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Abstract: Measuring pH in oxidizing solutions is a crucial issue in areas such as aquaculture, water
treatment, industrial chemistry, and environmental analysis. For this purpose, a low-cost potentiomet-
ric flexible sensor using a polymer film as a pH-sensitive material has been developed in this study.
The sensor consists in a polyaniline film electrodeposited from a sulfuric acid solution on a gold
electrode previously deposited on a flexible polyimide substrate. The resulting polyaniline-based
pH sensors showed an interesting performance detection in aqueous solution, leading to sensitive
(73.4 mV per unit pH) and reproducible (standard deviation of 1.75) responses over the entire pH
range from 3 to 8. On the contrary, they were inoperative in the presence of oxidizing hypochlorite
ions. Thus, other polyaniline films were electrodeposited in the presence of cetyltrimethylammonium
bromide or Tritonx100 surfactant in an attempt to improve the sensing performance of the pH sensors
in oxidizing solutions. The pH sensors based on polyaniline and Tritonx100 surfactant were then
found to be sensitive (62.3 mV per unit pH) and reproducible (standard deviation of 1.52) in aqueous
solutions containing hypochlorite ions. All polyaniline films were also characterized by profilom-
etry and electronic microscopy to correlate the physicochemical features with the performance of
the sensors.

Keywords: flexible sensors; pH sensors; polyaniline; surfactants; electrochemistry

1. Introduction

The concept of pH was introduced by Sørensen in 1909. Sørensen defined pH as the
negative logarithm of the concentration of hydrogen ions in a solution while studying the
effect of hydrogen ion concentration on the enzyme activity of yeast [1]. Later, the definition
of pH was modified, since the concentration was replaced by the activity to consider the
interactions between ions within a solution, which makes the ions deviate from an ideal
behavior, as modeled by Debye and Hückel in 1923 [2]. The first pH glass membrane
electrode was developed by Haber and Klemensiewicz in 1909 [3] and incorporated into
the first pH-meter developed and commercialized by Beckham [4]. The invention of the pH
glass electrode revolutionized pH measurement, providing an accurate and reliable method
compared to traditional chemical indicators and pH measurement gradually became es-
sential to control and optimize reactions involved in biological processes, environmental
monitoring, and industrial processes. Indeed, pH regulation is essential for enzymatic
function and physiological balance [5,6], while pH monitoring makes it possible to con-
trol industrial processes to ensure the safety of products in the agri-food sector [7,8]. In
addition, pH measurement makes it possible to better manage agricultural soils [9,10], but
also to contribute to environmental monitoring through the assessment of water quality or
ecosystem health [11,12].

