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A B S T R A C T 

Efficient algorithms are being developed to search for strong gravitational lens systems owing to increasing large imaging 

surv e ys. Neural networks have been successfully used to discover galaxy-scale lens systems in imaging surveys such as the 
Kilo De gree Surv e y, Hyper-Suprime Cam (HSC) Surv e y, and Dark Energy Surv e y o v er the last few years. Thus, it has become 
imperative to understand how some of these networks compare, their strengths and the role of the training data sets which are 
essential in supervised learning algorithms used commonly in neural networks. In this work, we present the first-of-its-kind 

systematic comparison and benchmarking of networks from four teams that have analysed the HSC Surv e y data. Each team has 
designed their training samples and developed neural networks independently but coordinated a priori in reserving specific data 
sets strictly for test purposes. The test sample consists of mock lenses, real (candidate) lenses, and real non-lenses gathered from 

various sources to benchmark and characterize the performance of each of the network. While each team’s network performed 

much better on their own constructed test samples compared to those from others, all networks performed comparable on the 
test sample with real (candidate) lenses and non-lenses. We also investigate the impact of swapping the training samples among 

the teams while retaining the same network architecture. We find that this resulted in impro v ed performance for some networks. 
These results have direct implications on measures to be taken for lens searches with upcoming imaging surv e ys such as the 
Rubin-Le gac y Surv e y of Space and Time, Roman, and Euclid. 

Key words: gravitational lensing: strong – methods: data analysis – surv e ys. 
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 I N T RO D U C T I O N  

achine learning applications in astronomy have been growing 
ithin the last decade including the field of gravitational lensing. 

n strong gravitational lensing, multiple lensed images of the same 
istant galaxy or a quasar are observed owing to the gravitational 
eflection by a massive galaxy or a cluster in the foreground. 
ince this requires sufficient line-of-sight alignment between the 
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istant source and the foreground lens with the observer, such lens
ystems are rare occurrence. Ho we ver, with increasing number of
arge imaging surv e ys with sufficiently deep observations, disco v ery
f large lens samples has become feasible, for instance, from the
ark Energy Surv e y (Diehl et al. 2017 ; O’Donnell et al. 2022 ),
urv e y of Gravitationally lensed Objects in HSC Imaging (SuGOHI,
.g. Sonnenfeld et al. 2018 , 2020 ; Jaelani et al. 2021 ; Wong et al.
022 ; Chan et al. 2024 ), Kilo De gree Surv e y (KiDS, e.g. Petrillo
t al. 2017 ; Khramtsov et al. 2019 ; Li et al. 2020 ), and DECam
e gac y Surv e y (DECaLS, e.g. Huang et al. 2020 ; Storfer et al. 2022 ).
earching for lens systems is a classical pattern-recognition problem 
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s it involves identifying specific configurations, morphologies, and
olours that are expected as a result of lensing. Additionally, the
arity of the lens systems requires sifting through hundreds of images
efore a promising candidate lens system is disco v ered. Thus, this
s an apt challenge that can be addressed with machine learning
lgorithms. 

Supervised, deep learning algorithms based on convolutional
eural networks (CNNs) are fa v ourable as the majority of astronomy
ata include analysis of multiwavelength imaging. In the last few
ears, the CNNs have been successfully implemented for searching,
rimarily, galaxy-scale lenses (e.g. Jacobs et al. 2017 ; Petrillo et al.
017 , 2019 ; Ca ̃ nameras et al. 2020 ; He et al. 2020 ; Rojas et al.
023 ). A few studies have attempted to make a comparison between
ifferent neural network algorithms with other lens search methods
ith real surv e y data. F or instance, Jacobs et al. ( 2017 ) compared

he results of a CNN search on Canada–France–Hawaii Telescope
e gac y Surv e y (CFHTLS) data to the results from a purely visual-

nspection-based search conducted via Space Warps (Marshall et al.
016 ; More et al. 2016 ), a citizen science program. It is worth noting
hat the Space Warps results from CFHTLS data are also produced
sing a supervised-learning approach. Similarly, More et al. ( 2016 )
itizen-science-based results are also compared with non-machine-
earning algorithms (Gavazzi et al. 2014 ; More et al. 2012 ). Such
omparison studies have suggested that each of these approaches and
lgorithms tend to find a subset of lens systems with some o v erlap
ith each other. 
Others have compared diverse lens search methods which include

ure visual inspection and algorithms with/without machine learning
n simulated space-based and ground-based data sets (Metcalf
t al. 2019 ). They highlighted that multiband imaging plays an
mportant role in increasing the efficiency of lens identification.
urther study by Magro et al. ( 2021 ) on the same data sets
ut after applying modified data pre-processing and augmentation
howed an impro v ed performance of the various neural networks
nd emphasized the adaptability of CNNs. In Knabel et al. ( 2020 ),
ens search methods such as machine learning, visual inspection,
nd spectroscopy are compared by analysing the data from the
iDS - Galaxy Mass Assembly (GAMA). They find that each of

he methods had distinct selection functions resulting into hardly
n y o v erlapping candidates in spite of analysing the same footprints
cross three different fields. Surv e ys from upcoming telescopes
uch as Vera Rubin Observatory, 1 Euclid, 2 and Nancy Grace Ro-
an 3 will increase the rate of detection of lenses by an order

f magnitude. The need for efficient and robust machine learning
lgorithms is stronger ever than before given the challenge of big
ata. 
In this work, we attempt to do the first systematic comparison of
ultiple networks and training sets which are tested on a common

nd diverse test data set. Such a study is crucial in identifying the
trengths and weaknesses of the network architectures along with
onstruction strategies of different training-validation data sets and
hus enabling the development of a superior and robust approach that
ill produce lens searches with high efficiency. In Holloway et al.

