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Relaxations of localized over-density in a plane transverse to the magnetic field are numerically
investigated under the effect of drift-wave and interchange drives in SOL conditions. Such a con-
trolled departure from thermodynamic equilibrium allows the investigation of fundamental processes
at play in cross-field transport. Interchange instabilities generate ballistic outward radial flux with
low amplitude zonal flow patterns, whereas drift-wave instabilities result in symmetric radial flux
with large amplitude zonal flow patterns. When both instabilities are considered, the combined
effects tend to favor drift-waves, leading to a weaker outward flux with larger zonal flow patterns.

I. INTRODUCTION

Understanding SOL turbulent transport as resulting
from relaxation events has been a major breakthrough
[1–3]. This has opened the way to a vast literature and
comparison to experimental evidence. The body of pa-
pers being too long to review here, the reader is referred
to the reviews by D’Ippolito et al. [4] and Krasheninnikov
et al. [5]. One of the groundbreaking discoveries has been
the change of turbulence forcing from that governed by
fixed gradients, i.e. gradient-driven, to that governed
by prescribed average fluxes, i.e. flux-driven. Indeed,
in the standard description of near thermodynamic equi-
librium transport, the fluxes are written in terms of a
linear dependence on the gradients, with constant ma-
trix elements proportional to various diffusivities. The
departure from thermodynamic equilibrium, character-
ized by the various gradients, induces fluxes that tend to
restore thermodynamic equilibrium. With weak fluctua-
tions of both gradients and fluxes, the linear relationship
holds for the mean fields and is readily interpreted as
gradients driving fluxes. However, in most systems the
actual drive out of thermodynamic equilibrium are fluxes
and particular experimental skills are required to fix the
gradients. In most situations, the gradients exhibit a dy-
namic response to the fluxes that drive the system out of
equilibrium. In most cases, and in particular in magnetic
confinement devices dedicated to nuclear fusion experi-
ments, sources are controlled and sustain fluxes that in
turn generate gradients and bring the system out of equi-
librium. Because competing loss mechanisms exist, the
onset of turbulent transport only occurs above a thresh-
old in the source magnitude.
An important part of the associated transport is car-
ried by intermittent relaxation events, which are called
avalanches in this paper, leading to dense and coherent
filamentary structures - often referred to as blobs. This
intermittent radial transport occurs ballistically at rel-
atively constant velocity [6]. The turbulent transport
paradigm then shifts from diffusive to ballistic. In such
systems, constant sources only prescribe the mean fluxes

such that large fluctuations of both gradients and fluxes
are permitted. The dynamics bear similarities with Self-
Organised Criticality [7].
This intermittent transport carried by blobs is supported
by many experimental observations [6, 8–16]. These ex-
perimental evidences triggered many theoretical and nu-
merical works [3, 17–21]. In particular, multiple simpli-
fied sets of equations [20, 22–25] modeling the SOL re-
gion have been proposed and solved numerically, which
successfully replicate intermittent transport triggered by
avalanches and carried by dense blobs. One of the main
ingredients to recover this behavior is the interchange in-
stability [26–28]. When accounting for the resistive par-
allel losses in the SOL, a finite phase shift between den-
sity and electric potential can emerge, which can trigger
the drift-waves instability. In a previous paper [20], the
dispersion relation of a simplified system of equations in-
cluding both the interchange and drift-wave instabilities
has been used to devise two numerical scenarios where
each instability has been simulated separately with a sim-
ilar growth rate. These cases, along with another one
where both instabilities contribute equally to the growth
rate, were employed to gain new insights into statistically
relevant properties of transport, e.g. the SOL width or
the turbulent intensity.

In this paper, these scenarios are used to study a single
relaxation event by letting a unique turbulent structure,
i.e. a blob, evolve under the drift-wave and interchange
instabilities. Key properties, specific to each instability,
of the resulting isolated turbulent structures are deter-
mined. A particular attention is given to the role of each
instabilities in the zonal flow generation and the outward
particle flux. When both instabilities are accounted for
on the same footing, the combined effects are observed
to be more closely aligned with the drift-wave behavior.
Despite extensive research on isolated relaxation events
[3, 22–25, 29], the decoupling of each instability in such
a controlled manner has not been done previously.

The remainder of the paper is organized as follows.
The governing equations and the linear properties of the
interchange and drift-waves instabilities are presented in
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Section II. The simulation framework, including a de-
scription of the tokam2d code and the associated non-
linear simulations considered, is detailed in Section III.
The response to prepared initial conditions with both in-
stabilities is addressed in Section IV. The discussion and
conclusion in Section V closes the paper.

II. SOL TURBULENCE MODEL

A. Transverse transport model

Plasma turbulence is investigated with a minimum
transport model, arguing that the robust physics at play
will be qualitatively addressed. These models couple at
most two fields and use fluid equations restricting the
phase space to the directions transverse to the mag-
netic field, typically r a radial and θ an angle coordi-
nate. While details on the present model used through-
out this paper and its derivation can be found in [20] ,
hasty readers can refer to the brief following overview. In
this model, the linear drive for instability is either that
of drift wave turbulence, as investigated in the seminal
paper [30], or interchange-like [1, 26, 27]. A modula-
tional Kelvin-Helmholtz instability can also be triggered
[31, 32]. Parallel transport is taken into account by loss
terms that are simplified to only linearly depend on the
chosen fields, as discussed in [20], and is akin to the drift-
waves model in [33]. This transport model takes the form
of governing equations for the vorticity W and the par-
ticle density n - alternatively the scalar pressure p = nT
proportional to the internal energy density, or, combin-
ing these equations, a transport equation for the thermal
energy T . Cold ion limit is assumed so that the plasma
thermal energy T is that of electrons, T = Te. In this
limit, the Boussinesq approximation allows one to de-
termine the electric potential ϕ, given the vorticity via
W = ∇2

