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Machine Reasoning in FCAPS: Towards Enhanced
Beyond 5G Network Management

Abdelkader Mekrache, Member, IEEE, Adlen Ksentini, Senior Member, IEEE, and Christos Verikoukis, Senior
Member, IEEE.

Abstract—The increasing complexity of telecommunication
networks has highlighted the need for robust network man-
agement frameworks. One such framework is FCAPS, which
encompasses a wide range of functionalities, including fault
management, configuration management, accounting manage-
ment, performance management, and security management. To
effectively address the complexities of modern networks, the
integration of Artificial Intelligence (AI) techniques, particularly
Machine Learning (ML) and Machine Reasoning (MR), has
emerged as a pivotal strategy within FCAPS. ML provides
networks with data-driven algorithms to recognize patterns and
make informed predictions, while MR focuses on developing
understandable AI systems that draw conclusions based on
explicit knowledge. In this paper, we explore the field of MR
and its usage within FCAPS. First, we present an overview of
the FCAPS framework, including a categorization of FCAPS
levels. Then, we provide a novel taxonomy of MR approaches,
presenting both traditional and advanced MR. Next, we review
MR techniques to address emerging concerns within FCAPS.
Finally, we discuss open issues and future directions for further
study toward 6G networks.

Index Terms—Telecommunications, Network management,
FCAPS, Machine Learning, Machine Reasoning, 6G networks.
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LIST OF ACRONYMS

1G First-generation
5G Fifth-generation
6G Sixth-generation
A3C Asynchronous Advantage Actor-

Critic
AI Artificial Intelligence
ANNs Artificial Neural Networks
API Application Programming Interface
BAM Bandwidth Allocation Model
BS Base Station
CBR Case-Based Reasoning
CIM Common Information Model
CLI Command Line Interface
CNNs Convolutional Neural Networks
CoT Chain of Thoughts
DAG Directed Acyclic Graph
DBNs Deep Bayesian Networks
DCR Distributed Constraint Reasoning
DDPG Deep Deterministic Policy Gradient
DL Deep Learning
DNA Deep Network Analyzer
DNNs Deep Neural Networks
DoS Denial of Service
DQN Deep Q-Network
DRL Deep Reinforcement Learning
ETSI European Telecommunications Stan-

dards Institute
FCAPS Fault, Configuration, Accounting,

Performance, Security Management
FNNs Fuzzy Neural Networks
GAN Generative Adversial Network
GNNs Graph Neural Networks
GOFAI Good, Old-Fashioned AI
HetNets Heterogeneous Networks
HMMs Hidden Markov Models
IBN Intent-Based Networking
IBNS Intent-Based Networking System
IoT Internet of Things
ISO International Organization for Stan-

dardization
ITS Intelligent Transportation Systems
KPIs Key Performance Indicators
KQIs Key Quality Indicators
LLMs Large Language Models
LMs Language Models
LSTM Long Short-Term Memory
LTE Long-Term Evolution
MDPs Markov Decision Processes
ML Machine Learning
MLNs Markov Logic Networks
MR Machine Reasoning
NFV Network Function Virtualization
NILP Neural Inductive Logic Programming
NLP Natural Language Processing

NMLNs Neural Markov Logic Networks
NMNs Neural Module Networks
NR New Radio
ONOS Open Network Operating System
OSI Open Systems Interconnection
OWL Web Ontology Language
PGs Policy Gradients
PPO Proximal Policy Optimization
QoE Quality of Experience
QoS Quality of Service
R2L Remote to User
RAN Radio Access Network
RCA Root Cause Analysis
RDF Resource Description Framework
RL Reinforcement Learning
RNNs Recurrent Neural Networks
SAC Soft Actor-Critic
SARSA State–Action–Reward–State–Action
SDN Software Defined Network
SLA Service Level Agreement
SMO Systems Management Overview
SMS Short Message/Messaging Service
SON Self-Organizing Networks
SQL Structured Query Language
TD3 Twin Delayed Deep Deterministic

Policy Gradient
TRPO Trust Region Policy Optimization
TSN Time-Sensitive Networking
U2R User to Root
WMNs Wireless Mesh Networks
WSNs Wireless Sensor Networks
WWW World Wide Web
XAI eXplainable AI
ZSM Zero-touch Service Management

I. INTRODUCTION

A. Context and Motivation

NEXT-generation networks are anticipated to be more
complex and interconnected, involving a large number

of devices and systems. Consequently, network management
frameworks are becoming more crucial to ensure the effective
management of these networks. FCAPS is a widely used
network management framework, introduced by the Interna-
tional Organization for Standardization (ISO) in 1977 [1]. It
includes five levels: fault management, configuration manage-
ment, accounting management, performance management, and
security management. Fault management focuses on detecting
and resolving network faults, while configuration manage-
ment controls and maintains network device configurations.
Accounting management tracks resource usage for billing
purposes, performance management optimizes network perfor-
mance, and security management safeguards the network from
unauthorized access and potential threats [2]. By utilizing the
FCAPS framework, network administrators can systematically
address issues, ensuring the network’s stability, reliability, and
security.

In recent years, Artificial Intelligence (AI)-based FCAPS
methods have gained significant attention due to the increasing
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Fig. 1: Machine learning and reasoning paradigm [5].

complexity of modern networks. These approaches can be
categorized into two distinct domains: Machine Learning (ML)
and Machine Reasoning (MR). While both ML and MR are
fundamental constituents of AI, they play distinctive roles
in addressing complex issues and decision-making processes.
On the one hand, ML focuses on developing algorithms and
statistical models that enable computers to learn and improve
performance on specific tasks without explicit programming.
By analyzing vast amounts of data, machines can recognize
patterns, relationships, and insights, empowering them to
make predictions, classify information, and uncover hidden
structures. ML has been successfully applied in various fields,
including computer vision, medical diagnosis, search engines,
speech recognition, and Natural Language Processing (NLP)
[3]. On the other hand, the goal of MR is to develop AI
systems that are understandable and can draw conclusions
based on the information provided within specific limitations.
While there may be slight variations in its “formal” definitions
across various publications, MR methods typically share cer-
tain characteristics. Firstly, these systems rely on diverse types
of knowledge, including logical rules, knowledge graphs, com-
mon sense, and textual evidence. Secondly, they utilize various
inference algorithms to manipulate the available knowledge
for problem-solving. Lastly, these systems are designed to
provide clear explanations for their predictions, ensuring good
interpretability [4]. Fig. 1 illustrates the paradigm of machine
learning and reasoning within AI.

Traditional ML methods may not be efficient when exposed
to unseen or new situations, while advanced neural network-
based ML approaches lack explainability. These challenges
make them less suited for managing networks where the
environment is rapidly changing (e.g., the wireless channel
is very unstable or network failure situations). Moreover,
these methods need to be trusted to make granular decisions
to manage advanced networks, which is not the case when
using neural network-based ML methods. Consequently, one
promising trajectory to explore is MR, as these methods have
recently gained much interest from the research community
and industry. MR approaches are explainable and capable of
making decisions in new situations, given their ability to gener-
alize and deduce novel scenarios and situations. Thus, as they

are explainable, we can trust decisions made by MR, making
them well-suited for network management frameworks. While
MR has existed before, recent advancements in research are
enhancing these approaches and applying them beyond 5G
network management frameworks. These applications include
fault management, configuration management, security man-
agement, and performance management, as they outperform
ML in both results and explainability.

MR has revolutionized the telecommunications industry,
delivering numerous benefits in terms of efficiency and inno-
vation, particularly within the FCAPS framework. One of the
most significant advantages is network optimization, achieved
by analyzing vast amounts of network data. This allows MR
algorithms to detect patterns and optimize configurations,
leading to improved performance, enhanced reliability, and
reduced downtime [6]. Moreover, MR plays a pivotal role
in fault detection and predictive maintenance. By enabling
proactive measures, it prevents network issues from escalating
and minimizes service disruptions [7]. The automated trou-
bleshooting capabilities of MR also significantly contribute
to customer support, allowing rapid analysis of complaints
and network data [8]. Another area where MR excels is
in providing personalized services. Through the analysis of
customer behavior and preferences, MR tailors offerings to
individual needs, fostering customer loyalty and satisfaction
[9]. Additionally, MR strengthens network security by swiftly
identifying anomalies and cyber threats, enabling prompt re-
sponses to safeguard sensitive data [10]. MR can also be used
to optimize resource allocation by leveraging demand patterns
and traffic predictions. This can lead to cost reduction and
increased operational efficiency [11].

B. Review of Existing Related Surveys
Several studies have already addressed some levels of the

FCAPS framework for network management. For instance, in
[12], the authors provided an overview of fault management
in Software Defined Network (SDN), identifying main issues,
surveying efforts to address them, and discussing tradeoffs in
approaches for different scenarios. In addition, cell fault man-
agement approaches were surveyed in [13]. The researchers
in this latter also discussed explainability, changes in network
architecture’s impact on fault management, and future direc-
tions for research in this field. Similarly, ML-based network
fault management was studied in [14]. Moreover, [15] delved
into fault management in the realm of Network Function
Virtualization (NFV). They proposed a comprehensive state-
of-the-art of fault management techniques and addressed the
impact of virtualization on fault management. Authors in [16]
explored the application of both ML and MR approaches to
fault management in Industry 4.0, specifically focusing on
predictive maintenance. Furthermore, AI-based Root Cause
Analysis (RCA) methods were surveyed in [17], which are
considered as fault analysis methods at the fault management
level. On the other hand, configuration management and
performance management approaches were surveyed in [18,
19], respectively.

Besides, MR approaches were also discussed in many
surveys. For example, [4] provided an overview of MR, its



4

TABLE I: Existing surveys on FCAPS, MR.

Works F C A P S MR XAI Contributions
[12] ✓ A survey on fault management approaches in SDN.

[13] ✓ ✓ ML-based cell fault management techniques.

[14] ✓ ✓ ML-based cell network management techniques.

[15] ✓ ✓ Fault management approaches in NFVs.

[16] ✓ ✓ ML and MR based fault management in Industry 4.0.

[17] ✓ ✓ AI-based RCA techniques for network faults.

[18] ✓ ✓ Reasoning techniques for configuration management.

[19] ✓ ✓ Deep Reinforcement Learning (DRL)-based methods in vehicular networks.

[4] ✓ MR and neural MR, various frameworks, applications.

[20] ✓ knowledge-enhanced neural MR approaches.

[21] ✓ GNNs approaches and applications.

[22] ✓ GNNs techniques for knowledge graph completion.

[23] ✓ GNNs techniques for knowledge graph recommendation.

[24, 25, 26] ✓ Neuro-symbolic reasoning.

[27] ✓ Uncertainty modeling in probabilistic reasoning approaches.

[28] ✓ Commonsense reasoning approaches within NLP.

[29] ✓ Reasoning with LMs.

[30, 31] ✓ Reasoning with LLMs.

[5] ✓ MR in Next-Generation wireless networks.

[32] ✓ ✓ MR explainability techniques.

This survey. ✔ ✔ ✔ ✔ ✔ ✔ MR and neural MR approaches for FCAPS.

motivation, various frameworks, practical applications, and
the trade-off between neural networks and MR for better
interpretability. In addition, the authors of [20] presented a
review of research works, which delve into advanced reasoning
approaches in the context of knowledge-enhanced neural MR.
Similarly, Graph Neural Networks (GNNs), which are a neural
MR approach, were surveyed in [21]. The authors discussed
the applications of GNNs across various domains and sum-
marized the open source codes, benchmark data sets, and
model evaluation of GNNs. In addition, GNNs for knowledge
graph completion and recommendation were studied in [22,
23] where the authors presented the various strengths and
weaknesses of the proposed methodology and tried to find
new exciting research problems in this area that require further
investigation. The works [24, 25, 26] provide surveys in the
field of neuro-symbolic reasoning, where the integration of
neural networks with symbolic reasoning has been investi-
gated and analyzed. Meanwhile, researchers in [27] tackled
uncertainty modeling in probabilistic reasoning approaches,
and authors of [28] surveyed commonsense reasoning within
NLP. In the latter, there have been surveys conducted on the
topic of reasoning with Language Models (LMs) and Large
Language Models (LLMs) approaches, as evidenced by recent
works like [29, 30, 31]. These surveys offer valuable insights
into the latest advancements and practical applications within
this dynamically evolving domain. Furthermore, Thomas et
al. [5] conducted a valuable work exploring the limitations
of current foundational models, such as LLMs, and how 6G
networks can leverage MR to enable advanced 6G use cases.
Finally, the authors of [32] aim to offer a selective overview of
MR explainability techniques and studies, particularly in the
context of modern MR branches, to complement the current

eXplainable AI (XAI) landscape.
Table I summarizes the key topics discussed in the afore-

mentioned works and offers a comparative analysis of their
contributions in relation to our research. This comparison
serves to facilitate a clear understanding of the distinctive
aspects that set our work apart from the existing state-of-
the-art literature. Despite the availability of numerous survey
papers addressing FCAPS and MR individually, there remains
a notable gap in the literature where comprehensive surveys
jointly investigate the realms of FCAPS and MR. Such surveys
are crucial for effectively harnessing the potential of MR in
the development of responsible, trustworthy, and transparent
FCAPS frameworks. In addition, while various research papers
discuss FCAPS in networking, such as [12, 13, 18, 14], none
have explored MR in the broader FCAPS domain. Therefore,
there is a need for a comprehensive survey that explores
MR and its potential applications in shaping the future of
network management frameworks. Our main objective is to
uncover MR’s potential applications in FCAPS and to present
a road-map for developing efficient MR models for future 6G
networks.

