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A B S T R A C T   

Sentinel-3 supports governmental policies and European programmes such as the Copernicus Global Land Service with daily monitoring of the land surface by 
measuring the Earth's surface with its multi-band wide-swath visible and near-infrared radiometers. To fully exploit Sentinel-3 data sets, performing a correction of 
directional effects caused by the land surface reflectance anisotropy properties is mandatory. This correction requires first an estimation of the bidirectional 
reflectance distribution function (BRDF) to be properly achieved. The quality and robustness of global estimates of key land surface variables derived from space- 
borne sensors depend clearly on an accurate assessment of the spectral BRDF. 

Here, we present an algorithm aiming at harnessing the Sentinel-3's wide imaging swath to retrieve the land surface BRDF, approximating it via a kernel-driven 
semi-empirical model which can then be used to normalise the observations to a common Sun-sensor geometry. Our algorithm, named ReBeLS (Regularised BRDF 
inversion for Land Surface), uses a temporally regularised BRDF inversion approach and, together with prior knowledge of the land surface BRDF obtained from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, assimilates Sentinel-3 surface reflectance observations. We focus on the results derived from 
observations provided by the Sentinel-3 Ocean and Land Colour Instrument (OLCI) sensors; however, the algorithm can also be applied to reflectance observations 
acquired by the Sea and Land Surface Temperature Radiometer (SLSTR). The retrieved BRDF model parameters reproduce within uncertainties the directional 
signature as seen by the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor. The generated Sentinel-3 normalised surface reflectance products are a significant 
advance compared with time series of directional surface reflectance and maximum value composite images, showing a statistically significant (p≪0.05) correlation 
(r > 0.9) with VIIRS nadir BRDF-adjusted surface reflectance. Furthermore, the ReBeLS Sentinel-3 BRDF products offer enough flexibility to allow users to compute 
spectral surface albedos or to normalise surface reflectance to any Sun-sensor configuration.   

1. Introduction 

The Sentinel-3 (S3) constellation sensors' large imaging swaths – 
Ocean and Land Colour Instrument (OLCI): 1270 km1; Sea and Land 
Surface Temperature Radiometer (SLSTR): 1400 km [nadir] and 740 km 
[oblique]2 – secure a daily coverage of the Earth at the expense of a 
different geometry of observations between satellites overpasses. It is 
well known that the radiance of the Earth's land surface is highly 
anisotropic (Breon and Maignan, 2017). Consequently, measured radi
ances from Sentinel-3 are impacted by the sensor acquisition geometry 
and the Sun's spectral irradiance direction. It follows that those radi
ances issued from the different parts of the Sentinel-3 wide imaging 
swaths cannot be directly compared without performing an anisotropy 

effects correction. 
To fully exploit the high revisit period provided by the Sentinel-3 

constellation, knowledge of the surface's bidirectional reflectance dis
tribution function (BRDF) is required. The BRDF describes the radiation 
scattering in one direction given the direction of illumination. By 
approximating the bidirectional reflectance factor (BRF) (Nicodemus 
et al., 1977; Schaepman-Strub et al., 2006) derived from the observed 
radiances of an arbitrary surface with a BRDF model, the directional 
effects induced by the land surface anisotropy can be modelled and its 
effects removed from the radiometric signal. The latter procedure is 
commonly known as BRDF correction, which leads to an angular nor
malisation or BRDF-adjustment. This can be achieved by finding a set of 
model parameters (BRDF descriptors) obtained via a BRDF model 
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inversion (Roujean, 2017). 
Because of their good performance and reasonable computational 

costs, the category of semi-empirical kernel-driven linear BRDF models 
has a long history in operational chains of production of BRDF and 
surface albedo products (Carrer et al., 2021; Carrer et al., 2018; Geiger 
et al., 2008; Schaaf et al., 2002). Inverting kernel-driven BRDF model is 
often an ill-posed problem (Combal et al., 2003; Kimes et al., 2000) due 
to typically insufficient angular sampling and the directional distribu
tion of the available sampling (Gao et al., 2002; Lucht and Lewis, 2000). 
To improve the ill-posed nature of the problem, additional constraints 
are often deployed, such as the assumption of surface reflectance sta
bility over a relatively short period of time (Schaaf et al., 2002), or its 
slowly varying evolution (Quaife and Lewis, 2010). 

The Moderate Resolution Imaging Spectroradiometer (MODIS) 
MCD43 product (Schaaf et al., 2002) has received wide usage from the 
community. The product accumulates all the cloud-free observations in 
a 16-day time frame to form a data set serving to invert the BRDF model 
and retrieve the descriptor parameters. For MODIS Collection 6 (Wang 
et al., 2018), a sliding exponential temporal weighting is used to provide 
a daily estimate of the BRDF parameters. This approach is supplemented 
by a backup “magnitude inversion” algorithm (Strugnell et al., 2001) 
when there are not enough observations within the 16-day window, or 
outliers due to cloud, cloud shadow or otherwise leading to a poor 
retrieval. A similar approach is used for the VNP43 product derived from 
the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors (Liu et al., 
2017). According to Wang et al. (2018), over the European continent, in 
the MCD43 C6 product, only 35% of the retrievals are produced with the 
full algorithm, whereas 38% and 27% of the retrievals being respectively 
backup and “no retrieval”. The backup algorithm can provide reliable 
results, but caution must be exercised. While both MCD43 and VNP43 
have a quality assurance (QA) layer, neither of the two products pro
vides a per-pixel uncertainty estimates when such information in 
derived products has been recently highlighted in the recent ESA Earth 
observation calibration and validation strategies (Niro et al., 2021). The 
use of a 16-day window, based on Privette et al. (1997) is inherent to the 
MODIS revisiting strategy and results in large gaps within a European 
context. 

