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Abstract

While confidence intervals for finite quantities are well-established, constructing confidence
bands for objects of infinite dimension, such as functions, poses challenges. In this paper, we
explore the concept of parametric confidence bands for functional data with an orthonormal
basis. Specifically, we revisit the method proposed by Sun and Loader, which yields confidence
bands for the projection of the regression function in a fixed-dimensional space. This approach
can introduce bias in the confidence bands when the dimension of the basis is misspecified.
Leveraging this insight, we introduce a corrected, unbiased confidence band. Surprisingly, our
corrected band tends to be wider than what a naive approach would suggest. To address this, we
propose a model selection criterion that allows for data-driven estimation of the basis dimension,
balancing the trade-off between bias and variance. The bias is then automatically corrected after
dimension selection. Throughout the paper, we illustrate these strategies using an extensive
simulation study. We conclude with an application to real data.

Keywords: functional data, repeated data, confidence band, Kac-Rice formulae, bias, dimension
selection
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1 Introduction25

Functional data analysis is widely used for handling complex data with smooth shapes, finding26

applications in diverse fields such as neuroscience (e.g., EEG data, Zhang (2020)), psychology (e.g.,27

mouse-tracking data, Quinton et al. (2017)), and sensor data from daily-life activities (Jacques and28

Samardžić (2022)).29

We consider multiple independent observations of the same function, yielding noisy functional data.30

To analyze such data, a common approach, typically in the parametric setting, involves projecting the31

data onto a functional space defined by a family of functions (Li, Qiu, and Xu (2022), Kokoszka and32

Reimherr (2017)). When the family serves as an orthonormal basis, e.g., Legendre (with the standard33

scalar product) or Fourier (with another scalar product), the projection is clearly understood, but34

widely used families such as splines are not orthonormal for the standard scalar product. Leveraging35

an approximate functional space offers a key advantage: it simplifies the inference problem to36

estimating coefficients, for example through methods like least squares or maximum likelihood37

estimation. Subsequently, the function is estimated as the mean of the functional data following38

projection onto the functional basis.39

Measuring the uncertainty of an estimator is usually done using confidence intervals. In this paper,40

our focus lies specifically on providing a simultaneous confidence band for the function means, rather41

than point-wise confidence intervals. This task presents several challenges: the confidence band42

must effectively control the simultaneous functional type-I error rate, as opposed to point-wise rates;43

it must strike a balance between being sufficiently conservative to maintain a confidence level while44

not being overly so as to render it meaningless; and the method used to construct this confidence45

band should be computationally feasible for practical application.46

Several developments have already been proposed to answer these questions. First, consider the47

case with only one individual (no repetition) but with many time points. Some methods study48

the asymptotic distribution of the infinity norm between the true function and its estimator. The49

asymptotic in the number of time points is studied in Hall (1991), Claeskens and Van Keilegom (2003).50

This approach works only for large datasets in time and is likely to be too conservative otherwise. For51

small samples, bootstrap methods have been developed to compute the confidence band (Neumann52

and Polzehl (1998), Claeskens and Van Keilegom (2003)), but with a high computational cost. Another53

approach is to construct confidence bands based on the volume of the tube formula. Sun and Loader54

(1994) studied the tail probabilities of suprema of Gaussian random processes. This approach is55

based on an unbiased linear estimator of the regression function. Zhou, Shen, and Wolfe (1998)56

used the volume-of-tube formula for estimation by regression splines. Krivobokova, Kneib, and57

Claeskens (2010) used this method for the construction of confidence bands by penalized spline58

estimators. They proposed to mix Bayesian and frequentist approaches, to get the good properties59
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from the Bayesian world but reducing the variability to be less conservative using the frequentist60

approach. The bias is considered through spline modeling, assuming sufficient knots are considered.61

Wang (2022) proposed Kolmogorov-Smirnov simultaneous confidence band by modeling the error62

distribution, avoiding the estimation of the covariance structure of the underlying stochastic process.63

They rely on B-splines for the estimation of the mean curve. Liebl and Reimherr (2019) have proposed64

a method based on random field theory and the volume-of-tube formula. They provide a band with65

locally varying widths using an unbiased estimator. Their method does not require the estimation of66

the full covariance function of the estimator, but only its diagonal. This reduces the computational67

time. From a practical viewpoint, Sachs, Brand, and Gabriel (2022) introduce a package to popularize68

simultaneous confidence bands, in the context of survival analysis.69

Some papers, like ours, rely on several observations of the same function. Bunea, Ivanescu, and70

Wegkamp (2011) propose a threshold-type estimator and derive error bounds and simultaneous71

confidence bands, having an unbiased estimator. Telschow and Schwartzman (2022) propose a72

simultaneous confidence band based on the Gaussian kinematic formula. Again, it assumes access to73

an unbiased estimator of the function of interest. Note that recent extensions have been proposed, to74

nonstationary random field in Telschow et al. (2023), based on conformal prediction in Diquigiovanni,75

Fontana, and Vantini (2022), or having a prediction goal in mind in Hernández, Cugliari, and Jacques76

(2023) by considering functional time series data set. These extensions are out of the scope of this77

paper, focusing on the simple functional case.78

One limitation of all those approaches is that they do not generally take into account the bias of79

the functional estimator. Sun and Loader (1994) proposed a bias correction for a particular class of80

functions but left the smoothing parameter choice open, leading to an unusable estimator. In the81

nonparametric framework, the bias is approximated using the estimator of the second derivative of82

the underlying mean function (Xia (1998)). But in general, there is a lack of discussion on how to83

handle the bias of the functional estimator, even in the simple case of a functional space of finite84

dimension.85

The objective of this paper is to address the bias problem in confidence band construction for a86

general function, utilizing a finite functional orthonormal family. Our contributions are as follows:87

• we disentangle the bias issue by explicitly defining the parameter of interest within the approach88

of Sun and Loader (1994);89

• we propose a bias correction method in a new confidence band for the function of interest;90

• we illustrate this confidence band, concluding on the conservatism of the procedure;91

• finally, we propose a method for selecting the dimension of the approximation space, treating92

it as a model selection problem, with a trade-off between conservatism and confidence level93

assurance.94

Note that while the model selection paradigm has been extensively studied in the literature, in95

multivariate statistics or functional data analysis (e.g., Goepp, Bouaziz, and Nuel (Submitted), Aneiros,96

Novo, and Vieu (2022), Basna, Nassar, and Podgórski (2022)), it has not been explored in the context97

of confidence band construction.98

The paper is organized as follows: Section 2 introduces the functional regressionmodel, the considered99

functional family and the corresponding approximate regression models, as well as an estimator100

defined in the finite space, along with descriptions of the error terms. In Section 3, we propose a101

confidence band for the approximate regression function in the space of finite dimension, where the102

dimension is fixed. Section 4 proposes a strategy to construct a confidence band for the true function.103

This last confidence band being too conservative, Section 5 introduces a model selection criterion104

to select the best confidence band, doing a trade-off between conservatism and confidence level105

assurance. Section 7 ends the paper by a conclusion and discussion of perspectives. The different106
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estimation procedures are illustrated throughout the sections.107

2 Statistical Model108

In this paper, we consider time series as discrete measurements of functional curves. We first present109

the general functional regression model (Section 2.1) where the regression function belongs to a110

finite functional family of dimension 𝐿∗. In practice, this dimension 𝐿∗ is unknown and we will111

work on functional space of dimension 𝐿. The regression model on the finite family of functions is112

presented in Section 2.2, and an estimator is proposed in Section 2.3, with a description of the error113

terms.114

2.1 Functional regression model115

Let 𝑦𝑖𝑗 be the measure at fixed time 𝑡𝑗 ∈ [𝑎, 𝑏] for individual 𝑖 = 1, … , 𝑁, with 𝑗 = 1, … , 𝑛. We restrict116

ourselves to [𝑎, 𝑏] = [0, 1], without loss of generality. We assume these observations are discrete-time117

measurements of individual curves, which are independent and noisy realisations of a common118

function 𝑓 that belongs to a functional space. Thus for each individual 𝑖, we consider the following119

functional regression model120

𝑦𝑖𝑗 = 𝑓 (𝑡𝑗) + 𝜀𝑖𝑗,

where 𝜀𝑖. = (𝜀𝑖1, … , 𝜀𝑖𝑛) is the noise representing the individual functional variation around 𝑓. We121

assume that the 𝜀𝑖 are independent. Their distribution is detailed below.122

For each individual 𝑖 = 1, … , 𝑁, we denote 𝑦𝑖. = (𝑦𝑖1, … , 𝑦𝑖𝑛) the 𝑛 × 1 vector of observations, 𝑡. =123

(𝑡1, … , 𝑡𝑛) the 𝑛 × 1 vector of observation times and 𝑓 (𝑡.) = (𝑓 (𝑡1), … , 𝑓 (𝑡𝑛)) the 𝑛 × 1 vector of the124

function 𝑓 evaluated in 𝑡.. We also denote y = (𝑦1., … , 𝑦𝑁 .) the whole matrix of observations.125

Let us introduce the functional space 𝒮 𝐿∗ = 𝑉 𝑒𝑐𝑡((𝑡 ↦ 𝐵𝐿
∗

ℓ (𝑡))1≤ℓ≤𝐿∗) with 𝐿∗ functions (𝐵𝐿
∗

ℓ )1≤ℓ≤𝐿∗126

assumed to be linearly independent. Then, for any 𝑓 ∈ 𝒮 𝐿∗ , there exists a unique vector of coefficients127

(𝜇𝐿
∗

ℓ )1≤ℓ≤𝐿∗ such that, for all 𝑡, 𝑓 (𝑡) = ∑𝐿∗
ℓ=1 𝜇

𝐿∗
ℓ 𝐵𝐿

∗
ℓ (𝑡). The regression function 𝑓 verifies the following128

assumption:129

Definition 2.1. The function 𝑓 belongs to the space 𝒮 𝐿∗ of dimension 𝐿∗. It is denoted 𝑓 𝐿
∗
and130

defined as:131

𝑓 (𝑡) = 𝑓 𝐿
∗
(𝑡) =

𝐿∗

∑
ℓ=1

𝜇𝐿
∗

ℓ 𝐵𝐿
∗

ℓ (𝑡).