C. Main Contributions

The contributions of this paper can be summarized as
follows:

• An overview of the FCAPS framework: In this section,
we delve into each level of FCAPS, providing a detailed
presentation of the FCAPS layers. We categorize them
and define subcategories for each layer, offering readers
insights into the main scopes where MR extensively
contributes to the FCAPS literature.
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• Comprehensive tutorial on MR approaches: This section
provides a clear definition of MR technology, intro-
duces a novel taxonomy for categorizing MR approaches
effectively, and delves into the critical aspect of MR
explainability, ensuring that readers gain a comprehensive
understanding of MR approaches. This tutorial equips
readers with a solid foundation on MR technology, mak-
ing it accessible and informative.

• Comprehensive survey of MR approaches for FCAPS:
This section surveys MR and neural MR approaches
for FCAPS, emphasizing their practical applications and
impact on network management. We explore diverse
MR solutions and investigate how they reshape network
management. We also cite and discuss recent MR works
at the forefront of research in this field, providing insights
into the latest developments.

• Identifying promising research directions: This section
explores the future of network management, focusing on
the use of MR to drive advancements in 6G networks.
We present future directions and open issues in the do-
mains of: reasoning in ZSM-enabled fault management,
reasoning in Intent-driven configuration management to
enable Intent-Based Networking (IBN), enhanced perfor-
mance management with distributed reasoning, reasoning
& Blockchain in security management, reasoning with
LLMs. Through these discussions, we aim to set the
foundation for a future where MR approaches make
network management more efficient and effective.

D. Paper Organization

The paper is structured as follows: Section II provides an
overview of the FCAPS framework. In Section III, a tutorial
on MR techniques is presented. Following that, Section IV
delves into the application of MR in FCAPS. Open issues and
potential future directions are discussed in Section V. Lastly,
Section VI concludes the paper. To facilitate easy reference,
the List of Acronyms, containing abbreviations commonly used
in this paper, is provided in alphabetical order on page 2.

II. FCAPS : AN OVERVIEW

The FCAPS framework, introduced by ISO in 1977, has
become widely accepted as an approach to network manage-
ment [1]. The term FCAPS originated in the initial Working
Drafts (N1719) of ISO 10040, the Open Systems Interconnec-
tion (OSI) Systems Management Overview (SMO) standard.
Originally, there were plans to establish five separate proto-
col standards, each dedicated to a specific functional area.
However, as initial experiences revealed significant similarities
among these protocols, the ISO working group consolidated
them into a single protocol covering all five areas. These areas
include fault management, configuration management, ac-
counting management, performance management, and security
management, each comprising various subcategories. Drawing
inspiration from [33], we have organized each area/level, as
depicted in Fig. 2. In the following sections, we delve into the
details of each level.

A. Fault Management

Fault management in network operations encompasses es-
sential categories to maintain a stable and reliable network
environment. The first category, fault diagnosis, involves fault
detection/prediction, which continuously monitors the network
to detect or predict abnormalities promptly, and fault isola-
tion/localization, pinpointing the exact affected location [34].
The second category, fault analysis, includes fault correlation
and analysis to examine patterns between multiple faults
and RCA for in-depth investigations into underlying causes.
Finally, the third category, Fault resolution, implements cor-
rective actions based on RCA results to resolve issues effec-
tively and prevent their recurrence, ensuring seamless network
performance.

As an example, in the context of 5G network operations,
fault diagnosis involves employing advanced monitoring tools
like QoS monitoring systems. These tools continuously as-
sess critical network parameters such as latency, throughput,
and packet loss in real time. Predictive analytics algorithms
analyze historical data to identify potential issues, such as
device failures before they escalate. In fault analysis, consider
a scenario where a service disruption occurs in a 5G network,
such as device failures leading to increased latency. In this
case, RCA examines the interplay between different network
elements, such as RAN and core network components, and
determines if the disruption originated from a specific RAN
node or if it is related to core network processing. Fault
resolution can swiftly rectify the issue across the network, such
as replacing faulty devices and automated reconfiguration, in
order to restore normal network behavior promptly.

B. Configuration Management

Configuration management within network operations en-
compasses crucial aspects aimed at maintaining a structured
and optimized network setup. The first facet, installation, in-
volves the setup of network components and devices, ensuring
their proper integration and functionality within the network
infrastructure. Provisioning, the second category, focuses on
configuring resources and services to align with operational
requirements, ensuring that network elements are provisioned
and available as needed. Service planning, the third category,
encompasses the strategizing and arrangement of services to
meet business objectives and operational demands. This in-
cludes defining service parameters, specifications, and deploy-
ment guidelines. Network planning, the fourth aspect, involves
designing the network architecture, layout, and topology to
ensure optimal connectivity, scalability, and performance. The
fifth category, Status and control, entails monitoring and
maintaining the ongoing health of the network by tracking
its current state, performance metrics, and operational status.

For example, during the installation, network administrators
deploy routers, switches, and other hardware components
according to the planned network architecture. This involves
physical setup, cable connections, and initial configuration
to ensure seamless integration. For provisioning, engineers
configure additional resources such as bandwidth, virtual
machines, or network interfaces to accommodate increased
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Fig. 2: Network management functions categorized using the FCAPS model.

demand, ensuring that the network can efficiently support new
services without compromising existing ones. Service planning
might involve network planners defining necessary service
parameters, including bandwidth requirements, security pro-
tocols, and QoS policies, to ensure optimal performance and
user experience. Network planning might involve network
architects designing the network layout, ensuring connectivity,
scalability, and performance while considering factors like data
traffic patterns and potential points of failure. In Status and
control, real-time network performance metrics tracking helps
identify and promptly address configuration issues.

In section IV, we will focus our discussion on research con-
tributions primarily within three categories: Service planning,
network planning, and status and control. This focus is driven
by the noticeable research gap surrounding the integration of
MR in installation processes. As for provisioning, we will be
featuring relevant works in the performance management sub-
section, as there exists a significant overlap between the two
sections due to their shared emphasis on resource allocation.

C. Accounting Management
Accounting management involves tracking and monitoring

resource usage on the network. It deals with gathering data
related to user activities, resource consumption, and system
performance. This information is crucial for billing purposes,
capacity planning, and identifying potential resource bottle-
necks or misuse. To the best of our knowledge, there are
no works that use MR for accounting in telecommunications,
since it is a domain where traditional statistical and data-driven
approaches have been predominantly employed. However, the
application of MR techniques has the potential to enhance
accounting management by providing more sophisticated and
automated analyses, enabling real-time decision-making, and
improving the accuracy and efficiency of resource allocation
and billing processes. Future research in this area could
explore the integration of MR methods to optimize accounting
management in modern networks.

D. Performance Management
Performance management in the context of networking

involves a systematic approach to optimizing the efficiency

and reliability of network infrastructure and services. This
comprehensive process encompasses various categories. Per-
formance quality assurance ensures that network components
and services adhere to predefined standards, guaranteeing con-
sistent and dependable performance. Performance monitoring
involves the real-time observation of network activities, en-
abling the detection of anomalies and timely troubleshooting.
Performance analysis entails examining network data to un-
cover patterns and insights, aiding in informed decisions about
network enhancements and resource allocation. Together, these
categories contribute to a well-managed network that delivers
high-quality performance, continuous monitoring, and data-
driven optimization.

For example, in the context of a 5G network, performance
quality assurance involves ensuring that the network com-
ponents, such as BS and core network elements, meet the
specified 5G standards for latency, throughput, and reliability.
This guarantees that the network delivers the expected high-
speed and low-latency services to end users. In performance
monitoring, real-time observation in a 5G network includes
tracking critical metrics like network latency, packet loss,
and device connectivity. This enables prompt detection of
anomalies, such as increased latency, allowing for maintaining
optimal network performance. Regarding performance analy-
sis in a 5G network, administrators delve into network data to
uncover patterns related to user behavior, device compatibility,
and service usage. This analysis informs decisions on network
enhancements, ensuring that resources are allocated efficiently
to meet the specific demands of 5G applications and services.

E. Security Management

Security management in digital systems is structured around
crucial categories that collectively ensure the safety and in-
tegrity of information. The first category, detection, involves
proactively identifying potential security threats by monitoring
the system behavior and network traffic. Prevention forms the
second category, emphasizing the creation of barriers against
unauthorized access through measures such as firewalls, access
controls, and regular updates. The third category, administra-
tion, encompasses policy setting, user authentication, audits,
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and training to manage security protocols effectively. These
categories collaboratively create a comprehensive security
framework that safeguards against breaches and ensures robust
protection.

As an illustrative example, within the detection category,
continuous monitoring of network traffic identifies unusual
patterns or malicious activities, allowing for the proactive
identification of potential threats, such as Denial of Service
(DoS) attacks. In the prevention category, measures may
involve implementing firewalls and access controls in the
network, effectively filtering incoming and outgoing traffic to
prevent malicious entities from infiltrating the network. In the
administration category, security policies may be set to control
user access, defining permissions for specific information.
Additionally, user authentication measures, including robust
password policies and multi-factor authentication, enhance
security by adding an extra layer of protection.

III. MACHINE REASONING: A TUTORIAL

MR is a crucial field that empowers machines with
human-like abilities for logical thinking, problem-solving, and
decision-making. By advancing the capabilities of AI, MR
drives progress across diverse domains and opens avenues for
more intelligent and autonomous systems. In this section, we
will explore the fundamental definition of MR as widely rec-
ognized within the research community. Subsequently, we will
delve into a comprehensive taxonomy of various approaches
employed in the field of MR. Finally, we will demonstrate the
practical implementation and relevance of MR explainability.

A. Definitions

MR, as described in the state-of-the-art, encompasses sev-
eral varied definitions. For instance, in his work [35], Léon
Bottou proposed a compelling definition of MR as “al-
gebraically manipulating previously acquired knowledge to
answer a new question”. This definition includes first-order
logical inference, probabilistic inference, and simpler manipu-
lations commonly used in building extensive learning systems.
Moreover, Authors of [4] defined MR as “Machine Reasoning
research aims to build interpretable AI systems that can
solve problems or draw conclusions from what they are told
(i.e., facts and observations) and already know (i.e., models,
common sense and knowledge) under certain constraints.”.
This definition emphasizes the crucial elements of MR, such
as incorporating both factual information and pre-existing
knowledge to arrive at solutions. Additionally, the mention
of “certain constraints” indicates the importance of context
and limitations in the reasoning process, which aligns well
with the realistic scenarios in which AI systems operate.
Furthermore, authors of [36] mention a passage to emphasize
the role of reasoning in making accurate decisions, “A decision
based on wrong facts can have devastating effects. Thus, it is
important to associate our decisions with some sort of proof.
This proof is provided by our reasoning skills. Reasoning helps
us to validate what we think is correct or wrong”. From a
telecommunications perspective, we define MR as

Machine Reasoning involves leveraging Artificial Intelligence
and employing data analysis techniques to manipulate

telecommunications knowledge data. Its primary objective is
to comprehend and reason about telecommunication use
cases, thereby facilitating the generation of informed and

explainable decisions. Consequently, this enhances
trustworthiness, contributing to the improvement of network

operations and the overall intelligence of the network.

B. Machine Reasoning Approaches: A Taxonomy

Fig. 3 presents a comprehensive taxonomy of MR ap-
proaches. These approaches have evolved over time to encom-
pass both traditional and neural-based methodologies. Tradi-
tional MR methods typically rely on symbolic logic and infer-
ence algorithms for knowledge representation and reasoning.
These methods offer explainability but face challenges due to
the combinatorial explosion in large symbolic spaces. On the
other hand, the advent of Deep Learning (DL) has led to the
emergence of neural MR, where neural networks are employed
to tackle reasoning tasks. Neural MR approaches have shown
remarkable promise in handling complex patterns and large-
scale data, enabling more accurate and efficient reasoning.
Next, we detailly delve into traditional and neural MR.

1) Traditional Machine Reasoning:: Traditional MR meth-
ods are rooted in symbolic logic and inference algorithms.
These approaches have been the foundation of early AI
systems and have found applications in various domains.
Traditional MR methods can be categorized into three main
categories: symbolic reasoning, probabilistic reasoning, and
Reinforcement Learning (RL). Symbolic reasoning methods
utilize symbolic logic and inference algorithms for knowl-
edge representation and reasoning. However, they lack the
ability to handle uncertainty in data. Probabilistic reasoning
methods combine probability with symbolic logic to address
uncertainty, but they face challenges due to the combinatorial
explosion in large symbolic spaces. RL is a different paradigm,
where an agent learns to make decisions through trial and error
by interacting with an environment and receiving feedback in
the form of rewards. We consider RL as an MR approach
because it involves the agent learning to reason and make
decisions in an environment based on the feedback, with the
aim of maximizing cumulative rewards.

• Symbolic reasoning: Before the late 1980s, the dominant
approach in the field of AI was known as Good, Old-
Fashioned AI (GOFAI) or the symbolic approach. This
method involved utilizing symbolic logic and inference
algorithms to manipulate knowledge, enabling reasoning
systems to handle various tasks [4]. This category in-
cludes: rule-based systems [37], logic programming [38],
expert systems [39], Case-Based Reasoning (CBR) [40],
fuzzy logic [41], and semantic web and ontologies [42].