The Copernicus Global Land Service, Copernicus Climate Change 
Service, and study 2 of the Copernicus 4 Core Product Algorithm Studies 
(COPA) project, require the development of a state-of-the-art algorithm 
(Gastellu-Etchegorry et al., 2022) to retrieve the land surface BRDF from 
Sentinel-3 constellation's BRF measurements. The goal was to provide 
the long-term continuity of the BRDF-corrected NDVI (León-Tavares 
et al., 2021) and surface albedo (Carrer et al., 2021) products as a 
follow-on of the PROBA-V mission (Dierckx et al., 2014), decom
missioned in 2021, with Sentinel-3 (Sánchez-Zapero et al., 2023). To 
satisfy users requirements of constructing a dynamic database of global 
BRDF products, the ReBeLS (Regularised BRDF inversion for Land Sur
face) algorithm has been developed. This approach builds on previous 
BRDF and albedo products, such as MCD43 or GlobAlbedo, and exploits 
both the simplicity and the suitability of linear BRDF kernel models. 
ReBeLS uses a prior estimate of land surface reflectance anisotropy to 
constrain the parameter inversion, as in GlobAlbedo (Muller et al., 
2013), and imposes an additional constraint on the smooth temporal 
evolution of the BRDF parameters (Quaife and Lewis, 2010). Phrasing 
the problem in a Bayesian context allows for an effective and traceable 
treatment of per-pixel uncertainties. The methodology implemented in 
ReBeLS does not require a backup algorithm and provides an estimate of 
the land surface BRDF even in periods of persistent cloud coverage, the 
quality of which can be quantified by its associated uncertainty. Unlike 
the MCD43 and VNP43 methodologies, the BRDF inversion problem in 
our approach is stated so that no fixed accumulation period is needed. 

Phrasing the inversion problem in Bayesian terms provides an 
elegant way of coherently adding constraints expressed as priors and 
propagating uncertainties. One such way of adding extra information is 
to add an a priori estimate of the model parameters derived from 

independent observations, or from a climatology (Muller et al., 2013). 
An additional useful constrain is the already mentioned smooth varia
tion of the model parameters over time (Quaife and Lewis, 2010; Wang 
et al., 2018). 

This article is structured as follows: Section 2 describes the datasets 
used to feed and evaluate the algorithm. Section 3 describes the ReBeLS 
methodology. It is important to notice that the ReBeLS BRDF product is a 
set of spectral BRDF descriptors that serve as a weight to the kernels of 
the semi-empirical kernel-driven BRDF model. As such, they cannot be 
compared directly with in-situ measurements nor to BRDF descriptors 
retrievals obtained with another sensor. However, the ReBeLS BRDF 
descriptors can be evaluated by their ability to reproduce the land sur
face anisotropy observed by another sensor. The results of the latter 
validation approach are described in Section 4. Finally, our conclusions 
and the algorithm's outlook are presented in section 5. Hereafter, we 
indistinctly refer to the BRF as surface reflectance throughout the 
manuscript, and all mentions of MODIS and VIIRS products concern 
version V006 and V001, respectively. 

2. Data 

2.1. Sentinel-3 observations 

The input dataset to the BRDF retrieval methodology presented in 
this article is the atmospherically corrected surface reflectance and 
acquisition geometries provided by the Copernicus Global Land Service. 
Although this Sentinel-3 derived land surface reflectance dataset is not 
yet in the public domain, its preprocessing stages are fully described in 
its ATBD.3 To summarise the latter, the Sentinel-3 (A and B) OLCI and 
SLSTR (nadir) L1b data products are coregistered and resampled to a 
common spatial resolution using the open-source Level 1C SYN tool.4 

Pixel identification and reprojection processing are performed on the 
resulting product, referred to as the L1C SYN product. 

Further, an atmospheric correction based on SMAC (Rahman and 
Dedieu, 1994) – and auxiliary meteorological data from the MERRA-2 
database5 – is applied to the OLCI and SLSTR L1C SYN TOA radiances 
to obtain Top of Canopy (TOC) surface reflectances. Full details on the 
atmospheric correction can be found in the Copernicus Global Land 
Service ATBD of the atmospheric correction applied to Sentinel-3 data. 

The Sentinel-3 TOC surface reflectance products are defined on a 
global 333 m WGS 84 grid divided into 10◦ × 10◦ tiles that follow the 
PROBA-V grid tiling system. These tiles are distributed as NetCDF files. 
TOC reflectances and uncertainties (associated with atmospheric 
correction procedure) are provided in each file for 20 Sentinel-3 spectral 
bands (15 OLCI bands, 5 SLSTR bands). Moreover, four quality infor
mation flags and geometry layers for OLCI and SLSTR-nadir are also 
included in the NetCDF files. For full details on these datasets, we refer 
the reader to the aforementioned ATBD . 

2.2. BRDF prior database (MCD43P) 

Numerical inversion of kernel-driven semi-empirical models is 
typically used to approximate the land surface BRDF (for a review, see 
Roujean, 2017). The linear least-squares method is commonly used to 
solve the BRDF inversion problem. Sometimes, the solution may prove 
unstable and physically unacceptable (e.g. negative values associated 
with BRDF descriptors and BRDF-adjusted surface reflectances). This 
occurs when the BRDF inversion is undetermined due to insufficient 
angular sampling, the presence of outliers or other sources of uncer
tainty in the surface reflectance observations, which leads to an ill-posed 

3 https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_ATBD_S3-AC-V1_I1. 

30.pdf  
4 https://github.com/bcdev/l1c-syn-tool  
5 https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ 
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problem (Combal et al., 2003; Kimes et al., 2000). The ReBeLS algorithm 
uses a climatology of BRDF descriptors (kiso - Isotropic kernel weight; kvol 

– Volumetric kernel weight; kgeo – Geometric kernel weight) built from 
MODIS MCD43A16 and MCD43A27 products version V006 (Schaaf et al., 
2011; Schaaf et al., 2002; Wang et al., 2018) to constrain the results of 
the BRDF inversion, as in GlobAlbedo (Muller et al., 2013). The MCD43P 
dataset is here used as a priori parameter distribution that de- 
emphasises solutions that differ from climatology but that may yield 
marginally better fits to the observations. 