Many functional spaces are available in the literature, as Splines, Fourier or Legendre families. Let132

us consider the space 𝐿2([0, 1]) with its standard scalar product < 𝑓1, 𝑓2 >= ∫10 |𝑓1(𝑡)𝑓2(𝑡)|𝑑𝑡, for133

𝑓1, 𝑓2 ∈ 𝐿2([0, 1]). We introduce the following assumption:134

Definition 2.2. The functional family (𝑡 ↦ 𝐵𝐿
∗

ℓ (𝑡))1≤ℓ≤𝐿∗ is orthonormal with respect to the standard135

scalar product < ., . >.136

Note that if Definition 2.2 holds, one get 𝜇𝐿
∗

ℓ =< 𝑓 𝐿
∗
, 𝐵𝐿

∗
ℓ > for ℓ = 1, … , 𝐿∗. The Legendre family is137

orthonormal, the Fourier family is orthogonal for the standard scalar product (but not orthonormal),138

and the B-splines family is not orthogonal.139

We also consider a functional noise through the following assumption.140

4



Definition 2.3. The sequence 𝜀𝑖 is functional and belongs to the functional space 𝒮 𝐿𝜀 of dimension141

𝐿𝜀. Then, there exists a sequence of coefficients (𝑐𝑖ℓ)1≤ℓ≤𝐿𝜀 such that142

𝜀𝑖𝑗 =
𝐿𝜀

∑
ℓ=1

𝑐𝑖ℓ𝐵𝐿
𝜀

ℓ (𝑡𝑗).

We also assume that the coefficients are Gaussian: for all 𝑖 = 1, … , 𝑁 and ℓ = 1, … , 𝐿𝜀,143

𝑐𝑖ℓ ∼𝑖𝑖𝑑 𝒩 (0, 𝜎2).

Definition 2.1 and Definition 2.3 imply that each curve 𝑦𝑖 belongs to a finite family: for 𝑗 = 1, … , 𝑛,144

𝑦𝑖𝑗 =
𝐿∗

∑
ℓ=1

𝜇𝐿
∗

ℓ 𝐵𝐿
∗

ℓ (𝑡𝑗) +
𝐿𝜀

∑
ℓ=1

𝑐𝑖ℓ𝐵𝐿
𝜀

ℓ (𝑡𝑗).

As the observations are recorded at discrete time points (𝑡𝑗)1≤𝑗≤𝑛, we introduce the family of functions145

evaluated at the discrete times of observations. For 𝐿 ∈ ℕ, let us denote B𝐿 the matrix of 𝑛 × 𝐿 with146

coefficient in row 𝑗 and column ℓ equal to 𝐵𝐿ℓ (𝑡𝑗).147

Let us introduce 𝑐𝑖. = (𝑐𝑖1, … , 𝑐𝑖𝐿𝜀) the 𝐿𝜀 × 1 vector. Then 𝜀𝑖. = B𝐿𝜀𝑐𝑖.. The vectors 𝑦𝑖. ∈ ℝ𝑛 are thus148

independent and 𝑦𝑖 ∼ 𝒩𝑛(𝑓 (𝑡.), 𝜎2Σ𝐿
𝜀
) with Σ𝐿

𝜀
= B𝐿𝜀(B𝐿𝜀)𝑇.149

To illustrate the model, we simulate a regression functional model with 𝑛 = 50 points per individual150

and 𝑁 = 40 individuals. In Figure 1, the function 𝑓 (red curve) belongs to the Fourier (resp. Legendre151

and Spline) family with 𝐿∗ = 10 and the noisy observations 𝑦𝑖𝑗 (black curves) have a functional noise152

in dimension 𝐿𝜀 = 20, also in the Fourier (resp. Legendre and Spline) family on the left plot (resp.153

middle and right).154

Fourier Legendre Splines

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

−20

−10

0

10

20

Time

f

type

obs

True

Figure 1: Illustrative example. We generate a regression functional model in the Fourier (left),
Legendre (middle) and Splines (right) families. The red curve corresponds to the true function, and
the gray curves correspond to noisy observations.

The objective of this paper is to construct a tight confidence bound for 𝑓 𝐿
∗
using data (𝑦𝑖𝑗)𝑖𝑗. The155

main challenge is that the true dimension 𝐿∗ is unknown. In the rest of the paper, we will work with156

a collection of models defined on a finite family of dimension 𝐿 with 𝐿 ∈ {𝐿min, … , 𝐿max}, 𝐿max being157

chosen to be sufficiently large by the user, expecting that 𝐿∗ ≤ 𝐿max. Then we will propose different158

strategies to choose the best bandwidths among the different collections.159

First, in Section 2.2 and Section 2.3, we define for a fixed 𝐿 the corresponding regression model and160

its estimator. Then Section 3, Section 4 and Section 5 will introduce the different bandwidths.161
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2.2 Approximation of the model on a finite family162

Let 𝑓 𝐿
∗
∈ 𝒮 𝐿∗ with 𝐿∗ unknown, and consider the space 𝒮 𝐿 for 𝐿 ∈ {𝐿min, … , 𝐿max} fixed. As 𝒮 𝐿 is a163

family of linearly independent functions, there always exists a unique vector 𝜇𝐿,𝐿
∗
of coefficients164

defining 𝑓 𝐿,𝐿
∗
(𝑡) = ∑𝐿

ℓ=1 𝜇
𝐿,𝐿∗
ℓ 𝐵𝐿ℓ (𝑡) = 𝐵𝐿(𝑡)𝜇𝐿,𝐿

∗
such that165

𝑓 𝐿,𝐿
∗
= arg min

𝑓 ∈𝒮 𝐿
{‖𝑓 𝐿

∗
− 𝑓 ‖22},

and if the family is orthonormal (Definition 2.2), it corresponds to the projected coefficients 𝜇𝐿,𝐿
∗

ℓ :166

𝜇𝐿,𝐿
∗

ℓ ∶=< 𝑓 𝐿
∗
, 𝐵𝐿ℓ > .

We can prove the following property:167

Proposition 2.1. Under Definition 2.1,168

𝑓 𝐿
∗,𝐿∗ = 𝑓 𝐿

∗
.

Moreover, if Definition 2.2 also holds, the projection coefficients verify169

𝜇𝐿,𝐿
∗

ℓ = 𝜇𝐿
∗

ℓ 𝑓 𝑜𝑟 ℓ = 1, … ,min(𝐿, 𝐿∗).

In practice, data are observed at discrete time, we consider the operator P𝐿 defined as the matrix170

P𝐿 = ((B𝐿)𝑇B𝐿)−1(B𝐿)𝑇 of size 𝐿 × 𝑛 (this operator is a bit more complex when the functional family171

is not orthonormal wrt the standard scalar product). Then we define the coefficients 𝜇𝐿,𝐿
∗
which are172

the coefficients of 𝜇𝐿,𝐿
∗
approximated on the vector space, denoted S𝐿, defined by the matrix B𝐿.173

𝜇𝐿,𝐿
∗
∶= P𝐿B𝐿∗𝜇𝐿

∗
.

The corresponding finite approximated regression function is denoted 𝑓𝐿,𝐿
∗
and is defined, for all174

𝑡 ∈ [0, 1], as175

𝑓𝐿,𝐿
∗
(𝑡) = 𝐵𝐿(𝑡)𝜇𝐿,𝐿

∗
.