Despite its reliability, the pH glass electrode suffers from several disadvantages, such as
frequent calibrations, the fragility of the membrane glass that can degrade due to friction or
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in harsh environments such as reactors, and its inability to operate in complex or confined
environments, including biological systems. This is why alternative pH measurement
systems continue to be developed. Thus, optical pH sensors use pH-sensitive species,
usually a dye embedded in a polymer, that undergo reversible changes in their optical
properties (refraction index, polarization, UV/Vis absorbance, fluorescence emission, etc.)
in response to pH variations. When the sensor is exposed to a sample solution, the chemical
species reacts with the hydrogen ions present in the solution, resulting in a change in
the measurable optical properties that can be monitored using optical methods such as
absorbance or fluorescence spectroscopy. The optical pH sensors generally provide rapid
response times, are efficient over a wide range of pH values, are non-invasive, and require
a low maintenance, but they are frequently expensive, have a limited accuracy especially
when measuring in turbid or colored solutions, and their measurements can be disturbed by
ionic strength interferences [13–15]. ISFET (Ion-Sensitive Field Effect Transistor) are another
type of sensors that can be used for pH monitoring. Unlike traditional glass electrodes,
ISFET sensors use a solid-state sensitive element, usually a metal oxide such as silicon
dioxide, tantalum oxide, or titanium oxide. Indeed, such metal-oxide-based solid-state
pH sensors rely on the adsorption of hydrogen ions onto the surface of the oxide layer,
causing changes in the electrical properties of the sensitive material [16–18]. ISFET pH
sensors offer significant benefits, including miniaturization, robustness, fast response times,
reduce the acidic or alkaline errors in extreme pH, and can be stored dry. Nevertheless,
they are expensive, do not offer the same accuracy than glass pH electrodes, have a drifting
problem, are highly temperature dependent, and should not be used in solutions containing
chlorine or other chemicals that damage the ISFET transistor. Other solid-state pH sensors
use conductive polymers as a sensitive layer that may undergo reversible protonation and
deprotonation reactions in response to changes in hydrogen ion activity in the solution.
These reactions result in a variation of the potential measured by the sensor, which generally
allows an accurate measurement of the pH. Thus, electrodeposited conductive polymers can
be considered good candidates as a sensitive layer of pH sensors, as they are strongly bound
to the surface of the sensors during the electropolymerization and due to the presence
of amino groups, for example in polyaniline [19,20] and polydopamine [21], or carboxyl
groups, for example in poly(11-N-pyrrolylundecanoic) acid [22], leading to protonation and
deprotonation reactions. These sensors have several advantages, including fast response
times, low detection limits, and resistance to fouling. However, they frequently suffer
from the influence of certain interferents in specific media which may persist and require
optimization [23–25].

Flexible sensors are becoming more and more important today due to their light-
ness, conformability, wearability, customizability, and versatility. In particular, flexible
sensors can be integrated into clothing, accessories, and even directly onto the human
body, allowing continuous monitoring of vital signs, movements, and environmental
factors that pave the way for applications in the areas of sports performance monitor-
ing [26,27], health [27–29], and personal safety through the identification of hazards in the
environment [30,31]. In addition, conductive polymers and flexible sensors are inherently
compatible, since both have mechanical flexibility, allowing them to bend, stretch, and
deform along with the flexible substrate or structure of the sensor [32–34]. Also, conduc-
tive polymers, such as polyaniline, are lightweight, resistant, and can be deposited on
flexible substrates either by chemical oxidation if the flexible substrate is insulating or by
electrochemistry if the substrate is conductive [35,36].

Considering on the one hand the advantages of using polyaniline as a sensitive layer
of pH sensors and on the other hand the interest in using flexible electrodes for applications
in healthcare, sports, and safety, we therefore developed polyaniline-based flexible sensors
in this work. The flexible electrodes were fabricated using a photolithographic process
followed by a chemical etching which constitute an innovative alternative to standard
screen-printed or sputtered electrodes. The process resulted in the obtention of flexible
polyimide copper-based electrodes coated with a film of gold on which a polyaniline film
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was electrochemically deposited. Then, the PANI-modified electrodes were successfully
tested as pH sensors from pH 3 to 8 by using the open circuit potential technique (OCP). The
potentiometric response to pH changes of PANI-modified electrodes were also tested in the
presence of hypochlorite ions, a species that constitutes a major interferent in pH measure-
ments in various fields, including aquaculture, water treatment, industrial chemistry, and
environmental analysis. Since the response of polyaniline films electrosynthesized from
sulfuric acid solutions was disturbed by the presence of hypochlorite ions, other polyaniline
films were electrosynthesized in the presence of a surfactant, which allowed to strongly
reduce the impact of the interferent on the potentiometric response of the pH sensors.