As a first step in assembling the MCD43P prior database, MCD43A1 
and MCD43A2 products for each Monday between January 1, 2013, and 
December 31, 2019, are downloaded from the MOTA LP DAAC server8 . 
Then, we converted MCD43A1 and MCD43A2 tiles from MODIS (sinu
soidal, 500 m) to Sentinel-3 OLCI (Plate-Carre, 333 m) grid projection 
and pixel size using GDAL (GDAL/OGR contributors, 2022). Afterwards, 
good-quality BRDF descriptors are screened by decoding the BRDF_Al
bedo_Band_Quality (for all bands) layer in the MCD43A2 product. The 
BRDF descriptors' mean and variance are computed as in GlobAlbedo9 

(Lewis et al., 2012b; Muller et al., 2011, 2013), taking into account 
statistical weights associated with the qualitative quality assurance flag 
of the MCD43A1 products. Lastly, linear interpolation is applied to gap- 
fill the MCD43P climatology. It should be emphasised that this final step 
is applied to all tiles, although predominantly affecting those at the 
highest latitudes. Hereafter, the MCD43P dataset is referred throughout 
the article as the dynamic prior. The term “dynamic” in this context 
means that the prior BRDF descriptors are not constant throughout the 
year and it should not be interpreted as regularly updated. Thus, once 
the dynamic prior has been assembled, the operational status of MODIS 
(or any other sensor used to assemble the dynamic prior) does not pose 
any risk to ReBeLS processing chains. 

2.3. PROBA-V 

Time series of atmospherically corrected surface reflectance for the 
Aerosol Robotic NETwork (AERONET)10 sample were extracted from 
the daily synthesis of 333 m PROBA-V TOC product (Dierckx et al., 
2014) from July 2018 to June 2019. The quality of the PROBA-V 
atmospherically corrected surface reflectances was screened using the 
Status Map (SM) layer included in the products and following the rec
ommendations given in the PROBA-V product manual (Wolters et al., 
2018). We only keep pixels when SM denotes a clear measurement 
associated with land and good radiometry quality in the NIR channel. 

2.4. VIIRS 

The VIIRS VNP09GA V00111 product provides atmospherically cor
rected surface reflectances derived from the VIIRS sensor onboard the 
Suomi National Polar-Orbiting (Suomi NPP) platform. We consider the 
VNP09GA v001 product as a reference dataset to cross-validate the 
BRDF model retrieved from Sentinel-3 OLCI surface reflectance mea
surements – see section 4.1.1. Since the Sentinel-3 BRDF-descriptors are 
retrieved for each Monday of the period ranging from July 2018 to June 
2019, we downloaded VNP09GA tiles comprising the spatial extent of 
Europe for each Monday of the period mentioned above from the LP 
DAAC server.12 Further, using GDAL (GDAL/OGR contributors, 2022), 
we converted the VNP09GA tiles from sinusoidal to PlateCaree projec
tion and resampled its original spatial resolution of 500 m to 333 m to 

match Sentinel-3 OLCI data. Following the coding of the VNP09GA v001 
quality flags presented in Table 10 of the VNP09 ATBD (see Roger et al., 
2016), we rejected pixels if the quality flag QF1 indicates confident 
cloudy or night. In addition, the radiometric quality in spectral bands I1 
and I2 should be categorised in the quality flag QF6 as good for pixels to 
be considered in the assembled reference dataset. 

The VIIRS VNP43IA4 v001 nadir BRDF-adjusted reflectance (NBAR) 
product13 derived from VIIRS surface reflectance observations is used in 
our analyses to explore the agreement of our Sentinel-3 BRDF-adjusted 
reflectance estimates with a reference BRDF-adjusted reflectance prod
uct. We applied the same methodology as described above to transform 
the original VNP43IA4 data into the spatial grid and pixel size of the 
Sentinel-3 data. By interpreting the quality layer in the VNP43IA4 
product, we consider only those pixels for which the BRDF_Albedo_
Band_Mandatory_Quality_I2 indicates full BRDF inversions. 

3. Methodology 

3.1. BRDF model inversion 

The bidirectional surface reflectance (ρ) measured with the Sentinel- 
3 optical sensors can be approximated as the linear combination of three 
angular functions (BRDF kernels – fiso, fvol, fgeo) weighted by the BRDF 
descriptors (kiso,kvol,kgeo), 

ρ(θs, θv,ϕr, λ) = kiso(λ)fiso(θSZA, θVZA,ϕr)+ kvol(λ)fvol(θSZA, θVZA,ϕr)

+ kgeo(λ)fgeo(θSZA, θVZA,ϕr)
(1)  

where λ represents wavelength, θSZA and θVZA are the Sun and viewing 
(sensor) zenith angles, respectively. The relative azimuth angle (ϕr =

ϕVAA − ϕSAA) is the difference between viewing azimuth angle (ϕVAA)

and Sun azimuth angle (ϕSAA). The BRDF kernels are approximations 
made from physically-based models (i.e. radiative transfer theory) that 
aim to retain some physical interpretation while allowing efficient nu
merical inversion. fiso is an isotropic function that accounts for bidirec
tional reflectance while observing at nadir viewing and the overhead 
Sun (fiso = 1). fvol is a function that replicates the surface's volume 
scattering characteristics (Ross, 1981; Roujean et al., 1992a) and fgeo is a 
geometric function that accounts for the impact of shadows and the 
geometrical structure of surface protuberances (Li and Strahler, 1985). 

