us to deduce the classical metrics for binary classifi-
cation problems that are used in the previous lens finding challenges
(Metcalf et al. 2019) and other studies (Schaefer et al. 2018; Cheng
etal. 2020), namely, the Area Under the ROC (AUROC). Computing
these quantities for the current HSC test data sets, including a wide
range of spirals, rings, mergers, and other types of non-lens galaxies,
allows us to compare the network classification performances with
previous challenges focusing on less representative test samples
drawn from simulations.

In Fig. 5, we show an additional metric called the F1 score as a
function of the threshold score. We use the standard definitions of
F1 score, precision, and recall (i.e. TPR) as follows:

TPR 2

precision * recall TP
% .

Fl = precision = ————.
TP + FP

(3

TR
precision + recall

While an ideal network would have both high precision and high
recall, the networks, in practice, tend to perform better on only one
of them while compromising the other. The F1 score allows one to
assess the accuracy of the network by combining precision and recall.
It is defined to result in a high value when both the precision and the
recall are high.

We also compute the performance for different combinations of
test data sets. We start exclusively with test data sets drawn from
observations by measuring recall from SuGOHI and KiDS lenses
and lens candidates from data set L1, and deriving contamination
from non-lenses in data sets N1 to N5. We then combine all non-
lenses together; we include lens candidates from data set L2, and we
estimate the performance jointly for all real and simulated lenses,
and for all non-lens galaxies. Finally, we focus on data sets L3/N2,
L3/N3, and L4/N4 that mimic the positive and negative examples
used for training networks in C21, S22, and J23, respectively. These
various combinations of test data sets range from 40 to 6200 positive
examples and 700-12 700 negatives (see Table 1).

5 RESULTS OF COMPARISON

We have characterized various networks using the different metrics
listed in the previous section. We have two networks based on the
ResNet architecture i.e. C21 and S22. Their respective training sets
are L3+N2 and L3+N3. We have two other networks based on
conventional CNN architecture i.e. J23 and 124 which are using
training sets L44+-N4 with minor differences in the augmentation.

5.1 Comparison of different networks

Fig. 4 shows the ROC curves for different combinations of test data
sets in each panel where the random classifier (dark grey) always
serves as a reference. The real (candidate) lens sample (L1+4L2)
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Figure 4. ROC curves for the networks presented in C21 (maroon), S22 (blue), J23 (orange), and 124 (green). The first and second rows focus on test data sets
drawn from observations. The five first panels from top-left measure recall with real SuGOHI and KiDS lenses and lens candidates from data set L1 + L2, and
derive contamination from various combinations of non-lenses in data sets N1, N2, N3, N4, and NS5. The last panel in the second row combines all lenses and
non-lenses with real HSC images (excluding the mock lenses in data sets L3 and L4), after removing duplicates. The panels in the bottom two rows focus on
positive and negative examples used for training networks in C21, S22, and J23. Sections with less than five objects are masked to account for the variations in
sample sizes. The threshold scores defined in each paper are indicated by dots. The thick grey lines show a random classifier.

combined with each non-lens sample, N1 to N5, are shown in
panels ‘a’ to ‘e’, respectively. The L1+L2 combined with N—all
is shown in panel ‘f’. By and large, the ResNet-based and L3-trained
networks C21 (maroon) and S22 (blue) have a better performance.
From panels ‘g’ to ‘k’, we interchange both the simulated lenses and
the non-lenses from each of the training sets to better understand the
sensitivity and robustness of each of the four networks. Needless to
say each network performs the best when trained on its own training
data set. The C21 and S22 also perform well when tested on the non-
lens sample, N4, of J23 (see panel ‘i’). However, their ROC curves
worsen when tested specifically on the L4 (simulated lens) data set
(panels ‘j” and ‘k’) regardless of the type of the non-lens sample (N3
is skipped for simplicity).