 2024 ), a companion study, we combine different machine learning
etworks and Space Warps with the goal of constructing a unified,
uperior ensemble classifier that will be much more efficient than
ny of the individual methods. 
NRAS 533, 525–537 (2024) 
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The paper is structured as follows. In Section 2 , we briefly
ntroduce the various networks and methodologies used in generating
he training-validation data sets. In Section 3 , we describe the
onstruction of the various common test data sets. In Section 4 ,
e list the metrics used in our comparison study. In Section 5 , we
resent the results and give conclusions in Section 6 . 

 OV ERVI EW  O F  N E U R A L  N E T WO R K S  

elow we give a brief overview of the different neural networks that
re used for comparison in this work. The participating teams have
sed the data from the HSC SSP Public Data Release 2 (PDR2)
Aihara et al. 2019 ) for this study. 

.1 Canameras et al. 

he classification in Ca ̃ nameras et al. ( 2021 , hereafter C21 ) uses
 residual neural network (ResNet) inspired from the ResNet-18
rchitecture (He et al. 2016 ). After the 64 × 64 × 3 input layer, it
omprises a total of 18 layers, starting with a convolutional layer
ith 3 × 3 convolutional kernels and 64 feature maps, followed by

ight residual blocks, an average pooling layer, a flattening layer,
nd closed by a fully connected layer with 16 neurons, and the
ast single-neuron output with sigmoid acti v ation. Each residual
lock comprises two convolutional layers with 3 × 3 kernel sizes and
tride = 1 or 2, batch normalization and non-linear ReLU acti v ations.
onvolutional layers within these blocks have 64, 128, 256, and 512

eature maps, respectively. 
The network was trained and validated on gri images of the HSC

urv e y, augmented with small random shifts ranging between −5
nd + 5 pixels, and square root stretch (after clipping ne gativ e pix els
o zero), resulting in a balanced data set of 40 000 mock lenses
nd 40 000 non-lens galaxies. The optimization was performed with
ini-batch gradient descent and we used a batch size of 128 images,
 learning rate of 0.0006, a weight decay of 0.001, and a momentum
xed to 0.9. The binary cross-entropy loss was computed o v er the

raining and validation sets at each epoch, and we used early stopping
o save the best model at minimal validation loss. 

In C21 , this ResNet was chosen among a range of networks to
ptimize lens identification o v er all e xtended galaxies in DR2 with
-band Kron radius ≥0.8 ′′ , and without photometric pre-selection. It
as tested on sets of 202 grade-A or B galaxy-scale lens candidates

rom SuGOHI, and 91 000 non-lens galaxies in the COSMOS field,
ith both sets restricted to Kron radii ≥0.8 ′′ . This specific network,

nd the score threshold of 0.1 were chosen to reach contamination
ates as low as 0.01 per cent while ensuring a recall > 50 per cent o v er
he SuGOHI test sample. The results from C21 illustrate the ability of
his network to efficiently select new strong lens candidates from an
xtended input sample of 62.5 million galaxies, with moderate visual
nspection. Output scores tend to shift to higher values in regions with
eeing full width at half-maximum simultaneously higher in r band
nd lower in i band, as found o v er the GAMA09H field. This seeing
ependence is discussed in more details in Canameras et al. ( 2023 ). 

.2 Shu et al. 

wo lens classifiers were presented in Shu et al. ( 2022 , hereafter
22 ), both of which were constructed based on the deep residual
etwork, DEEPLENS CLASSIFIER , pre-built in the CMU DEEPLENS

ackage (Lanusse et al. 2018 ). The main difference between those
wo lens classifiers was the mock lens population in the training
et. For Classifier-1, the mock lenses in the training set co v ered a

https://www.lsst.org
https://sci.esa.int/web/euclid
https://roman.gsfc.nasa.gov
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ens redshift range of 0–1.0 with a peak at ≈ 0 . 55. For Classifier-
, the lens redshift distribution was relatively uniform from 0.4 to 
.0. It was shown by S22 that, as a result of the different choices
f the training set, Classifier-1 delivered an overall high recall for
trong-lens systems up to lens redshift of ∼ 0 . 8, while Classifier-2
as more optimized for disco v ering strong-lens systems with high- 

edshift ( z � 0 . 7) lens galaxies. As the strong-lens systems used in
his work span a wide lens redshift range, we only consider Classifier-
 from S22 in the following analyses. 
A full description of how Classifier-1 was built, trained, and tested 

an be found in S22 . Here, we only summarize a few aspects that
re rele v ant for comparing with the other netw orks. Classifier-1 w as
rained and validated on HSC gri images of 43 500 mock lenses and
3 500 non-lens objects. The mock lenses were created in the same
ay as in C21 and were therefore qualitatively similar to the mock

enses used for training the network in C21 . The non-lens objects
ere from a random subset of the parent sample that Classifier-1
as eventually applied to. Since the key moti v ation of S22 was to

earch for strong-lens systems with high-redshift lens galaxies, the 
arent sample was selected to contain relatively red galaxies using 
he g − r and g − i colours. There was no cut on the Kron radius,
nd in fact about two-thirds of the parent sample had i-band Kron
adius smaller than 0.8 ′′ . 

Classifier-1 was optimized based on a test set consisting of 92 
rade-A or B strong-lens candidates from the SuGOHI project that 
ere also in the parent sample and 50 000 non-lens objects randomly

elected from the parent sample. In S22 , the probability threshold 
as chosen to be p thresh = 0 . 9731, which corresponded to a TPR of
.85 and an FPR of 0.001 on the test set. 