We can prove the following properties linking 𝐿, 𝐿∗ and the number of timepoints 𝑛:176

Proposition 2.2. Under Definition 2.1 and Definition 2.2,177

• When 𝐿 ≥ 𝐿∗, P𝐿B𝐿∗ has 𝐿∗ diagonal elements equal to 1 and other non-diagonal elements close178

to 0. The first 𝐿∗ elements of 𝜇𝐿,𝐿
∗
are equal to 𝜇𝐿

∗
when 𝑛 > 𝐿.179

• When 𝐿 < 𝐿∗, P𝐿B𝐿∗ has 𝐿 diagonal elements equal to 1. The first 𝐿 elements of 𝜇𝐿,𝐿
∗
are different180

to 𝜇𝐿
∗

ℓ . When 𝑛 → ∞, 𝜇𝐿,𝐿
∗

ℓ → 𝜇𝐿
∗

ℓ for ℓ = 1, … ,min(𝐿, 𝐿∗).181

• If 𝑛 > 𝐿∗, then 𝑓 𝐿
∗
= 𝑓 𝐿

∗,𝐿∗ = 𝑓𝐿
∗,𝐿∗ .182

These properties are illustrated in Figure 2. The true dimension is 𝐿∗ = 11. Three families are183

considered, Fourier, Legendre and Splines. The plots display the absolute difference between the184

coefficients 𝜇𝐿
∗

ℓ and the projected coefficients 𝜇𝐿,𝐿
∗
, for different ℓ in x-axis and for different values185

of 𝐿 and 𝑛 in the y-axis, namely a case with 𝐿 < 𝐿∗ and two values of 𝑛: 𝐿 = 7, 𝑛 = 20 and186

𝐿 = 7, 𝑛 = 100; and a case with 𝐿 > 𝐿∗ and two values of 𝑛: 𝐿 = 15, 𝑛 = 20 and 𝐿 = 15, 𝑛 = 100.187

The absolute difference is represented as a gradient of color, this gradient being adapted to each188

functional family. We can see that as Legendre (resp. Fourier) are orthonormal (resp. orthogonal)189

families, the differences are close to 0 when 𝐿 = 15, whatever the values of 𝑛. When 𝐿 < 𝐿∗, the190

difference is close to 0 when 𝑛 is large. This property does not hold for the spline family, which is191

not orthogonal.192
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Fourier's basis

index of the basis
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Legendre's basis
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Splines's basis
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Figure 2: Illustrative example. The true dimension is 11, we generate the coefficients with three
families, Fourier (which is orthogonal), Legendre (which is orthonormal) and the splines (which are
not orthogonal wrt the standard scalar product). In the y-axis, two dimensions of the family (7 or 15)
and two numbers of timepoints (20 or 100) are compared. We plot in x-axis the value of the absolute
difference between the true coefficients and their approximations for the first 7 coefficients of the
basis. The color scale is adapted to each functional basis.
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2.3 Estimator193

Let 𝐿 ∈ {𝐿min, … , 𝐿max}. This section presents the least square estimator of the regression function194

on the space of dimension 𝐿 defined by the family B𝐿 and discusses its error.195

2.3.1 Estimation of the regression function196

When considering the estimation of the regression function 𝑓 𝐿
∗
on the space of dimension 𝐿 defined197

by the family B𝐿, we do not directly estimate 𝑓 𝐿
∗
but its projection on this finite space, which198

corresponds to the projected function 𝑓𝐿,𝐿
∗
(𝑡) and its associated coefficients (𝜇𝐿,𝐿

∗

ℓ )1≤ℓ≤𝐿.199

Definition 2.4. The vector of coefficients (𝜇𝐿,𝐿
∗

ℓ )1≤ℓ≤𝐿 is estimated by the least square estimator200

�̂�𝐿,𝐿
∗
defined as:201

�̂�𝐿,𝐿
∗
∶= 1

𝑁

𝑁
∑
𝑖=1

P𝐿𝑦𝑖..

For a fixed 𝑡 ∈ [0, 1], the estimator of the function 𝑓𝐿,𝐿
∗
(𝑡) is defined by:202

̂𝑓
𝐿,𝐿∗

(𝑡) =
𝐿
∑
ℓ=1

�̂�𝐿,𝐿
∗

ℓ 𝐵𝐿ℓ (𝑡) = 𝐵𝐿(𝑡)�̂�𝐿,𝐿
∗
. (1)

Equation 1 directly implies that the estimator is thus the empirical mean of the functional approxi-203

mation of each individual vector of observations. Because we work with least squares estimators, we204

can easily study the error of estimation of �̂�𝐿,𝐿
∗
and ̂𝑓

𝐿,𝐿∗
.205

Proposition 2.3. Under Definition 2.1 and Definition 2.3, we have206

�̂�𝐿,𝐿
∗
∼ 𝒩𝐿 (𝜇𝐿,𝐿

∗
, 𝜎

2

𝑁
Σ𝐿,𝐿

𝜀

𝐵 ) ,

where the 𝐿 × 𝐿 covariance matrix Σ𝐿,𝐿
𝜀

𝐵 is defined as Σ𝐿,𝐿
𝜀

𝐵 ∶= P𝐿Σ𝐿
𝜀
(P𝐿)𝑇 with Σ𝐿

𝜀
= B𝐿𝜀(B𝐿𝜀)𝑇.207

Moreover, 𝐵𝐿()P𝐿𝑦𝑖 is a Gaussian process with mean 𝑓𝐿,𝐿
∗
() and covariance function (𝑠, 𝑡) ↦208

𝜎2𝐵𝐿(𝑠)Σ𝐿,𝐿
𝜀

𝐵 (𝐵𝐿(𝑡))𝑇, and ( ̂𝑓
𝐿,𝐿∗

− 𝑓𝐿,𝐿
∗
)() is a centered Gaussian process with covariance function209

𝐶𝐿,𝐿
∗
∶ (𝑠, 𝑡) ↦ 𝜎2

𝑁 𝐵𝐿(𝑠)Σ𝐿,𝐿
𝜀

𝐵 𝐵𝐿(𝑡)𝑇.210

The proof is given in Appendix.211

Figure 3 displays estimators calculated with different dimensions 𝐿. Data are generated with 𝐿∗ = 11,212

𝐿𝜀 = 20, 𝑛 = 50 and 𝑁 = 40. The true function and its projection 𝑓𝐿,𝐿
∗
are in cyan, and the estimator213

̂𝑓
𝐿,𝐿∗

is in red. We compute it for the three families, Legendre, Fourier and splines. In all cases, the214

estimators are very precise when considering the relevant dimension, but estimating a function of215

dimension 𝐿∗ with a function of dimension 𝐿 < 𝐿∗ is not consistent. Note that the performance of216

the estimator for the spline family is also good, even if the family is not orthonormal, because we217

work here at the level of the function (and not at the level of the coefficients).218

Even if the estimator ̂𝑓
𝐿,𝐿∗

is defined on the functional space associated to S𝐿, it can also be seen as an219

estimator of the function 𝑓 𝐿
∗
which lies in the space 𝒮 𝐿∗ . In that case, the error includes a functional220

approximation term due to the approximation of 𝑓 𝐿
∗
on the space 𝒮 𝐿, which will be nonzero if221
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Fourier Legendre Splines

L =
 11

L =
 5
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f
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Estimated
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Figure 3: Illustrative example. For each family (Fourier which is orthogonal, Legendre which is
orthonormal and the splines which are not orthogonal wrt the standard scalar product), we consider
a function with true dimension 11 (top), and its projection on the space of dimension 5 (bottom),
displayed in cyan. The estimators in dimensions 11 and 5 are displayed in red.

𝐿 ≠ 𝐿∗. It corresponds to the bias of the estimator ̂𝑓
𝐿,𝐿∗

, i.e. the difference between its expectation222

and the true 𝑓 𝐿
∗
. Indeed, recalling that 𝑓 𝐿

∗
= 𝑓𝐿

∗,𝐿∗ , the error of estimation can be decomposed into223

̂𝑓
𝐿,𝐿∗

(𝑡) − 𝑓 𝐿
∗
(𝑡) = ̂𝑓

𝐿,𝐿∗
(𝑡) − 𝑓𝐿,𝐿

∗
(𝑡) + 𝑓𝐿,𝐿

∗
(𝑡) − 𝑓𝐿

∗,𝐿∗(𝑡) =∶ 𝑆𝑡𝑎𝑡𝐿,𝐿∗(𝑡) + 𝐵𝑖𝑎𝑠𝐿,𝐿∗(𝑡), (2)

The first term 𝑆𝑡𝑎𝑡𝐿,𝐿∗(𝑡) = ̂𝑓
𝐿,𝐿∗

(𝑡) − 𝑓𝐿,𝐿
∗
(𝑡) is the (unrescaled) statistics of the model. The second224

term 𝐵𝑖𝑎𝑠𝐿,𝐿∗(𝑡) = 𝔼( ̂𝑓
𝐿,𝐿∗

(𝑡)) − 𝑓𝐿
∗,𝐿∗(𝑡) is the bias of the estimator ̂𝑓

𝐿,𝐿∗
(𝑡) when estimating the true225

function 𝑓𝐿
∗,𝐿∗(𝑡).226

Let us remark that this bias is different than the bias of the estimator ̂𝑓
𝐿,𝐿∗

(𝑡) when estimating the227

projected function 𝑓𝐿,𝐿
∗
= 𝑓 𝐿

∗
, which is 0.228

The two terms defined in Equation 2 are more detailed in the two next subsections.229

2.3.2 Statistics230

The statistics of the model, 𝑡 ↦ 𝑆𝑡𝑎𝑡𝐿,𝐿∗(𝑡) = ̂𝑓
𝐿,𝐿∗

(𝑡) − 𝑓𝐿,𝐿
∗
(𝑡), is a random functional quantity which231

depends on the estimator ̂𝑓
𝐿,𝐿∗

. From Proposition 2.3, for any 𝑡 ∈ [0, 1], we define the centered and232

rescale statistics 𝑍𝐿(𝑡) such that:233

𝑍𝐿(𝑡) ∶=
𝑆𝑡𝑎𝑡𝐿,𝐿∗(𝑡)

√Var(𝑆𝑡𝑎𝑡𝐿,𝐿∗(𝑡))
=

̂𝑓
𝐿,𝐿∗

(𝑡) − 𝑓𝐿,𝐿
∗
(𝑡)

√𝐶𝐿,𝐿
∗(𝑡, 𝑡)

∼ 𝒩 (0, 1).

The covariance function can be estimated using the observations 𝑦𝑖. as234

�̂�𝐿,𝐿
∗
(𝑠, 𝑡) = 1

𝑁 − 1

𝑁
∑
𝑖=1

(𝐵𝐿(𝑠)P𝐿𝑦𝑖. − ̂𝑓
𝐿,𝐿∗

(𝑠))(𝐵𝐿(𝑡)P𝐿𝑦𝑖. − ̂𝑓
𝐿,𝐿∗

(𝑡)).