⊥ϕ. The drift expansion is used to determine the
transverse transport, at the lowest order governed by the
electric and diamagnetic drift velocities, and at higher
order by the ion polarisation velocity. In these assump-
tions, the transverse transport model for plasma turbu-
lence is akin to the Rayleigh-Bénard 2D turbulence model
[34] for neutral fluids, as underlined in [35, 36]. Trans-
verse transport then appears as a competition between
convection and diffusion. Above a threshold in the de-
parture from thermodynamic equilibrium, a bifurcation
takes place from purely diffusive transport to convection-
dominated transport. Finally, normalizing the equations,
simplifying them consistently with the drift ordering, and
stepping to a slab geometry, with x = (r − a)/ρ0 the ra-
dial coordinate, and y = aθ/ρ0 the poloidal coordinate,

one obtains:

∂tn+
1

Ln
∂yϕ+

[
ϕ, n

]
−D∇2

⊥n = Sn − σn,nn+ σn,ϕ ϕ

(1a)

∂tW + g∂yn+
[
ϕ,W

]
− ν∇2

⊥W = SW − σϕ,nn+ σϕ,ϕϕ

(1b)

The density is normalized by a characteristic density,
while the electric potential is normalized by Te/e. As
indicated by the definitions of x and y, length scales are
normalized by the reference Larmor radius ρ0. Time is
normalized by a reference ion cyclotron period Ω−1

0 . The
density and vorticity diffusion coefficients D and ν are
assumed stationary and homogeneous. The RHS of both
equations are analogous and contain a density/vorticity
source as well as terms proportional to σi,j which account
for the parallel losses. Finally, the Poisson brackets are
defined by [f, g] = ∂xf∂yg − ∂yf∂xg.
The simulation domain is restricted to a region with a

reduced poloidal extent on the low field side midplane,
which yields the interchange term proportional to g in the
vorticity equation. With this simplification, the poloidal
direction is homogeneous. The system Eqs(1) allows ad-
dressing two means of driving the density field out of
equilibrium and sustaining instabilities that drive SOL
turbulence: either the particle source terms Sn in the
flux driven regime, or the linear term (1/Ln)∂yϕ, which
is proportional to the length scale of the density gradient
defined by Ln = −(∇x lnn0)

−1, in the gradient driven
regime. In the former case, the mean density gradient
is a result of the turbulent transport while, in the lat-
ter case, one focuses on density fluctuations n such that
the total density reads ntot(x, y, t) = n0(x) + n(x, y, t)
and the mean turbulent particle flux is the output. In
the edge and SOL plasma, where the mean fields ex-
hibit poloidal and radial variations, the gradient-driven
approach is not relevant. One can also drive the electric
potential out of equilibrium by assuming a source SW

generating a radial stratification or a cubic expansion of
the flux-surface averaged electric potential ⟨ϕ⟩y(x) yield-
ing a poloidal Doppler velocity ∇x⟨ϕ⟩y(x), possibly a ra-
dial dependence of the vorticity ⟨W ⟩y = ∇2

x⟨ϕ⟩y(x), and
a gradient of this vorticity ∇x⟨W ⟩y (see [35] for the sta-
bility analysis with this particular expansion).
In the next section, the dispersion relation of a simpli-
fied system Eqs(1) is derived to extract key properties
specific to the drift-wave and interchange instabilities.

B. Dispersion relation

From the governing equations in the system Eqs(1),
the dispersion relation is derived by considering a steady-
state solution such that ⟨ϕ⟩y = 0, typically for SW = 0
- therefore excluding the modulational Kelvin-Helmholtz
instability - and with a gradient-driven approach for the
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density - hence for Sn = 0 and finite (1/Ln). In a lin-
ear framework, hence simplifying the Poisson brackets in
Eqs(1), the coupling between the two equations is gov-
erned by the terms (1/Ln)∂yϕ and σn,ϕϕ in the density
evolution equation Eq(1a), and the two terms g∂yn and
σϕ,nn in the vorticity equation Eq(1b). Without these
coupling terms, the remaining terms enforce an expo-
nential decay, as readily expected for damping processes.
The coupling terms are therefore mandatory to drive tur-
bulent transport. The growth rate γ is computed with
the linearised equations in Fourier space. The Fourier

transform of the vorticity Ŵ then verifies Ŵ = −k2ϕ̂
where k2 = k2x + k2y, kx and ky being the wave vectors in
the x and y directions respectively. The growth rate γ is

defined as ∂tn̂/n̂ = ∂tϕ̂/ϕ̂, therefore:

γ n̂+
iky
Ln

ϕ̂+Dk2n̂ = −σn,nn̂+ σn,ϕ ϕ̂ (2a)

γ ϕ̂− i
ky
k2

gn̂+ νk2ϕ̂ = −σϕ,ϕ

k2
ϕ̂+

σϕ,n

k2
n̂ (2b)

The dispersion relation determines the condition to
achieve a solution different from the trivial solution n̂ = 0
and ϕ̂ = 0. For such modes, the growth rate is deter-
mined by the following second-order equation:(

γ +An

)(
γ +Aϕ

)
−BnBϕ = 0 (2c)

where:

An = Dk2 + σn,n ; Aϕ = νk2 +
σϕ,ϕ

k2
(3a)

Bn =
iky
Ln

− σn,ϕ ; Bϕ = −ig
ky
k2

− σϕ,n

k2

(3b)

The condition for instability Re(γ) > 0 crucially depends
on the product BnBϕ. For Bn Bϕ = 0, the solutions
γ = −An and γ = −Aϕ are real and negative: there
is no instability, the damping processes characterized by
An and Aϕ govern stability. The instability condition is
found to be:

Re
(
BnBϕ

)
+

Im
(
BnBϕ

)2(
An +Aϕ

)2 > AnAϕ (4a)

Re
(
BnBϕ

)
=

σϕ,nσn,ϕ

k2
+

k2y
k2

1

Ln
g (4b)

Im
(
BnBϕ

)
=

ky
k2

(
gσn,ϕ − 1

Ln
σϕ,n

)
(4c)

When setting g = 0 and σϕ,n = 0, the instability con-
dition Eq(4a) cannot be met. From the linear point of
view, one thus identifies:

• the interchange instability [26, 27] with g > 0 and
σϕ,n = 0 on the one hand;

• the drift wave instability [30, 37] with g = 0 and
σϕ,n > 0 on the other hand.