.3 Jaelani et al. 

he lens classification in J23 uses a classical CNN inspired from
he CNN architecture used in Jacobs et al. ( 2017 ). The network
omprises five convolutional layers with 11 × 11, 7 × 7, 5 × 5, 5

5, and 3 × 3 kernel sizes; and 64, 128, 128, 256, and 256 filters,
espectively. It is followed by four fully connected hidden layers with 
024, 1024, 512, and 512 neurons, and a single-neuron output layer 
ith sigmoid acti v ation. Three Max-pooling layers with 2 × 2 kernel

izes and stride = 2 are inserted in between the convolutional layers
nd are essential to make the CNN invariant to local translations of the 
ele v ant features in gri image cut-outs while reducing the network
arameters. Five dropout regularizations are performed in between 
onvolutional and fully connected layers to reduce the chance of 
 v erfitting by randomly dropping a 0.2 of the output neurons during
raining with ReLU non-linear acti v ations. 

The CNN was trained and validated on HSC gri images of 18 660
ock lenses and 18 660 non-lens objects. The augmentations have 

een applied to the data set by following: (i) a random rotation in the
ange [ −30 deg, 30 deg]; (ii) a random resizing zoom range in the
ange [0.8, 1.2]; (iii) a random horizontal flipping; (iv) and a random
hannel shift range = 0 . 9. The Adam optimization algorithm was
hosen to minimize the cross-entropy error function o v er training 
ata with a learning rate of 0.00005. The CNN was trained for 52
pochs (with 100 epochs are the maximum allowed) using mini-batch 
tochastic gradient descent with 128 images per batch. We used early 
topping after patience five epochs if the network did not give better
ccuracy or loss. 

The parent sample of 2.3 million galaxies that we used in J23 was
elected based on criteria on, e.g. multiband magnitudes, stellar mass, 
tar formation rate, extendedness limit, and photometric redshift 
ange. 
.4 Ishida et al. 

his strong lens classifier (Ishida et al. 2024 in preparation; hereafter
24) uses a classical CNN architecture. The CNN is composed of six
locks. Each block consists of two convolutional layers with an equal
umber of filters and a batch normalization layer. Convolutional 
ayers within these blocks have 32, 64, 64, 64, 128, and 128 filters,
especti vely, with ReLU acti v ation. The first layer uses a 7 ×7 kernel
or convolution, and subsequent layers use a 3 ×3 kernel. Three max-
ooling layers with a kernel size of 2 ×2 are inserted in between
locks with different numbers of filters, as well as after the last
lock. These are followed by two fully connected layers with 128
nd 64 neurons with ReLU acti v ation, and a single-neuron output
ayer with sigmoid acti v ation. Dropout layers with a dropout rate of
.4 are inserted between the two fully connected layers, as well as
etween the fully connected and output layer. 

The training and validation data are the same as for the J23
etwork, comprising 18 660 mock lenses and 18 660 non-lenses. 
e scale the fits image data using an algorithm (hereafter ‘SDSS

ormalization’) based on Lupton et al. ( 2004 ). We first scale the
-, r-, and i-band images by multiplicative factors of 2.0, 1.2, and
.0, respecti vely. These v alues were determined through testing of
arious scaling factors and were found to give the best results. We
hen apply the normalization described by the equations 

I = 

g + r + i 

3 
, 

 norm 

= 

sinh −1 ( e 10 × I ) 

sinh −1 ( e 10 ) 
× B 

I 
+ 0 . 05 , (1) 

here B are the fluxes of each pixel in the respective bands, while
 norm 

represents the fluxes of each pixel after scaling for each of the
ands g, r , and i. We choose this normalization as opposed to the
quare-root stretch as it performs slightly better in our tests. 

We then apply data augmentation to the data set as follows: 

(i) a random shift ranging between −6 and + 6 pixels in both the
 and y directions; 
(ii) a random horizontal and vertical flip, each with 50 per cent

robability; 
(iii) a random rotation in the range [ −36,36] deg; 
(iv) a random adjustment of the image contrast in the range [0.9,

.1]; 
(v) a random scaling of the image brightness in the range [ −0.1,

.1]. 

The data augmentation is applied directly to the input training 
nd validation data at the start of the training (i.e. it does not create
uplicate objects) and is not re-applied at each epoch. The data
ugmentation steps can result in the transformed images containing 
oints outside the original cut-outs of the input images, so we fill these
egions with zeros to maintain 64 × 64 pixel cut-outs. We tested other
ll modes, including reflection, wrap, and nearest pixel and found 

hat the y gav e similar results. The Adam optimization algorithm was
hosen to minimize the binary cross-entropy error function o v er the
raining data with a learning rate 0.001. We use a batch size of 64
mages. Early stopping is used to save the best model to minimize
he influence of o v erfitting if the network does not impro v e within
ve epochs. We originally used a 70/15/15 train/validation/test split 
or both the mock lenses and the non-lenses. Ho we ver, we decided
o use a set of ∼ 200 real g alaxy–g alaxy lenses from the SuGOHI
ample combined with the 15 per cent of excluded non-lenses for our
est sample with which we e v aluate the performance of the network,
o the 15 per cent of mock lenses was returned to the training sample.
MNRAS 533, 525–537 (2024) 
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M

Table 1. Summary of various test data sets. 