MODIS has been observing the Earth since 2000, providing the 
remote sensing community with a large variety of Earth observation 
products. Among those, the MCD43 suite of products arises as the 
longest temporal record of land surface BRDF and albedo estimates at 
sub-km spatial resolution. The MCD43 algorithm assumes that a linear 
combination of the RossThickLiSparseReciprocal (commonly known as 
“MODIS kernels”) angular functions can approximate the land surface 
reflectance. Full expressions for these BRDF kernels can be found in the 
literature (Muller et al., 2013; Wanner et al., 1995). Despite the limi
tations of the MODIS family of kernels to accurately reproduce the hot- 
spot effect (Maignan et al., 2004), it becomes natural to exploit the long- 
term time series of MCD43 BRDF descriptors to calculate a climatology 
that could serve as prior information on the land surface BRDF. For this 
reason, ReBeLS adopts the same family of BRDF kernels used in the 
MCD43 product to approximate the land surface reflectance. 

The wavelength-dependent BRDF descriptors (kiso,kvol,kgeo) from Eq. 
(1) are then found via solving the BRDF inversion problem, which can be 
stated as follows: What is the optimal BRDF model that represents the 
observed surface reflectances acquired under different illumination and 
viewing conditions? The solution to the BRDF inverse problem requires 
determining the wavelength-dependent BRDF descriptors using an 
optimal estimation approach. 

Since the BRDF inversion is often an undetermined problem, noisy 

6 https://lpdaac.usgs.gov/products/mcd43a1v006/  
7 https://lpdaac.usgs.gov/products/mcd43a2v006/  
8 https://e4ftl01.cr.usgs.gov/MOTA/  
9 http://www.globalbedo.org/  

10 https://aeronet.gsfc.nasa.gov/  
11 https://lpdaac.usgs.gov/products/vnp09gav001/  
12 https://e4ftl01.cr.usgs.gov/ 13 https://lpdaac.usgs.gov/products/vnp43ia4v001/ 
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observations and outliers (undetected clouds or shadows, etc.) can result 
in physically questionable solutions. A Bayesian context therefore allows 
us to introduce constraints (prior knowledge of the model temporal 
evolution and parameter values) to stabilize the inversion procedure and 
to quantify the effect of these constraints in the uncertainty estimation. 
In the ReBeLS BRDF inverse problem formulation, the measurements 
(surface reflectance observations) are assumed to be corrupted by ad
ditive zero mean Gaussian noise. The a priori probability density func
tion (PDF) for the BRDF descriptors is assumed Gaussian. The goal is to 
estimate the a posteriori PDF of the BRDF descriptors. Given the line
arity of the BRDF model and the use of Gaussian statistics (Tarantola, 
2004), the posterior PDF will also be a multivariate Gaussian (defined by 
a posterior mean vector and a covariance matrix): 

P(x|R) ∼ exp
(

−
1
2
(
x − xposterior

)T C− 1
xposterior

(
x − xposterior

)
)

(2)  

where xposterior and C− 1
xposterior 

are the mean and covariance matrix of the 
maximum likelihood estimator of P(x) and are obtained by minimising a 
cost function J(x) (taken to be to the log of the posterior PDF expressed 
as follows: 

J(x) = Jobs(x) + Jprior(x) + Jmodel(x)

=
1
2
[ R − H(x,Ωsensor,ΩSun) ]

T C− 1
obs[R − H(x,Ωsensor,ΩSun) ]

+
1
2
[
x − xprior

]T C− 1
prior

[
x − xprior

]

+
1
2
[x − M(x) ]T C− 1

model [x − M(x) ]

(3) 

The terms on the right-hand side of the cost functions can be un
derstood as follows: Jobs(x) measures the mismatch between the model's 
predicted values H(x,Ωsensor,ΩSun) of the surface reflectance and the 
observed ones (R). The kernel-driven semi-empirical RossThickLi- 
SparseReciprocal BRDF model is represented by H(x,Ωsensor,ΩSun)

where Ωsensor and ΩSun are the sensor (θVZA, ϕVAA) and Sun geometries 
(θSZA,ϕSAA), respectively. Jprior(x) represents the constraint introduced by 
the prior knowledge of the BRDF descriptors xprior and their associated 
uncertainties C− 1

prior obtained from the auxiliary MCD43P dataset. Since 
the wide imaging swaths of the Sentinel-3 instruments have the poten
tial to enable a successful BRDF inversion without requiring prior in
formation (if enough cloud-free observations with sufficient angular 
diversity are available over a non-changing surface), one might wonder 
about the need of a dynamic prior of BRDF-descriptors constraint. 
However, our experience with sensors such as SPOT-VGT, MERIS and 
PROBA-V (León-Tavares et al., 2021; Lewis et al., 2012b; Muller et al., 

2013; Roujean et al., 2018), which have similar imaging swath widths 
and orbits as Sentinel-3, suggests that using a dynamic prior constraint 
helps to (i) stabilize inversions in periods with few observations, (ii) 
dampen the effect of outliers due to unfiltered clouds or cloud shadows 
and (iii) introducing some realistic temporal dynamics during long pe
riods of persistent cloud cover. These remarks are acknowledged by 
other operational BRDF processing chains, such as LandSaf (Carrer et al., 
2021; Carrer et al., 2018; Geiger et al., 2008), where despite the fact that 
the MSG-SEVIRI provides a good sampling of the BRDF (as depicted in 
Fig. 3 of the LandSaf albedo ATBD14), their processing chain still re
quires prior estimates to stabilize the kernel parameter inversion. 

Jmodel(X) in Eq. (3) is a constraint on the temporal evolution of the 
BRDF descriptors where M is the dynamic model. Using a first-order 
difference model represented by matrix B 

B =

⎡

⎢
⎢
⎣

1 − 1 0 ⋯ 0 0
0 1 − 1 … 0 0
⋮ ⋱ ⋱ ⋯ − 1 0
0 0 0 ⋯ 1 − 1

⎤

⎥
⎥
⎦ (4)  

the constraint to the temporal evolution of the state vector x takes the 
form Jmodel(x) = γ xT ( BT B

)
x. Here, the first-order difference model 

matrix is applied at a lag of one day to exert the constraint that the 
solution for tomorrow will be the same as the solution of today (Gómez- 
Dans et al., 2016; Lewis et al., 2012a; Quaife and Lewis, 2010; Zobitz 
et al., 2020). The term γ is the regularisation parameter representing the 
uncertainty on the assumption that the difference of the BRDF de
scriptors between consecutive days should be zero (Quaife and Lewis, 
2010). The value of the regularisation parameter is deemed constant 
within ReBeLS, and section 6 (Appendix A) describes the methodology 
implemented to find it. 