9



2.3.3 Bias235

The bias is due to the fact that the estimation is potentially performed in a different (finite) space236

than the space where the true function 𝑓𝐿
∗,𝐿∗ lives. This is a functional bias, which is not random. It237

corresponds to the approximation (orthogonal projection if Definition 2.2 holds) of 𝑓 𝐿
∗
from 𝒮 𝐿∗ to238

the space 𝒮 𝐿. It can be written as follows:239

𝐵𝑖𝑎𝑠𝐿,𝐿∗(𝑡) = 𝐵𝐿(𝑡)𝜇𝐿,𝐿
∗
− 𝐵𝐿

∗
(𝑡)𝜇𝐿

∗
.

Thus, we can deduce that when 𝐿 < 𝐿∗ and if the family is orthonormal (Definition 2.2 holds),240

𝐵𝑖𝑎𝑠𝐿,𝐿∗(𝑡) =
𝐿
∑
ℓ=1

𝐵𝐿ℓ (𝑡)𝜇𝐿,𝐿
∗

ℓ −
𝐿∗

∑
ℓ=1

𝐵𝐿
∗

ℓ (𝑡)𝜇𝐿
∗

ℓ =
𝐿∗

∑
ℓ=𝐿+1

𝐵𝐿
∗

ℓ (𝑡)𝜇𝐿
∗

ℓ .

From Proposition 2.3, we can directly deduce the following proposition:241

Proposition 2.4. Under Definition 2.1 and Definition 2.3, the mean is, for all 𝑡 ∈ [0, 1],242

• for 𝐿 < 𝐿∗, 𝐵𝑖𝑎𝑠𝐿,𝐿∗(𝑡) ≠ 0,243

• for 𝐿 ≥ 𝐿∗, 𝐵𝑖𝑎𝑠𝐿,𝐿∗(𝑡) = 0.244

In the next section, we explain how to use this property to derive confidence bands of 𝑓𝐿,𝐿
∗
and 𝑓 𝐿,𝐿

∗
.245

3 Confidence Bands of 𝑓𝐿,𝐿
∗
and 𝑓 𝐿,𝐿∗ for a fixed 𝐿246

The objective is to construct a confidence band for the two functions 𝑓𝐿,𝐿
∗
and 𝑓 𝐿,𝐿

∗
, based on the247

observations y, for a given value 𝐿 ∈ {𝐿min, … , 𝐿max}. The band for 𝑓𝐿,𝐿
∗
enters the framework248

proposed by Sun and Loader (1994) which relies on an unbiased and linear estimator of the function.249

This is the case for the estimator ̂𝑓
𝐿,𝐿∗

which is an unbiased estimator of 𝑓𝐿,𝐿
∗
. We recall in Section 3.1250

the construction of this confidence band which attains a given confidence level in a non-asymptotic251

setting, that is for a finite number of observations 𝑛 for each individual. Then in Section 3.2, we prove252

that the confidence band proposed by Sun and Loader (1994) can be viewed as a confidence band for253

𝑓 𝐿,𝐿
∗
with an asymptotic confidence level, the asymptotic framework being considered when 𝑛 → ∞.254

3.1 Confidence band for 𝑓𝐿,𝐿
∗

255

Let 𝐿 ∈ {𝐿min, … , 𝐿max}. Consider 1 − 𝛼 as a fixed confidence level. Our aim is to find a function 𝑑𝐿()256

such that257

ℙ (∀𝑡 ∈ [0, 1], ̂𝑓
𝐿,𝐿∗

(𝑡) − 𝑑𝐿(𝑡) ≤ 𝑓𝐿,𝐿
∗
(𝑡) ≤ ̂𝑓

𝐿,𝐿∗
(𝑡) + 𝑑𝐿(𝑡)) = 1 − 𝛼.

Consider the normalized statistics 𝑍𝐿(𝑡) which is a centered and reduced Gaussian process. We want258

to find the quantile 𝑞𝐿 satisfying259

𝑞𝐿 = argmin
𝑞

{ℙ (max
𝑡∈[0,1]

|𝑍𝐿(𝑡)| ≤ 𝑞) = 1 − 𝛼} . (3)

Then we can take 𝑑𝐿(𝑡) = 𝑞𝐿√𝐶𝐿,𝐿
∗(𝑡, 𝑡). The covariance function 𝐶𝐿,𝐿

∗
(𝑡, 𝑡) can be replaced by its260

estimator �̂�𝐿,𝐿
∗
(𝑡, 𝑡), making the distribution a Student’s distribution with 𝑁 − 1 degrees of freedom.261

Thus, it only requires to be able to compute the critical value 𝑞𝐿.262
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This can be done following Sun and Loader (1994) who propose a confidence band for a centered263

Gaussian process. Their procedure is based on an unbiased linear estimator of the function of interest,264

which is the case for ̂𝑓
𝐿,𝐿∗

when we consider a band for 𝑓𝐿,𝐿
∗
. We recall their result in the following265

proposition, the computation of the value 𝑞𝐿 is detailed thereafter.266

Theorem 3.1 (Sun and Loader (1994)). Set Definition 2.1 and Definition 2.3 and a probability 𝛼 ∈ [0, 1].267

Then, we have268

ℙ (∀𝑡 ∈ [0, 1], | ̂𝑓
𝐿,𝐿∗

(𝑡) − 𝑓𝐿,𝐿
∗
(𝑡)| ≤ �̂�𝐿(𝑡)) = 1 − 𝛼

with269

�̂�𝐿(𝑡) = �̂�𝐿√�̂�
𝐿,𝐿∗(𝑡, 𝑡)/𝑁;

and �̂�𝐿 defined as the solution of the following equation, seen as a function of 𝑞𝐿:270

𝛼 = ℙ(|𝑡𝑁−1| > 𝑞𝐿) +
‖𝜏𝐿‖1
𝜋

(1 +
(𝑞𝐿)2

𝑁 − 1
)
−(𝑁−1)/2

, (4)

with (𝜏𝐿)2(𝑡) = 𝜕12𝑐(𝑡 , 𝑡) = 𝑉 𝑎𝑟(𝑍𝐿(𝑡))′ where we denote 𝜕12𝑐(𝑡 , 𝑡) the partial derivatives of a function271

𝑐(𝑡 , 𝑠) in the first and second coordinates and then evaluated at 𝑡 = 𝑠.272

We can thus deduce a confidence band of level 1 − 𝛼 for 𝑓𝐿,𝐿
∗
:273

𝐶𝐵1(𝑓
𝐿,𝐿∗) = {∀𝑡 ∈ [0, 1], [ ̂𝑓

𝐿,𝐿∗
(𝑡) − �̂�𝐿(𝑡); ̂𝑓

𝐿,𝐿∗
(𝑡) + �̂�𝐿(𝑡)]}.

The value �̂�𝐿 is defined implicitly in Equation 4 which involves the quantity 𝑡 ↦ 𝜏𝐿(𝑡). Liebl and274

Reimherr (2019) propose to estimate 𝜏𝐿(𝑡), for all 𝑡, by275

̂𝜏𝐿(𝑡) = (𝑉 𝑎𝑟((𝑈 𝐿)′1(𝑡), … , (𝑈 𝐿)′𝑁(𝑡))
1/2

= ( 1
𝑁 − 1

𝑁
∑
𝑖=1

((𝑈 𝐿)′𝑖 (𝑡) −
1
𝑁

𝑁
∑
𝑗=1

(𝑈 𝐿)′𝑗 (𝑡))
2

)

1/2

,

where 𝑈 𝐿
𝑖 (𝑡) = (𝑃𝐿𝑦𝑖(𝑡) − ̂𝑓

𝐿,𝐿∗
(𝑡))/(�̂�𝐿,𝐿

∗
(𝑡))1/2 and (𝑈 𝐿)′𝑖 is a smooth version of the differentiated276

function 𝑈 𝐿
𝑖 . Then we take the 𝐿1-norm of ̂𝜏𝐿.277

Let us describe the behavior of �̂�𝐿:278

• ‖�̂�𝐿‖∞ increases with 𝐿279

• When the functions (𝐵𝐿ℓ )1≤ℓ≤𝐿 consists in an orthonormal family, ‖�̂�𝐿‖∞ increases with 𝐿 until280

𝐿 = 𝐿∗ and then ‖�̂�𝐿‖∞ is constant with 𝐿.281

This band is illustrated on Figure 4. It displays on the top row several functional data generated282

under either the Fourier family (left), Legendre (middle) or Spline (right), on the middle row the283

confidence bands of 𝑓𝐿,𝐿
∗
for different values of 𝐿 = 3, 5 and 11, and on the bottom row the bound �̂�𝐿.284

The true functions 𝑓𝐿,𝐿
∗
are displayed in cyan and the confidence bands in purple. The bands are285

very precise for each 𝐿. The behavior of �̂�𝐿 increases with 𝐿. As 𝑑𝐿 can be seen as a variance, �̂�𝐿(𝑡) is286

larger on the boundary of the time domain, as there are less observations near 0 and 1.287

We also evaluate numerically the levels of the obtained confidence bands. For this, 1000 datasets are288

simulated, the confidence band is estimated for each of them. The empirical confidence level is then289
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evaluated as the proportion of confidence bands that contain the true function. Table 1 presents the290

empirical confidence levels for different values of 𝐿 and two sample sizes 𝑛 = 50 and 𝑛 = 150, with291

𝑁 = 40. The level is the expected one whatever the value of 𝐿, especially when 𝐿 < 𝐿∗ and 𝐿 > 𝐿∗292

but also when 𝐿 > 𝐿𝜀. We will see in the next sections that this will not be the case for the debiased293

confidence band.294
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Figure 4: Illustrative example. For the three families, resp. Fourier, Legendre and the splines, we
display on the top row the observed functional data, on the middle row the confidence bands for
different values of L (3, 5 and 11), and on the bottom row the bound dL.