Data set Data set Data set Data set 
name size name size 

L1 (Real) 42 N1 (SW) 2996 
L2 (Real) 138 N2 ( C21 ) 3000 
L3 (Mock- C21 ) 3000 N3 ( S22 ) 3000 
L4 (Mock-J23) 3000 N4 (J23) 3000 
L1 + L2 180 N5 (SW) 727 
L (all) 6180 N (all) 12 723 
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his ef fecti vely results in a 85/15 train/validation split for the mock
enses and a 70/15/15 train/validation/test split for the non-lenses. 

 C O N S T RU C T I O N  O F  T H E  C O M M O N  TEST  

AMPLES  

ere, we describe the various real and simulated lens and non-
ens samples used in constructing the common test data sets for
he networks to be compared systematically and to benchmark their
erformances. The participating teams had agreed that all of the
SC data from the GAMA09H field be reserved for testing and

omparison of various networks. A summary of sample sizes of the
arious data sets are given in Table 1 and their further details are
iven in the following. 

.1 Known galaxy-scale lenses - L1 

ach network is tested on an observational data set of 42 galaxy-scale
trong lenses in GAMA09H that have been either spectroscopically
onfirmed or listed as high-quality candidates. First, we use all
ystems listed as g alaxy–g alaxy systems with grade A or B in
uGOHI papers (Sonnenfeld et al. , 2020 ; Wong et al. 2018 ; Jaelani
t al. 2020 ), which corresponds to four grade A and 32 grade B.
hese lenses were found in HSC Wide imaging from a range of data

eleases up to PDR2 either with Yattalens, an arc-finder combining
ens light subtraction and lens modelling, or with crowdsourcing. All
igh-quality candidates were also validated by experts. Secondly, we
onsider the galaxy-scale lens candidates identified in GAMA09H
ith deep learning classification of images from Data Release 4 of

he Kilo-Degree Survey (LinKS, Petrillo et al. 2017 , 2019 ). We only
onsider the subset classified as highest quality, with a visual score
arger than 28 in the grading scheme adopted by the authors. 

In summary, strong lenses in data set L1 have been found either
ia non-machine-learning techniques applied to HSC multiband
maging, or via supervised CNNs applied to KiDS imaging, but
one has been identified by neural networks from the HSC Wide
mages we are testing the networks on. They cover a large variety
f multiple-image configurations and angular separations, as well as
arious source o v er lens flux ratios (see Fig. 1 ). 

.2 Lens candidates from our own networks - L2 

he data set L2 contains lens candidates found in HSC PDR2
mages of GAMA09H with three of our networks. 4 After removing
uplicates and galaxy-scale systems part of data set L1, we obtained
38 grade A or B candidates with visual grades ≥1.5. A small fraction
f these candidates are already published in the literature, including
NRAS 533, 525–537 (2024) 

 I24 network is yet to be run on the entire HSC footprint and does not yet 
ave a corresponding sample of lens candidates. 

T  

g  

h  
 few group-scale lenses from SuGOHI that were not considered for
ata set L1. A total of 80, 79, and 36 systems were originally selected
y the neural networks from C21 , S22 , and J23, respectively. We
oticed that reclassifying these 138 strong lens candidates results
n the reco v ery of 94, 89, and 93 systems for C21 , S22 , and J23,
espectively (see Figs 2 and 3 ). This discrepancy is likely mainly
oming from different selections of the parent samples and different
NN selection functions, and partly from the uncertainties inherent

o the human inspection process. For instance, of the 58/138 systems
n L2 and out of the grade A and B sample from C21 , eight were
iscarded from the selection of the parent sample, 42 were excluded
y the ResNet, and only eight were assigned low grades < 1.5 by
isual inspection. 

.3 Mock lenses from Canameras et al. - L3 

he data set L3 includes 3000 mock lenses generated following the
ethodology of C21 except the GAMA09H field which was excluded

uring training. In short, the simulations follow the procedure
escribed in Schuldt et al. ( 2021 ) and Ca ̃ nameras et al. ( 2020 ) by co-
dding lensed sources to HSC Wide images of LRGs in GAMA09H
ith SDSS DR16 spectroscopy. We used the spectroscopic redshifts
 spec and velocity dispersions v disp from SDSS as a proxy to model
he lens mass distributions with Singular Isothermal Ellipsoids (SIE),
nd we deduced the SIE centroids, position angles, and orientations
rom the i-band light profiles with some scatter. Multiband cut-outs
f high-redshift background sources were taken from the Hubble
ltra-Deep Field (HUDF, Inami et al. 2017 ), with neighbouring
alaxies masked with SEXTRACTOR (Bertin & Arnouts 1996 ), and
andom flux boosts applied to all three bands in order to ensure
ll arcs are detectable in the image plane. Given the lens and
ource properties, pairs were matched iteratively to ensure a flat
instein radius distribution between 0.75 and 2.5 arcsec. During

his process, we gave more weight to lens galaxy at z > 0 . 7 in
rder to boost the fraction of distant lenses relative to the input
ens (LRG) redshift distribution peaking at z ∼ 0 . 4–0.6. The lens
alaxies were used up to four times, in which they were rotated
y k π /2, to ensure they appeared only once with a given orienta-
ion. 

For each lens system, the HUDF-selected source was randomly
entred at positions with μ ≥ 5 in the source plane, lensed to the
mage plane with GLEE (Suyu & Halkola 2010 ; Suyu et al. 2012 ). The
ensed images were convolved with the subsampled HSC PSF model,
caled to the HSC pixel size, photometric zero-point accounted for,
egraded with Poisson noise, and finally coadded with the lens galaxy
mage cut-out. New source positions were drawn until the lensed arcs
eached S / N ≥ 5 with respect to the local sky background around
he lens galaxy, and until their peak flux exceeded the lens brightness
t the peak image position, either in g or i band. These thresholds
iscard all mocks with faint multiple images or strong lens-source
lending. The process also guarantees that resulting mocks reproduce
he local variations in depth and seeing, and include line-of-sight
bjects and artefacts. 