– Rule-based systems: This approach explicitly uses
rules to derive conclusions or execute actions based
on facts and conditions, making it a symbolic reason-
ing paradigm. Rule-based systems can be represented
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Machine Reasoning (MR)

Traditional MR Neural MR

Rule-based systems [37], Logic
Programming [38], Expert Systems
[39], CBR [40], Fuzzy logic [41],
Semantic Web and ontologies [42]

Neural 
Networks

Symbolic reasoning

Bayesian networks [44], MLNs [45], 
MDPs [46], HMMs [47]

Probabilistic reasoning

Q-Learning [48], SARSA, PGs, 
PPO [49], TRPO [50], 

Actor-critic [51]

Reinforcement learning

Transformers [53], GNNs [21]

DL-based reasoning

Knowledge graph reasoning [59],
Neural semantic parsing [60],

NMNs [61], NILP [62], FNNs [63]

Neural symbolic integration

DBNs [66], NLMNs [67]

Neural probabilistic
integration

DQL [70], Dueling DQN [71], 
DDPG [72], SAC [73], TD3 [74], 

A3C [75]

Deep reinforcement learning

Fig. 3: Taxonomy of MR approaches.

using IF-THEN rules, where P represents a premise
or condition, and Q represents a conclusion:

IF P THEN Q (1)

– Logic programming: Logic programming is another
form of symbolic reasoning that uses logical rules
and facts to derive conclusions. It is commonly
used in languages like Prolog to perform deductive
reasoning and infer new information based on the
given knowledge base. In Prolog, logical rules are
expressed using clauses. For example, a rule stating
that a device is malicious:

malicious(X) : −device(X). (2)

– Expert systems: Expert systems are typically rule-
based, as they use a knowledge base containing sym-
bols and rules (IF-THEN statements) to reason and
make decisions based on human expert knowledge.
An example rule:

IF (Symptom1 AND Symptom2)
THEN (Diagnosis) (3)

– Case-Based Reasoning: CBR represents past cases
as symbolic knowledge, and reasoning involves re-
trieving and adapting similar cases to solve new

problems. Therefore, the principle of CBR is: Given
a current problem, find the most similar past case(s)
and adapt their solution(s) to the current problem
context.

– Fuzzy logic: Fuzzy logic is a form of symbolic
reasoning that uses linguistic variables and fuzzy
sets to handle uncertainty and imprecision. Fuzzy
logic rules typically take the form of “IF [fuzzy
condition] THEN [fuzzy conclusion],” allowing for
gradual transitions between true and false values. For
example:

IF (Packet Loss is High)
THEN (Alert Severity is Critical) (4)

– Semantic web and ontologies: The semantic web
is an extension of the World Wide Web (WWW)
that adds a layer of meaning to web content by
utilizing symbolic representations such as Resource
Description Framework (RDF) and Web Ontology
Language (OWL). RDF employs triples consisting of
subject, predicate, and object to express knowledge,
while OWL allows for the creation of formal on-
tologies, specifying concepts, attributes, and relation-
ships [43]. Ontologies provide a common vocabulary
for sharing and representing knowledge, enabling in-
teroperability. In this context, RDF and OWL enable
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knowledge representation and reasoning, allowing
computers to not only store information but also
make logical inferences and deductions based on
ontological definitions.

While symbolic reasoning is effective in domains with
well-defined rules and explicit knowledge representations,
it may encounter difficulties in handling uncertainty
and processing large-scale data. As a result, hybrid ap-
proaches combining symbolic reasoning with other AI
paradigms have been proposed. For instance, probabilistic
reasoning emerged as a solution to address uncertainty,
and the integration of neural networks with symbolic
reasoning was proposed to handle the challenge of pro-
cessing vast amounts of data. These advancements offer
a promising direction for overcoming the limitations of
symbolic reasoning and creating more robust AI systems.

• Probabilistic reasoning: Probabilistic reasoning, as an
alternative paradigm to traditional symbolic reasoning in
AI, emerged as a response to the challenge of deal-
ing with uncertainty. Unlike the deterministic nature
of symbolic reasoning, probabilistic reasoning incorpo-
rates the concept of probability to handle situations
where outcomes are uncertain or variable. Examples
include Bayesian networks [44], Markov Logic Networks
(MLNs) [45], Markov Decision Processes (MDPs) [46],
and Hidden Markov Models (HMMs) [47], each provid-
ing distinctive techniques for modeling uncertainty and
conducting probabilistic inferences.

– Bayesian networks: These graphical models repre-
sent probabilistic relationships among variables us-
ing a Directed Acyclic Graph (DAG). In a Bayesian
network, nodes in the graph represent variables, and
directed edges between nodes depict probabilistic
dependencies between them. For example, a net-
work faults diagnosis system can be modeled using
a Bayesian network with nodes for “Symptoms,”
“Fault,” and “Root causes,” where the directed edges
between the nodes represent conditional probabilistic
dependencies. Bayesian networks allow for proba-
bilistic inference and updating of beliefs based on
new evidence. This is accomplished through the ap-
plication of Bayes’ theorem, which can be expressed
as:

P (X|E) =
P (E|X) · P (X)

P (E)
(5)

In this equation, P (X|E) represents the updated
probability distribution of variable X given evidence
E, P (E|X) is the likelihood of observing evidence
E given X , P (X) is the prior probability of X , and
P (E) is the marginal probability of the evidence.

– Markov Logic Networks: MLNs are a probabilistic
logic framework that combines first-order logic and
Markov networks. It enables probabilistic reasoning
over complex, relational domains. In the graphi-
cal representation, nodes represent entities or vari-
ables, while edges depict probabilistic connections,

each associated with a weight indicating relationship
strength. The core equation in MLNs is:

w1 · f1 + w2 · f2 + . . .+ wn · fn ⇒ s (6)

Here, f1, f2, . . . , fn are first-order logic clauses with
associated weights w1, w2, . . . , wn. The formula rep-
resents a Markov network, where s signifies the
strength of the relationship.

– Markov Decision Processes: MDPs are used for
decision-making under uncertainty, where transitions
between states are governed by probabilities. The
fundamental equation associated with MDPs is the
Bellman equation, which expresses the optimal value
function V ∗(s) for a given state s in terms of its
expected immediate reward and the expected value
function for the next state s′:

V ∗(s) = max

[∑
P (s′|s, a)

(R(s′|s, a) + γ · V ∗(s′))

]
(7)

In this equation, P (s′|s, a) represents the probability
of transitioning from state s to s′ when taking action
a, R(s′|s, a) denotes the immediate reward received
upon transitioning to s′, and γ is a discount factor
that captures the agent’s preference for immediate
rewards over future rewards. MDPs are frequently
employed in RL to model and solve problems in-
volving decision-making in uncertain environments.

– Hidden Markov Models: HMMs are probabilistic
models used for modeling sequences of observa-
tions, where the underlying state is hidden. The core
concept in HMMs revolves around two fundamental
equations: (i) State Transition Probability:

P (Qt = qi|Qt−1 = qj) = aij (8)

Here, Qt represents the hidden state at time t, qi
and qj denote specific states, and aij signifies the
probability of transitioning from state qj to qi. And
(ii) Observation Probability:

P (Ot = ok|Qt = qi) = bik (9)

In this equation, Ot stands for the observed data
at time t, ok represents specific observations, Qt

is the hidden state at time t, and bik indicates
the probability of observing ok when the system
is in state qi. HMMs combine these two concepts
with an initial state distribution π to model se-
quences. They’re used in various applications, like
speech recognition (where hidden states represent
phonemes) or in biology.

These powerful approaches have greatly enhanced AI
systems’ capabilities to reason and make decisions in
complex and uncertain real-world scenarios. However,
probabilistic reasoning has limitations due to compu-
tational expense, data requirements, and challenges in
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handling high-dimensional spaces and dependencies. To
address these limitations, neural probabilistic integration
leverages the strength of neural networks in learning com-
plex patterns while incorporating probabilistic reasoning
to handle uncertainty.

• Reinforcement Learning: RL, stands as a significant
subdivision of ML, widely applied in academic works
to tackle MDPs. An agent can learn its optimal policy
π∗ through interaction with its environment. At each
timestamp t, the agent observes the state st of its envi-
ronment and takes an action at, resulting in a new state
st+1 and receiving its immediate reward rt+1 as seen
in Fig. 4. The observed information, i.e., the immediate

Agent

Environment

RewardState Action

Fig. 4: Reinforcement Learning [19].

reward and new state, is used to adjust the agent’s policy
π, and this process will be repeated until the agent’s
policy approaches the optimal policy π∗, i.e., π → π∗.
This process of learning from experience and making
decisions based on the estimated Q-value function aligns
with the principles of MR, where the system uses past
knowledge to make informed decisions. RL algorithms
can be split into two main kinds of methods as shown in
[19]. (i) methods based on value functions “value-based
algorithms” and (ii) methods based on policy search
“policy-based algorithms”. There are also hybrid actor-
critic approaches that employ both value functions and
policy search.

– Value-based RL: Estimates values of states
or state-action pairs to maximize long-
term rewards. Examples: Q-Learning [48],
State–Action–Reward–State–Action (SARSA).

– Policy-based RL: Learns the optimal policy directly
without estimating value functions. Examples: Pol-
icy Gradients (PGs), Proximal Policy Optimization
(PPO) [49], and Trust Region Policy Optimization
(TRPO) [50].

– Hybrid RL: Combines value-based and policy-based
methods. Actor-critic is a common hybrid approach
with an actor (policy) and a critic (value function).
Examples: Actor critic methods [51].

Modern networks, however, are large-scale and complex;
thus, the computational complexity of the techniques
quickly becomes unmanageable. As a result, to overcome
the challenge, DRL has been developing to be an alter-
native solution.

Table II presents the pros and cons of each traditional
MR approach. As explained in this table, traditional MR

systems face limitations in handling computational complexity,
especially in large-scale and complex modern networks. To
overcome this challenge, Deep Learning (DL) was integrated
with traditional MR to efficiently address high-dimensional
and complex network optimization problems. Next, we present
this class of methods called neural MR.

2) Neural Machine Reasoning: DL has achieved remark-
able success across various domains, mainly attributed to
Artificial Neural Networks (ANNs) [52]. ANNs have become
a standard tool for data representation, simulating the func-
tioning of the human brain through interconnected nodes. Each
node’s output is calculated using weights and a simple function
based on input from neighboring nodes. Their flexibility,
non-linearity, and data-driven model building make ANNs,
especially DNNs, attractive inductive approaches. Neural MR
encompasses several approaches that harness the power of
neural networks and DL techniques for decision-making and
problem-solving. These are categorized into four: DL-based
MR, Neural Symbolic Integration, Neural Probabilistic In-
tegration, and DRL. In the following, we delve into each
category.

• DL-based MR: This category embraces transformer-based
models [53] and GNNs [21].

– Transformer-based models: Transformer-based mod-
els are attention-driven neural architectures used in
NLP and sequential data tasks. These models exhibit
a shallow level of reasoning on textual data but
lack deeper reasoning abilities, positioning them as
MR approaches. In order to enhance their reasoning
capabilities, integration with symbolic knowledge
or exploration of advanced positional encoding and
attention mechanisms can be pursued [54]. Examples
of their applications include: question answering
(e.g., BERT, GPT) [55], language translation, and
knowledge graph reasoning (e.g., TuckER) [56].
Furthermore, the research community has produced
numerous surveys on reasoning with LLMs, such as
[29, 31, 30]

– Graph Neural Networks: GNNs are a class of DL
models specifically designed for processing and an-
alyzing graph-structured data. They excel in tasks
that involve capturing intricate relationships, depen-
dencies, and patterns within graphs. GNNs leverage
techniques from neural networks to perform compu-
tations on the nodes and edges of a graph, enabling
them to learn representations that encapsulate both
the local and global information of the graph. This
makes GNNs particularly suitable for a wide range
of applications, including: node classification [57],
recommendation systems [58], and knowledge graph
completion [22].

DL-based MR has significantly advanced the capabilities
of AI systems in handling complex reasoning tasks.
Transformer-based models excel in sequential data anal-
ysis, while GNNs are highly effective for reasoning over
graph-structured data. The integration of these approaches
has contributed to substantial progress in natural language
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TABLE II: Pros and cons of traditional MR approaches.

Category Approach Pros Cons

Symbolic reason-
ing

Rule-based
systems [37]

Provide transparency and interpretability, allowing
users to understand the decision-making process.

Struggle to handle situations outside their predefined
rules.

Logic
Programming
[38]

Facilitates concise and expressive problem-solving
through formalized rules and relationships.

Encounter limitations in handling real-world com-
plexities and dynamic scenarios.

Expert Systems
[39]

Capture and apply specialized knowledge for consis-
tent decision-making.

Face challenges in adapting to dynamic situations
and handling uncertainties.

Case-Based Rea-
soning [40]

Utilizes past cases for flexible and context-aware
problem-solving.

Struggle with unfamiliar situations and lack a struc-
tured knowledge representation, relying heavily on
historical cases.

Fuzzy Logic [41] Allows for nuanced and flexible decision-making. Require careful tuning of fuzzy sets and rules for
optimal performance.

Semantic Web
[42]

Enhances data interoperability and knowledge repre-
sentation.

Face implementation and adoption challenges.

Overall Good at providing interpretable and trustworthy
systems.

Faces challenges in handling uncertainty and
changing environments.

Probabilistic rea-
soning

Bayesian
Networks [44]

Model probabilistic relationships for effective
decision-making under uncertainty.

Requires accurate prior probabilities and may face
complexity issues in scenarios with a large number
of variables.

MLNs [45] Combine logic and probability for modeling complex
relationships in a unified framework.

Face challenges in scalability and computational
complexity due to the integration of logic and prob-
ability.

MDPs [46] Model dynamic decision-making under uncertainty. Can be computationally intensive, especially in large
state and action spaces.

HMMs [47] Efficiently model sequential data with hidden states,
allowing for dynamic pattern recognition.

Face challenges in accurately estimating parameters
and handling long-term dependencies in the data.

Overall Good at handling uncertainty. Faces challenges in handling high-dimensional
environments.

Reinforcement
Learning

Value-based RL
[48]

Estimates expected cumulative rewards through
value functions, offering a solid foundation for
decision-making

Encounter challenges in scenarios with high-
dimensional state spaces.

Policy-based RL
[49, 50]

Directly learns the optimal policy without relying
on value functions, providing flexibility in decision-
making

Encounter challenges in scenarios with high-
dimensional action spaces.

Hybrid RL [51] Integrates both value-based and policy-based ap-
proaches for improved decision-making

Requires careful design and tuning to balance the
advantages of both approaches and face increased
computational complexity.

Overall Learns from the environment without requiring
a dataset.

Faces challenges in handling large-scale environ-
ments.

Overall / Provides interpretable and explainable systems,
efficient in decision-making.