The main ReBeLS algorithm described above is applied to time series 
of individual Sentinel-3 pixels, with processing conducted indepen
dently for each spectral band. A schematic representation of the pro
cessing sequence is delineated in Fig. 1. For a more comprehensive 
description of the Inversion stage and its intermediate steps (A, B1-B3 in 
Fig. 1), we refer the reader to section Appendix B. Subsequently, in the 
following subsection we elaborate on the BAR stage. In summary, the 
ReBeLS BRDF retrieval methodology should be understood as a statis
tical blending where the goodness of fit to the observations is maximized 
simultaneously by penalizing high-frequency components of the tem
poral BRDF descriptors trajectories and solutions departing from the 
prior estimates. Finally, ReBeLS outputs the solutions at the cadence 

Fig. 1. Diagram illustrating the processing flow for Sentinel-3 BRDF modelling using ReBeLS. 
The steps within the Inversion and Outputs (BAR) stages are described in Appendix B and section 3.2, respectively. It should be noticed that the processing is 
independently applied to each pixel and spectral band. 

14 https://nextcloud.lsasvcs.ipma.pt/s/SxANfxgaw5sSB63 accessed on 24April2023 

J. León-Tavares et al.                                                                                                                                                                                                                          

https://nextcloud.lsasvcs.ipma.pt/s/SxANfxgaw5sSB63


Remote Sensing of Environment 302 (2024) 113967

5

desired. For the examples in section 4, the output cadence is set to each 
Monday but could be daily (see Fig. 7) or dekadal (Sánchez-Zapero et al., 
2023). ReBeLS does not depend on a fixed composite window period and 
provides uncertainties associated with the BRDF descriptors. ReBeLS 
allows users to choose the most appropriate accumulation period for 
their needs rather than relying on a fixed composite window. An 
example of the benefits of this feature is demonstrated by the varying 
composite windows used in the production of the CGLS NDVI product15, 
which is computed from ReBeLS BRDF-adjusted surface reflectances and 
the ReBeLS-derived C3S surface albedo product.16 The former employs a 
30-day composite window, while the latter uses composite windows of 
30 days and 365 days for near-real-time and back-processing products, 
respectively. 

Moreover, ReBeLS does not require a backup algorithm for periods 

where the input surface reflectance time series is sparsely populated. 
However, it is worth mentioning that the solutions obtained during 
periods of poor data availability will be dominated by the dynamic prior 
(see section 2.2), which translates into a greater uncertainty in the 
retrieved BRDF descriptors. 

3.2. BRDF-adjustment 

Once ReBeLS has retrieved the BRDF descriptors – Outputs (CBD) in 
Fig. 1, it follows the computation of the BRDF-adjusted reflectance. To 
start with, ReBeLS computes the solar-zenith angle at local 10 AM 
(θSZA10am ) for each pixel and sets the normalisation VZA to nadir (θVZA =

0∘) – step C1 in Fig. 1. The BRDF-adjusted reflectance (also indistinctly 
referred to as BAR) is obtained – step C2 in Fig. 1 – using the retrieved 
BRDF descriptors and the RossThickLiSparse kernels computed for the 
normalisation geometry. This work computes BRDF adjusted re
flectances at nadir viewing and solar zenith angle at local 10 AM as 
follows: 

BAR = kiso + kvolfvol
(
θSZA10am , 0, 0

)
+ kgeofgeo

(
θSZA10am , 0, 0

)
(5) 

Fig. 2. RGB image of the Oa17 BRDF descriptors retrieved for 3rd June 2019. 
The colour channels are as follows: Red - kiso, green - kvol and blue kgeo. 

15 https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_ATBD_NDVI300m-V2_ 

I1.20.pdf  
16 https://datastore.copernicus-climate.eu/documents/satellite-albedo/C3S_COP_059_D-02_ATBD_ 

CDR-ICDR_SA_SENTINEL3_v3.0_PRODUCTS_v1.1.pdf 
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By assuming there is no covariance between BRDF descriptors, we 
propagate the BRDF retrievals uncertainties through the BAR calcula
tions to estimate the uncertainty associated with the BAR computations. 
To this end, we make use of the following expression. 

σBAR =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
kiso + σ2

kvol f
2
vol

(
θSZA10am , 0, 0

)
+ σ2

kgeo f 2
geo

(
θSZA10am , 0, 0

)√

(6)  

4. Results and discussion 

Here we evaluate the BRDF descriptors retrievals obtained with 
ReBeLS by inspecting their spatial consistency and ability to capture the 
intrinsic land surface reflectance anisotropy. We assembled mosaics 
from the ReBeLS BAR product and compared them against mosaics 
assembled with the MVC technique and those derived from the VNP43 
A4 products. To this end, we ran ReBeLS at a European scale using 
surface reflectance observations acquired with Sentinel-3 A and 
Sentinel-3 B OLCI sensors from June 2018 to June 2019. A weekly 
dataset of BRDF descriptors for OLCI spectral channels Oa08 (λcentre =

665nm) and Oa17 λcentre = 865nm) was obtained, and for brevity, we 
focus our analyses on the results obtained for Oa17 spectral band. But as 
it can be seen in section 4.1, the discussed results hold for band Oa08 as 
well. It should be emphasised that the ReBeLS algorithm can process 
data from any optical spectral band from the SLSTR instrument, as 
requested by the Copernicus Climate Change Service surface albedo 
product (Sánchez-Zapero et al., 2023). 