.4 Mock lenses from Jaelani et al. - L4 

he data set L4 is a sample of 3000 mock lenses from GAMA09H
enerated by J23 and excluded during their training. These mocks are
ybrid in nature, that is, simulated lensed features are superposed on
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Figure 1. Mosaic of grade A and B g alaxy–g alaxy lenses and lens candidates in data set L1. We list the neural networks that successfully classify them as 
lenses, for the score threshold assumed in the corresponding lens search papers. 
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eal images of HSC galaxies. We use the SIMCT 5 pipeline (see More
t al. 2016 , for details) for this purpose. Starting with a catalogue of
assive galaxies, we use the photometric redshifts and magnitudes 

o determine the luminosity of the galaxies. Using standard relations, 
e obtain the velocity dispersion and assuming mass follows light, 
e characterize the lens mass model for each potential lens galaxy. 
he background galaxies are drawn from luminosity functions, 
olours are taken from real galaxy catalogues, and light profile 
s parametrized with a Sersic model. Lensed arc-like images are 
enerated of the Sersic model for the background source which are 
hen merged with the griz images of the respective lens galaxy 
acilitiating realistic noise, image quality, lens environments, and 
o on. Finally, only those lens galaxies which have sufficient lensing 
ptical depth and lensed images that meet certain detectability criteria 
re retained in the mock sample. 

.5 Random non-lenses - N1 

e randomly selected 2996 non-lenses from the GAMA09H field 
hich were classified by the Space Warps citizens as low lensing 
robability candidates. We ensure that none of the SuGOHI lenses 
r the recently published grade A and B strong lens candidates are
art of this sample. 

.6 Selection of non-lenses following Canameras et al. - N2 

his data set includes 3000 real galaxies from GAMA09H selected 
ith the same recipe as non-lenses for training the network in C21 .
alaxies are selected from the HSC Wide DR2 catalogue to match 

our different classes. First, a total of 33 per cent spiral galaxies
 https:// github.com/ anumore/ SIMCT 

i
L  

p

rom Tadaki et al. ( 2020 ) with i-band Kron radii below 2 arcsec
re selected. This size cut is intended to exclude the brightest, most
xtended galaxies in the input catalogue to focus on spirals with arms
ocated at similar angular separation as multiple images of galaxy- 
cale lenses. Secondly, 27 per cent LRGs from the input sample of
he lens simulation pipeline, namely isolated LRGs from data set L2
ithout lensed arcs, are selected. Thirdly, 6 per cent compact galaxy
roups are selected from Wen, Han & Liu ( 2012 ), with at least four
alaxies falling within the HSC cut-out. Lastly, 33 per cent random
alaxies with r Kron < 23 mag are selected. 

.7 Selection of non-lenses following Shu et al. - N3 

he data set N3 includes 3000 real galaxies within the GAMA09H
eld that satisfy a data set of criteria defined in section 2 of S22 ,
hich were used to construct the non-lens examples for training, 
alidation, and testing purposes. When selecting, we made sure that 
one of the 3000 galaxies was included for training or validation
n S22 and none of them were reported as a strong-lens system or
andidate according to a strong lens compilation built by S22 . 

.8 Selection of non-lenses following Jaelani et al. - N4 

he data set N4 includes 3000 real galaxies from GAMA09H 

ollowing the similar selection as non-lenses in J23. We selected 
on-lens objects for the ne gativ es, which contain 40 per cent galaxies
hat are randomly selected with photometric redshift range between 
.2 and 1.2, and i−magnitude < 28; 30 per cent (tricky or merge)
piral galaxies from Tadaki et al. ( 2020 ) combined with visual
nvestigation; 25 per cent galaxy groups or ‘crowded’ galaxies like 
RG + egde-on galaxy (or arc like feature); and 5 per cent dual
oint-like. 
MNRAS 533, 525–537 (2024) 

https://github.com/anumore/SIMCT
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Figure 2. Mosaic of grade A and B g alaxy–g alaxy lenses and lens candidates in data set L2, obtained from our four machine learning searches in HSC PDR2 
images. We list the neural networks that successfully classify these cut-outs as lenses, for the score thresholds used in the corresponding papers. 
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Figure 3. (Continued). 
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.9 Tricky non-lenses - N5 

he data set N5 comprise of a sample of 727 non-lenses in
AMA09H from SpaceWarps (found by YattaLens and visually 

lassified as FP; used for training Citizens), after excluding any 
 v erlap with SuGOHI or with recently published grade A or B strong
ens candidates. 