Further simplifying these two cases by setting σn,ϕ = 0
greatly facilitates the analysis and yields the following
key properties of the instability thresholds:

Re
(
BnBϕ

)
=

k2y
k2

1

Ln
g (5a)

Im
(
BnBϕ

)
= −ky

k2
1

Ln
σϕ,n (5b)

For the SOL interchange case, i.e. g > 0 and σϕ,n = 0,
the product BnBϕ is real and found positive for
(1/Ln) = −∇x lnn0 > 0, i.e. negative background
gradient, which is therefore a necessary condition for
the instability. The buoyancy effect governed by g
can only drive the SOL interchange instability on the
low field side [26, 27]. Turbulent transport is then
ballooned to the low field side similar to that evidenced
experimentally [38–40]. In the case of the drift wave
instability, i.e. σϕ,n > 0 and g = 0, the product Bn Bϕ

is purely imaginary. The threshold constraint is then a
function of (1/Ln)

2 with no constraint on the sign of
the density gradient. With this symmetry, the turbulent
transport is identical in the low and high field sides of
the device. In both cases, convective E × B transport
is triggered past a threshold on the density gradient
ensuring that the drive is larger than the damping
processes. In other words, the source must overcome the
transport capability of the diffusive and parallel trans-
port channels to trigger the convective instability. For
the interchange case, the growth rate is real so that the
density and radial projection of the electric drift velocity
vEx = −∂yϕ are in phase. This phasing maximizes the
particle flux. Conversely, for the drift-waves case, the
growth rate exhibits an imaginary part, which stands
for the mode frequency, so that the density and vEx

fluctuations are no longer in phase. This reduces the
transport efficiency of the electric drift turbulent motion.

One can also note that Re
(
BnBϕ

)
and Im

(
BnBϕ

)
depend on either k2y/k

2 or k2y/k
4. An important effect

is that the drive for ky = 0 modes is null, and since the
damping terms are not vanishing, all modes ky = 0 are
stable. To complete this case, one can remark that for
σn,ϕ > 0 and ky = 0 the instability constraint Eq(4a)
takes the form σϕ,nσn,ϕ > k2AnAϕ. One readily finds
that k2AnAϕ = σϕ,nσn,ϕ + σϕ,nDk2 + σn,ϕνk

4 + Dνk6

so that the instability constraint cannot be satisfied
for the ky modes. A general result is therefore that all
modes ky = 0 are stable. Related to this point, one finds
that the most unstable mode structure governed by the
dependence on ky/k enforces |ky| = |kx| to maximize the
instability driving term.

In the instability constraint Eq(4a), the damping terms
are either governed by AnAϕ in the interchange case or
by AnAϕ(An+Aϕ)

2 for the drift waves case. Since Aϕ ex-
hibits a minimum for k4 = σϕ,ϕ/ν, one expects the damp-
ing process of both instabilities to exhibit a minimum,
thus defining the most unstable wave vector k⋆. For
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standard simulation parameters, one finds kθρ0 ≈ 0.11
for the interchange and kθρ0 ≈ 0.16 for the drift waves,
hence structures sizes of approximately 9ρ0 and 6ρ0 re-
spectively. The minimum of An+Aϕ, which can be com-
puted analytically, yields values comparable to that de-
termined for the drift waves case.

Finally, an important difference between interchange
and drift waves with σ = σn,n = σn,ϕ = σϕ,ϕ = σϕ,n

is that, as g is increased, γ → |ky/k|
√
g(1/Ln).

Consequently, the growth rate increases with g provided
1/Ln = −∇x lnn0 > 0. Conversely, as σ increases, the
electric potential tends to align on the density n → ϕ.
In other words, the system tends to the well-known
adiabatic limit with a null electron current. Within that
limit, the growth rate γ is negative. This stabilizing
effect governed by the parallel current becomes more
important than the destabilizing effect. The drift waves
are first destabilized as σ is increased and then stabilized
when σ is further increased.

In this section, some unique properties related to the
interchange and drift-wave instabilities have been ob-
tained from the dispersion relation obtained from the
linearised governing equations. These linear properties
can be summarized as follows:

• For the interchange instability: a positive growth
rate is associated with a negative density gradi-
ent (i.e., 1/Ln > 0), which acts as a necessary
condition for instability. This type of instability
is predominantly influenced by the buoyancy ef-
fect, represented by the parameter g. It drives
turbulence on the low field side of the device,
manifesting a ballooning of turbulent transport to
these regions. This instability primarily results in
convection-dominated transport. The growth rate
associated with this instability is real, leading to
an enhanced particle flux due to the phase align-
ment between density fluctuations and the radial
projection of the electric drift velocity.

• For the drift-wave instability: a positive growth
rate does not require a specific sign of the den-
sity gradient, allowing for a more symmetric turbu-
lence distribution across the domain. This instabil-
ity is characterized by a finite imaginary part of the
growth rate, indicating an oscillatory behavior that
can reduce transport due to the phase misalignment
between density and electric drift velocity fluctua-
tions. The instability’s threshold and growth rate
are intricately tied to the values of σϕ,n, which mod-
ulate the electric potential’s influence on the den-
sity field, and thus influence the overall stability.