ReBeLS is designed to retrieve BRDF descriptors on a daily basis 
throughout a user-defined accumulation period, which, as previously 
mentioned, in this article has been set to one year. Subsequently, the 
discretion lies with the user to determine which of the daily BRDF de
scriptors are to be recorded as output data. It is noteworthy that in our 
analyses, we have opted to generate ReBeLS BRDF descriptors on a 
weekly schedule, aligning with the temporal frequency of the MCD43P 
dataset. Nevertheless, the temporal frequency for BRDF descriptor 
retrieval can be tailored to various intervals as per the user's re
quirements. For instance, it can be configured to operate on a daily basis, 
as exemplified in Fig. 7, or at dekadal intervals, in line with the 
Copernicus Global Land BRDF-corrected NDVI23 and Copernicus 
Climate Change Surface Albedo24 products. 

4.1. BRDF descriptors retrievals 

Fig. 2 displays an RGB image of the Oa17 BRDF descriptors corre
sponding to the 3rd June 2019. The colour channels are as follows: Red - 
kiso, green - kvol and blue kgeo. The spatial consistency of the ReBeLS 
BRDF retrievals at the Oa17 band can be appraised from the spatial 
patterns coinciding with most spatial features associated with land cover 
which is consistent with the assumption that there is a clear connection 
between BRDF descriptors and land cover types belonging to the same 
categorical class. Any difference within the same land cover class will 
likely be about the magnitude of the BRDF rather than its shape 
(Strugnell et al., 2001). Nonetheless, based on the authors' experience, 
for some land cover types, variations in stem density can induce 

different BRDF shapes within the same land unit. 
The ability of ReBeLS to reproduce the temporal evolution of the 

Sentinel-3 OLCI surface reflectance observations while maintaining a 
physically acceptable temporal evolution of BRDF-descriptors is exam
ined for three European FLUXNET17 stations (see Table 1). The selected 
sites have latitudes ranging from 38.5◦ to 51.0◦ and exhibit temporal 
variability to test the temporal trajectories of the BRDF retrievals. 

To estimate the goodness of the BRDF modelling, we compute the 
zeta-score (zsc) as follows: 

zsc =

(
reflectanceobs − reflectancefwd

)

⎛

⎜
⎜
⎝σ2

reflectanceobs
+ σ2

reflectancefwd

⎞

⎟
⎟
⎠

1/2 (7)  

where reflectanceobs and reflectancefwd are the observed and model fitted 
(using retrieved BRDF model in forward mode) surface reflectances, and 
their associated uncertainties are denoted by σ. The zeta-score's absolute 
value indicates whether observed and model-fitted surface reflectances 
agree within uncertainties. A zeta-score with an absolute value above 
three should be regarded as a poor fit, while an absolute value of a zeta- 
score lower than two (three) shall be considered a good (an adequate) fit 
to the data. For each of the stations listed in Table 1, we report the 
number of observations used throughout the ReBeLS inversion, the 
average zeta-score value and its standard deviation for Oa08 and Oa17 
spectral bands in Table 2. 

The top-left panel of Fig. 3 shows the observed (open circles) and 
model-fitted (filled circles) Sentinel-3 surface reflectance time series in 
spectral band Oa17 for the pixel closest to the FLUXNET site PT-Mi1 
(Portugal). The distribution of zeta-scores obtained for the Portuguese 
station is displayed in the bottom left panel of Fig. 3, where the colour 
bands are coded as follows: green denotes a good fit (|zsc| < 2), yellow 
represents an adequate fit (2 < |zsc| < 3), while points lying in the red 
band should be considered as a poor fit (|zsc| > 3). The temporal tra
jectories of the retrieved Sentinel-3 Oa17 BRDF descriptors trajectories 
obtained by the ReBeLS processor are shown on the right panels (top: 
kiso, middle: kvol, bottom: kgeo) of Fig. 3. The MODIS Band2 MCD43A1 
product for each Monday of the year considered is overplotted (red 
triangles in the right panels of Fig. 3) for comparison. 

From the bottom left panel of Fig. 3, most of the model fits lie within 
the green zeta-score band, suggesting that our BRDF model successfully 
reproduces the Sentinel-3 observations of the PT-Mi1 station at spectral 
band Oa17. Fig. 4 displays the ReBeLS results for PT-Mi1 in the spectral 
band Oa08, and from the zeta-score panel, it can be seen that the large 
majority of the model fits are within the ±2σ (green) band, although it is 
noticeable that few model fits are scattered across the yellow and red 
bands of the z-score panel which is reflected as an increase in the 
standard deviation of the zeta-score distribution as shown in Table 2. 

The BRDF model fits and descriptor trajectories for IT-Isp and DE-Hai 
are shown in Figs. 5 and 6, respectively. From the top left panel of Fig. 6 
and Table 2, it can be noticed that the availability of clear surface 
reflectance observations near the DE-Hai station is affected by a high 

Table 1 
List of stations used to assess the performance of the BRDF modelling.  

Site_ID Site_name IGBP classification Site details 

PT- 
Mi1 

Mitra II 
(Evora) 

Ever Broadleaf 
Forests (EBF) 

http://www.europe-fluxdata. 
eu/home/site-details?id=PT-Mi 
1 

IT-Isp Ispra ABC- 
IS 

Deciduous Broadleaf 
forests (DBF) 

http://www.europe-fluxdata. 
eu/home/site-details?id=IT-Isp 

DE- 
Hai 

Hainich DBF http://www.europe-fluxdata. 
eu/home/site-details? 
id=DE-Hai 

For a full description of the IGBP classes, see https://fluxnet.org/data/badm-dat 
a-templates/igbp-classification/. 

Table 2 
The number of observations used in the ReBeLS BRDF inversion and goodness of 
the model fits represented by the average (< zsc >) and standard deviation (σzsc ) 
of the zeta-score for each of the stations in Table 1.   