2. Materials and Methods
2.1. Materials and Reagents

Aniline monomer (>99.5%), Cetyltrimethylammonium bromide (>99%, CTAB), and
Tritonx100 (>99.5%) were purchased from Acros Organics (Geel, Belgium). Sulfuric acid
(98%) was purchased from ITW Reagents (Darmstadt, Germany) and Sodium hypochlorite
was purchased from Sigma Aldrich (Saint-Quentin-Fallavier, France). Potassium phosphate
monobasic (99%), potassium phosphate dibasic (99%), sodium carbonate decahydrate
(>99.9%), hydrochloric acid (37%), and sodium hydroxide (0.1 M) were purchased from
Thermo Fisher Scientific (Illkirch-Graffenstaden, France). Phosphate buffer solution (PBS)
was homemade (PBS; 0.2 M KH2PO4 and 0.2 M K2HPO4, pH 6.0). The water used in all
the experiments was deionized by a Synergy® water purification system (Milli-Q water of
18.2 MΩ cm resistivity, Merck, Darmstadt, Germany).

2.2. Flexible Chips

The flexible chips were fabricated by Linxens® (Mantes la Jolie, France). These chips
are based on a process enabling the large-scale manufacturing of customer-specific flexible
printed circuit boards, which has proven to be an excellent and cost-effective alternative
to standard screen printed or sputtered electrodes. Linxens electrodes are composed of
polyimide 50 µm and a sheet of copper of 15–18 µm glued onto the substrate (Figure 1a) and
patterned to the desired design using a photolithographic process followed by a chemical
etching (Figure 1b). The resulting conductive traces can then be used as a seed layer on
top of which a 4-µm-thick layer of nickel is electroplated (Figure 1c). Then, a functional
gold layer (200 nm) is applied selectively to ensure the right coverage of the under layers
on the sensing area (Figure 1d), while a thinner layer is deposited on the non-functional
areas leading to a cost optimized design. The resulting electrodes (Figure 1e,f) can then
be used as (bio)sensors for the detection of various analytes while their low cost makes it
possible to consider a single use of these sensors.
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2.3. Electrochemical Polymerization

The electrodes were degreased by immersion for 20 s in a basic solution of sodium
carbonate decahydrate concentrated at 0.5 M and heated to 50 ◦C, rinsed in water, immersed
for 20 s in an acidic solution of sulfuric acid concentrated at 0.5 M, heated to 40 ◦C, and
rinsed in water.

After that, the electrochemical polymerization of aniline (0.1 M) was carried out in an
aqueous solution of sulfuric acid (1 M), sometimes with the addition of a surfactant (CTAB
or Tritonx100) concentrated at 0.01 M. The electrochemical cell consists of a two-electrode
setup with a platinum-plated titanium grid (16 × 4 × 0.1 cm) as the counter-electrode and
a 20-chip board as the working electrode. The current was applied using either a dual
power supply (ALR 3003 from ELC, Annecy, France) or a data acquisition and multimeter
unit (DAQ6510 from Keithley, Les Ulis, France). After electrodeposition, the polyaniline
films were deprotonated by immersion in a phosphate buffer solution (PBS 0.2 M, pH 6) to
enhance their response to pH changes during detection tests.

2.4. Analytical Techniques

Mechanical Profilometry. The thickness of the gold electrodes and polyaniline-modified
gold electrodes was measured by mechanical profilometry using a Bruker’s Dektak® (Karl-
sruhe, Germany) stylus profiler with the Vision 64 software. Each thickness was measured
on a scan length of 1000 µm at a scan speed of 25 µm·s−1 (stylus radius: 2 µm, stylus force:
3 mg).

Scanning Electron Microscopy (SEM). The surface morphology of gold electrodes and
polyaniline-modified gold electrodes was obtained, without prior metallization, using a
high-resolution scanning electron microscope Quanta 450 W from FEI with an electron
beam energy of 5 keV and a working distance of 10 mm.

Potential Measurements. A portable Sensit Smart potentiostat, from PalmSens®

(Houten, The Netherlands), was connected to a computer via a USB bus and controlled
by the PSTrace software (https://www.palmsens.com/software/ps-trace/). The Linxens
electrodes were connected to the potentiostat using PalmSens connectors with banana
receptacles. Potentiometric measurements were made in pH solutions ranging from pH 3
to pH 8 using a Linxens working electrode and an Ag/AgCl reference electrode with 3 M
KCl as reference electrolyte. For each pH value, the potential was recorded versus time
for one minute at room temperature (22 ± 1 ◦C). The pH of the solution was adjusted by
addition of HCl (0.1 M) or NaOH (0.1 M).