These properties are of prime importance to interpret
the non-linear simulations of these instabilities. In the
next section, the tokam2d code is introduced and the
numerical setup of relevant non-linear cases is detailed.

III. THE NUMERICAL SETUP

A. The TOKAM2D code

TOKAM2D is a spectral code [19, 20] with a simu-
lation domain periodic in all directions. Consequently,
the simulations are performed in Fourier space, making
extensive use of the fast Fourier transforms - which are
efficiently executed on GPUs - to compute the non-linear
terms. If the periodicity along the poloidal direction y is
quite standard, the one in the radial direction x requires
careful consideration. Indeed, in flux-driven systems, on
which this paper focuses, the density profile exhibits a
maximum at the source location and a minimum at a
location that depends on the transport properties. This
structure has two implications. First, these extrema
also correspond to regions with vanishing particle
fluxes. The minimum density region then appears to be
non-turbulent, generating a buffer region inhibiting the
cross-talk between turbulent regions. Consequently, if
the buffer region is wide enough, the apparent drawback
of using a periodic radial direction is minimized. A
second consequence is that both negative and positive
mean density gradient regions, hence low and high field
like regions, are simulated and can then be compared.
Together with this interesting feature, the evolution in
Fourier space offers an accuracy way superior to finite
difference schemes in computing space derivatives.
The reference mesh size is the normalized Larmor radius
ρ0. The time stepping is a standard Runge Kutta scheme
of order 4. The typical time step is 1/Ω0, the reference
cyclotron period of the ions at electron temperature.
A typical number of time steps to reach steady state
turbulent transport is then in the range of 104 to 105

time steps. Simulation can be started from either an
analytical initial state or using a chosen state of the
density and electric potential generated by another
simulation. The latter procedure is of interest to reduce
the transient to statistical steady state, in particular
when scanning a control parameter. In the former case,
a typical initial condition to investigate SOL turbulence
is a constant density in both the x and y directions with
an initial electric potential determined by a set of chosen
small amplitude Fourier modes with random phases. In
this paper, the initial conditions are chosen to generate
an isolated avalanche.
When computing the evolution of system Eqs(1) in
Fourier space, the inversion of the equation W = ∇2

⊥ϕ
leads to a factor 1/k2 on the right hand side of the

equation determining ϕ̂ as noticeable in the linearised
form Eq(2b). A specific treatment is then made to

determine ϕ̂(ky = 0, kx = 0). This is particularly impor-
tant since the linearised parallel transport terms - those
depending on the σ conductivities - implicitly assume
that the reference constant electric potential is null. For

consistency, the code enforces that ϕ̂(ky = 0, kx = 0)
remains null.
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rod Lod xod yod Sn ∆nod nbg

16ρ0 2ρ0 128 128 σn,n 4n0 1n0

TABLE I: Initial conditions of the initial overdense
region for isolated avalanche generation.

B. Initialization of simulations

A simplified situation is considered to determine some
basic properties of relaxation processed under the inter-
change and drift-waves instabilities. As stated in the in-
troduction, an area of interest for these single relaxation
events is to characterize their dynamics and properties
in terms of transport efficiency. One can then determine
means to identify them, and their weight in the overall
transport, in more complex situations.

The initial conditions are set to create a circular over-
dense region characterized by its radius rod and the vari-
ation scale Lod determining the transition between the
overdense flat-top with height ∆nod and the density
background nbg, see Table I. More precisely, as shown
in Fig.1, a hyperbolic tangent shape originating from the
center (xod, yod) of the over-dense region is used such that
the total initial density reads

n(x, y, t = 0) = nbg +∆nod(1− tanh((r − rod)/Lod)/2
(6)

where r2 = (x − xod)
2 + (y − yod)

2. With a simula-
tion spatial domain spanning 256ρ0 radially and 256ρ0
poloidally, the center of the initial overdense region is
chosen at xod = yod = 128ρ0. The density source is set
such that Sn = σn,n and is thus homogeneous in space
and stationary. The combination of this specific source
Sn and the parallel density loss term −σn,nn ensures that
the fixed point of the background density is 1.

C. Simulation considered

To be able to compare the relaxation of an isolated
structure with each instability in a controlled way, three
simulation cases are considered.

• The “interchange only” case (“I”) where the only
drive is the curvature term g∂yn term. No phase
shift between the density and the potential is con-
sidered such that the coupling coefficients σn,ϕ =
σϕ,n = 0.

• The “drift-waves only” case (“DW”) where the only
drive is the finite phase shift between potential and
density, considered through σn,ϕ = σϕ,n ̸= 0. The
curvature is set to zero, i.e. g = 0.

64 128 192
x = (r a)/ 0

64

128

192

y
=

a
/

0

2rod = 32 0

2 4

n(t = 0)
1
3
5

n(
t=

0)

1 3 5
n(t = 0)

FIG. 1: Initial overdense region n(x, y, t = 0) initialized in
the entire simulation domain for each case considered in this

work. It is defined as
n(x, y, t = 0) = nbg +∆nod(1− tanh((r − rod)/Lod)/2 where
r2 = (x− xod)

2 + (y − yod)
2 with the parameters defined in

Table I.

• The “combined interchange/drift-waves” case
(“DW+I”), where σn,ϕ = σϕ,n ̸= 0 and g ̸= 0.

The simulation parameters are chosen from a case
selected in [20] designed such that the two instabili-
ties are characterized by close to identical growth rates
γ ≈ 4.3 10−4 Ω0. This growth rate is computed for
kxρ0 = 5π/256, then selecting the maximum value when
varying ky.