MNRAS 533, 525-537 (2024)

A similar behaviour is noted for J23 (orange) and 124 (green)
networks. In the final panel ‘I’ where all (simulated and real) lenses
are combined with all non-lenses, the J23 (orange) network performs
better than the rest, even if marginally so. The main reason being the
scatter in the ROCs of J23 across different data set combinations
is smaller than the other networks providing a relatively stable
performance. While the above conclusions are also evident from
a quantitative result based on the AUROCS reported in Table 2,
we want to emphasize that the differences between the AUROCs
for various networks across different data set combinations are fairly
small (particularly for rows f and 1). In fact, Fig. 4 is made linear—log
in order to be able to clearly see the differences between the different
networks.
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Figure 5. Performance metrics as a function of network threshold for the same c
(dashed) curves and Bottom: F1 scores for the four networks by C21 (maroon), S2!

Next, we show the precision (solid curves — top half), recall (dotted
curves — top half), and F1 score (bottom half) in Fig. 5 as a function
of thresholds for the same combination of data sets as in the previous
figure with the ROCs. Since F1 combines both precision and recall

ombination of data sets as shown in Fig. 4. Top: precision (solid) and recall
2 (blue), J23 (orange), and 124 (green).

of a network shown for varying thresholds, it allows us to compare
the overall accuracy of various networks in a more comprehensive
manner across different data sets. In the panel ‘f” of top half of
Fig. 5 when analysing real lenses and non-lenses, we see that the
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Table 2. Comparison of performance for different combinations of test data sets.

Test data sets AUROC Flihresh

C21 S22 J23 124 C21 S22 J23 124
a)Ll +L2-N1 0.97 0.98 0.86 0.80 0.77 0.76 0.55 0.45
b) L1 + L2—N2 0.97 0.91 0.90 0.80 0.74 0.53 0.61 0.47
c)L1 4+ L2-N3 0.97 0.99 0.88 0.83 0.78 0.77 0.62 0.48
d)L1+L2—N4 0.94 0.96 0.97 0.87 0.68 0.72 0.74 0.51
e)L1 +L2—-N5 0.96 0.90 0.84 0.79 0.77 0.70 0.69 0.52
f) L1 + L2—N (all) 0.96 0.96 0.90 0.82 0.59 0.47 0.35 0.37
g) L3—N2 1.00 0.99 0.90 0.71 0.99 0.94 0.70 0.25
h) L3—N3 1.00 1.00 0.88 0.76 1.00 0.96 0.70 0.25
i) L3—N4 1.00 1.00 0.96 0.82 0.99 0.96 0.71 0.25
j) L4—N2 0.80 0.70 0.98 0.99 0.18 0.30 0.95 0.95
k) L4—N4 0.65 0.81 0.99 0.99 0.17 0.31 0.97 0.96
1) L (all)—N (all) 0.87 0.91 0.94 0.87 0.70 0.70 0.82 0.68

precision of S22, J23, and 124 are all comparable and relatively poor
as compared to C21 which has much higher precision. In terms of
recall, S22 shows the best performance with J23 following closely
and 124 and C21 come next in that order. In panel ‘I’, which now also
includes simulated lenses, the performance improves quantitatively
but the same qualitative trends are seen as panel ‘f*.

In the bottom half of Fig. 5, we find that apart from C21, all of
the other networks show similar rising or nearly constant trend in the
F1 score with increasing thresholds. Thus, a low threshold for C21
and high thresholds for other networks are expected to give better
network accuracy and performance. It is not a surprise then that the
thresholds chosen for the respective network by C21, S22, J23, and
124 are about 0.1, 0.97, 0.99, and 0.9, respectively. In spite of being
trained on the same simulated lenses, the distinction between C21
and S22 networks becomes more apparent in panels ‘a’ to ‘f” when
tested on real lenses combined with different kinds of non-lenses.
The F1 score curve of S22 shows moderate to marginally better
performance in most of these panels followed by J23 and then 124.