 METRICS  USED  IN  C O M PA R I S O N  ANALYSI S  

he performance of each network is e v aluated with a range of
etrics, and various combinations of test data sets. First, the Receiver 
perating Characteristic (ROC) curves are computed by varying the 
etwork thresholds between 0 and 1, as shown in Fig. 4 , using the
ollowing definitions of the true positive rate (TPR or recall) and 
alse positive rate (FPR or contamination): 

PR = 

TP 

TP + FN 

; FPR = 

FP 

FP + TN 

. (2) 

This allows us to deduce the classical metrics for binary classifi-
ation problems that are used in the previous lens finding challenges 
Metcalf et al. 2019 ) and other studies (Schaefer et al. 2018 ; Cheng
t al. 2020 ), namely, the Area Under the R OC (AUR OC). Computing
hese quantities for the current HSC test data sets, including a wide
ange of spirals, rings, mergers, and other types of non-lens galaxies, 
llows us to compare the network classification performances with 
revious challenges focusing on less representative test samples 
rawn from simulations. 
In Fig. 5 , we show an additional metric called the F1 score as a

unction of the threshold score. We use the standard definitions of
1 score, precision, and recall (i.e. TPR) as follows: 

1 = 2 ∗ precision ∗ recall 

precision + recall 
; precision = 

TP 

TP + FP 

. (3) 
While an ideal network would have both high precision and high
ecall, the networks, in practice, tend to perform better on only one
f them while compromising the other. The F1 score allows one to
ssess the accuracy of the network by combining precision and recall.
t is defined to result in a high value when both the precision and the
ecall are high. 

We also compute the performance for different combinations of 
est data sets. We start e xclusiv ely with test data sets drawn from
bservations by measuring recall from SuGOHI and KiDS lenses 
nd lens candidates from data set L1, and deriving contamination 
rom non-lenses in data sets N1 to N5. We then combine all non-
enses together; we include lens candidates from data set L2, and we
stimate the performance jointly for all real and simulated lenses, 
nd for all non-lens galaxies. Finally, we focus on data sets L3/N2,
3/N3, and L4/N4 that mimic the positive and negative examples 
sed for training networks in C21 , S22 , and J23, respectively. These
arious combinations of test data sets range from 40 to 6200 positive
xamples and 700–12 700 negatives (see Table 1 ). 

 RESULTS  O F  C O M PA R I S O N  

e have characterized various networks using the different metrics 
isted in the previous section. We have two networks based on the
esNet architecture i.e. C21 and S22 . Their respective training sets
re L3 + N2 and L3 + N3. We have two other networks based on
onventional CNN architecture i.e. J23 and I24 which are using 
raining sets L4 + N4 with minor differences in the augmentation. 

.1 Comparison of different networks 

ig. 4 shows the ROC curves for different combinations of test data
ets in each panel where the random classifier (dark grey) al w ays
erves as a reference. The real (candidate) lens sample (L1 + L2)
MNRAS 533, 525–537 (2024) 
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Figure 4. ROC curves for the networks presented in C21 (maroon), S22 (blue), J23 (orange), and I24 (green). The first and second rows focus on test data sets 
drawn from observations. The five first panels from top-left measure recall with real SuGOHI and KiDS lenses and lens candidates from data set L1 + L2, and 
derive contamination from various combinations of non-lenses in data sets N1, N2, N3, N4, and N5. The last panel in the second row combines all lenses and 
non-lenses with real HSC images (excluding the mock lenses in data sets L3 and L4), after removing duplicates. The panels in the bottom two rows focus on 
positive and negative examples used for training networks in C21, S22, and J23. Sections with less than five objects are masked to account for the variations in 
sample sizes. The threshold scores defined in each paper are indicated by dots. The thick grey lines show a random classifier. 
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ombined with each non-lens sample, N1 to N5, are shown in
anels ‘a’ to ‘e’, respectively. The L1 + L2 combined with N −all
s shown in panel ‘f’. By and large, the ResNet-based and L3-trained
etworks C21 (maroon) and S22 (blue) have a better performance.
rom panels ‘g’ to ‘k’, we interchange both the simulated lenses and

he non-lenses from each of the training sets to better understand the
ensitivity and robustness of each of the four networks. Needless to
ay each network performs the best when trained on its own training
ata set. The C21 and S22 also perform well when tested on the non-
ens sample, N4, of J23 (see panel ‘i’). Ho we ver , their R OC curves
orsen when tested specifically on the L4 (simulated lens) data set

panels ‘j’ and ‘k’) regardless of the type of the non-lens sample (N3
s skipped for simplicity). 
NRAS 533, 525–537 (2024) 
A similar behaviour is noted for J23 (orange) and I24 (green)
etworks. In the final panel ‘l’ where all (simulated and real) lenses
re combined with all non-lenses, the J23 (orange) network performs
etter than the rest, even if marginally so. The main reason being the
catter in the ROCs of J23 across different data set combinations
s smaller than the other networks providing a relatively stable
erformance. While the abo v e conclusions are also evident from
 quantitative result based on the AUROCs reported in Table 2 ,
e want to emphasize that the differences between the AUROCs

or various networks across different data set combinations are fairly
mall (particularly for rows f and l). In fact, Fig. 4 is made linear −log
n order to be able to clearly see the differences between the different
etworks. 
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Figure 5. Performance metrics as a function of network threshold for the same combination of data sets as shown in Fig. 4 . Top: precision (solid) and recall 
(dashed) curves and Bottom: F1 scores for the four networks by C21 (maroon), S22 (blue), J23 (orange), and I24 (green). 
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Next, we show the precision (solid curves – top half), recall (dotted 
urves – top half), and F1 score (bottom half) in Fig. 5 as a function
f thresholds for the same combination of data sets as in the previous
gure with the ROCs. Since F1 combines both precision and recall 
f a network shown for varying thresholds, it allows us to compare
he o v erall accurac y of v arious networks in a more comprehensi ve
anner across different data sets. In the panel ‘f’ of top half of
ig. 5 when analysing real lenses and non-lenses, we see that the
MNRAS 533, 525–537 (2024) 
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Table 2. Comparison of performance for different combinations of test data sets. 