3. Results and Discussion
3.1. Preparation and Characterization of the Polyaniline Films Electrodeposited on the Gold
Electrodes of the Chips

After degreasing in a basic bath and then in an acid bath, a board containing 20 chips
was immersed in an electrolyte composed of sulfuric acid (1 M) and aniline (0.1 M). A
potential of +1 V was then applied to the electrolyte for 60 s leading to the deposition
of a thin pale green polyaniline film. The entire board was then thoroughly rinsed with
water. After that, a potential of +1.3 V was applied to the electrolyte for 60 s leading to
the electrodeposition of a thicker film of dark green polyaniline denoted PANI/H2SO4
(Figure 1g,h). The board was rinsed again thoroughly with water. Then, the chips were
immersed in a PBS solution (pH 6.0) for 90 min. Similarly, polyaniline films were electrode-
posited on the electrodes from solutions composed of aniline, H2SO4, and a surfactant, but
they were electrodeposited by applying a potential of +1.3 V to the electrolyte for 120 s.
The surfactant used was either CTAB, an anionic surfactant likely to act as a counter-anion
doping polymer film, or Tritonx100, a neutral surfactant that improved monomer solubil-
ity. The resulting polymer films are denoted PANI/H2SO4 + CTAB and PANI/H2SO4 +
Tritonx100. In addition, a previous study showed that the presence of surfactants in the
electrolyte does not prevent the electropolymerization of aniline in sulfuric acid solutions,

https://www.palmsens.com/software/ps-trace/
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but that it can modify the physicochemical properties of the film (conductivity, morphology,
and thickness), which could modulate the detection properties of polyaniline films [37].

Considering that the substrate is flexible, cross-section images of the PANI/H2SO4
sensors have been taken using SEM microscopy (Figure 2). The metallic stack formed by
successive layers of Cu, Ni, and Au is clearly visible as well as the polyimide substrate. The
thickness of the metallic stack can be estimated to approximately 20 µm from the image.
The top and edges of this stack are coated by the polyaniline film, whose structure will be
described below.
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Figure 2. SEM cross-section image of a PANI/H2SO4 sensor.

The electrodes modified by polyaniline films were characterized in terms of thickness
and morphology, as well as the uncoated gold electrodes. Thus, the thickness of 50 different
gold electrodes was measured by mechanical profilometry. The obtained profiles showed a
clear step between the substrate and the gold electrode (Figure 3a). The calculated average
thickness, which is the sum of the thicknesses of the copper, nickel, and gold layers com-
posing the electrode, was 20.52 µm (Table 1). The profiles obtained for the PANI/H2SO4
electrodes also showed a clear step (Figure 3b) and the average thickness of the whole
system (gold electrode + PANI electrodeposited in H2SO4) calculated from 36 measure-
ments was 21.12 µm, which corresponds to a polymer film of 0.60 µm. In the presence of
surfactant and under the same operating conditions, the average thickness of polyaniline
films was higher with an average value of 1.59 µm and 1.57 µm for the PANI/H2SO4
+ CTAB and PANI/H2SO4 + Tritonx100 films, respectively. It is also noticeable that the
standard deviation was the lowest for the PANI/H2SO4 films (Sd = 0.512) and the highest
for the PANI/H2SO4 +CTAB films (Sd = 1.324).
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Table 1. Thickness of the naked electrodes and of the different PANI-modified electrodes.