Faces challenges in handling large-scale and com-
plex networks.

understanding, knowledge representation, and reasoning
tasks, driving AI research towards more sophisticated
reasoning and decision-making abilities.

• Neural-Symbolic Integration: Symbolic reasoning and
probabilistic reasoning are traditional AI paradigms
known for providing strong abstraction and general-
ization with good interpretability. However, their finite
and discrete symbolic representations can make them
fragile and inflexible [4]. To address these limitations,
researchers have proposed neural-symbolic reasoning, in-
tegrating neural networks with symbolic reasoning. These
approaches combine the benefits of both paradigms, lead-
ing to more robust and interpretable AI systems. By
representing reasoning steps as differentiable modules,
neural-symbolic reasoning allows for transparent and
interpretable decision-making, bridging the gap between

powerful learning capabilities and explicit reasoning in
AI systems [25]. For instance, several approaches are
considered as neural symbolic reasoning, such as: knowl-
edge graph reasoning [59], neural semantic parsing [60],
Neural Module Networks (NMNs) [61], Neural Induc-
tive Logic Programming (NILP) [62], and Fuzzy Neural
Networks (FNNs) [63].

– Knowledge graph reasoning: Knowledge graph rea-
soning involves the integration of symbolic reasoning
techniques with neural networks to perform logical
inference over knowledge graphs. Knowledge graphs
represent information as entities (nodes) and their
relationships (edges) in a structured manner. The
goal is to infer missing information or make predic-
tions based on the existing knowledge. One common
knowledge graph reasoning task is knowledge graph
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completion, where the model predicts missing edges
in the graph [59].

– Neural semantic parsing: Neural semantic parsing
involves using neural networks to convert natural
language sentences or queries into formal, executable
representations, such as logical forms or program-
matic expressions. This process enables machines
to understand and execute commands or queries
expressed in natural language [60].

– Neural Module Networks: NMNs use a modular
architecture to perform reasoning tasks. Each module
is designed to perform a specific reasoning operation
or computation, and they can be combined in a se-
quence or graph structure to solve complex reasoning
tasks. These modules can take different forms, such
as Convolutional Neural Networks (CNNs) for image
processing, Recurrent Neural Networks (RNNs) for
sequential data, or attention mechanisms for focusing
on relevant information [61].

– Neural Inductive Logic Programming: NILP com-
bines neural networks with logic programming to
learn symbolic rules from data. The neural network
can learn representations of data, and logic program-
ming algorithms can generate and refine logical rules
from these representations [62].

– Fuzzy Neural Networks: FNNs are hybrid models
that combine fuzzy logic and ANNs. They use fuzzy
sets and rules to handle uncertainty and imprecision
and neural networks to learn patterns and make
predictions from data [63].

For a deeper exploration of technical aspects, the re-
search community has produced comprehensive surveys
on neural-symbolic reasoning. Interested individuals are
encouraged to refer to the relevant literature [24, 25, 26,
64].

• Neural-Probabilistic Integration: These approaches aim
to incorporate uncertainty modeling and probabilistic rea-
soning into neural networks, enabling AI systems to rea-
son and make decisions under uncertainty. By represent-
ing uncertainty as probability distributions, neural prob-
abilistic integration facilitates more robust and flexible
decision-making in complex real-world scenarios [65].
Some approaches considered under neural probabilistic
integration include Deep Bayesian Networks (DBNs) [66]
and Neural Markov Logic Networks (NMLNs) [67].

– Deep Bayesian Networks: DBNs are a powerful
fusion of traditional Bayesian networks with DL
architectures. These networks extend the capabili-
ties of standard Bayesian networks by incorporating
multiple layers of hidden variables and nonlinear
transformations, allowing them to capture complex
patterns in data. DBNs enable probabilistic reasoning
and learning over high-dimensional and structured
data, making them well-suited for tasks that require
sophisticated probabilistic inference and modeling
[66].

– Neural Markov Logic Networks: NMLNs combine

MLNs with neural networks to reason over structured
and relational data. NMLNs can perform probabilis-
tic inference and learning, making them suitable for
complex reasoning tasks [67].

• Deep Reinforcement Learning: DRL stands as a progres-
sive evolution of RL methodologies, first introduced by
DeepMind in [68]. DRL harnesses the strength of DL
to enhance the learning process within RL algorithms
[69] as illustrated in Fig. 5. During real-time learning,
the agent’s gained experiences are stored and employed
to train a neural network, subsequently empowering the
agent to execute optimal real-time decision-making. In
contrast to conventional DL methods, the neural network
within DRL is continually updated with new experiences
gained from interactions with the environment. Similar to
RL, DRL is categorized into three distinct categories.

Agent

Environment

RewardState Action

Fig. 5: Deep Reinforcement Learning.

– Value-based DRL: Utilizes neural networks to ap-
proximate values of states or state-action pairs, aid-
ing in maximizing long-term rewards. Examples in-
clude: Deep Q-Network (DQN) [70], Dueling DQN
[71].

– Policy-based DRL: Employs neural networks to di-
rectly approximate policies, enabling the agent to
select actions that maximize cumulative rewards. Ex-
amples include: Deep Deterministic Policy Gradient
(DDPG) [72], Soft Actor-Critic (SAC) [73].

– Hybrid DRL: Combines neural networks to esti-
mate both values and policies. Examples include:
Twin Delayed Deep Deterministic Policy Gradient
(TD3) [74], and Asynchronous Advantage Actor-
Critic (A3C) [75].

Although neural MR effectively addresses the high-
dimensional space challenges of traditional MR approaches,
they are computationally complex and require a well-designed
approach to be effective. In addition, using neural networks
hides some interpretational capabilities of MR. Table III
summarizes the pros and cons of each neural MR approach.

It is important to note that these categories are not rigidly
separated; intersections and overlaps often exist among them.
The landscape of AI research is ever-evolving, with researchers
continuously pushing the boundaries of innovation. They are
actively exploring novel avenues to seamlessly combine prob-
abilistic modeling, neural networks, and symbolic reasoning,
aiming to forge more sophisticated and powerful systems.
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TABLE III: Pros and cons of neural MR approaches.

Category Approach Pros Cons

DL-based MR Transformer-
based models
[53]

Enables effective processing of sequential data
through self-attention mechanisms.

Face challenges in handling structured knowledge
representations and can be computationally demand-
ing for certain applications.

GNNs [21] Capture complex relationships in graph-structured
data.

Encounter challenges in scalability and generaliza-
tion, particularly in large dynamic graph structures.

Overall Effective in capturing complex relationships in
knowledge data.

Can be computationally expensive for dynamic
environments.

Neural-Symbolic
Integration

Knowledge graph
reasoning [59]

Enables effective representation of complex relation-
ships in structured data.

Pose computation complexity challenges, especially
in large-sized graphs.

Neural semantic
parsing [60]

Facilitates automated conversion of natural language
queries into structured representations.

Require substantial training data for optimal perfor-
mance.

NMNs [61] Allow flexible reasoning over visual elements. Demand thorough design for effective module inter-
actions.

NILP [62] Use neural networks for enhanced learning and rea-
soning.

Could face challenges in handling large-scale struc-
tured data.

FNNs [63] Better handling of complex patterns compared to
Fuzzy logic

Face challenges in interpreting the learned models.

Overall Effectively address complex relationships. Faces challenges in interpretation and requires a
well-designed approach.

Neural-
Probabilistic
Integration

DBNs [66] Capture complex relationships and uncertainties in
data.

Face challenges in training complexity, requiring
substantial computational resources.

NMLNs [67] Enhance probabilistic reasoning through structured
knowledge representation.

Encounter computation complexity in high-
dimensional environments.

Overall Effective in probabilistic modeling. Encounters computation complexity in large-scale
environments.

Deep Reinforce-
ment Learning

Value-based
DRL [70, 71]

Adept at handling high-dimensional complexity. May still be sensitive to hyperparameters.

Policy-based
DRL [72, 73]

Directly learns optimal policies, providing flexibility
and tackling high-dimensional action spaces.

May require careful policy representation.

Hybrid DRL [74,
75]

Integrates both value-based and policy-based ap-
proaches for a balanced decision-making strategy.

Require careful design and tuning.

Overall Effectively tackling high-dimensional complexity. Sensitivity to hyperparameters requires careful
tuning.

Overall / Effective in handling high-dimensional and
rapidly-changing environments.

Requires a carefully designed approach and in-
volves computational complexity. Additionally,
neural networks eliminate some interpretational
capabilities of MR.

Worth mentioning is the existence of various other taxonomies
in the realm of MR, as evidenced by works such as [76,
64]. These contributions collectively underscore the dynamic
nature of the field and the diverse approaches pursued to
enhance the realm of reasoning systems.

C. Machine Reasoning Explainability

MR has gained significant interest due to the growing
realization of ethical concerns, trust issues, and biases in
AI decision-making processes. As complex DNNs become
integral to various domains, the need to provide interpretable
solutions for AI decisions is emphasized [77]. MR approaches
in the realm of explainability have been extensively explored
to shed light on the decision-making processes of MR-based
systems. For instance, a comprehensive survey of MR explain-
ability is presented by Cyras et al. in [32]. This survey covers
the history and recent advancements of MR explainability,
emphasizing recent progress. The paper categorized different

branches of MR, including inference-based explanations, logic
programming, and decision theory, and illustrates their contri-
butions to XAI. The authors also classified MR explainability
into three distinct groups: attributive, contrastive, and action-
able. Attributive explanations explain the causal relationships
between inputs, internal mechanisms, and outputs of AI sys-
tems, facilitating a deep understanding of the rationale behind
outcomes. Contrastive explanations highlight the reasons for
favoring one output over others, empowering users to compre-
hend the system’s preferences and complexities. Actionable
explanations represent a notable advancement, allowing users
to intervene and collectively influence AI outcomes through
concrete steps. These explanations address a wide range of
user requirements and are in line with the fundamental goals
of XAI, enhancing user understanding and interaction with AI
systems. Importantly, the article highlights the dynamic nature
of MR research within XAI, pointing to ongoing efforts to
enhance and expand these approaches. Nevertheless, persistent
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challenges exist in MR explainability, particularly when deal-
ing with uncertain or probabilistic information. Despite these
challenges, the integration of MR into XAI plays a pivotal role
in advancing interpretable and responsible AI systems[32].
Furthermore, authors of [78] delved into the realm of Knowl-
edge Graphs and their associated technologies, introducing
an additional dimension to XAI. They emphasize the intri-
cate interconnection between explainability and advanced AI
paradigms, highlighting the pivotal role played by Knowledge
Graphs. This comprehensive perspective significantly advances
the field of XAI and facilitates its seamless incorporation into
the broader AI landscape.

IV. MACHINE REASONING IN FCAPS: A SURVEY

MR plays a pivotal role in network management beyond
the 5G era. It enables essential tasks, including identifying
root causes for issues and automating management processes.
The subsequent subsections will offer a detailed explanation
of research initiatives that leverage MR within each of the
FCAPS levels.

A. Reasoning in Fault Management

1) Fault Diagnosis: Fault diagnosis is a crucial step in fault
management as it allows for the detection of faults and failures.
Traditional MR methods, including symbolic reasoning and
probabilistic reasoning, have been widely explored in fault
diagnosis literature. Symbolic reasoning methods were used
in [7, 79, 80]. For instance, researchers in [7] proposed
innovative fault assessment and fault prediction methods for
Wireless Sensor Networks (WSNs). They focus on identifying
and anticipating issues related to sensor resources, network
bandwidth, and environmental conditions that may affect the
system’s performance. The fault assessment method is based
on evidential reasoning, while fault prediction relies on a
rule-based system. The experimental results indicate that the
model can accurately estimate the current fault state of WSNs
and make reliable predictions about future fault statuses. The
authors in [79] introduced an innovative approach for au-
tomating anomaly detection and diagnosis in Self-Organizing
Networks (SON) using CBR. They focus on detecting the
degraded states within the managed network functions or
other resources in the SON. Their method integrates inputs
from human experts and advanced ML techniques in an
iterative process. Furthermore, they demonstrated the potential
benefits of adopting a more comprehensive perspective on
mobile network self-healing, leading to enhanced performance.
Gomez et al. in [80] proposed an automatic fuzzy-logic-
based system to identify faults (i.e., service degradation within
cells) in Long-Term Evolution (LTE) networks by defining
linguistic rules and membership functions for symptom-fault
relationships. Through this approach, the system achieves high
fault identification success rates, addressing challenges in self-
healing network design and leveraging historical data for fault
detection. In addition, Probabilistic reasoning methods were
used in [81, 82, 83]. For example, the authors of [81] designed
a decision support system tool of general purpose based on the
concept of using Bayesian networks for anomaly detection

problems. The focus is on anomaly detection, specifically
related to situations where there is a lack of information
about all the possible values of the class variable (e.g., data
about a reactor failure in a nuclear power station). Bayesian
networks were also used for fault detection in [82]. The
approach tackled issues in the vehicles data, including the
open wireless medium, high-speed mobility, and vulnerability
to environmental impact. The simulation results demonstrate
that their proposed scheme exhibits superior fault detection
and repairing accuracy, along with a lower false alarm rate
when compared to existing methods. In [83], the authors
proposed a HMMs-based approach for efficient cell outage
detection in 5G Heterogeneous Networks (HetNets), achieving
high accuracy in predicting Base Station (BS) states and
cell outage detection. They classified 5G BS into four states
and used HMMs to estimate cell outages probabilistically,
demonstrating an average 80% accuracy in state prediction and
95% accuracy in cell outage detection through simulations on
dense 5G HetNets.