Test data sets AUROC F1 thresh 

C21 S22 J23 I24 C21 S22 J23 I24 

a) L1 + L2 −N1 0.97 0.98 0.86 0.80 0.77 0.76 0.55 0.45 
b) L1 + L2 −N2 0.97 0.91 0.90 0.80 0.74 0.53 0.61 0.47 
c) L1 + L2 −N3 0.97 0.99 0.88 0.83 0.78 0.77 0.62 0.48 
d) L1 + L2 −N4 0.94 0.96 0.97 0.87 0.68 0.72 0.74 0.51 
e) L1 + L2 −N5 0.96 0.90 0.84 0.79 0.77 0.70 0.69 0.52 
f) L1 + L2 −N (all) 0.96 0.96 0.90 0.82 0.59 0.47 0.35 0.37 
g) L3 −N2 1.00 0.99 0.90 0.71 0.99 0.94 0.70 0.25 
h) L3 −N3 1.00 1.00 0.88 0.76 1.00 0.96 0.70 0.25 
i) L3 −N4 1.00 1.00 0.96 0.82 0.99 0.96 0.71 0.25 
j) L4 −N2 0.80 0.70 0.98 0.99 0.18 0.30 0.95 0.95 
k) L4 −N4 0.65 0.81 0.99 0.99 0.17 0.31 0.97 0.96 
l) L (all) −N (all) 0.87 0.91 0.94 0.87 0.70 0.70 0.82 0.68 
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Table 3. Comparison of performance for the network from I24 when trained 
on different training data samples. The original network I24 CNN was trained 
on the J23 data set (see I24 in Table 2 ) which is shown here as J23 for reference. 
Columns labelled C21 and S22 correspond to the I24 CNN trained on their 
data sets, respectively. 

Network Training data 
AUROC F1 thresh 

C21 S22 J23 C21 S22 J23 

g) L3(mock) −N2 1.00 0.99 0.71 0.74 0.90 0.25 
h) L3(mock) −N4 0.99 1.00 0.82 0.74 0.91 0.25 
i) L1 + L2(real) −N(all) 0.97 0.95 0.82 0.36 0.33 0.37 
j) L4(mock) −N2 0.94 0.70 0.99 0.21 0.21 0.95 
k) L4(mock) −N4 0.87 0.82 0.99 0.21 0.21 0.96 
l) L(all) −N(all) 0.95 0.92 0.87 0.52 0.63 0.68 
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recision of S22 , J23, and I24 are all comparable and relatively poor
s compared to C21 which has much higher precision. In terms of
ecall, S22 shows the best performance with J23 following closely
nd I24 and C21 come next in that order. In panel ‘l’, which now also
ncludes simulated lenses, the performance impro v es quantitativ ely
ut the same qualitative trends are seen as panel ‘f’. 

In the bottom half of Fig. 5 , we find that apart from C21 , all of
he other networks show similar rising or nearly constant trend in the
1 score with increasing thresholds. Thus, a low threshold for C21
nd high thresholds for other networks are expected to give better
etwork accuracy and performance. It is not a surprise then that the
hresholds chosen for the respective network by C21 , S22 , J23, and
24 are about 0.1, 0.97, 0.99, and 0.9, respectively. In spite of being
rained on the same simulated lenses, the distinction between C21
nd S22 networks becomes more apparent in panels ‘a’ to ‘f’ when
ested on real lenses combined with different kinds of non-lenses.
he F1 score curve of S22 shows moderate to marginally better
erformance in most of these panels followed by J23 and then I24. 
As before, the networks trained on their own simulated lenses

L3 for C21 and S22 , whereas L4 for J23 and I24, see panels ‘g’
o ‘k’) produce superior F1 score at all thresholds. On the all lens
 all non-lens samples (panel ‘l’), the J23 network performs better
han others. These results highlight a general and pre v alent issue of
 v erfitting of networks to specific training samples which then result
n an unknown and usually, poorly characterized performance on real
ata. 
We also report the F1 score for the aforementioned specific

hresholds in Table 2 . These thresholds, chosen by each team, are
pplied when conducting the actual lens search on the entire HSC
urv e y data (except for I24 which has not been applied to the entire
SC data yet). We note similar trends as before. The F1 thresh score
f C21 is higher on most data set combinations except when trained
n J23 data set. Ho we ver, when all lenses and all non-lenses are
ombined all networks have comparable F1 scores with J23 leading
arginally owing to a smaller scatter o v erall across different data

ets. 

.2 Comparison of networks when trained on interchanged 

ata sets 

o further understand the possible causes of the different trends seen
n previous section, we decide to perform a number of tests among
he various networks in which we keep each individual network
rchitecture the same, but train on the training data initially used by
NRAS 533, 525–537 (2024) 
he other teams. These tests will help us to assess the the role of
raining sample on the performance of the networks. 

The I24 network, which initially was trained on the J23 training
ample, is subsequently trained on the C21 and S22 training samples
ith no modifications to the network architecture. The preprocessing

teps, including the SDSS normalization and data augmentation
escribed in Section 2 , are kept the same and applied to the new
raining samples. The results of these tests are shown in Table 3 and
ig. 6 where the dashed curves represent the new I24 performance
nd the solid curves of the four original networks are also shown for
eference. Here, curves of same colour will have same training data
ets. 