3.2 Asymptotic confidence band for 𝑓 𝐿,𝐿∗
295

Note that if one works in the asymptotic framework 𝑛 → ∞, the previous definition of �̂�𝐿 induces a296

natural asymptotic confidence band for the function 𝑓 𝐿,𝐿
∗
. Indeed, we can prove that297

Theorem 3.2. Set Definition 2.1 and Definition 2.3 and a probability 𝛼 ∈ [0, 1]. Then, we have,298

lim
𝑛→+∞

ℙ (∀𝑡 ∈ [0, 1], | ̂𝑓
𝐿,𝐿∗

(𝑡) − 𝑓 𝐿,𝐿
∗
(𝑡)| ≤ �̂�𝐿(𝑡)) = 1 − 𝛼,
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Table 1: Illustrative example. The confidence level of the confidence band is evaluated from 1000
repetitions. Confidence bands are calculated with the Legendre family, for several L in rows and
several n in columns.

L n

50 150

3 0.945 0.949
5 0.950 0.949
11 0.871 0.944
15 0.904 0.953
21 0.914 0.946

25 0.914 0.946

with �̂�𝐿(𝑡) = �̂�𝐿√�̂�
𝐿,𝐿∗(𝑡, 𝑡)/𝑁 and �̂�𝐿 defined as the solution of Equation 4.299

The proof is given in Appendix.300

Then a confidence band for 𝑓 𝐿,𝐿
∗
at the asymptotic confidence level 1 − 𝛼 for a large number of301

observations 𝑛 is given by302

𝐶𝐵(𝑓 𝐿,𝐿
∗
) = {∀𝑡 ∈ [0, 1], [ ̂𝑓

𝐿,𝐿∗
(𝑡) − �̂�𝐿(𝑡); ̂𝑓

𝐿,𝐿∗
(𝑡) + �̂�𝐿(𝑡)]}.

We do not provide any illustration of this property, as it would be similar than the previous ones.303

Indeed, we notice that the asymptotic is achieved even when 𝑛 is small on our examples.304

4 Confidence Band of 𝑓 𝐿∗ by correcting the bias305

The function of interest is 𝑓 𝐿
∗
= 𝑓𝐿

∗,𝐿∗ , rather than 𝑓𝐿,𝐿
∗
. Therefore, our aim is to construct a306

confidence bound for 𝑓 𝐿
∗
. However, an unbiased estimator of 𝑓 𝐿

∗
is unavailable by definition, since307

the true dimension 𝐿∗ is unknown. Instead, we propose to work with the estimator ̂𝑓
𝐿,𝐿∗

and to308

debias the corresponding confidence band.309

To achieve this, we use the decomposition outlined in Equation 2 between the bias term and the310

statistical term. The idea is to bound the infinity norm of these two terms. A first strategy consists311

in bounding each term separately and then summing the two bounds to construct the confidence312

band. However, this approach tends to produce a band that is too large and conservative. The reason313

is that applying the infinite norms on each term before bounding them does not take into account314

the functional nature of the two terms.315

A second strategy consists in keeping the functional aspect by bounding the infinity norm of the316

sum of the functional two terms. This approach is detailed in this section.317

In Section 4.1, we first rewrite the band as a band around 𝑓𝐿,𝐿
∗
(𝑡). We then use a first subsample318

y1 to estimate the bound as defined in Section 3. A second subsample y2 is used to estimate the319

bias term (without the infinite norm). This yields a pointwise correction of the bias, and the final320

confidence band is centered around ̂𝑓
𝐿max,𝐿∗ . This procedure provides a collection of confidence bands,321

for 𝐿 ∈ {𝐿min, … , 𝐿max} with varying width. Then, in Section 4.2, we propose a criterion to select the322

“best” band by minimizing its width.323

13



4.1 Construction of the band of 𝑓 𝐿∗ for a given 𝐿324

We introduce two independent sub-samples y1 and y2 of y of length 𝑁1 and 𝑁2 such that 𝑁1+𝑁2 = 𝑁.325

We use the first sub-sample y1 to calculate ̂𝑓1
𝐿,𝐿∗

(𝑡), an estimator of 𝑓𝐿,𝐿
∗
(𝑡) and a functional bound326

denoted �̂�𝐿1 that controls the bias term 𝑓𝐿,𝐿
∗
(𝑡) − ̂𝑓1

𝐿,𝐿∗
(𝑡). This bound is defined in Section 3 applied327

on y1, for a given level 𝛼, such that:328

ℙ (∀𝑡 ∈ [0, 1], −�̂�𝐿1 (𝑡) ≤ 𝑓𝐿,𝐿
∗
(𝑡) − ̂𝑓

𝐿,𝐿∗

1 (𝑡) ≤ �̂�𝐿1 (𝑡)) = 1 − 𝛼. (5)

Then, we need to control the bias 𝐵𝑖𝑎𝑠𝐿,𝐿∗(𝑡) = 𝑓𝐿,𝐿
∗
(𝑡)−𝑓 𝐿

∗
(𝑡). Recall than when 𝐿max is large enough329

and 𝑛 > 𝐿max, 𝑓 𝐿
∗
= 𝑓𝐿max,𝐿∗ . Therefore, we want to control the 𝐵𝑖𝑎𝑠𝐿,𝐿∗(𝑡) = 𝑓𝐿,𝐿

∗
(𝑡) − 𝑓𝐿max,𝐿∗(𝑡).330

It would be tempting to replace 𝐵𝑖𝑎𝑠𝐿,𝐿∗(𝑡) by its estimation based on the second sample y2. But331

this would introduce an estimation error that we also need to control, in the same spirit than332

what is done in Lacour, Massart, and Rivoirard (2017). We can use again Section 3 to compute the333

function �̂�𝐿,𝐿max
2 (𝑡) on the sample y2, and the functional estimators ̂𝑓

𝐿,𝐿∗

2 (𝑡) and ̂𝑓
𝐿max,𝐿∗

2 (𝑡) of 𝑓𝐿,𝐿
∗
(𝑡)334

and 𝑓𝐿max,𝐿∗(𝑡), respectively. This allows to construct the following band for 𝑓𝐿,𝐿
∗
(𝑡) − 𝑓𝐿max,𝐿∗ for a335

confidence level 1 − 𝛽,336

ℙ (∀𝑡 ∈ [0, 1], −�̂�𝐿,𝐿max
2 (𝑡) ≤ 𝑓𝐿max,𝐿∗(𝑡) − 𝑓𝐿,𝐿

∗
(𝑡) − ( ̂𝑓

𝐿max,𝐿∗

2 (𝑡) − ̂𝑓
𝐿,𝐿∗

2 (𝑡)) ≤ �̂�𝐿,𝐿max
2 (𝑡)) = 1 − 𝛽. (6)

Combining Equation 5 and Equation 6, we can provide a debiased confidence band of 𝑓 𝐿
∗
(𝑡).337

Proposition 4.1. Let us define338

̂𝜃𝐿1 (𝑡) ∶= −�̂�𝐿1 (𝑡) − �̂�𝐿,𝐿max
2 (𝑡) + ̂𝑓

𝐿max,𝐿∗

2 (𝑡) − ̂𝑓
𝐿,𝐿∗

2 (𝑡)

̂𝜃𝐿2 (𝑡) ∶= �̂�𝐿1 (𝑡) + �̂�𝐿,𝐿max
2 (𝑡) + ̂𝑓

𝐿max,𝐿∗

2 (𝑡) − ̂𝑓
𝐿,𝐿∗

2 (𝑡),

where �̂�𝐿1 (𝑡) is defined on sample y1 by Equation 5 for a level 𝛼 and �̂�𝐿,𝐿max
2 (𝑡) is defined on sample y2 by339

Equation 6 for a level 𝛽. Then we have340

ℙ (∀𝑡 ∈ [0, 1], ̂𝜃𝐿1 (𝑡) ≤ 𝑓 𝐿
∗
(𝑡) − ̂𝑓

𝐿,𝐿∗

1 (𝑡) ≤ ̂𝜃𝐿2 (𝑡)) ≥ 1 − 𝛼𝛽.