Oa08 
Nobs 

Oa17 
Nobs 

Oa08 
< zsc >,σzsc 

Oa17 
< zsc >,σzsc 

PT-Mi1 191 194 − 0.03, 1.24 − 0.07, 0.78 
IT-Isp 170 170 − 0.14, 1.49 0.11, 0.90 
DE-Hai 102 120 0.26, 0.86 − 0.07, 0.84  

17 https://fluxnet.org/ 
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frequency of cloud occurrence compared to the Italian (IT-Isp, Fig. 5) 
and Portuguese (PT-Mi1, Fig. 3) stations. Nevertheless, the retrieved 
BRDF model for DE-Hai provides a good fit for the observations that is 

consistent with the results for It-Isp and PT-Mi1 stations. 
The goodness of fit parameters for the three selected stations, see 

Table 2, show that throughout the year selected, the time-evolving 

Fig. 3. BRDF model retrieval results for station PT-Mi1 in Portugal. 
Top left panel: Observed and model fitted Sentinel-3 Oa17 surface reflectance time series. Bottom left panel: Zeta-score distribution over time; see text for description 
of colour bands. The temporal evolution of the BRDF descriptors for this station are shown in the right panels: isotropic (top), volumetric (middle) and geometric 
(bottom). BRDF descriptors retrieved from Sentinel-3 Oa17 data and MCD43A product are colour and symbol coded as shown in the legend. 

Fig. 4. Same layout as in Fig. 3 but for spectral band Oa08.  
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ReBeLS BRDF models can reproduce their observations on average 
within ±0.14σ and ±0.08σ, for Oa08 and Oa17, respectively. The 
goodness of fit relation with wavelength is expected as the effects of the 
atmosphere are more significant in the Oa08 spectral band. Thus, in the 
presence of surface reflectance observations likely affected by the at
mospheric correction procedure (or undetected outliers), the statistical 

blend at the core of the ReBeLS algorithm will sacrifice goodness of fit 
and try to come up with a solution that does not depart significantly 
from the priors. The latter can be gleaned from Table 2, where it is 
noticeable that the standard deviations of the zeta-score in the Oa08 
spectral band are higher than those in Oa17. Nevertheless, the average 
zeta-scores for both spectral bands are distributed around zero with 

Fig. 5. Same layout as in Fig. 3 but for station It-ISp, Italy.  

Fig. 6. Same layout as in Fig. 3 but for station De-Hai, Germany.  
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standard deviations < 1.5σ meaning that on average the BRDF models 
approximated by ReBeLS can reproduce well the surface reflectance 
observations in both spectral bands within uncertainties. 

In addition to the overall good fit of ReBeLS with the observations, 
the temporal trajectories of the BRDF descriptors retrieved are much less 
noisy than those of the MODIS MCD43A product, whereas their varia
tions tend to resemble to variations that are typical of a vegetation 
growth (Jin and Eklundh, 2014). This result is consistent with previous 
findings (Quaife and Lewis, 2010) and can be taken as evidence of the 
advantage of using a regularisation approach throughout the BRDF 
inversion. However, within the temporal regularisation approach 
implemented in ReBeLS, the regularisation parameter has been assumed 
as constant. Although our cross-validation exercise ensures that the 
chosen regularisation parameter value creates a reasonable trade-off 
between smoothing and goodness of fit, the assumption of a generic 
regularisation parameter for all pixels in the global Sentinel-3 image 
may lead to the omission of genuine abrupt changes on the land surface. 
This can be considered as a caveat to the algorithm as discussed in 
section 4.3. 

Since ReBeLS solves the BRDF inversion for each day comprised in 
the input reflectance time series, the weekly output cadence of the BRDF 
descriptors displayed in the above figures does not contribute to 
smoothing out the BRDF trajectories. To back up the latter argument, 
Fig. 7 shows the Sentinel-3 Oa17 surface reflectance observations used 
for the BRDF inversion (black circles) and the corresponding BRDF- 
adjusted surface reflectance (blue circles – see section 3.2) obtained 
from the daily retrieved BRDF descriptors, along with the nadir BRDF- 
adjusted time series from the MCD43A4 product (squares) for the 
pixel closest to the DE-Hai station. The daily ReBeLS BRDF-adjusted 
surface reflectance time series exhibit a phenological signal consistent 
with MCD43A4. 

As seen in Fig. 7 during the autumn-winter period, no full-inversion 
was achievable in the MCD43A4 product, forcing the MCD43 algorithm 
to rely on the backup algorithm (shown as gray squares). On the other 
hand, ReBeLS was able to retrieve daily BRDF descriptors, allowing the 
computation of BRDF- adjusted surface reflectance, even in periods of 
persistent cloud coverage. For example, from November 2018 to 
February 2019, when the surface reflectance observations are very 

Fig. 7. Daily ReBeLS BRDF adjusted surface reflectance for the Hainich station. 
The observations assembled during the extent of the time series and used in the BRDF inversion are also shown. For comparison, the NBAR time series from MODIS is 
overplotted. The datasets are symbol and colour coded, as shown in the legend. In the context of the MCD43 dataset, the visual representation includes all data points 
(− all: without regard to any quality flag) denoted by gray squares, and those characterised by a quality flag value of 0 (− qa = 0: good quality) are overplotted as 
purple squares. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Top panel: Original and predicted VIIRS VNP09GA surface reflectance in spectral channel I2. 
The datasets are symbol and colour coded, as shown in the legend. Bottom panel: Temporal evolution of the zeta-score computed from the original and predicted 
time series. 
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sparse, the ReBeLS-retrieved BRDF parameters are close to the dynamic 
prior, and their uncertainties increase (reflecting a lack of knowledge of 
the surface) until new observations become available. A quenching of 
the uncertainties indicates that the BRDF model has been updated with 
observations, hence, becoming less dominated by the dynamic prior. 
The Bayesian optimisation framework used to solve the BRDF inversion 
problem in ReBeLS obviates the need for a backup algorithm, and in
creases the uncertainty in situations where the estimate cannot rely 
heavily on observations. Note that although historical prior is used, the 
smoothness constraint in ReBeLS ensures that the retrieved parameters 
are also consistent with other more data rich periods. 