On the other hand, neural MR were used intensely for fault
diagnosis. For instance, the authors of [84] proposed a fault
diagnosis scheme for telecom networks using GNNs. They
utilized Long Short-Term Memory (LSTM) for clustering
device states, followed by GNNs to diagnose faults and locate
fault-root-devices. Moreover, authors of [85, 86] proposed a
knowledge-guided fault localization method for optical net-
works, utilizing knowledge graphs and GNNs reasoning model
to analyze network alarms and accurately locate faults. They
implemented and verified the method on an Open Network
Operating System (ONOS)-based software-defined optical net-
works platform, demonstrating high accuracy and highlighting
the potential of knowledge graphs for alarm analysis and
fault localization in large-scale optical networks. In [87],
the researchers developed TraceAnomaly, an unsupervised
anomaly detection system using ML and DBNs to detect
trace anomalies in microservice invocation patterns accurately.
TraceAnomaly outperformed existing approaches, achieving
high recall and precision (both above 0.97) in detecting
anomalies, surpassing the hard-coded rule approach by 19.6%
and 7.1%, and seven other baselines by 57.0% and 41.6% on
average, respectively. Moreover, researchers in [88] combined
neural networks with rule-based systems in order to harness
the strengths of both paradigms and detect anomalies like
disruptions in communication services, signal degradation, and
equipment malfunctions. This integration aimed to enhance
fault diagnosis performance for advanced communication net-
works such as 5G and 6G. Furthermore, LLMs were used for
logs fault anomaly diagnosis. For example, authors of [89]
introduced LAnoBERT, a novel BERT-based unsupervised
anomaly detection framework for log data that eliminates the
need for log parsing. Anomalies here can encompass abnormal
behaviors, errors, and intrusions within the system logs of a
computer system. In addition, researchers in [90] delved into
log-based anomaly detection challenges in production systems.
They highlighted limitations in current techniques that rely
on expert-labeled logs, proposing the exploration of MR like
ChatGPT to improve anomaly classification in parallel file
system logs.
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2) Fault Analysis: Fault analysis, the essential second
category of fault management, involves analyzing faults and
detecting the root causes of failures. Conventional approaches
like symbolic and probabilistic reasoning have been utilized in
this context. For example, authors in [91] employed MR in the
form of rule-based models for their NetRCA algorithm. The
algorithm uses rule set learning, attribution models, and graph
algorithms to enhance fault localization performance and in-
terpretability. These techniques involve reasoning about rela-
tionships, patterns, and causal links within the network data
to identify the root causes of faults. In addition, researchers
of [92] utilized Bayesian networks to infer fault root causes
in a distributed fault diagnosis framework for telecommuni-
cation networks. In their work, several public datasets were
used for the evaluation, tackling multiple telecommunication
failures’ root causes, such as hardware failures. The Bayesian
networks effectively handled uncertainty, supported reliable
fault diagnosis, and ensured data privacy, as demonstrated
through evaluation with benchmark datasets and real-world
telecommunication network data. In their research paper [93],
Yang et al. presented the Deep Network Analyzer (DNA), an
Apache Spark-based big data analytics platform. The focus of
this work is on finding associations between Key Performance
Indicators (KPIs) and Key Quality Indicators (KQIs) in a
cellular network to identify root causes behind KQIs per-
formance degradation. DNA employs rule-based methods for
RCA in mobile wireless networks. By mining association rules
between anomalous key quality indicators and KPIs, DNA
efficiently identifies the underlying root causes of network
anomalies. In [94], the authors introduced an adaptive RCA ap-
proach utilizing Bayesian network theory for automated fault
detection and diagnosis in cellular networks. Their approach
is designed to identify notable deviations in cell performance
from the expected profile values. The proposed solution aims
to reduce faults, enhance efficiency, and facilitate self-healing
mechanisms in LTE and emerging 5G networks. Moreover,
researchers of [95] introduced an intelligent approach using
the Bayesian networks model for RCA in communication
networks. They focused on detecting and diagnosing faults,
including fiber link breaks, equipment board faults, and com-
munication network disruptions, in an optical transport net-
work used by a railway company. By employing message
propagation and a parameter storage system, the proposed
framework enhances fault localization automation, providing
a reliable and efficient solution for quick and accurate fault
identification in communication networks.

On the other hand, neural-driven MR methods were intro-
duced to address fault analysis. For example, researchers of
[96] proposed a novel RCA framework that combines GNNs
with graph structure learning to infer hidden dependencies
and accurately identify malfunctioning machines or devices in
5G networks, even with incomplete data. Experimental results
demonstrated higher accuracy in identifying root cause and
victim nodes as the number of nodes in the network increased.
Authors of [97] present an innovative approach for RCA and
fault detection in telecommunication networks. The method
employs data-driven techniques to associate alarms, extract
root-derived graphs, and build alarm propagation graphs based

on Bayesian network principles. Various root causes for
alarms, such as device offline and failure of the board’s overall
function, are considered in this research. By utilizing GNNs,
the approach learns the mapping between alarm propagation
graphs and true faults. The goal is to address the limitations
of rule-based methods and reduce the dependence on expert
knowledge. The evaluation conducted in both offline and
online environments of a real-world RAN demonstrates a
noteworthy 4.6% improvement in F1-score compared to state-
of-the-art approaches.

3) Fault Resolution: Fault resolution, the third and cru-
cial category of fault management, involves taking corrective
actions to address and resolve the root causes of failures
detected during fault analysis. Both traditional and neural
MR methods have been extensively explored in the literature.
For instance, the authors of [98] introduced ”DisCaRia,” a
distributed CBR system that assists administrators in resolving
faults in communication networks and distributed systems.
DisCaRia integrates various fault knowledge resources from
the Internet and uses a distributed CBR approach based on
scalable peer-to-peer technology. In addition, Saeed et al. in
[99] developed a self-healing capability for wireless cellular
networks, compensating failed cells using neighboring cells’
antenna reconfiguration and power adjustments based on fuzzy
logic control and RL. This approach improved network perfor-
mance and ensured uninterrupted Quality of Experience (QoE)
for users. In [100], the authors employed RL as a reasoning
method for an automatic and self-organized approach to cell
outage compensation in wireless cellular networks. The RL-
based agents in enhanced node BSs dynamically adjust down-
link transmission power and antenna tilt to optimize coverage
and capacity, resulting in improved user recovery from outages
compared to traditional resource allocation schemes.

Moreover, neural-based MR techniques were also employed
for fault resolution. For instance, the authors of [101] pro-
posed an automated solution for cell outage compensation in
complex 5G networks using an DRL. This approach involves
selecting neighboring BSs as compensation, constructing a
problem model to maximize transmission rates while consid-
ering Quality of Service (QoS), and adapting BS parameters.
In addition, Shaghaghi et al. in [102] presented a zero-touch,
DRL-based proactive failure recovery framework for fault res-
olution in a virtualized network relying on the NFV concept.
Using DRL with advanced algorithms, the framework predicts
and addresses potential issues preemptively. They incorporate
the age of information concept and employ a hybrid neural
network architecture to enhance the framework’s reasoning
capabilities. This approach combines predictive modeling,
MR, and neural networks to achieve automated and intelligent
fault resolution.

B. Reasoning in Configuration Management

1) Service Planning: Service planning, a pivotal component
within network configuration management, involves strategic
decisions and arrangements to ensure that network services
align with both business objectives and operational needs.
Traditional MR methods were used in service planning for
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configuration management. For instance, researchers in [103]
proposed an agent-based system for automation in network
management within advanced mobile networks like 5G. The
system utilizes performance management data reports, de-
picting scenarios like coverage problems, local overload, and
mobile overload, accompanied by cell-level KPIs. Then, it em-
ploys both symbolic reasoning (semantic web and ontologies)
and probabilistic reasoning (MLNs) to enable relatively simple
software agents to address complex requests, ensuring efficient
network operations. In addition, authors of [104] employed
symbolic reasoning, utilizing the Common Information Model
(CIM) and OWL ontology language, to enhance configuration
management in Wireless Mesh Networks (WMNs). The sys-
tem takes mesh router configurations as input, represented in a
higher level of abstraction, enabling semantic checking, policy
enforcement, and reasoning for WMNs nodes configuration.
The framework supports persistence and web configuration
interfaces, effectively addressing challenges posed by the dis-
tributed and dynamic nature of WMNs. Moreover, Randles et
al. [105] introduced an ontology-driven framework to enhance
autonomic network management by interpreting high-level
goals or “intents” in closed control loops. Using semantic
graphs and ontological modeling, their approach enables auto-
mated inference and understanding of relationships, strategies,
and knowledge. By using network monitoring data as input
to this framework, the system adapts and plans to satisfy
and maintain intents, as exemplified by a real-life use case
involving QoS assurance for a 5G Telecoms Network Slice.

2) Network Planning: Network planning entails the sys-
tematic design and expansion of network infrastructure to
accommodate evolving demands while maintaining efficiency
and scalability. Traditional approaches were employed in net-
work planning for the configuration management, including
symbolic and probabilistic reasoning. For example, authors
in [106] presented an ontology-based approach that extends
Time-Sensitive Networking (TSN) capabilities to support
Plug-and-Play and automatic network configuration in the
automotive domain. The ontology meta-models are designed
to be used by automotive experts, such as network designers
or engineers, to create concrete in-vehicle networks based
on TSN, including the knowledge required for automatic
configuration. By using the ontology, the system can reason
about the network configuration and automatically configure
the network to ensure deterministic behavior and support
hard real-time communication with minimum latency based
on Ethernet technology. To configure the network, the system
utilizes TSN network knowledgebases, QoS requirements of
applications, device information, and integration specifications
to automate TSN network configuration. In addition, the
authors of [107] introduced a significant advancement by
integrating IEEE Time-Sensitive Networking (TSN) standards
with Fifth-generation (5G) cellular networks, focusing on
Industry 4.0 applications. They addressed the intricate task of
dynamically adapting network configuration to maintain the
desired quality levels for TSN traffic patterns. Their approach
takes TSN information, including 5G QoS flow configuration,
device location and context, KPIs, and relevant events such as
network configuration actions, as input, enabling subsequent

network reconfiguration. Leveraging an Automata Learning
methodology characterized by rule-based symbolic reasoning,
they successfully achieved real-time monitoring and adjust-
ment of 5G QoS flows. Moreover, the framework proposed
in [108] aims to configure firewalls for improved network
security and functionality by integrating network topology and
high-level behavior requirements. It takes as input network
policies, expressed as high-level requirements, alongside net-
work topology and a knowledge base. Then, it employs a rule-
based system to derive precise low-level firewall configura-
tions, ensuring alignment with specified communication rules.
Predefined rules guide the system in generating consistent
and conflict-free firewall settings that align with the network’s
structure and operational objectives.

Furthermore, the application of neural MR methods was
utilized to improve network planning. For instance, authors
introduced in [109] a parser framework based on neural
semantic parsing techniques. This framework facilitates the tai-
lored extraction of configuration details from network device
manuals, leading to the creation of initial models. Through an
extensive validation framework encompassing formal syntax
and hierarchical validation, this approach using neural seman-
tic parsing ensures the accuracy of the parsed models.

3) Status and Control: Status and control involve the im-
mediate supervision and administration of network operations,
facilitating rapid responses to incidents and maintaining stable
and reliable service delivery. Conventional techniques were
employed in the realm of status and control for configuration
management. For instance, researchers in [110] employed a
MLNs model integrated with an ontology and a graphical user
interface for configuration management in a mobile network.
They used a LTE simulator to generate KPIs data, such as
channel quality indicator and radio link failures, which serves
as evidence for the MLNs model. The MLNs model then
reasons about configuration management parameters, such as
transmission power and antenna angle (remote electrical tilt,
RET), to optimize the mobile network’s QoS and perfor-
mance. Moreover, in [111], the authors presented a system
that integrates a mobile network simulator, a MLNs model,
and an OWL 2 ontology into a run-time environment for
advanced automation in future mobile networks. The system
takes into account the network context, analyzes uncertain
information, and uses probabilistic reasoning to infer network
configurations. The experimental platform demonstrates the
value of semantic modeling and probabilistic reasoning in-
network status characterization, optimization, and visualiza-
tion, allowing for more efficient and reliable QoS in mobile
networks.

C. Reasoning in Performance Management
1) Performance Quality Assurance: In the realm of perfor-

mance management, Performance quality assurance emerges
as a critical facet, ensuring that network services consistently
meet or exceed the established performance standards and
expectations. Traditional MR approaches were used in the
literature to contribute to Performance quality assurance. For
example, authors in [11] proposed a CBR approach for net-
work slicing resource allocation in 5G RAN. The study treats
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the user distribution scenario as a case. It uses CBR to match
new cases with cases stored in the library, finding similar
cases to determine the best slice bandwidth ratio. The k-
nearest neighbors algorithm is employed for retrieving similar
cases, considering sparsity reduction and locality-preserving
projections, demonstrating the effectiveness of the proposed
architecture for efficient resource allocation. Moreover, in [6],
the authors proposed a novel Bayesian cell selection/user
association algorithm for 5G networks to achieve ultra-low
latency and enhance system performance. By considering
access node capabilities and user equipment traffic type, the
algorithm maximizes the probability of proper association,
leading to improved latency results. The simulation results
demonstrate that the Bayesian game approach achieves the
5G low end-to-end latency target with a probability exceeding
80%.

Furthermore, neural MR approaches were also used for
Performance quality assurance. For instance, in [112], re-
searchers discussed 5G network concepts and the importance
of resource allocation for different verticals. They imple-
mented a DRL resource allocation module using DNNs to
optimize QoS. The simulation results show improved resource
allocation, leading to lower latency and better throughput
compared to previous models. The authors of [113] introduced
COUNSEL, a DRL-based framework designed to address
resource configuration management challenges in Internet
Clouds. COUNSEL efficiently manages dynamic workloads
for multi-component services by offering three initial policies:
over-provisioning, under-provisioning, and expert provision-
ing. Through its implementation, COUNSEL demonstrates
consistent performance improvements with average rewards
ranging between 20% to 60%, while meeting service level ob-
jectives and budget constraints. In addition, DRL was proposed
in [114] to enhance 5G RAN intelligence and enable self-
adaptation to the traffic pattern of the cell type. By monitoring
Uplink and Downlink buffers, the proposed DRL algorithm
derived the optimal Uplink/Downlink pattern in response to
the current traffic configuration, ensuring timely and efficient
delivery of the optimal RAN configuration.