The proof is given in Appendix.341

This defines a confidence band which can be defined either around ̂𝑓1
𝐿,𝐿∗

:342

𝐶𝐵2(𝑓
𝐿∗) = {∀𝑡 ∈ [0, 1], [ ̂𝑓1

𝐿,𝐿∗
(𝑡) + ̂𝜃𝐿1 (𝑡) ; ̂𝑓1

𝐿,𝐿∗
(𝑡) + ̂𝜃𝐿2 (𝑡)]}

or around ̂𝑓
𝐿max,𝐿∗

2 :343

𝐶𝐵2(𝑓
𝐿∗) = {∀𝑡 ∈ [0, 1], [ ̂𝑓

𝐿max,𝐿∗

2 (𝑡) + ̂𝑓1
𝐿,𝐿∗

(𝑡) − ̂𝑓
𝐿,𝐿∗

2 (𝑡) − �̂�𝐿1 (𝑡) − �̂�𝐿,𝐿max
2 (𝑡) ; ̂𝑓

𝐿max,𝐿∗

2 (𝑡) + ̂𝑓1
𝐿,𝐿∗

(𝑡) − ̂𝑓
𝐿,𝐿∗

2 (𝑡) + �̂�𝐿1 (𝑡) + �̂�𝐿,𝐿max
2 (𝑡)]}.
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The two functions �̂�𝐿1 (𝑡) and �̂�
𝐿,𝐿max
2 (𝑡) are of the same order as they are built with the same approach.344

They depend on the length of the samples. To obtain the thinnest band, the best strategy is to split345

the sample in two sub-samples of equal length 𝑛1 = 𝑛2 = 𝑛/2.346

The behavior of �̂�𝐿1 has been described in Section 3. Let us describe the behavior of �̂�𝐿,𝐿max
2 :347

• ‖�̂�𝐿,𝐿max
2 ‖∞ decreases with 𝐿.348

• When 𝐿 > 𝐿𝜀, ‖�̂�𝐿,𝐿max
2 ‖∞ is constant with 𝐿 and the probability in Equation 6 is equal to 1.349

• When 𝐿∗ < 𝐿 < 𝐿𝜀, ‖�̂�𝐿,𝐿max
2 ‖∞ is constant with 𝐿 when the functions 𝐵𝐿ℓ consists in an350

orthonormal family. Otherwise, the behavior is erratic.351

It means that when the band defined in Proposition 4.1 is calculated for 𝐿 > 𝐿𝜀, the confidence level352

is 1 − 𝛼 instead of 1 − 𝛼𝛽.353

The advantages of this approach is that the bias of the band is corrected and the level for the true354

function 𝑓 𝐿
∗
is guaranteed when 𝐿𝜀 is large. This was the main objective of the paper.355

We illustrate numerically those advantages. In Figure 5, top row, we plot the confidence bands356

obtained for different dimensions 𝐿 ∈ {3, 5, 11, 15, 21} with Fourier, Legendre and Splines families357

and 𝛼 = 𝛽 = √0.05 ≈ 0.22. We can see that all the confidence bands are alike. Especially, they358

are unbiased, even for 𝐿 = 3. A larger dimension 𝐿 provides a smoother band. On the middle and359

bottom rows of Figure 5, we illustrate the two terms that enter the confidence band, 𝑡 ↦ �̂�𝐿1 (𝑡) and360

𝑡 ↦ �̂�𝐿,𝐿max
2 (𝑡). Their behavior is the same along time. The function �̂�𝐿1 (𝑡) can be seen as a variance,361

this is why it is larger near 0 and 1 where there are less observations. The function �̂�𝐿,𝐿max
2 (𝑡) is362

smaller than �̂�𝐿1 (𝑡) because it controls the remaining rest after the projection. Note that as expected363

when 𝐿 > 𝐿𝜀, �̂�𝐿,𝐿max
2 (𝑡) is close to 0. As explained before, the influence of 𝐿 is not the same for the364

two functions. When 𝐿 increases, �̂�𝐿1 (𝑡) increases while �̂�𝐿,𝐿max
2 (𝑡) decreases.365

In Table 2, we simulate 1000 repeated datasets with two sample sizes 𝑛 = 50 and 𝑛 = 150. For each366

dataset, we compute the confidence band defined in Proposition 4.1 with a theoretical confidence367

level of 1 − 𝛼𝛽 = 0.95 and for different values of 𝐿. Then the confidence level is approximated as the368

proportion of confidence bands containing the true function 𝑓. Remark that when 𝐿 < 𝐿𝜀, the level369

is the expected one, that is 0.95. When 𝐿 > 𝐿𝜀, the level is not more ensured, as explained before.370

Indeed the term 𝑑𝐿,𝐿
max

is mainly equal to 0, and the level is close to 1 − 𝛼 instead of 1 − 𝛼𝛽. This is371

not the case for the band in Section 3, as this is due to the correction of the bias.372

[1] 3373

[1] 5374

[1] 11375

[1] 15376

[1] 21377

[1] 25378

[1] 3379

[1] 5380

[1] 11381

[1] 15382

[1] 21383

[1] 25384

4.2 Influence of 𝐿385

This approach gives a collection of confidence bands for different values of 𝐿. The confidence bands386

have different widths for a same confidence level 1 − 𝛼𝛽. It is thus natural to want to select one387
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Figure 5: Illustrative example. For a given dataset, we plot several confidence bands (top row),
functions dL (middle row) and dLLmax (bottom row). Bands and functions are estimated with Fourier
(left column), Legendre (middle column) and Spline (right column) basis and several dimensions L (3,
5, 11, 15, 21).

Table 2: Illustrative example. We display the level of confidence for the proposed confidence band,
for several L in rows and several n in columns.

L n

50 150

3 0.946 0.941
5 0.961 0.958
11 0.961 0.970
15 0.944 0.957
21 0.787 0.790

25 0.787 0.790
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of them. This means we want to select the best dimension 𝐿 among the collection {𝐿min, … , 𝐿max}.388

We need to define what “best” means. It is quite intuitive to focus on the band that is the thinnest.389

Thinnest could be thought in different norms. Here we consider the infinity norm of the width of the390

confidence band, which gives a preference to smooth bands. We thus define the following criteria391

�̂� = argmin
𝐿

{sup
𝑡
| ̂𝜃𝐿2 (𝑡) − ̂𝜃𝐿1 (𝑡)|} = argmin

𝐿
{sup

𝑡
|�̂�𝐿(𝑡) + �̂�𝐿,𝐿max(𝑡)|} . (7)

We illustrate the different terms involved in Equation 7. In Figure 6, we plot for a given dataset,392

the infinity norm of the width of the band �̂�𝐿(𝑡) + �̂�𝐿,𝐿max(𝑡) (top), of �̂�𝐿(𝑡) (middle) and �̂�𝐿,𝐿max(𝑡)393

(bottom) functions obtained with the Fourier (left column), Legendre (middle column) and Spline394

(right column) basis. As already said, ‖�̂�𝐿‖∞ increases with 𝐿 while ‖�̂�𝐿,𝐿max‖∞ decreases (and is zero395

when 𝐿 > 𝐿𝜀). The width of the band wrt 𝐿 does not have a 𝑈-shape, as expected. It is thus difficult396

to minimize this criterion.397
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Figure 6: Illustrative example. For a given dataset, we calculate the norm of the width of the
confidence band (top), of the dL function (middle) and the dLLmax function (bottom), for several
dimensions L and for Fourier (left column), Legendre (middle column) and Splines (right column)
basis.

We then evaluate the performance of the selection criteria. To do that, we simulate 100 repeated398

datasets. Confidence bands and the norm of their widths are computed for several 𝐿. We apply the399

selection criteria and plot the distribution of the estimated dimension �̂� in Figure 7, for the three400

basis families. The estimated dimension is almost always larger than the true 𝐿∗ = 11. Being larger401

is not a problem and the selected band is unbiased and has the correct level as soon as 𝐿𝜀 is large,402

which was the objective. However, the criteria has the tendency to select a (too) smooth band. In403

Section 4.3, we also illustrate that this band is too conservative.404

4.3 Comparison with the confidence bands of Section 3405

The reformulation of the band around ̂𝑓
𝐿max,𝐿∗

2 is close to the band presented in Section 3 for 𝐿 = 𝐿max,406

that is a band centered around ̂𝑓
𝐿max,𝐿∗ . A natural question is to understand what is the gain by407
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Figure 7: Illustrative example. From 100 datasets, we calculate the distribution of the estimated
dimension L. The true dimension is 𝐿∗ = 11.

doing so instead of using the band from Section 3 with 𝐿 = 𝐿max, namely the band [ ̂𝑓
𝐿max,𝐿∗(𝑡) −408

�̂�𝐿max(𝑡); ̂𝑓
𝐿max,𝐿∗(𝑡) + �̂�𝐿max(𝑡)]. To do that, we have to understand the behavior of the different terms.409

It is difficult to compare theoretically the width of the two bands. We compare them with simulations.410

For 100 repeated datasets, we compute three different confidence bands: the band 𝐶𝐵2 defined in411

Proposition 4.1 with �̂� defined in Equation 7, the band 𝐶𝐵1 constructed in Section 3 with 𝐿max and412

the ideal (and not accessible) band constructed in Section 3 with the true 𝐿∗. In Figure 8, we present413

the boxplots of the norms of the width of the band with �̂� (left), with 𝐿max (middle) and 𝐿∗ (right).414

The width of the confidence band with the true 𝐿∗ is smaller, which is expected but unfortunately not415

achievable. What was not expected, but sad, is that the width of the confidence band 𝐶𝐵1 constructed416

in Section 3 with some 𝐿max is smaller than our band 𝐶𝐵2 with a correction of the bias and the model417

selection criteria. This may be understood because we estimate two different quantities, on smaller418

dataset, for more conservative level (1 − 𝛼 and 1 − 𝛽 respectively) to achieve at the end the confidence419

level of 1 − 𝛼𝛽. The use of the two independent subsamples is mandatory to control the probability420

in the proof of Theorem 3.1. Therefore it is not possible to correct this problem. In the next section,421

we come back to the confidence bands proposed in Section 3 and propose a model selection criterion422

to take into account the bias.423

5 Selection of the best confidence band with a criteria taking into424

account the bias425

In this section, we want to use the collection of confidence bands defined in Section 3 without426

correcting their bias but instead by proposing a criteria which is a trade-off between this bias and the427

dimension of the basis. To do that, we propose a new heuristic criteria going back to the definition428

of the band itself seen as the estimation of a quantile of a certain empirical process. The criteria is429

inspired by model selection tools to select the best dimension 𝐿. In the following, we assume that430