Based on the metrics, the I24 network performs better when trained
n the C21 (maroon dashed) and S22 (blue dashed) data sets than
hen trained on the J23 data sets (green solid), even though the
etwork architecture is unchanged. In fact, comparing the dashed and
olid maroon curves in Fig. 6 indicates that, for most combinations
f test data sets, the I24 network even performs comparably or even
etter than the C21 network (see panels ‘i’,‘l’). Furthermore, the
1 score as a function of the threshold (Fig. 7 ) too shows that
24 impro v es with training on the C21 and S22 data sets (dashed
urves with respect to solid green, see panels ‘g’,‘h’,‘i’,‘l’) and it
utperforms C21 (dashed with respect to solid, panels ‘i’,‘j’, ‘k’
nd ‘l’). 

Encouraged by these results, we decide to perform a similar
 x ercise with J23 and C21 networks by interchanging their training
ata sets. When the CNN of J23 is trained on the C21 data set,
ig. 8 shows a similar impro v ement in the performance of J23
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Figure 6. Comparison of performance for the network from I24 when trained on different training data samples. For simplicity, only a subset of cases are 
shown. The dashed curves show the I24 CNN trained on the data set from C21 (maroon) and from S22 (blue). For reference, the solid lines reproduce the 
original curves from Fig. 4 , namely for the C21 (maroon), S22 (blue), and J23 (orange) networks trained on the corresponding data sets. Note that I24 (green 
solid curve) was originally trained on J23 data set. 

Figure 7. Performance metrics F1 score of I24 as a function of threshold for the same combination of data sets as shown in Fig. 6 . As before, the dashed curves 
show the modified F1 score performance of I24 when trained on C21 data set (maroon) and S22 data set (blue). 
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maroon dashed curve) compared to the original CNN trained on 
ts own data set (orange solid curve). Interestingly, the performance 
f the C21 network when trained on the J23 data set becomes
ubstantially worse as is evident from the orange-dashed curve in 
ig. 8 with respect to the original Resnet of C21 trained on its own
ata set (maroon solid curve, panels ‘i’ and ‘l’). 
These tests reinforce the fact that the training sample has a 

ignificant impact on the performance of the network. Also, the 
NNs (I24 and J23) perform better on the C21 training data set
herein the parent galaxy catalogue comes from broader selection 

uts (see section 2.1 of C21 ). It will be worth investigating in the
uture if the differences in the selection of the parent catalogues itself
s the cause of these impro v ements which is beyond the scope of this
ork. 

.3 Qualitati v e comparison of performance on SuGOHI lenses 

e also make a qualitative comparison between the output of differ-
nt networks. To illustrate this, we plot in Fig. 1 all grade A and B
 alaxy–g alaxy lenses and lens candidates included in data set L1 and
e list the networks that would reco v er these systems based on their

espective detection thresholds. Interestingly, HSCJ091331 + 003906 
nd HSCJ092309 + 021350, which have significantly redder arcs, are 
issed by most networks, as well as the grade A SuGOHI lens
MNRAS 533, 525–537 (2024) 
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Figure 8. Comparison of performance for the network from C21 when trained on J23 (orange dashed) and the one from J23 when trained on C21 (maroon 
dashed). F or reference, solid curv es reproduce the original ROC from Fig. 4 , namely for the C21 (maroon), S22 (blue), J23 (orange), and I24 (green) networks. 
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SCJ090429 −010228 that has a particularly compact and distant
ens galaxy at a spectroscopic redshift of z lens = 0 . 957 (Jaelani et al.
020 ). These unusual lenses are likely not represented adequately in
he training data, making them difficult to classify for any network.
iDS2251 is classified as non-lens by all but one netw ork, lik ely
ue to the particularly wide image separation placing the arc counter
mage outside of the cut-out. Objects such as this may be reco v ered
f the training data were expanded to include larger cut-outs, but
his would increase the computation time required for training.
ther commonly missed objects such as HSCJ100659 + 024735 and
iDS2669 appear to have a single thick arc and very faint or no

ounter image. This particular failure mode is harder to understand,
ut may be impro v ed by techniques that highlight the contrast of the
aint counterimage compared to the lens galaxy light (e.g. I24). 

 SUMMARY  A N D  C O N C L U S I O N S  

e present one of the first systematic studies of comparison and
enchmarking of multiple neural networks, for searching strong
ravitational lenses, tested on the common data sets generated from
he HSC Surv e y imaging. F our teams de vised their o wn training
amples selected from the HSC Surv e y data with some teams
aving partially common data sets during training. Every team
efrained from validating and testing on the varied fixed test data
ets comprising of known and/or simulated lenses and real non-
enses. Subsequently, the teams exchanged their training data sets to
etrain their original networks and tested again on the same common
est data sets to e v aluate the (lack of) sensitivity of the networks to
he nature of the training samples. We note that the analyses al w ays
ncludes non-lenses selected from real galaxy catalogues. We use
tandard metrics such as the ROC curves and F1 score that combines
recision and recall for comparing the performances across the four
etworks. 
Our main conclusions are (i) each network performs extremely

ell and better than the rest when trained and tested on their own
ata sets which are drawn from the same population of their own
imulated lenses and real non-lenses; (ii) all networks seem to show
NRAS 533, 525–537 (2024) 
omparable performance on the sample of real lenses (also combined
ith all simulated lenses) and non-lenses; (iii) while the C21 network
as somewhat better AUROC on the combined test data sets, the J23
etwork is found to be more robust across the different combinations
f test data sets; (iv) when training data sets are exchanged, the
NNs (I24 and J23) give better performance on most test data sets
nd at times outperform all of the original networks, whereas the
ewly trained Resnet network (e.g. C21 ) tends to underperform on
he various test data sets implying that the nature of training sample
lays a crucial role; and (v) prima facie, the combination of CNNs and
raining data set of C21 is found to give the most optimal performance
hich needs further investigation. 
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