The result of the calculation of the growth rate γ ex-
hibits a small variation with kx for 1 ≤ kx/kmin ≤ 5,
leading to a typical size in the radial direction ranging
from 16ρ0 to 81ρ0. In the poloidal direction, the struc-
ture size estimated with the linear analysis varies from
9 ρ0, for interchange, to less than 14 ρ0 for drift waves.
Regarding time scales, the characteristic time to reach
steady state conditions is 1/σn,n ≈ 20000Ω−1

0 , which
is one order of magnitude larger than the characteristic
growth time 1/γ ≈ 2000Ω−1

0 .

A summary of the control parameters, simulation
mesh, and details on the growth rate for each case is
available in table II. A visual overview showing the evo-
lution of the density structures associated with each case
is given in Fig.2. The details concerning the physics gov-
erning this evolution are developed in the next section.
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Control Growth rate Simulation

parameters at kx = 5kmin mesh

g σn,n|σϕ,ϕ σn,ϕ σϕ,n D|ν max
ky

γ argmax
ky

γ Lx|Ly Nx|Ny ∆t[
Ω0
ρ0

eϕ0
Ten0

] [
Ω0|Ω0

ρ20

] [
Ω0

n0Te
eϕ0

] [
Ω0

ρ20

eϕ0
Ten0

] [
Ω0ρ

2
0

] [
10−4Ω0

]
[kmin] [ρ0] [−]

[
Ω−1

0

]
I 1.5× 10−4 6× 10−5 0 0 10−2 ≈ 4.3 ≈ 9

256 1024 0.25DW 0 6× 10−5 6× 10−5 6× 10−5 10−2 ≈ 4.3 ≈ 6

DW+I 1.5× 10−4 6× 10−5 6× 10−5 6× 10−5 10−2 ≈ 8.0 ≈ 7.5

TABLE II: Main information regarding the tokam2d simulation cases considered in this paper: interchange only
“I”, drift-waves only “DW” and combined interchange/drift-waves “DW+I”. It includes the control parameters of
the governing equations system Eqs(1), the maximum growth rate (see [20] for details) where kminρ0 = π/256 and

the spatiotemporal mesh.

y

x

I
t = 0 [ 1

0 ] t = 512 [ 1
0 ] t = 1024 [ 1

0 ] t = 2048 [ 1
0 ] t = 3072 [ 1

0 ] t = 4096 [ 1
0 ]

DW

DW+I

FIG. 2: Overview of the overdensity’s structure evolution obtained with tokam2d with the parameters defined in Table II.
“I” stands for interchange only, “DW” for drift-waves only and “DW+I” is a combination of these two cases. The physics

underlying this evolution is discussed in Sec.IV.

IV. RELAXATION OF LOCALIZED
OVERDENSE STRUCTURES

A. Comparison under drift-waves and interchange
instability at similar growth rate

The comparison between interchange and drift wave
over-density propagation is performed with the values of
the control parameters given in Table II such that the
linear growth rates of the two instabilities are identical.

The Fig.3 shows the density structure at an early
stage, Ω0t = 256, for each case: interchange only (“I”),
drift-waves only (“DW”) and both instabilities combined

(“DW+I”). The density evolution governed by the inter-
change, Fig.3a, looks rather similar to the drift-waves
case, Fig.3b, despite a slight outward shift in the former
case and a weak poloidal narrowing in the latter case.
The main difference is in the potential structure. For the
drift-wave case, the component ϕ = n is large, so the
negative values of the electric potential are distributed
in the poloidal direction and are constrained by charge
conservation. For the interchange case, a poloidally sym-
metric potential dipole with respect to the xod axis is
centered near the initial overdense region at yod. The
case combining both instabilities, displayed in Fig.3c, ap-
pears as a superposition of these two effects, such that
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FIG. 3: Density at early time Ω0t = 256 for each tokam2d case: interchange only (“I”), drift-waves only (“DW”) and both
instabilities combined (“DW+I”). The initial density conditions are given in Table I and the sets of control parameters in

Table II.

the overdense region is slightly shifted radially while the
potential is slightly shifted poloidally with respect to the
drift-waves case. Knowing that particle trajectories fol-
low iso-potential contour, one can readily predict the next
state of the density evolution. With tokam2d conven-
tion, particles travel along negative - resp. positive -
iso-potential in the counter-clockwise - resp. clockwise
- direction in the (x, y) plane. In the interchange case,
the potential structure in this early stage then acts as a
rolling machine that pushes the density in the outward
radial direction. In the drift-wave case, one can con-
sider two dipoles: the one in the upper half-plane above
y = yod and the one beneath it. In the upper plane,
the density is pushed inward while, in the lower plane,
it’s pushed inward. Such a configuration then leads to a
clockwise rotation of the overall overdense region. The
combined case is a bit more tricky to predict, due to the
observed asymmetry between the potential and the den-
sity. The situation on the potential is similar to the drift-
wave case with a negative poloidal shift, while the over-
dense structure is still located poloidally around y = yod.
This imbalance favors a greater part of the density to
undergo the dipole action for the dipole located at the
highest poloidal coordinate. These qualitative predic-
tions only hold for a short amount of time, as the poten-
tial evolves with the density.

At a later time Ω0t = 1536, the difference in the be-
havior of the interchange and drift wave relaxation pro-
cesses is quite apparent as evidenced in Fig.4. The in-
terchange relaxation, displayed in the snapshot Fig.4a,
leads to radial transport - observed to be ballistic, as
detailed further - with a displacement of the overdense
region that preserves the initial axial symmetry along the
y = yod axis, as also observed in [41] consistently with
the electric potential dipole that follows the bulk of den-
sity. Conversely, the drift wave relaxation, snapshotted in