𝐿max is large enough such that 𝑓𝐿max,𝐿∗ = 𝑓 𝐿
∗
.431

We work on the quantile 𝑞𝐿 introduced in Equation 3, its oracle version 𝑞𝐿
∗
for the level 𝐿∗ and the432

estimation �̂�𝐿. All of them are scalar, in a collection of scalars, with 𝐿 = 𝐿min, … , 𝐿max. A natural433

criteria to choose the best 𝐿 is such that the estimator �̂�𝐿 minimizes the quadratic error𝔼 (‖𝑞𝐿
∗
− �̂�𝐿‖2).434

However, this quadratic error is unknown as 𝑞𝐿
∗
is unknown. We can not directly use it.435

18



Fourier Legendre Splines

Lhat Lmax Lstar Lhat Lmax Lstar Lhat Lmax Lstar

0.8

1.0

1.2

1.4

1.6

4

5

6

2.0

2.5

3.0

3.5

4.0

4.5

dimension

B
an

d.
w

id
th

Figure 8: Illustrative example. We display within boxplots the confidence band’s width over 100
repetitions for the band CB2 (Lhat), some fixed Lmax and the true (unknown) 𝐿∗ for Fourier (left),
Legendre (middle) and Splines (right) basis.

Instead, we study ‖�̂�𝐿max − �̂�𝐿‖2. While the theoretical quadratic error 𝔼 (‖𝑞𝐿
∗
− �̂�𝐿‖2) decreases when436

𝐿 < 𝐿∗ and increases when 𝐿 > 𝐿∗, the approximation ‖�̂�𝐿max − �̂�𝐿‖2 of this error is still decreasing437

when 𝐿 > 𝐿∗, as illustrated in Figure 9.438
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Figure 9: Illustrative example. For a given simulated dataset, we show the behavior of the approxima-
tion of the quadratic error of the quantile, as a function of dimension L, for Fourier (left), Legendre
(middle) and Splines (right) basis.

We recognize a behavior similar to a bias, high when dimension is small, and small when dimension439

is large. Selecting a dimension using this criterion will always overfit the data. Thus, we propose to440

penalize this quantity by the dimension 𝐿 divided by the sample size 𝑁, as usual in model selection441

criterion. For that, we introduce a regularisation parameter 𝜆 > 0 which balances the two terms. A442

natural criteria to select the best 𝐿 is then443

444

𝑐𝑟 𝑖𝑡(𝐿) = ‖�̂�𝐿max − �̂�𝐿‖2 + 𝜆 𝐿
𝑁
.

Then we define445

�̃� = argmin
𝐿

𝑐𝑟 𝑖𝑡(𝐿),
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and take the band centered around ̂𝑓
�̃�,𝐿∗

:446

𝐶𝐵3(𝑓
𝐿∗) = 𝐶𝐵1(𝑓

�̃�,𝐿∗)

In Figure 10, we illustrate the behavior of this selection criterion on simulated data, with 𝜆 = 1 for447

the three basis. We can see that �̃� is overestimated. As we work with nested spaces, it ensures that �̃�448

has the tendency to be larger than 𝐿∗ and thus the confidence band is automatically unbiased.449
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Figure 10: Illustrative example. For a given simulated dataset, we show the behavior of the criteria
as a function of dimension L, for Fourier (left), Legendre (middle) and Splines (right) basis.

In Figure 11, we test which model is selected over 100 repetitions for the three basis. The estimated450

dimension is equal or larger than the true 𝐿∗ = 11. As in Figure 7, being larger is not a problem.451

However, we can see that 𝑐𝑟 𝑖𝑡 performs better than 𝑐𝑟 𝑖𝑡. Indeed, the selected dimension �̃� is smaller in452

distribution ( Figure 11), and closer to the true value than �̂� ( Figure 7). Moreover, as we then use the453

confidence band of Section 3, the confidence level is ensured to be the expected one.454
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Figure 11: Illustrative example. We show the distribution of the selected model, over 100 repetitions,
with the new criteria used to select a model for different basis.

We then show in Figure 12 that the width of the selected model is better than the width of the455

confidence band with a large level 𝐿max, which one should have used to avoid model selection.456
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Figure 12: Illustrative example. We display within boxplots the confidence band’s width over 100
repetitions for the dimension selected by the several criterion introduced in this paper, for Fourier
(left), Legendre (middle) and Splines (right) basis.

6 Real data analysis457

In this section, we illustrate the proposed method on the Berkeley Growth Study data. It consists of458

the heights in centimeters of 39 boys at 31 ages from 1 to 18. We approximate those curves by our459

3 basis, namely Legendre, Splines and Fourier. We select the level of each basis using the method460

introduced in Section 5.461
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Figure 13: Real data analysis example. We display the confidence bands for Fourier (left), Legendre
(middle) and Splines (right) basis on the Berkeley Growth Study data. Black curves correspond to the
confidence bands with 𝐿𝑚𝑎𝑥, while colored one are the confidence bands CBE.

In Figure 13, we display the confidence bands associated to Section 3 in black and the one associated462

to Section 5, for the three basis. As the data is not periodic, the Fourier basis is meaningless, and so463

is the associated confidence band, whatever the dimension considered. Both splines and Legendre464

basis give similar confidence bands. When analyzing the width of the bands in Table 3, compared465

with the one obtained with 𝐿max, we see that there are less smooth but also smaller, and from our466

empirical study we guess that it makes a trade-off between bias and variance.467
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Table 3: ?(caption)

(a)

Basis

Legendre Splines Fourier

Width Lmax 2.124539 2.124536 2.204230
Width selected 1.989604 1.947361 2.078467
Model selected 6.000000 5.000000 7.000000

Real data analysis example, Berkeley Growth Study data. We display the width of the confidence
bands for Fourier, Legendre and Splines basis for the confidence band of Section 3 with Lmax and

the confidence band of Section 5. We also precise the dimension of the selected model.

7 Conclusion468

This paper discusses the construction of confidence bands when considering a linear model over469

a functional family. Depending on the nature of the family (an orthogonal or orthonormal basis,470

or just a vector space), theoretical guarantees of the linear estimator are reminded and illustrated.471

Then, several confidence bands are proposed. Throughout the paper, extensive experimental study472

on Fourier, Legendre and Spline basis have illustrated the theoretical and methodological proposition,473

and a real data study is proposed to conclude the paper.474

First, when considering a functional family with a fixed dimension, we discuss the confidence band475

derived from Sun and Loader (1994). It is biased if the dimension is not high enough to approximate476

well the true function. Then, a new confidence band is proposed that correct this bias. To do so,477

the bias is estimated and the additional randomness is controlled. A selection criterion is proposed478

to select the best dimension. Unfortunately, the two kinds of randomness are leading to a wider479

confidence band, and this result is then not more interesting than the naive one, which consists in480

taking the largest possible dimension 𝐿max. Finally, a heuristic selection criterion is proposed to481

select the dimension on the first confidence band, that did not correct the bias. It takes into account482

the bias as well as the variance, to select a moderate dimension.483

The last selection criterion is heuristic, while each term is intuitive. An interesting next step, but out484

of the scope of this paper, consists of a theoretical study of this criterion. No result, to our knowledge,485

exist for confidence band with the supremum norm. The euclidean norm is well-studied in general,486

but is not of interest here, where we want to ensure that the tube is valid as a whole. The supremum487

norm, on its side, is difficult to study theoretically. A keypoint here also is the randomness of the488

criterion, that has also to be taken into account, through an oracle inequality for example.489

References490

Aneiros, Germán, Silvia Novo, and Philippe Vieu. 2022. “Variable Selection in Functional Regression491

Models: A Review.” Journal of Multivariate Analysis 188: 104871. https://doi.org/https://doi.org/492

10.1016/j.jmva.2021.104871.493

Basna, Rani, Hiba Nassar, and Krzysztof Podgórski. 2022. “Data Driven Orthogonal Basis Selection494

for Functional Data Analysis.” Journal of Multivariate Analysis 189: 104868. https://doi.org/https:495

//doi.org/10.1016/j.jmva.2021.104868.496

Bunea, Florentina, Andrada E. Ivanescu, and Marten H. Wegkamp. 2011. “Adaptive Inference for497

the Mean of a Gaussian Process in Functional Data.” Journal of the Royal Statistical Society:498

Series B (Statistical Methodology) 73 (4): 531–58. https://doi.org/https://doi.org/10.1111/j.1467-499

9868.2010.00768.x.500

22

https://doi.org/10.1016/j.jmva.2021.104871
https://doi.org/10.1016/j.jmva.2021.104871
https://doi.org/10.1016/j.jmva.2021.104871
https://doi.org/10.1016/j.jmva.2021.104868
https://doi.org/10.1016/j.jmva.2021.104868
https://doi.org/10.1016/j.jmva.2021.104868
https://doi.org/10.1111/j.1467-9868.2010.00768.x
https://doi.org/10.1111/j.1467-9868.2010.00768.x
https://doi.org/10.1111/j.1467-9868.2010.00768.x