As before, the networks trained on their own simulated lenses
(L3 for C21 and S22, whereas L4 for J23 and 124, see panels ‘g’
to ‘k’) produce superior F1 score at all thresholds. On the all lens
- all non-lens samples (panel ‘1’), the J23 network performs better
than others. These results highlight a general and prevalent issue of
overfitting of networks to specific training samples which then result
in an unknown and usually, poorly characterized performance on real
data.

We also report the F1 score for the aforementioned specific
thresholds in Table 2. These thresholds, chosen by each team, are
applied when conducting the actual lens search on the entire HSC
survey data (except for 124 which has not been applied to the entire
HSC data yet). We note similar trends as before. The F1es, score
of C21 is higher on most data set combinations except when trained
on J23 data set. However, when all lenses and all non-lenses are
combined all networks have comparable F1 scores with J23 leading
marginally owing to a smaller scatter overall across different data
sets.

5.2 Comparison of networks when trained on interchanged
data sets

To further understand the possible causes of the different trends seen
in previous section, we decide to perform a number of tests among
the various networks in which we keep each individual network
architecture the same, but train on the training data initially used by
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Table 3. Comparison of performance for the network from 124 when trained
on different training data samples. The original network 124 CNN was trained
on the J23 data set (see 124 in Table 2) which is shown here as J23 for reference.
Columns labelled C21 and S22 correspond to the 124 CNN trained on their
data sets, respectively.

Network Training data
AUROC Flihresh

c21 S22 J23  C21 S22 )23
g) L3(mock)—N2 .00 099 071 074 090 025
h) L3(mock)—N4 099 100 082 074 091 025
i) L1 4+ L2(real)-N(all) 097 095 082 036 033 0.37
j) L4(mock)—N2 094 070 099 021 021 095
k) L4(mock)—N4 087 082 099 021 021 096
1) L(all)—N(all) 095 092 087 052 063 0.68

the other teams. These tests will help us to assess the the role of
training sample on the performance of the networks.

The 124 network, which initially was trained on the J23 training
sample, is subsequently trained on the C21 and S22 training samples
with no modifications to the network architecture. The preprocessing
steps, including the SDSS normalization and data augmentation
described in Section 2, are kept the same and applied to the new
training samples. The results of these tests are shown in Table 3 and
Fig. 6 where the dashed curves represent the new 124 performance
and the solid curves of the four original networks are also shown for
reference. Here, curves of same colour will have same training data
sets.

Based on the metrics, the 124 network performs better when trained
on the C21 (maroon dashed) and S22 (blue dashed) data sets than
when trained on the J23 data sets (green solid), even though the
network architecture is unchanged. In fact, comparing the dashed and
solid maroon curves in Fig. 6 indicates that, for most combinations
of test data sets, the 124 network even performs comparably or even
better than the C21 network (see panels ‘i’,‘1’). Furthermore, the
F1 score as a function of the threshold (Fig. 7) too shows that
124 improves with training on the C21 and S22 data sets (dashed
curves with respect to solid green, see panels ‘g’,’h’,‘i’,‘l’) and it
outperforms C21 (dashed with respect to solid, panels ‘i’,‘j’, kK’
and ‘T’).

Encouraged by these results, we decide to perform a similar
exercise with J23 and C21 networks by interchanging their training
data sets. When the CNN of J23 is trained on the C21 data set,
Fig. 8 shows a similar improvement in the performance of J23
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Figure 6. Comparison of performance for the network from 124 when trained on different training data samples. For simplicity, only a subset of cases are
shown. The dashed curves show the 124 CNN trained on the data set from C21 (maroon) and from S22 (blue). For reference, the solid lines reproduce the
original curves from Fig. 4, namely for the C21 (maroon), S22 (blue), and J23 (orange) networks trained on the corresponding data sets. Note that 124 (green

solid curve) was originally trained on J23 data set.
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Figure 7. Performance metrics F1 score of 124 as a function of threshold for the same combination of data sets as shown in Fig. 6. As before, the dashed curves
show the modified F1 score performance of 124 when trained on C21 data set (maroon) and S22 data set (blue).