Samples Average Thickness Value 1 Standard Deviation

Naked electrodes 20.52 µm 0.477
PANI/H2SO4 21.12 µm 0.512

PANI/H2SO4 + CTAB 22.11 µm 1.324
PANI/H2SO4 + Tritonx100 22.09 µm 0.965

1 Average value obtained from the measurements on 40 different sensors.

The topography of the different samples was then studied by SEM microscopy
(Figure 4). The structure of the bare gold electrodes was fibrillary, compact, and dense
enough to cover the entire surface of the electrodes (Figure 4a). The structure of
PANI/H2SO4 films was also fibrillary and showed a high porosity, which is consistent with
the structure generally observed for this polymer (Figure 4b). The structure of PANI/H2SO4
+ CTAB films also exhibited a porosity, but lower, and was characterized by its great ho-
mogeneity (Figure 4c), whereas PANI/H2SO4 + Tritonx100 films showed a more inhomo-
geneous structure with some areas containing small nodules and other areas containing
clusters of higher size, possibly because of the larger size of this surfactant (Figure 4d).
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3.2. Analytical Performance of the Potentiometric pH Sensors
3.2.1. Potentiometric Responses to pH Changes of Polyaniline-Based Sensors in
Aqueous Solutions

For each sensor and for each pH value between 3 and 8, the evolution of the OCP as
a function of time was measured for 60 s. Figure 5a gives the example of the OCP versus
time curve for the PANI/H2SO4 sensor at pH 3. This curve shows that a duration of 60 s is
sufficient to reach the equilibrium value of the OCP and that the measurements of the eight
sensors are very similar, so the measurements are reproducible.
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The responses to pH variations of eight PANI/H2SO4 sensors, deduced from the OCP
versus time curves, are given in Figure 6a as well as the eight corresponding fitting lines.
The fitting lines give access to the sensitivity of each sensor since the sensitivity of a pH
sensor is defined as the slope of its calibrated line. Thus, it can be deduced from these OCP
measurements that the sensitivity of the PANI-H2SO4 sensors varies from –70.5 mV per pH
unit for the least sensitive sensor to –76.1 mV per pH unit for the most sensitive. The results
also give an average sensitivity of –73.4 mV per pH unit with a standard deviation of 1.75
(Table 2). Therefore, these sensors can be considered very sensitive since their response
is super-Nernstian (>59 mV per pH unit), and very reproducible since a low standard
deviation is obtained. In addition, the sensing performance of the PANI-H2SO4 sensor
appears excellent compared to the latest and most sensitive polyaniline sensors (Table 3).
The addition of surfactant does not improve the potentiometric response of the sensors,
since the average sensitivity obtained is 41.3 and 55.2 mV per pH unit for PANI films
containing CTAB and Tritonx100, respectively (Figure 6b,c). Similarly, the reproducibility of
the sensors is less good in the presence of surfactant since the standard deviation is 3.82 and
7.96 for PANI films containing CTAB and Tritonx100, respectively (Table 2). Figure 6d is
obtained by averaging the potential measured by the eight electrodes for each pH and each
sensor. The comparison of calibration curves shows unambiguously that PANI/H2SO4
sensors are the most sensitive to pH changes in the pH range from 3 to 8. The assumptions
that may explain the highest sensitivity of PANI/H2SO4 sensors are: (i) a larger contact
area of the film with hydrogen ions due to greater porosity of PANI/H2SO4 compared to
the other films as can be deduced from the SEM images (Figure 4) and (ii) a number of
amino sites allowing the detection of hydrogen ions lower in polyaniline films containing
surfactants due to the place taken by surfactants in the film. The reversibility of the sensors
was also evidenced through potential measurements and a difference of 15 mV or less has
been measured according to the direction of measurement for the PANI/H2SO4 film, as
well as the low drift of the measured potentials, since a low decrease of 14 mV was obtained
after 8000 s for the PANI/H2SO4 film at pH 6.

Table 2. Equations of the calibrated curves of the pH sensors.