2) Performance Monitoring: Performance monitoring
stands as a pivotal pillar, offering real-time insights into
the dynamic behavior of network systems and applications.
In this context, the research community utilized traditional
MR to enhance performance monitoring. For example,
the authors in [115] proposed an end-to-end network
performance management framework based on CBR, multi-
agent integration, perfSONAR 1, and large-scale network
flow monitoring. This framework aims to address the growing
complexity and demands for high-performance network
services in advanced data-intensive scientific research. It
provides a systematic approach for detecting, diagnosing, and
recovering ETE network performance issues. The framework
was validated using real cases from a national research
network in Korea.

Moreover, neural MR methodologies were employed. As
an illustrative example, the authors of [116] analyzed various

1https://www.perfsonar.net

approaches for predicting Service Level Agreement (SLA)
violations in cloud customer-provider service provisioning,
emphasizing the utilization of network metrics and proposing
a context-based model using GNNs. Their research demon-
strates that the proposed GNNs-based model significantly
enhances SLA violation prediction accuracy, holding potential
significance for Cloud and Service providers. In Addition,
researchers of [117] explored the potential of IBN for In-
telligent Transportation Systems (ITS), leveraging DRL to
optimize resource allocation in the context of 5G-enabled
internet of connected vehicles. By jointly considering mobile
network operator profits and users’ QoE, they designed an
intelligent traffic control system that dynamically coordinates
edge computing and content caching, as demonstrated through
real traffic data-driven experiments.

3) Performance Analysis: Performance analysis emerges
as a pillar of network management, examining network data
to uncover patterns and insights, thereby facilitating well-
informed decisions regarding network enhancements and re-
source allocation. Within this domain, researchers have har-
nessed conventional methods of reasoning. For instance, au-
thors in [118] introduced a novel cognitive network frame-
work, termed FuzzOnto, designed to manage and optimize
heterogeneous WMNs. By leveraging ontologies and fuzzy
reasoning, this framework facilitates the dynamic incorpo-
ration of new network types and cross-layer parameters to
enhance network performance. The primary contribution lies
in its innovative approach to network optimization through
semantic reasoning, demonstrated through simulation results
that show up to a 70% improvement in network throughput
compared to benchmark networks, spanning wireless mesh,
LTE cellular, and vehicular ad hoc networks. The work in
[119] addresses the challenges of managing complex Het-
Nets such as Cloud, Internet of Things (IoT), vehicular, and
multiprotocol label switching networks. They proposed and
evaluated the use of CBR for cognitive management, specifi-
cally for Bandwidth Allocation Model (BAM) reconfiguration
in these networks. The results indicate that CBR can learn
from bandwidth request profiles and adaptively assist in BAM
reconfiguration, leading to the self-configuration of BAM and
optimized resource utilization. The authors of [120] proposed
a predictive QoS mechanism called PreQoS that leverages
Bayesian networks. The PreQoS mechanism is specifically
designed for vehicle-to-everything services, which are critical
in enabling safer and automated driving in the context of
connected and automated mobility.

Additionally, neural MR techniques were utilized in various
research publications. For example, in [121], the authors
proposed a neuro-symbolic XAI twin system for ZSM in 6G
wireless networks. For performance management, the system
employs a neural-network-driven multivariate regression to
analyze the time-dependent wireless internet of everything
behavior and a DAG-based Bayesian network to infer symbolic
reasoning scores. The XAI twin framework addresses extensi-
ble and modular management challenges and achieves around
96.26% accuracy with improved trust scores for reasoning
and automation. Another noteworthy contribution is presented
in [122], where XAI was integrated with DRL to explain
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decisions related to radio resource allocation in 6G networks.
This integration enhanced decision robustness and algorithm
performance by reducing model complexity and convergence
time.

D. Reasoning in Security Management

1) Detection: Detection plays a pivotal role within the
realm of security management, actively engaging in the iden-
tification of potential risks and vulnerabilities before they
escalate into significant issues. The research community has
put forth various traditional MR methodologies, including
symbolic reasoning and probabilistic reasoning, to address this
challenge. As an illustration, researchers in [10] conducted an
in-depth exploration into jamming and intrusion detection for
advanced networks such as 5G, aiming to detect intentional
interference or disruption of wireless communication signals
within a 5G network. Their study aimed to ensure reliability
and prevent disruptions in critical applications. Their approach
involved a fusion of Bayesian networks with supervised and
unsupervised models, resulting in heightened real-time detec-
tion accuracy and effective handling of unknown jamming
types. In another study, [123] also tackled the jamming detec-
tion problem within 5G networks by introducing an innovative
strategy employing both ML techniques and Bayesian infer-
ence. By leveraging supervised learning models in conjunction
with Bayesian network models, their methodology achieved
impressive accuracy in jamming detection across diverse sce-
narios. They tackled jamming caused by various scenarios,
focusing on classifying the frequency bands affected, including
instances at 1.95 GHz, 2.14 GHz, and 3.49 GHz, as well
as scenarios with no jamming signal present. Notably, this
approach not only pinpointed the root causes of performance
issues but also showcased its applicability in the context of
5G New Radio (NR) and Beyond-5G networks. Authors of
[124] shed light on the limitations of conventional security
intrusion detection methods when confronted with evolving
cyber-attacks in power IoT-Cloud environments. To address
this challenge, they proposed an intelligent response approach
that revolves around access control guided by ontology reason-
ing and semantic web technologies. Security threats in power
IoT-Cloud encompass internal system intrusion, network vul-
nerabilities, device vulnerabilities, malicious code infection,
and information leakage. These threats are categorized into
structural, physical, and external attacks. Structural attacks
exploit architectural vulnerabilities, while physical attacks
target source code weaknesses like Structured Query Language
(SQL) injection. External attacks involve malicious programs
such as Trojan horses and viruses.

Moreover, the field of security management has observed
the incorporation of neural MR techniques aimed at detection
purposes. For example, Gao et al. in [125] confronted the task
of spam detection in rich communication suite messages (e.g.,
unwanted and unsolicited messages), a 5G application akin
to multimedia-enhanced Short Message/Messaging Service
(SMS). They introduced a multi-step approach involving the
use of HMMs and CNNs. In [126], the focus is on tackling
security obstacles in the evolving landscape of 5G networks.

To this end, the authors propose an intrusion detection sys-
tem using FNNs to counter potential security breaches and
attacks within the network. Various types of cyber attacks
have been addressed in this work, including , Remote to
User (R2L), User to Root (U2R), and Probing attacks. Ad-
ditionally, the paper specifically delves into the impact of
varying membership functions and learning algorithms on en-
hancing the effectiveness of intrusion detection, emphasizing
the importance of robust security measures in the context of
5G networks.In addition, the authors of [127] concentrated
on enhancing the identification of Android malware in the
context of 5G mobile IoT applications. With the growing
menace of malware assaults on communication systems, the
authors introduce a detection strategy that employs GNNs. By
capturing the interconnections among various traffic attributes,
GNNs aim to enhance the accuracy of malware detection.
Furthermore, LLMs were harnessed in [128] to address the
challenges of software vulnerability detection, resulting in the
creation of SecureFalcon—an innovative model architecture
built upon FalconLLM2. SecureFalcon demonstrated a re-
markable 94% accuracy in distinguishing between vulnerable
and non-vulnerable code samples, showcasing its potential to
reshape software vulnerability detection methods in cyberse-
curity.

2) Prevention: Within the domain of security management,
prevention stands as a cornerstone in the proactive mitiga-
tion of risks and vulnerabilities before they materialize into
substantial threats. In this context, the research landscape has
witnessed the emergence of diverse preventive methodologies
using traditional MR. As an example, the work [129] envisions
the 5G network as the fundamental architecture of the digital
society, fostering innovative services and applications for
devices, machines, and intelligent entities. The authors adeptly
utilize fuzzy systems, along with other cognitive techniques
like nonlinear systems, adaptive control, and AI, as part of
their MR approach. This framework not only provides insights
into forthcoming applications such as autonomous vehicles
and robots but also accommodates varied forms of cognition,
like edge and centralized cognition, tailored to specific latency
thresholds. In a related context, Vidal et al. [130] tackled
the dynamic landscape of 5G ecosystems and introduced an
innovative framework for proactive self-protection. They intro-
duced an architectural model, knowledge representation, and
a rule-based reasoning strategy for countering cyber threats.
Additionally, the authors propose a specialized prediction
approach that anticipates the impact of DoS attacks in real
communication scenarios. Addressing the vulnerabilities of
5G wireless communication networks, particularly in relation
to security breaches like DoS attacks arising from small cell
integration, researchers of [131] put forth a Bayesian game
model. This model analyzes interactions between attackers
and network defenders, deriving optimal defense strategies
against attacks. Moreover, the authors presented an availability
model grounded in a stochastic reward net aimed at mitigating
network unavailability stemming from DoS attacks.

Moreover, the realm of security threat prevention has seen

2https://falconllm.tii.ae
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the application of neural MR techniques. As exemplified by
He et al. in [132], DRL is employed to enhance security
protocols within mobile social networks. Through adaptive
resource allocation and trust-informed decision-making, this
strategy effectively mitigates potential security vulnerabilities.

3) Administration: In the realm of security management,
administration plays a pivotal role in ensuring the effective
implementation and orchestration of protective measures. Re-
searchers have proposed traditional methods. For instance,
the authors of [133] introduced a mathematical trust model
for 5G telecommunication systems, evolving from earlier
generations. It defines the core principle of trust and traces
the trust model’s evolution from 1G to 5G. Employing a
graphical probabilistic model with Bayesian networks, the
model facilitates the implementation of a trust center across the
network to gather trust values from stakeholders and entities.
In addition, the authors of [134] proposed a network security
administration framework that integrates situational awareness,
fuzzy reasoning, and role-based access control to address a
diverse array of threats, including intrusions, malware, DoS
attacks, data exfiltration, and phishing. Their work empha-
sizes real-time threat detection and identification through the
use of a fuzzy reasoning algorithm, while role-based access
control mechanisms enforce secure network administration
by restricting user operations and implementing multi-level
security concepts. Similarly, researchers in [135] incorporated
fuzzy logic in proposing a novel privacy-preserving authenti-
cation framework for inter-vehicle communication networks,
diverging from traditional architectures to leverage 5G and
edge computing technologies. The authentication protocol,
employing fuzzy logic for vehicle selection, ensures secure
communication, identity privacy, and traceability with lower
computational overhead compared to existing approaches.
Also, researchers in [136] utilized a rule-based access control
model to address the unique challenges of 5G architecture,
emphasizing multi-tenancy, multi-domain, and multiple se-
curity levels. The proposed model allows specification and
enforcement of actions and traffic types through an access
control policy. The innovative model not only caters to 5G but
also demonstrates scalability, making it adaptable to various
architectures and capable of incorporating additional security
features. Furthermore, the authors of [137] employed rule-
based reasoning to dynamically apply QoS policies to security
use cases in the 5G architecture. The proposed scheme utilizes
predefined security indicators to trigger different policies, cre-
ating an efficient and responsive security enforcement schema.
This rule-based approach ensures adaptability to security in-
cidents, contributing to a unified and effective method for
managing security within the network.

On the other hand, the research community has leveraged
neural MR, which combines neural networks with reasoning
methodologies. To give an illustrative example, authors of
[138, 139] presented a solution framework for 5G security
that integrates the physical and logical layers while prioritiz-
ing automated attack and defense strategies. This approach
aims to tackle the dynamic security challenges of the 5G
landscape by incorporating physical layer security within the
overarching security framework, employing knowledge-based

graph reasoning. Furthermore, the authors of [140] delved into
the security challenges posed by the integration of 5G IoT
into power systems. They proposed an administration strategy
within security management by introducing an information
security system based on ANNs and CBR system. They
emphasize incorporating neuroscience-inspired algorithms to
enhance security mechanisms and optimize data transmission
paths. The multi-layered protection model includes a zero-
trust security platform, network security logical isolation, and
forward and backward isolation facilities to strengthen 5G IoT
security in the smart grid.

E. Lessons Learned

In this sub-section, we delve into a comprehensive anal-
ysis of reasoning approaches employed at each level of the
FCAPS framework. Subsequently, we offer valuable insights
and comparisons to illuminate the efficacy of these approaches.
Finally, we engage in an overarching discussion on using
reasoning across the entire FCAPS framework, setting the
stage for its application in the context of modern beyond
5G/6G networks. This latter prepares for a more in-depth
exploration in section IV.

1) In Fault Management: In reviewing the literature men-
tioned earlier, a notable observation from the traditional rea-
soning perspective is the extensive use of symbolic reasoning,
particularly in fault diagnosis and analysis. Traditional rule-
based approaches, known for their effective performance, were
prominently employed in these categories. Additionally, CBR
approaches found application in diagnosis and resolution,
leveraging insights and actions derived from similar past cases.
These methods demonstrated efficacy in decision-making pro-
cesses, especially in fault resolution scenarios. Probabilistic
reasoning, exemplified by Bayesian networks, played a crucial
role in diagnosis and analysis due to their capacity to handle
uncertainty. This feature rendered them powerful tools for
detecting and analyzing faults within complex systems. On
the neural reasoning front, GNNs emerged as highly effective
tools in fault diagnosis and analysis tasks. Conversely, in
fault resolution, particularly in situations involving decisions
to update configurations, DRL methods were extensively em-
ployed. Their effectiveness in addressing faults, especially in
unforeseen scenarios, highlighted their significance in fault
management. A noteworthy trend in neural reasoning ap-
proaches was the recent widespread utilization of LLMs in
fault analysis, particularly when dealing with log files. LLMs
demonstrated proficiency in comprehending human-like text
found in log files, making them well-suited for fault detection
in this context. Examining the research scopes, the literature
showcased the application of fault management reasoning
approaches across various domains, including , SON, cellular
networks (LTE, 5G), HetNets, and NFV-enabled networks.
Table IV provides a comprehensive summary of these works
categorized by traditional and neural approaches, as well as
by research scopes.