Claeskens, G., and I. Van Keilegom. 2003. “Bootstrap Confidence Bands for Regression Curves and501

Their Derivatives.” Ann. Stat.502

Diquigiovanni, Jacopo, Matteo Fontana, and Simone Vantini. 2022. “Conformal Prediction Bands for503

Multivariate Functional Data.” Journal of Multivariate Analysis 189: 104879. https://doi.org/https:504

//doi.org/10.1016/j.jmva.2021.104879.505

Goepp, V., O. Bouaziz, and G. Nuel. Submitted. “Spline Regression with Automatic Knot Selection,”506

Submitted.507

Hall, P. 1991. “On Convergence Rates of Suprema.” Probab Theory Related Fields.508

Hernández, Nicolás, Jairo Cugliari, and Julien Jacques. 2023. “Simultaneous Predictive Bands for509

Functional Time Series Using Minimum Entropy Sets.” https://arxiv.org/abs/2105.13627.510

Jacques, Julien, and Sanja Samardžić. 2022. “Analysing Cycling Sensors Data Through Ordinal511

Logistic Regression with Functional Covariates.” Journal of the Royal Statistical Society Series C:512

Applied Statistics 71 (4): 969–86. https://doi.org/10.1111/rssc.12563.513

Kokoszka, P., and M. Reimherr. 2017. Introduction to Functional Data Analysis. Chapman & Hall /514

CRC Numerical Analysis and Scientific Computing. CRC Press. https://books.google.dk/books?515

id=HIxIvgAACAAJ.516

Krivobokova, Tatyana, Thomas Kneib, and Gerda Claeskens. 2010. “Simultaneous Confidence Bands517

for Penalized Spline Estimators.” Journal of the American Statistical Association 105 (490): 852–63.518

Lacour, C., P. Massart, and V. Rivoirard. 2017. “Estimator Selection: A NewMethod with Applications519

to Kernel Density Estimation.” Sankhya A.520

Li, Yehua, Yumou Qiu, and Yuhang Xu. 2022. “From Multivariate to Functional Data Analysis:521

Fundamentals, Recent Developments, and Emerging Areas.” Journal of Multivariate Analysis 188:522

104806. https://doi.org/https://doi.org/10.1016/j.jmva.2021.104806.523

Liebl, D, and M. Reimherr. 2019. “Fast and Fair Simultaneous Confidence Bands for Functional524

Parameters.”525

Neumann, M., and J. Polzehl. 1998. “Simultaneous Bootstrap Confidence Bands in Nonparametric526

Regression.” J Nonparametr Statist.527

Quinton, J-C., E. Devijver, A. Leclercq-Samson, and A. Smeding. 2017. “Functional Mixed Effect528

Models for Mouse-Tracking Data in Social Cognition.” In ESCON Transfer of Knowledge Conference,529

Gdansk, Polland.530

Sachs, Michael C., Adam Brand, and Erin E. Gabriel. 2022. “Confidence Bands in Survival Analysis.”531

The British Journal of Cancer. Supplement 127: 1636–41. https://doi.org/10.1038/s41416-022-532

01920-5.533

Sun, Jiayang, and Clive R. Loader. 1994. “Simultaneous Confidence Bands for Linear Regression and534

Smoothing.” Ann. Statist. 22 (3): 1328–45. https://doi.org/10.1214/aos/1176325631.535

Telschow, Fabian J. E., Dan Cheng, Pratyush Pranav, and Armin Schwartzman. 2023. “Estimation536

of expected Euler characteristic curves of nonstationary smooth random fields.” The Annals of537

Statistics 51 (5): 2272–97. https://doi.org/10.1214/23-AOS2337.538

Telschow, Fabian J. E., and Armin Schwartzman. 2022. “Simultaneous Confidence Bands for Func-539

tional Data Using the Gaussian Kinematic Formula.” Journal of Statistical Planning and Inference540

216: 70–94. https://doi.org/https://doi.org/10.1016/j.jspi.2021.05.008.541

Wang, L. And Yang, J. And Gu. 2022. “Oracle-Efficient Estimation for Functional Data Error Dis-542

tribution with Simultaneous Confidence Band.” Computational Statistics & Data Analysis 167:543

107363.544

Xia, Y. 1998. “Bias-Corrected Confidence Bands in Nonparametric Regression.” J.R. Stat. Soc. Ser. B.545

Zhang, C. And Wu, Y. And Wang. 2020. “Prediction of Working Memory Ability Based on EEG by546

Functional Data Analysis.” J Neur. Meth. 333: 108552.547

Zhou, S., X. Shen, and D. A. Wolfe. 1998. “Local Asymptotics for Regression Splines and Confidence548

Regions.” Ann. Statist.549

23

https://doi.org/10.1016/j.jmva.2021.104879
https://doi.org/10.1016/j.jmva.2021.104879
https://doi.org/10.1016/j.jmva.2021.104879
https://arxiv.org/abs/2105.13627
https://doi.org/10.1111/rssc.12563
https://books.google.dk/books?id=HIxIvgAACAAJ
https://books.google.dk/books?id=HIxIvgAACAAJ
https://books.google.dk/books?id=HIxIvgAACAAJ
https://doi.org/10.1016/j.jmva.2021.104806
https://doi.org/10.1038/s41416-022-01920-5
https://doi.org/10.1038/s41416-022-01920-5
https://doi.org/10.1038/s41416-022-01920-5
https://doi.org/10.1214/aos/1176325631
https://doi.org/10.1214/23-AOS2337
https://doi.org/10.1016/j.jspi.2021.05.008


8 Appendix: proofs550

8.1 Proof of Proposition 2.3551

Let us prove the first point. We have552

𝔼(�̂�𝐿,𝐿
⋆
) = (B𝑇

𝐿B𝐿)−1B𝑇
𝐿𝔼(y) = (B𝑇

𝐿B𝐿)−1B𝑇
𝐿B𝐿∗𝜇𝐿

∗
=∶ 𝜇𝐿,𝐿

⋆
.

The theory of the linear model gives that the variance of �̂�𝐿 is equal to 𝜎2(B𝑇B)−1B𝑇ΣB(B𝑇B)−1 with553

Σ = 𝐷𝑖𝑎𝑔(Σ1, … , Σ𝑁) the 𝑛𝑁 × 𝑛𝑁 covariance matrix of y. So finally, we have554

�̂�𝐿,𝐿
⋆
∼ 𝒩(𝜇𝐿,𝐿

⋆
, 𝜎2Σ𝐿,𝐿

𝜀

𝐵 ) .

Now we can easily deduce the distribution of �̂�
𝐿,𝐿∗

(𝑡), for each 𝑡 ∈ [0, 1]:555

�̂�
𝐿,𝐿∗

(𝑡) − f𝐿,𝐿
∗
(𝑡) ∼ 𝒩 (0, 𝜎2𝐵(𝑡)Σ𝐿,𝐿

𝜀

𝐵 𝐵(𝑡)𝑇) .

8.2 Proof of Theorem 3.2556

We have557

𝑃(∀𝑡 ∈ [0, 1], |�̂�
𝐿,𝐿∗

(𝑡)−𝑓 𝐿,𝐿
∗
(𝑡)| ≤ �̂�𝐿(𝑡)) = 𝑃(∀𝑡 ∈ [0, 1], |�̂�

𝐿,𝐿∗
(𝑡)−𝑓𝐿,𝐿

∗
(𝑡)+𝑓𝐿,𝐿

∗
(𝑡)−𝑓 𝐿,𝐿

∗
(𝑡)| ≤ �̂�𝐿(𝑡))

Set Definition 2.1 and Definition 2.3 and a probability 𝛼 ∈ [0, 1]. Then, we have,558

lim
𝑛→+∞

𝑃(∀𝑡 ∈ [0, 1], |�̂�
𝐿,𝐿∗

(𝑡) − 𝑓 𝐿,𝐿
∗
(𝑡)| ≤ �̂�𝐿(𝑡)) = 1 − 𝛼

with �̂�𝐿(𝑡) = ̂𝑐𝐿√�̂�𝐿(𝑡, 𝑡)/𝑁 and ̂𝑐𝐿 defined as the solution of Equation 4.559

8.3 Proof of Proposition 4.1560

To simplify the notations, let us denote 𝑎(𝑡) = 𝑓𝐿,𝐿
∗
(𝑡) − ̂𝑓

𝐿,𝐿∗

1 (𝑡) and 𝑏(𝑡) = 𝑓𝐿max,𝐿∗(𝑡) − 𝑓𝐿,𝐿
∗
(𝑡) −561

( ̂𝑓
𝐿max,𝐿∗

2 (𝑡) − ̂𝑓
𝐿,𝐿∗

2 (𝑡)). We have562

𝑃 (∃𝑡|𝑎(𝑡) + 𝑏(𝑡)| ≥ �̂�𝐿1 (𝑡) + �̂�𝐿,𝐿max
2 (𝑡)) ≤ 𝑃 (∃𝑡|𝑎(𝑡)| + |𝑏(𝑡)| ≥ �̂�𝐿1 (𝑡) + �̂�𝐿,𝐿max

2 (𝑡))

= 𝑃 (∃𝑡|𝑎(𝑡)| ≥ �̂�𝐿1 (𝑡)) 𝑃 (∃𝑡|𝑏(𝑡)| ≥ �̂�𝐿,𝐿max
2 (𝑡)) = 𝛼𝛽.

The last equality holds thanks to the independence of the two sub-samples.563
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