Fig.4b, does not initiate any global radial displacement in
a preferred direction but rather exhibits a swirling pat-
tern with a point symmetry with respect to the center
of the initial overdense region (xod, yod). This spiraling
density “brings” along the potential, changing the con-
figuration such that the initial overdense regions begin to
split into two distinct entities. Both of these structures
are consistent with the qualitative description made from
the early stage. Accordingly, a superposition of behavior
of the two previous cases is observed in the case com-
bining both instabilities, depicted in Fig.4c. Indeed, as
discussed in the early stage, a shift between potential
and density is responsible for a force due to dipoles be-
ing unevenly spread on the overdense region. As for the
drift-waves case, the spiraling causes the initial overdense
region to split into two structures. The difference in this
case is that one of these structures carries a bigger part
of the density. In the meantime, the buoyancy driven
by the interchange drive introduces an outward drift to-
wards increasing values of x. A satisfying remark at this
point is that the additive “basic” effects of the transla-
tion due to interchange and rotation due to drift-wave
appear a great tool to explain the seemingly complex
structure in the combined case in Fig.4c. Another in-
teresting observation is that the maximum density has
decreased between the early phase at Ω0t = 256 and this
intermediate phase at Ω0t = 1536, while the mean den-
sity in the whole simulation domain is exactly the same
in each simulation at all time. This confirms that both
interchange and drift-waves instabilities tend to restore
thermodynamic equilibrium.

At an even later time Ω0t = 2560, the two aforemen-
tioned structures in the simulations including the drift-
waves instability are clearly distinguishable while the
case with interchange begins to exhibit a structure split-
ting itself, as shown in Fig.5. For the interchange case,
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shown in Fig.5a, the overdense region above - resp. be-
low - the y = yod poloidal coordinate exhibits a coherent
shift in the increasing - resp. decreasing - poloidal direc-
tion. The reason is that, as the particles follow the iso-
potential contour, the density is continuously distributed
poloidally on both sides of the y = yod line. In the early
stages, this motion manifested mainly as a radial trans-
lation of the initial overdense structure. However, as the
particles spread along the dipole, two coherent structures
emerge. In the two simulations including the drift-waves
instability, displayed in Fig.5b and Fig.5c, the aforemen-
tioned splitting of the overdense region is finished and
two structures are clearly distinguishable. Regarding the
drift-wave case in Fig.5b, on either side of the x = xod

line, the situation is somewhat analogous to the early
stage as displayed in Fig.3 where each structure is as-
sociated to a potential leading to a rotation. This sug-
gests that, if the density gradient associated with each of
these structures is strong enough, the rotating/splitting
process could repeat for each of these substructures.

At the final time Ω0t = 4096, the maximum density
decreased by half-compared to the initial stage for each
case, as shown in Fig.6. After this phase, there is little
change in the structure’s evolution, and the governing
equations slowly restore a density of 1 throughout the
simulation domain. In the interchange case, displayed
in Fig.6a, the splitting of the initial overdense region
into two substructures poloidally distributed is achieved.
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Table II.

Each of these substructures is associated with its own po-
tential dipole, such that each of them pursues its radial
shifts. While the drift-wave case - displayed in Fig.6b -
did not evolve much compared to the previous snapshot
in 5b, an interesting feature is that the two substructures
seem to converge towards one another. This is explained
by the initial rotating dynamic being slowed down while
the density continues spreading. As the positive potential
lies close to the density, this density spreading scatters
the overdense regions and thus brings the iso-potential
of each structure together. For the case combining both
instabilities, the radial drift due to the interchange drive
becomes less effective as observable in Fig.6c, where the
density center of mass spanned a distance inferior to the
interchange-only case as displayed in Fig.6a. In that case,
the coupling terms between density and potential then
act as a drag for the transport induced by interchange.
In addition, this case is - among the two others - the one
with the coherent structure carrying the most particles.
Indeed, as mentioned previously, combining both inter-
change and drift-waves instabilities leads to a poloidal
symmetry breaking between density and potential, al-
lowing for an imbalance of particle content in the sub-
structures.

Another perspective on the previous observations can
be gained by examining the spatiotemporal evolution of
the poloidally averaged density ⟨n⟩y, as illustrated in Fig.
7. For the interchange relaxation displayed in Fig.7a,
the motion of the initial the density forefront is ballistic
motion, with a noticeable event at time Ω0t ≈ 2800 when
the overdense region splits into two substructures. The
evolution of the density forefront can be fitted by the pink
dotted line in Fig.7a, which corresponds to a velocity of
0.02c0.

The behavior is altogether different for the drift wave
relaxation displayed in Fig.7b, where the density remains

symmetric with respect to the vertical axis at x = xod,
therefore without displacement of the overdense mass
center. The previous observations, i.e. the splitting into
two structures during the rotation and then their merging
are clearly visible. For the case combining both instabil-
ities, depicted in Fig.7c, the appearing pattern is closer
to the drift-waves case than the interchange case, with
a clear imbalance for the outward substructure. Com-
pared with the interchange case, the radial motion of the
overdense region is slowed down and ends faster. This
detailed analysis of the structure evolution under the in-
fluence of the drift-waves and/or interchange instabilities
is useful for developing an intuition on the turbulent mo-
tion of coherent structures. With these observations in
mind, the contributions of the overdense region to the ra-
dial flux and zonal flow for each case are now analyzed.