Samples Without Hypochlorite With Hypochlorite

PANI/H2SO4
OCP = 599.7–73.4 pH

Sd = 1.75
OCP = 416.7–16.1 pH

Sd = 12.93

PANI/H2SO4 + CTAB OCP = 350.4–41.3 pH
Sd = 3.82

OCP = 588.9–66.3 pH
Sd = 4.10

PANI/H2SO4 + Tritonx100 OCP = 437.0–55.2 pH
Sd = 7.96

OCP = 519.8–62.3 pH
Sd = 1.52
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Figure 6. Potentiometric responses to pH changes of eight electrodes modified by PANI/H2SO4 (a),
PANI/H2SO4 + CTAB (b), and PANI/H2SO4 + Tritonx1000 (c), as well as the average potentiometric
responses to pH changes of the same electrodes (d).

Table 3. Comparison with other recent polyaniline-based pH sensors.

Sensing Material Sensitivity
mV/pH Unit

pH Range Reference

PANI 62.3 2–8 [38]
PANI nanofibers 62.4 3–10 [35]

PANI + dodecyl benzene sulfonic acid 58.6 5.5–8.5 [36]
PANI + carbon 53.0 4–10 [39]

PANI + carbon nanofiber membrane 76.2 6.3–8.3 [40]
PANI nanopillars 60.3 2–12 [41]
PANI + HCl ink 69.1 4–10 [42]

PANI + phytic acid 69.3 4–9 [43]
PANI + MoS2 70.4 4–8 [44]
PANI + TiO2 66.1 2–12 [45]

PANI/H2SO4 + CTAB 41.3 3–8 This work
PANI/H2SO4 + Tritonx100 55.2 3–8 This work

PANI/H2SO4 73.4 3–8 This work

3.2.2. Potentiometric Responses to pH Changes of Polyaniline-Based Sensors in
Oxidizing Solutions

Potentiometric responses to pH changes of sensors modified by the same polyaniline
films as previously were then measured in the presence of hypochlorite. The presence of
hypochlorite in the solution increases the Oxidation-Reduction Potential (ORP), which
indicates the ability of the solution to be more oxidizing, meaning it has a greater tendency
to accept electrons and undergo reduction reactions. Thus, in the pH range used for pH
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tests, ORP ranged from 350 to 400 mV in the absence of hypochlorite ions in the solution,
while it varied from 750 to 1100 mV in the presence of hypochlorite ions. Hypochlorite ions
can interfere with the measurement of pH in aqueous solutions, since they can react with
water to form hypochlorous acid and hydroxide ions (1). So, the presence of hypochlorite
ions induces an increase of the concentration of hydroxide ions in the solution, which in turn
affects the measured pH, leading to a pH value different from that which would be expected
solely based on the concentration of the original acid or base present in the solution.

ClO− + H2O ⇌ HOCl + OH− (1)

Moreover, the presence of hypochlorite ions can cause an oxidation of the polyaniline
electrodeposited on the sensors, and therefore, affect the potential measurements as a
function of the pH.

The consequences of the addition of hypochlorite ions in the analyte solution is the
increase of the time required to reach the equilibrium value of the potential as can be seen
on the curves giving the evolution of the OCP versus the time for eight PANI/H2SO4 +
Tritonx100 sensors (Figure 5b) as well as a decrease of the reversibility of the pH sensors.