(maroon dashed curve) compared to the original CNN trained on
its own data set (orange solid curve). Interestingly, the performance
of the C21 network when trained on the J23 data set becomes
substantially worse as is evident from the orange-dashed curve in
Fig. 8 with respect to the original Resnet of C21 trained on its own
data set (maroon solid curve, panels ‘i’ and ‘I’).

These tests reinforce the fact that the training sample has a
significant impact on the performance of the network. Also, the
CNNs (124 and J23) perform better on the C21 training data set
wherein the parent galaxy catalogue comes from broader selection
cuts (see section 2.1 of C21). It will be worth investigating in the
future if the differences in the selection of the parent catalogues itself

is the cause of these improvements which is beyond the scope of this
work.

5.3 Qualitative comparison of performance on SuGOHI lenses

We also make a qualitative comparison between the output of differ-
ent networks. To illustrate this, we plot in Fig. 1 all grade A and B
galaxy—galaxy lenses and lens candidates included in data set L1 and
we list the networks that would recover these systems based on their
respective detection thresholds. Interestingly, HSCJ0913314-003906
and HSCJ092309+021350, which have significantly redder arcs, are
missed by most networks, as well as the grade A SuGOHI lens

MNRAS 533, 525-537 (2024)
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Figure 8. Comparison of performance for the network from C21 when trained on J23 (orange dashed) and the one from J23 when trained on C21 (maroon
dashed). For reference, solid curves reproduce the original ROC from Fig. 4, namely for the C21 (maroon), S22 (blue), J23 (orange), and 124 (green) networks.

HSCJ090429—-010228 that has a particularly compact and distant
lens galaxy at a spectroscopic redshift of zj,s = 0.957 (Jaelani et al.
2020). These unusual lenses are likely not represented adequately in
the training data, making them difficult to classify for any network.
KiDS2251 is classified as non-lens by all but one network, likely
due to the particularly wide image separation placing the arc counter
image outside of the cut-out. Objects such as this may be recovered
if the training data were expanded to include larger cut-outs, but
this would increase the computation time required for training.
Other commonly missed objects such as HSCJ100659+024735 and
KiDS2669 appear to have a single thick arc and very faint or no
counter image. This particular failure mode is harder to understand,
but may be improved by techniques that highlight the contrast of the
faint counterimage compared to the lens galaxy light (e.g. 124).

6 SUMMARY AND CONCLUSIONS

We present one of the first systematic studies of comparison and
benchmarking of multiple neural networks, for searching strong
gravitational lenses, tested on the common data sets generated from
the HSC Survey imaging. Four teams devised their own training
samples selected from the HSC Survey data with some teams
having partially common data sets during training. Every team
refrained from validating and testing on the varied fixed test data
sets comprising of known and/or simulated lenses and real non-
lenses. Subsequently, the teams exchanged their training data sets to
retrain their original networks and tested again on the same common
test data sets to evaluate the (lack of) sensitivity of the networks to
the nature of the training samples. We note that the analyses always
includes non-lenses selected from real galaxy catalogues. We use
standard metrics such as the ROC curves and F1 score that combines
precision and recall for comparing the performances across the four
networks.

Our main conclusions are (i) each network performs extremely
well and better than the rest when trained and tested on their own
data sets which are drawn from the same population of their own
simulated lenses and real non-lenses; (ii) all networks seem to show

MNRAS 533, 525-537 (2024)

comparable performance on the sample of real lenses (also combined
with all simulated lenses) and non-lenses; (iii) while the C21 network
has somewhat better AUROC on the combined test data sets, the J23
network is found to be more robust across the different combinations
of test data sets; (iv) when training data sets are exchanged, the
CNNs (124 and J23) give better performance on most test data sets
and at times outperform all of the original networks, whereas the
newly trained Resnet network (e.g. C21) tends to underperform on
the various test data sets implying that the nature of training sample
plays a crucial role; and (v) prima facie, the combination of CNNs and
training data set of C21 is found to give the most optimal performance
which needs further investigation.
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