The spatiotemporal evolution of the radial particle
flux averaged in the poloidal direction ⟨Γx⟩y, where
Γx = −n∂yϕ, for each case is shown in Fig.8. In the
interchange case, displayed in Fig.7a, a radial outward
drift of the transport pattern following the ballistic den-
sity displacement (highlighted with the pink dot line) is
observed. Conversely, for the drift-waves case displayed
in Fig.7b, the spiraling motion yields a transport pattern
with alternating particle flux from radially outward (red
contours) to inward (blue contours), with no net radial
shift of the pattern. Combining the two relaxation
mechanisms leads to an alternating transport pattern
biased to the outward motion and transport as shown
in Fig.8c. On this same figure, the pink iso-contour is
for the interchange case at ⟨Γx⟩y = 2.5 × 10−3 to be
compared to the white contour line at the same value
but with the two relaxation mechanisms at play. The
ballistic trend is comparable, but short-lived and partly
balanced by inward particle flux.
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The contribution of each structure to zonal flows for
each case can also be studied. Their generation is ob-
served through the poloidal averaged of the poloidal com-
ponent of the electric drift ⟨VEy⟩y, displayed in Fig.9. For
the interchange case, Fig.9a, the zonal flow generation is
rigorously zero as the initial poloidal symmetry of the
potential is conserved. Note that the interchange insta-
bility alone can generate zonal flow as long as a poloidal
asymmetry on the density or potential - even of low am-
plitude - is present. For the drift-waves case, Fig.9b, one
can observe a quasi-symmetric pattern with an oscilla-
tory behavior. The maximum magnitude of the zonal
flow is found to be comparable to the ballistic motion
described above, typically ∼ 0.02c0. The combined case
is similar to the drift-waves only case, with the exception
that the zonal flows undergo a slight radial shift because
the potential lies close to the density coherent structure.
Interestingly, the most dense substructure is associated
with a stronger zonal flow generation.

B. Interchange dominated case

While the previous cases - where each instability yields
the same growth rate - are a great framework to study
the effect of drift-waves and interchange in a controlled
way, it appears that the drift-waves instability domi-
nates the overall behavior of the structure relaxation.
One consequence is that the case combining both insta-
bilities appears quite different from the typical “mush-
room” shape of blobs observed in experiments, e.g. see
[11, 16], and which is generally qualitatively retrieved
in similar simplified models [23–25]. This suggests that
the contribution of the interchange to the growth rate
should be greater than the one due to drift-waves to
be closer to SOL conditions. In consequence, to com-
plete this study, a new case - analogous to the com-
bined drift-waves/interchange “DW+I” case (see Table
II) - is run with the interchange parameter increased to
g = 4 × 10−3 and with the overdensity initialized at
xod = 32ρ0. For easier interpretation, this same case
without density/potential coupling, i.e. without drift-
waves instability, is also considered. The density struc-
ture evolution for these two new cases is displayed in
Fig.10.

As expected, the dynamics - in particular the radial
transport due to the interchange - is faster. For both
cases, in the early stage of the evolution, one can recog-
nize the typical “mushroom” shape characteristic of these
SOL transport models [23, 25]. Here the boosted inter-
change parameter accounts for spiraling wings to develop
along the radial path of the overdense structure. This fea-
ture was not observable in previous cases, likely because
of the particle spreading along the iso-potential being
damped by the density diffusion term in Eq(1a). This
behavior appears discrete in time, with chunks of density
detaching from the bulk structure at a somewhat regular
frequency. Apart from this feature, the case with only

interchange is quite similar to the one studied in the pre-
vious section, with a conserved poloidal symmetry and
the initial overdense region that gradually splits into two
substructures. The case with both instabilities, but dom-
inated by interchange, appears drastically different from
the “DW+I” case studied earlier. In the early stage, as
expected, only a slight poloidal asymmetry in the density
is noticeable with, this time, the radial drift overcoming
the previously dominating rotation of the overdense re-
gion. However, at an intermediate stage Ω0t ≈ 400, the
density bulk splits into two similar substructures with
irregular shapes. This splitting, which occurs early com-
pared to the case with only interchange, can be qualita-
tively appreciated in Fig.11 which displays the structure
evolution during this event. This closeup look indicates
that the splitting is preceded by a rotating motion of the
density bulk, characteristic of the drift-wave instability,
accelerating the initial structure splitting. A remarkable
feature is that, compared to the case combining both
instabilities with similar growth rates, the resulting sub-
structures are about symmetric poloidally with respect
to the y = yod line.

Concerning the mean flux, displayed in Fig.12, the
characteristics observed in the previous sections hold. In
the case with only interchange, shown in Fig.12a, the
transport is outward and ballistic, as observed experi-
mentally [6]. The associated velocity associated with the
pink dotted line representing the ballistic motion is about
∼ 0.2c0, i.e. about 10 times the one observed previously.
The spiraling wings detaching from the overdense struc-
ture are also noticeable in this plot and carry a small
portion of the overall transport. For the case combin-
ing both instabilities, displayed in Fig.12b, the trans-
port appears similar to the case with only interchange in
the early stage, but progressively slows down and ends
earlier. This behavior is consistent with the structure
evolution in Fig.10, the drift-waves instability seems to
effectively break big structures into smaller ones while
spreading them poloidally.

Finally, the zonal flow evolution of the case combining
both instabilities can be observed in Fig.13. Note that
the case with only interchange, as in the previous case
with a weaker interchange parameter, does not generate
any zonal flow. While the previous case combining both
instabilities with a weaker interchange drive exhibited
a short-lived oscillatory behavior of zonal flow genera-
tion (see Fig.9c) this new case is different. Indeed, here
the zonal flow generation is uninterrupted, due to the
chunk of density detaching from the bulk of density that
keeps propagating outward. As the drift-waves instabil-
ity breaks the poloidal symmetry of the initial overdense
region, the interchange instability contributes to the gen-
eration of finite zonal flows.
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V. DISCUSSION AND CONCLUSION

Single relaxation events have been analyzed under
drift-waves and interchange instability. This investiga-
tion is based on numerical simulations using the code
tokam2d and evolution equations of the density and
electric potential in a 2D domain with conditions akin
to SOL. Simplifying the parallel loss terms, in particular
by retaining only the linearised form, allows one to
monitor the instability mechanism driving turbulent
transport, either considering a single drive or combining
them. The linear analysis of the equations yields the
dispersion relation and the instability growth rate.
This analysis is used to determine the sets of control
parameters to be used in the simulations. Parameters
are chosen to enforce identical growth rates for the
interchange and drift-waves instabilities [20]. It is to be
underlined that forms of the Kelvin-Helmholtz instabil-
ity can also play a role in the evolution of the E×B flows.