Figure 7a,b also indicate clearly that the potentiometric responses to pH changes of
the eight PANI/H2SO4 sensors is strongly affected by the presence of hypochlorite ions in
the solutions. It can even be considered that these films no longer play their role of sensors
because of the interference generated by hypochlorite ions via the phenomena previously
described. PANI/H2SO4 + CTAB sensors are also affected by the presence of hypochlorite
ions but in a much less marked way (Figure 7c,d). Their sensitivity to pH changes is high
but the response is not linear over the entire pH range and reproducibility is not completely
satisfactory as evidenced by the high standard deviation (Sd = 4.10, Table 2). On the contrary,
the PANI/H2SO4 + Tritonx100 sensors maintain a sensor behavior even in the presence
of hypochlorite. Their response remains perfectly linear (Figure 7e,f), their sensitivity is
high (62.3 mV per pH unit), and the reproducibility of the response is very satisfactory
(Sd = 1.52). Thus, while the PANI/H2SO4 sensors were the most efficient in aqueous
solution, it appears that the PANI/H2SO4 + Tritonx100 sensors are by far the most efficient
in oxidizing solution. A possible explanation for the deterioration of the response of some
sensors could be the corrosion of polyaniline films in an oxidizing medium. Since the films
of PANI/H2SO4 + CTAB and even more the films of PANI/H2SO4 are more porous than
the PANI/H2SO4 + Tritonx100 films (Figure 4), it may be assumed that the hypochlorite
ions could penetrate the pores of the films of PANI/H2SO4 + CTAB and PANI/H2SO4
and causes corrosion of Cu/Ni/Au stacks or PANI films. However, the photographs of
PANI/H2SO4 and PANI/H2SO4 + CTAB sensors that were carried out at the end of a series
of tests in solutions containing hypochlorite ions did not reveal any marked deterioration,
only small traces of corrosion, especially on the edges of the electrodes (Figure 8a,b). It
is also possible that hypochlorite ions penetrate the pores of the films of PANI/H2SO4,
leading to a decrease of the specific surface area capable of detecting hydrogen ions. On
the contrary, the addition of a surfactant reduces the penetration of hypochlorite ions,
since the structure of the PANI/H2SO4 + CTAB film is less porous than the one of the
PANI/H2SO4 film, while the structure of the PANI/H2SO4 + Tritonx100 film is not porous
at all and prevents the penetration of hypochlorite ions into the pores and allows the
obtention of the best pH sensing properties. However, if pH sensors based on PANI/H2SO4
+ Tritonx100 are sensitive and reproducible in the presence of hypochlorite ions, exposure
to such an oxidizing medium reduces their reactivity, resulting in lower stability over time
and difficulty to maintaining their response at the same level of sensitivity after multiple
uses. Therefore, it is better to consider using them as single-use pH sensors, which is made
possible by the fact that we use an inexpensive manufacturing process.
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4. Conclusions

In this work, flexible polyaniline-based sensors were prepared for potentiometric pH
measurements in aqueous and oxidizing solutions. Flexible polyimide-copper-nickel-gold
electrodes were manufactured and employed as substrates for the electrodeposition of
polyaniline. The resulting sensors were tested as pH sensors by measuring the OCP value
over a wide range of pH going from 3 to 8. The PANI/H2SO4 sensors showed good
reproducibility (Sd = 1.75) and high super-Nernstian sensitivity (73.4 mV per unit pH) in
aqueous solutions, but they exhibited poorly reproducible and nonlinear potentiometric
responses to pH changes in aqueous solutions containing hypochlorite ions, maybe because
of the insertion of the hypochlorite anions into the numerous pores of the polyaniline film.
To solve this problem, other electrolyte compositions, including CTAB or Tritonx100, have
been used to electrodeposit polyaniline films with less porous morphologies, and thus,
they are potentially less susceptible to trapping hypochlorite ions that may disturb pH
detection by acting as interferents of hydrogen ions or as oxidizing agent of polyaniline
films. This strategy has been successful, since the potentiometric responses of PANI/H2SO4
+ Tritonx100 sensors were highly sensitive (62.3 mV per unit pH) and reproducible (standard
deviation of 1.52) over the pH range going from pH 3 to 8. This study, therefore, shows
that it is possible to manufacture sensitive flexible pH sensors using conductive polymers
as active layers. However, it is sometimes necessary to optimize the composition of the
electrolyte according to the medium, oxidizing or not, in which the measurements are made
in order to electrodeposit a polymer film with optimal detection properties.
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