2) In Configuration Management: Upon reviewing the
literature mentioned earlier, a notable observation emerges
from the traditional reasoning standpoint, emphasizing the
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TABLE IV: Fault management reasoning approaches.

Category MR type MR approach and research scope Citations

Fault diagnosis Traditional Rule-based reasoning for fault prediction in WSNs. [7]

CBR-based anomaly detection in SON. [79]

Fuzzy-logic-based faults anomaly detection in LTE. [80]

Bayesian networks for faults anomaly detection. [81, 82]

HMMs-based cell outage detection in 5G HetNets. [83]

Neural GNNs-based fault diagnosis. [84, 85, 86]

DBNs-based anomaly detection. [87]

Combining neural networks with rule-based for fault diagnosis. [88]

LLMs for log files anomaly detection. [89, 90]

Fault analysis Traditional Rule-based models to identify the root causes of faults. [91, 93]

Bayesian networks-based RCA in networks. [92, 94, 95]

Neural GNNs-based RCA and fault detection in 5G networks. [96, 97]

Fault resolution Traditional Distributed CBR to resolve faults in communication networks. [98]

Fault resolution based on fuzzy logic control and RL. [99]

RL-based cell outage compensation in wireless cellular networks. [100]

Neural DRL-based cell outage compensation in wireless cellular networks. [101]

DRL-based fault resolution in NFV-enabled networks. [102]

TABLE V: Configuration management reasoning approaches.

Category MR type MR approach and research scope Citations

Service planning Traditional Web ontologies and MLNs to ensure efficient network operations. [103]

Ontology-based frameworks to enhance configuration management. [104, 105]

Network planning Traditional Ontology-based to support automatic network configuration. [106]

Rule-based approach to support automatic network configuration [107, 108] .

Neural Neural semantic parsing to improve network planning. [109]

Status and control Traditional MLNs model with ontology for configuration management in LTE. [110, 111]

application of symbolic reasoning, particularly through web
ontologies, in both service and network planning. Adopting
ontology-driven frameworks proves pivotal, offering automa-
tion and reasoning capabilities for network configurations.
This proves especially beneficial in navigating the intricacies
of environments like 5G, facilitating efficient network op-
erations. Incorporating ontologies or other semantic models
facilitates higher-level reasoning, automated inference, and
policy enforcement. Rule-based approaches also found signifi-
cant utility in both service and network planning. Researchers
integrated ontologies with probabilistic methods, such as , for
status and control, enabling dynamic configuration adjustments
to address evolving demands while maintaining desired service
levels. Moreover, the introduction of neural semantic parsing
has demonstrated its effectiveness in accurately extracting
configuration details from device manuals. This advancement
contributes to enhancing network planning, as exemplified
by [109]. However, when compared to other FCAPS levels,
reasoning in configuration management is relatively underuti-
lized. A prospective approach to address this gap is the ex-
ploration of LLMs. Table V offers a comprehensive summary
of the reviewed works, categorized by traditional and neural
approaches as well as research scopes.

3) In Performance Management: Effective performance
management plays a crucial role in ensuring the smooth
operation and optimal functionality of network systems and
applications. The surveyed literature offers valuable insights
into the diverse reasoning approaches being utilized in this
domain. Traditional reasoning methods, particularly CBR,
have demonstrated their continued effectiveness across various
facets of performance management, including quality assur-
ance, monitoring, and analysis. Tasks like network slicing
resource allocation and cell selection/user association benefit
from the pattern-matching capabilities of CBR. Probabilis-
tic reasoning, exemplified by Bayesian networks, has also
proven useful in addressing network management challenges,
such as predicting SLA violations and ensuring QoS. The
recent surge in DRL has led to its adoption for decision-
making in performance management, particularly in resource
allocation scenarios within performance quality assurance and
monitoring. However, researchers have also turned to XAI to
understand and analyze the outputs of AI-based approaches in
the domain of performance analysis. One approach involved
combining symbolic reasoning with XAI to improve the under-
standing and interpretation of network performance. It’s im-
portant to explore advanced XAI techniques, especially when
combined with MR. This combination allows for a closed-
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TABLE VI: Performance management reasoning approaches.

Category MR type MR approach and research scope Citations

Performance quality
assurance

Traditional CBR approach for network slicing resource allocation in 5G RAN. [11]

Bayesian networks based cell selection/user association for 5G networks. [6]

Neural DRL-based resource allocation to optimize QoS in 5G. [112]

DRL-based framework to address resource management challenges in
Internet Clouds.

[113]

DRL-based framework to derive the optimal Uplink/Downlink pattern. [114]

Performance monitor-
ing

Traditional End-to-end network performance management framework based on CBR. [115]

Neural Predict SLA violation with GNNs. [116]

DRL to optimize resource allocation for ITS. [117]

Performance analysis Traditional Ontologies and fuzzy logic based to optimize heterogeneous WMNs. [118]

CBR for cognitive management in HetNets. [119]

Bayesian networks-based predictive QoS for ITS. [120]

Neural Neuro-symbolic XAI twin system for ZSM in 6G networks. [121]

Combining DRL with XAI for 6G radio resource management. [122]

loop understanding of the methods used in performance quality
assurance and monitoring. A good example of this integration
is presented in [122], where researchers employed DRL for
performance quality assurance and used XAI to analyze the
performance and decisions made by the DRL agent. Table VI
provides a comprehensive summary of the reviewed works,
organized by traditional and neural approaches, and further
categorized based on research scopes.

4) In Security Management: The surveyed literature on
security management offers valuable insights into the effec-
tiveness of various reasoning approaches across different se-
curity domains. Traditional reasoning methods, such as fuzzy
logic, Bayesian networks, and ontology reasoning, continue to
demonstrate their effectiveness in various aspects of security
management, including threat detection, prevention, and ad-
ministration. A key takeaway is the value of integrating mul-
tiple reasoning models. For instance, combining fuzzy logic
with cognitive techniques or neural networks with Bayesian
models fosters a holistic and adaptive approach to evolving
security challenges. Bayesian models, particularly Bayesian
game models, showcase their strategic significance in devising
optimal defense strategies against specific threats, like DoS
attacks in 5G networks. The importance of explainability in
security decisions is becoming increasingly evident, with the
incorporation of XAI methods contributing to transparency
and trust in decision-making. On the other hand, neural MR
is being recently investigated within security management.
The rapid rise and versatility of neural reasoning techniques,
including LLMs, GNNs, and DRL, are undeniable. These
techniques showcase their applicability in tasks ranging from
software vulnerability detection to enhancing security proto-
cols. Innovative synergies, like combining neural networks
with traditional methods and incorporating interdisciplinary
concepts like neuroscience-inspired algorithms, hold promise
in creating adaptive and resilient security systems [140]. How-
ever, while the surveyed research demonstrates the potential of

reasoning techniques in security management, there are limita-
tions to consider. Traditional methods can be computationally
expensive and less adaptable to dynamic environments, while
neural techniques often require large amounts of data and may
lack explainability. Future research should focus on addressing
these limitations and exploring novel reasoning techniques that
are efficient, adaptable, and transparent. Table VII provides a
comprehensive summary of the reviewed works, categorized
by traditional and neural approaches, further segmented based
on research scopes.

5) In FCAPS: Reasoning within the FCAPS framework is
crucial for making informed decisions, optimizing network
operations, and ensuring the overall health and security of
the network. Symbolic reasoning-based systems were very
efficient in conventional network management systems. These
methods are simple to design and allow easy interpretation
of decision-making processes. However, symbolic reasoning-
based systems face limitations in modern networks, such
as challenges in handling uncertainty and the potential for
combinatorial explosion when there are a large number of
rules. Probabilistic reasoning and RL were implemented to
address the uncertainty issues. These systems were also very
efficient in conventional networks. However, networking is be-
coming increasingly complex with the explosion of beyond 5G
network services. This results in a large number of devices that
conventional approaches cannot handle. Currently, the research
community is combining neural networks with traditional
reasoning methods to implement modern reasoning approaches
that are efficient and handle large amounts of devices. For
example, DRL is being used in the context of decision-making,
especially for resource allocation where there are a huge
amount of devices and the system environment is complex.
GNNs are also used extensively for graph reasoning to detect
and resolve faults and anomalies. Additionally, advances in
NLP are enabling the use of the reasoning abilities of LLMs
in networking management systems.
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TABLE VII: Security management reasoning approaches.

Category MR type MR approach and research scope Citations

Detection Traditional Bayesian networks-based jamming and intrusion detection in 5G. [10, 123]

Ontology reasoning for security intrusion detection in IoT. [124]

Neural Combining HMMs and CNNs for 5G intrusion detection. [125]

Intrusion detection system using FNNs in 5G networks. [126]

GNNs-based malware detection in IoT. [127]

LLMs-based software vulnerability detection using FalconLLM. [128]

Prevention Traditional Fuzzy logic based threats prevention in 5G networks. [129]

Rule-based reasoning framework for proactive self-protection in 5G. [130]

Bayesian networks to derive optimal defense strategies against attacks. [131]

Neural DRL-based approch to enhance security protocols within mobile social
networks.

[132]

Administration Traditional Bayesian networks-based trust model for 5G telecommunication systems. [133]

Fuzzy logic-based network access control. [134, 135]

Rule-based network access control in 5G networks. [136]

Rule-based policy setting in 5G networks. [137]

Neural GNNs-based to tackle the dynamic security challenges of the 5G. [138, 139]

Information security system based on ANNs and CBR system. [140]

Nevertheless, the research community must invest more
effort in designing novel reasoning approaches aligned with
the requirements of modern 6G networks. These networks
impose various constraints to support advanced use cases and
applications. For instance, 6G networks are expected to per-
form closed-loop fault management, automatically detecting
and resolving faults without human intervention, aligning with
the zero-touch management principle. Reasoning is crucial
for providing effective zero-touch management, especially in
automatic closed-loop fault detection and resolution. Addition-
ally, 6G networks are envisioned as intent-driven networks,
where reasoning can play a vital role in designing intent-driven
networking for configuration management. Furthermore, 6G
necessitates improved performance management through dis-
tributed computations, prompting exploration of distributed
reasoning methods. Finally, implementing diverse use cases
in 6G networks requires robust security measures, leading
to integrating tools like Blockchain for security management.
Combining reasoning with Blockchain is an emerging research
area that warrants further investigation. In the upcoming sec-
tion, we will explore open issues and future research directions
related to integrating reasoning to perform FCAPS in modern
6G network concepts. These include zero-touch fault man-
agement, intent-driven configuration management, distributed
performance management, and security management with
Blockchain. Furthermore, exploring reasoning with LLMs,
given their prominence in current research activities, will be
addressed for potential application across all FCAPS layers,
leveraging the reasoning abilities and general knowledge of
these approaches.

V. OPEN ISSUES AND FUTURE DIRECTIONS TOWARDS 6G

In this section, we envision unexplored horizons and poten-
tial advancements within the realm of MR integrated into the

FCAPS framework. As illustrated in Fig. 6, we discuss the
following key areas:

• Reasoning in ZSM-enabled fault management: 6G net-
works aim to implement closed-loop fault management,
automatically detecting and resolving issues without hu-
man intervention. Enabling such capabilities aligns with
the ZSM vision, where network operations are fully
automated. This sub-section explores how MR can play
a crucial role in achieving this vision.

• Reasoning in Intent-driven configuration management:
Simplifying configuration management for network oper-
ators is a key goal of IBN, a vital pillar in 6G networks.
MR shows promise in enhancing IBN by providing
intelligent solutions that “understand” and reason about
user intent. This section explores how MR can be used
to automate network operations and management by
developing IBN solutions with a deeper comprehension
of user intents.

• Enhanced performance management with distributed rea-
soning: 6G networks promise massive computational
power for demanding use cases achieved through dis-
tributed computing. This is crucial for enhanced perfor-
mance management. As a result, distributed reasoning
is poised to become a hot topic in 6G research. This
sub-section explores how MR can effectively distribute
across multiple network nodes, scaling its capabilities and
boosting performance.

• Reasoning & Blockchain in security management: Evolv-
ing security frameworks in 6G networks leverage ad-
vanced technologies like Blockchain, known for their
robustness and effectiveness in demanding use cases.
This sub-section explores the potential of combining
MR and Blockchain to create more secure and reliable
communication networks.
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Fig. 6: FCAPS framework directions towards 6G.

• Reasoning with LLMs: Witnessing the explosion of LLMs
and their impressive results across diverse fields, includ-
ing 6G networks, we explore how MR can leverage
this power. This sub-section delves into the potential
of leveraging reasoning with LLMs to make intelligent
decisions in 6G networks, ultimately shaping their future
landscape.

A. Reasoning in ZSM-enabled Fault Management

The concept of ZSM has gained traction due to the increas-
ing complexities arising from the surge in smart IoT devices
and the demand for business-oriented services in 5G and
beyond networks [141]. It aims to automate and streamline net-
work operations, such as planning, deployment, and optimiza-
tion, enhancing efficiency and reducing human intervention
[142]. Recently, the European Telecommunications Standards
Institute (ETSI) has launched two groups, zero-touch service
management, and experiential networked intelligence, aiming
to use AI, including ML and MR, to realize agile, fully
automated management and orchestration of network resources
[143]. These efforts align with the goals of ZSM, as they focus
on leveraging advanced AI techniques to achieve autonomous
network management, aligning with the increasing complexity
and demands of modern network environments. Numerous
studies have contributed to the utilization of ML to realize
network automation under the framework of ZSM [144, 145,
146]. Consequently, there is an increasing demand within the
research community to delve into MR-driven approaches in
order to fulfill the objectives of ZSM.