The present model couples the density field to the elec-
tric potential with equations that stem from the particle
and charge conservation equations, in that, following the
pioneer papers [26, 27, 37]. If wished, one can readily
substitute the density with the electron thermal energy
and recover similar equations.

The single relaxation events are obtained with pre-
pared initial conditions, a circular high-density region in
the plane transverse to the magnetic field. Without an
external source, this overdense region relaxes towards the
background uniform density. With the interchange insta-
bility only, the electric drift governs a displacement of the
overdense structure together with a change of its shape
with the main density peak narrowing in the radial di-
rection and extending poloidally. The electric potential

dipole that onsets the E × B motion is a signature of
the mechanism at work. At a later stage, the relaxation
pattern exhibits a structure of the electric potential in
the wake of the motion, and a splitting of the main den-
sity peak at the forefront. The initial radial motion of
the density forefront is ballistic. In the absence of an
initial poloidal density imbalance, this relaxation event
generates zero net zonal flows.

Under the influence of drift-wave instability alone, the
overdense region exhibits a distinct behavior: it rotates
around the positive peak of the electric potential, which
was aligned with the density peak. The spinning over-
dense region generates spiraling arms of density, spread-
ing out the density radially and poloidally, but without
enforcing a net displacement of the mass center. Even-
tually, the overdense structure breaks into two coherent
substructures, rotating around the same initial peak of
positive potential. An alternating short-lived zonal flow
pattern is generated.

When both instabilities are accounted for, with each
contributing equally to the total growth rate, a mix
of the relaxation processes associated with isolated
instabilities is observed. A slight initial misalignment of
the electric potential on the overdense region generates
a response that is typical of the drift wave relaxation
process, but with a poloidal of density for each arm -
en eventually each substructure - that develops during
the spinning motion. On top of that, a net radial
displacement of the density peak is observed, which
is reminiscent of the interchange relaxation process.
Compared with a situation with only the interchange
instability, this motion is slower and put to an end way
more quickly. Consequently, this combined case gener-
ates less transport than the case with only interchange
even though the maximum growth rate is twice as big.
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The zonal flow pattern is similar to the one due to
the drift-waves instability, and slightly favors positive
amplitudes.

Finally, a situation considering both instabilities but
where the interchange dominates is considered to be more
representative of experimental observation, where a typ-
ical “mushroom” shape of blobs is witnessed. Two new
main features are observed. The first feature is the inter-
mittent deposition of chunks of density along the rapid
radial motion of the overdense region through the spiral-
ing motion of “wings” developing at each poloidal end of
the bulk structure. This behavior is due to the boosted
interchange drive allowing a faster redistribution of par-

ticles along the electric potential dipole. The second fea-
ture is the splitting of the initial overdense regions into
two substructures, resulting from the spinning due to the
drift-waves instability, which almost preserves a poloidal
symmetry.
This work reveals intricate interactions between drift-

wave and interchange instabilities, which can mostly be
explained by the behavior of each instability taken sepa-
rately. In addition, this work is also meant as a pioneer-
ing study for establishing a systematic numerical method
for detecting structures in turbulent plasmas. Structure
identification is appealing for filtering turbulent events in
simulations and experimental data.
This research is supported by the National Research
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Joseph Fourier (Grenoble ; 1971-2015) (1997).

[2] Y. Sarazin, X. Garbet, Ph. Ghendrih, and S. Benkadda,
Physics of Plasmas 7, 10.1063/1.873947 (2000).

[3] S. I. Krasheninnikov, Physics Letters A 283,
10.1016/S0375-9601(01)00252-3 (2001).

[4] D. A. D’Ippolito, J. R. Myra, and S. J. Zweben, Physics
of Plasmas 18, 10.1063/1.3594609 (2011).

[5] S. I. Krasheninnikov, D. A. D’ippolito, and
J. R. Myra, Journal of Plasma Physics 74,
10.1017/S0022377807006940 (2008).

[6] M. J. Choi, J.-M. Kwon, L. Qi, P. H. Diamond, T. S.
Hahm, H. Jhang, J. Kim, M. Leconte, H.-S. Kim,
J. Kang, B.-H. Park, J. Chung, J. Lee, M. Kim, G. S.
Yun, Y. U. Nam, J. Kim, W.-H. Ko, K. D. Lee, J. W.
Juhn, and t. K. Team, Plasma Phys. Control. Fusion 66,
10.1088/1361-6587/ad4176 (2024).

[7] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59,
10.1103/PhysRevLett.59.381 (1987).

[8] N. B. Ayed, A. Kirk, B. Dudson, S. Tallents, R. G. L.
Vann, H. R. Wilson, and t. M. team, Plasma Phys. Con-
trol. Fusion 51, 10.1088/0741-3335/51/3/035016 (2009).

[9] N. Bisai, S. Banerjee, S. J. Zweben, and A. Sen, Nucl.
Fusion 62, 10.1088/1741-4326/ac3f1a (2022).

[10] J. A. Boedo, D. L. Rudakov, R. A. Moyer, G. R. McKee,
R. J. Colchin, M. J. Schaffer, P. G. Stangeby, W. P. West,
S. L. Allen, T. E. Evans, R. J. Fonck, E. M. Hollmann,
S. Krasheninnikov, A. W. Leonard, W. Nevins, M. A.
Mahdavi, G. D. Porter, G. R. Tynan, D. G. Whyte, and
X. Xu, Physics of Plasmas 10, 10.1063/1.1563259 (2003).

[11] R. J. Maqueda, D. P. Stotler, and t. N. Team, Nucl. Fu-
sion 50, 10.1088/0029-5515/50/7/075002 (2010).

[12] S. H. Müller, A. Diallo, A. Fasoli, I. Furno, B. Labit, and
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