ZSM offer significant benefits, such as reduced error rates
and efficient handling of complex technologies. However,
their management can be challenging, especially in heteroge-
neous and large-scale networks. Rule-based automated tools
can be inflexible and error-prone, mainly when dealing with
unforeseen situations or unexpected changes in the network
environment [142]. Neural-based MR can help to address these
challenges by enhancing decision-making and automation in
network management. MR can learn from historical data to
identify patterns that are difficult to capture with rule-based
systems, such as the relationships between different network

elements and the impact of changes to one element on the
rest of the network [147]. Despite its potential, ZSM faces
several limitations. First, accurate and up-to-date data is crucial
for effective MR in ZSM. However, ensuring the quality and
availability of data from diverse heterogeneous sources in
ZSM can be challenging. Second, AI decision-making can
be opaque, which can impede human comprehension and
trust. One way to address this limitation is to integrate XAI
strategies with MR. These strategies can provide insights
into the rationale behind MR decisions, making them more
transparent and accountable [148]. Third, ZSM systems must
also address data protection concerns. This includes safeguard-
ing management data, data integrity, service management,
infrastructure functions, and resources [142]. Joint MR and
Blockchain technology can provide a secure mechanism for
storing and managing data, which could significantly enhance
the management of security data for ZSM [149]. Fourth,
integrating MR into existing ZSM systems and workflows
can be challenging. It requires interoperability with legacy
systems, APIs, and data sources. New techniques are needed
to integrate reasoning-based strategies with ZSM systems in a
scalable and efficient way [5].

B. Reasoning in Intent-driven Configuration Management

IBN is a groundbreaking concept that introduces a user-
centric approach to network management [150]. It aims to
revolutionize network management by prioritizing user intent
and creating a dynamic, adaptable network ecosystem [151].
Although IBN is a relatively new term and technology, signif-
icant efforts have been dedicated to defining and standardizing
it. It involves five essential steps: intent profiling, translation,
resolution, activation, and assurance [152]. (i) Intent profiling
is the initial stage where users interact with the Intent-Based
Networking System (IBNS) to express their network-related
desires. In contrast to traditional Command Line Interface
(CLI) commands or complex Application Programming Inter-
face (API) requests, the intent is conveyed in a human-friendly
manner, utilizing natural language expressions or intuitive
interfaces. (ii) Intent translation within the IBNS involves the
transformation of a submitted intent into a network policy.
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Subsequently, this network policy is translated into granular
low-level configurations capable of being deployed to network
devices. (iii) Intent resolution addresses potential conflicts
arising from multiple users or groups submitting their intents
simultaneously. The IBNS proposes conflict resolution strate-
gies and alerts users or administrators when conflicts cannot be
resolved feasibly. (iv) Intent activation proceeds once the IBNS
confirms that deploying a new intent won’t adversely affect
ongoing ones. The IBNS then deploys the requested service,
tailoring each intent to match users’ personalized needs. (v)
Intent assurance ensures the ongoing fulfillment of the intent
throughout its life-cycle. By taking both proactive and reactive
measures, it ensures the network aligns with the users’ desires
and facilitates self-configuration and self-healing.

Various research studies have explored the use of MR
in IBNS. For instance, Massa et al. [153] introduced a
logic programming-based approach for intent modeling and
translation in IBNS, focusing on provisioning NFV chains.
This approach can be extended to closed-loop management
by enhancing the model to implement intent activation and
assurance using advanced MR methods. Similarly, Khan et
al. [154] utilized a Generative Adversial Network (GAN)
to generate synthetic service graphs and a DRL mechanism
for optimized graph selection. These techniques automatically
translate high-level user requirements into service graphs, ad-
dressing the complex task of mapping user intents to network
service structures. However, expanding the scope of business
domains within an IBNS results in longer training times and
increased waiting times for intent deployment. To mitigate this,
leveraging the latest advancements in LLMs can streamline
intent translation by enhancing generic LLMs using few-
shot learning [155] or fine-tuning [156]. Furthermore, despite
recent ML-based conflict resolution approaches in IBNS [157],
there is a need for intent negotiation modules [158]. While
frameworks for intent negotiation systems have been proposed,
both generic [159] and platform-dependent [160], they are in
the early stages of development and require further research.
Investigating advanced MR systems in this area is crucial,
given their promising results in conflict resolution in other
domains [161]. For intent activation and assurance, the MR-
based methods in the performance management subsection
offer valuable insights. For instance, [116] demonstrated a
composite SLA prediction model using GNNs, enhancing
accuracy in predicting SLA violations. Additionally, [117]
developed an intent-based traffic control system for ITS using
DRL, orchestrating edge computing and content caching dy-
namically. However, these solutions face efficiency challenges
in large-scale networks, especially with the advent of 6G
networks supporting numerous applications with diverse QoS
requirements. Hence, there is a need for advanced neural
MR approaches in fully closed-loop IBNS scenarios, driven
by the demand of modern networks and their heterogeneous
applications.

C. Enhanced Performance Management with Distributed Rea-
soning

Distributed systems represent a paradigm shift in computer
network design and management, enabling unprecedented

scalability, fault tolerance, and efficiency through the power of
decentralization. The research community in this domain is ac-
tively exploring novel approaches to address the challenges of
distributed systems, collaborating on groundbreaking projects
that push the boundaries of network design and management.
In this realm of MR, some research works in the literature
have investigated distributed approaches. For instance, authors
of [162] focused on investigating the application of Distributed
Constraint Reasoning (DCR) techniques in modeling and solv-
ing the distributed load balancing problem in edge computing
scenarios. This work gives valuable insights into how DCR
algorithms can effectively address the challenges posed by the
growing number of IoT and mobile devices, ultimately enhanc-
ing the performance and efficiency of edge computing systems.
Moreover, in [163], researchers have devised a distributed
implementation of reasoning techniques to address the crucial
requirement of handling extensive qualitative spatial and tem-
poral datasets. Their approach demonstrates its effectiveness in
managing networks with millions of relations, particularly in
edge computing scenarios. Additionally, in the study presented
in [164], the authors have developed a distributed approach for
contextualized reasoning within multi-agent systems, tackling
the challenges posed by incomplete and uncertain knowledge.
Furthermore, In [165], the authors explored the integration
of edge computing and federated learning to address the
challenges posed by IoT-generated data at the network edge,
enabling localized data processing and decentralized MR.

However, distributed reasoning in the context of multi-edge
networks poses significant challenges in network management,
including seamless integration with existing frameworks like
FCAPS, handling the computational complexity of advanced
neural MR approaches, and ensuring data security and integrity
despite increased data exchange and cyber threats. To address
these issues, it is crucial to develop distributed reasoning
systems that utilize standard network protocols, employ dis-
tributed computing techniques to mitigate the complexity of
advanced MR approaches, and implement robust security
measures like encryption and blockchain [166]. By over-
coming these challenges, the potential benefits of distributed
reasoning can be harnessed to create resilient, efficient, and
secure network management solutions, transforming network
environments to meet the demands of the modern era.

D. Reasoning & Blockchain in Security Management
Trust is a pervasive concept in the expansive landscape

of communication and networking, encompassing diverse do-
mains such as AI, telecommunication, social network analysis,
and cybersecurity [167]. Trust manifests as an acceptance
level among network entities, a reliance on prior performance
evaluations, and quantifiable confidence in an entity’s ability
to fulfill responsibilities within the network environment. As
modern networks continue to evolve, ensuring trust becomes
paramount to enabling efficient and secure interactions among
diverse components. In this context, emerging technologies
that enable trust become important, and Blockchain stands
out as a particularly promising solution. Blockchain, char-
acterized as a distributed and immutable digital ledger, op-
erates transparently among interconnected peers. Comprising
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interconnected blocks, it records transactions and interactions
among participants within a decentralized network. Each block
contains transaction details and asset exchanges, while smart
contracts enable self-executing codes verifying predefined
conditions [168]. The potential of Blockchain extends to
addressing pivotal challenges in the integration of AI with 5G
networks. While AI, encompassing both ML and MR, can en-
hance network performance and security, its centralized nature
exposes collected data to security threats. Blockchain’s secure
and shared ledger offers a solution by storing networking-
generated data in real-time, ensuring anonymity through ho-
momorphic encryption, and enabling AI to perform learn-
ing algorithms for network optimization and error prediction
[169]. Moreover, the concept of decentralized AI, empowered
by Blockchain, can autonomously execute tasks like network
planning and optimization, enhancing network performance
and security without third-party intervention. The convergence
of Blockchain and AI, spanning ML and MR, is pivotal for
achieving a truly smart and optimized beyond 5G networks,
addressing both security and performance concerns [170].

In some recent studies, researchers combined MR with
Blockchain. For example, the authors of [166] introduced a
novel approach combining MR with blockchain-based trusted
storage to enhance security and traceability in MR processes.
The proposed architecture shows promise in protecting reason-
ing data and processes, and its extension to network manage-
ment could involve integrating the trusted reasoning module to
ensure secure and verifiable decision-making across distributed
network nodes. Moreover, researchers in [171] combined MR
through CBR with the security and transparency of Blockchain
technology. They employ CBR to store and retrieve solutions
from past cases, facilitating problem-solving. To ensure the
secure sharing of this knowledge among related companies,
the authors integrate Blockchain, which enables tamper-proof
and transparent data sharing, enhancing the reliability and
traceability of the reasoning process. Furthermore, researchers
in [172] also integrated Blockchain and CBR for remanufac-
turing process planning in the context of circular economy
development. By leveraging the Blockchain network to se-
curely record and share remanufacturing knowledge across
enterprises and employing CBR to retrieve optimal solutions
based on the analysis of similarity between past and new cases,
this hybrid method addresses the challenge of knowledge
sharing in remanufacturing enterprises. This could be adapted
for network management by using Blockchain for secure
storage and sharing of historical network performance data
and employing CBR to identify optimal solutions for network
configuration, troubleshooting, and resource allocation, ulti-
mately enhancing decision-making and efficiency in managing
modern networks. Nonetheless, there is a scarcity of research
exploring the fusion of MR and Blockchain technology. As
a result, there emerges a necessity to delve into fortifying
advanced MR and Blockchain methodologies within the realm
of network management frameworks [168].

E. Reasoning with LLMs
In recent advancements within NLP, LLMs like ChatGPT

have demonstrated significant progress [173, 174]. They excel

at a wide range of application domains, including text gen-
eration, sentiment analysis, machine translation, question an-
swering, chatbot development, and information retrieval [175].
Moreover, when LLMs reach a certain size, they demonstrate
emergent behaviors, including the capacity for “reasoning”
[176]. For instance, when these models are given Chain of
Thoughts (CoT), they can respond to questions by laying out
explicit reasoning steps [177]. This phenomenon has generated
significant enthusiasm within the research community, as the
capability to reason is a distinctive trait of human intelligence
often perceived as lacking in existing AI systems. In this
context, researchers in [30] introduced a captivating study that
presented a taxonomy of reasoning techniques in LLMs. They
categorized these techniques into three groups: Fully Super-
vised Fine-tuning, Prompting & In-Context Learning, and Hy-
brid Methods. Fully supervised fine-tuning in LLMs involves
refining the model’s performance by training it on specialized
datasets that contain explicit reasoning tasks, as demonstrated
[178]. However, one limitation is the necessity for datasets
containing explicit reasoning, which can be difficult and time-
consuming to produce. Prompting & In-Context Learning,
as exemplified by techniques like CoT prompting in [177],
holds the potential to employ “reasoning,” whether implicit or
explicit, to solve problems when given a question alongside
corresponding (input, output) instances. Nevertheless, these
models exhibit constraints in tackling tasks that require multi-
step reasoning, potentially due to inadequate exploration of
their comprehensive capabilities, as noted in [179]. Hybrid
approaches integrate both training and prompting strategies.
For example, in [180], Flan models were created by fine-tuning
PaLM [174] and T5 [181] using 1.8k fine-tuning tasks, which
encompassed CoT data. The study found that CoT data play
a crucial role in maintaining reasoning capabilities.

The research community can make use of LLMs in the
FCAPS framework to improve network management. For
instance, addressing network anomalies in mobile networks,
complicated by the vast number of network entities and poten-
tial issues, demands significant expertise and resources. LLMs
offer a solution, leveraging historical troubleshooting tickets
or log files to enhance the efficiency of cellular operators in
diagnosing and resolving anomalies [182]. However, telecom-
munication management often requires real-time data analysis
and decision-making, which current LLMs may not be able
to support. This delay in identifying and addressing network
issues can be costly. Therefore, enhancing LLMs with rapid
decision-making capabilities is crucial for their adoption in
telecommunication management. Additionally, implementing
LLMs requires significant computational resources. This can
be a barrier for small or resource-constrained organizations.
Therefore, frugal LLMs that require fewer resources must be
developed. Finally, integrating LLMs into existing telecommu-
nication management systems can be challenging. Compatibil-
ity issues and the need for extensive modifications to current
systems may arise. Therefore, enhancing telecommunication
domain architectures is imperative to address these challenges
[183]. Despite these challenges, LLMs present exciting possi-
bilities given their emergence in the AI landscape. They can
be combined with other MR approaches to improve logical
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problem-solving in the context of FCAPS [184].

VI. CONCLUSION

This paper has provided a comprehensive overview of
how Machine Reasoning approaches can be used for network
management within the Fault, Configuration, Accounting, Per-
formance, Security Management framework. We began by
providing an overview of the FCAPS levels. Next, we defined
MR concepts and provided a taxonomy of MR approaches. We
then presented various approaches that leverage MR across all
levels of the FCAPS framework. Finally, we outlined future
trends and open issues in MR for FCAPS-based network
management. This survey provides a concise understanding
of MR’s role in FCAPS network management and encourages
further exploration in this promising research area.
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