4.1.1. Capturing intrinsic land surface reflectance anisotropy 
Since the model adopted by ReBeLS to approximate the BRDF of the 

land surface is semi-empirical, the BRDF retrievals from ReBeLS cannot 
be compared directly with in-situ measurements nor to BRDF descriptors 
retrievals obtained with another sensor. Nevertheless, if the BRDF model 
derived from Sentinel-3 properly describes a target's intrinsic surface 
reflectance anisotropy, it should mimic its directional signature 
observed with another sensor. For such, we selected VIIRS as a reference 
sensor because its spatial resolution is close to OLCI. 

Fig. 8 displays the temporal evolution of the VNP09GA band I2 
(0.85 − 0.88 μm) surface reflectance for a pixel near the PT-Mi1 station. 
Since no surface reflectance measurement uncertainties are provided in 
the VNP09GA products, we have taken the conservative approach to 
assign a surface reflectance uncertainty of 5% to VNP09GA surface 
reflectance measurements. The criterion to perform the anisotropy 
evaluation for spectral bands Oa17 (Sentinel-3 OLCI) and I2 (VIIRS) is 
supported by the fact that surface reflectances in the NIR spectral range 
are less impacted by the atmospheric correction. Therefore, we estimate 
predictions of VIIRS observed reflectances in the spectral band I2 by 
running the Oa17 Sentinel-3 BRDF model in forward mode, assuming 
the same acquisition geometry as VIIRS. In other words, we compute the 
RossThickLiSparseReciprocal angular functions using the VIIRS geom
etry of acquisition and, together with the Sentinel-3 retrieved BRDF 

descriptors, we compute the predicted surface reflectance by using Eq. 
(1). These predictions are shown in the top panel of Fig. 8 as blue 
squares. Their associated uncertainties have been estimated by propa
gating the uncertainties of the retrieved BRDF descriptors. 

A good agreement between the original and the predicted time series 
can be gleaned at first glance from the top panel of Fig. 8. Moreover, we 
compute the zeta score (see Eq. (7)) to assess the agreement among time 
series quantitatively. The bottom panel of Fig. 8 displays the temporal 
evolution of the zeta-score being contained within the ±2σ band 
yielding a median zeta-score μzc

= − 0.10. This statistical results allow 
us to conclude that since the differences between the datasets fall within 
uncertainties, the ReBeLS Sentinel-3 BRDF model can depict properly 
the surface reflectance temporal variations associated with the target's 
phenological changes and its intrinsic surface reflectance anisotropy. 

To investigate whether the level of agreement between VIIRS 
VNP09GA and ReBeLS BRDF predicted surface reflectance time series 
could be achieved at a larger spatial scale, we have assembled a dataset 
at the European scale containing VNP09GA surface reflectances in VIIRS 
band I2 and ReBeLS Sentinel-3 Oa17 BRDF model to apply the recipe 
outlined above. After computing the zeta-score for all pairs of original 
and predicted measurements for the period considered in this article, we 
compute the mean zeta score for a macro pixel of spatial extent 3km×

3km, thereby facilitating a comprehensive assesment of the overall 
agreement between datasets. This median zeta-score image degraded 
from 333 m to 3 km pixel size is shown in Fig. 9. Note that the full range 
of zeta-scores displayed in Fig. 9 are well contained within a ±1 σ, albeit 
for some coastal regions or parts of the tile encompassing ocean where 
zeta-scores are beyond 1 (dark red regions). 

It is worth outlining that none of the VIIRS VNP09GA surface 
reflectance observations have been used in the Sentinel-3 BRDF model 
retrieval, neither spectral and spatial adjustments between VIIRS and 
Sentinel-3 were achieved. Therefore, the good agreement between 
observed and predicted VIIRS VNP09GA surface reflectances supports 
evidence that the ReBeLS BRDF can successfully reproduce the intrinsic 
surface reflectance anisotropy of any land surface. 

Fig. 9. The zeta-score map was obtained by comparing the original and predicted (using the Sentinel-3 OLCI OA17 BRDF model) VNP09GA observations. 
Each pixel represents the median z-score of a spatial extent of 3km× 3km. Levels of median zeta score are colour coded as displayed in the legend. 
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Since there appears to exist such a close similarity in terms of per
formance and biases between MODIS and VIIRS BRDF products (Liu 
et al., 2017), one can argue that the good agreement between VNP09GA 
and the predicted surface reflectance from ReBeLS BRDF descriptors is 
driven by the MCD43P prior used in ReBeLS. However, the ReBeLS way 
of solving the BRDF inversion should be understood as a balanced sta
tistical blend where the availability of surface reflectance observations 
and their associated uncertainties determine when and how much the 
algorithm trusts the prior and observations, respectively. For example, 
in Fig. 10, we show the surface reflectance time series for a pixel near 
Gandia in Spain. This region was affected by a wildfire in the summer of 
2018. The predicted surface reflectance from the MCD43P prior dataset 
is shown in yellow squares. Since the MCD43P dataset is a climatology 
built from six years of data, it represents the average anisotropy of the 
surface. It does not reproduce the sharp decline in surface reflectance 
around mid-August, associated with the fire seen in the MCD43 A NBAR 
and ReBeLS BRDF-adjusted surface reflectance time series as shown in 
Fig. 10. The ReBeLS algorithm captured the rapid change on the surface 
timely, although producing a slight smoothing of the sharp drop in 
reflectance caused by the fire. 

4.2. BRDF-adjusted surface reflectance 

4.2.1. Mosaicking 
The Maximum Value Composite [MVC] (Holben, 1986) is a tech

nique that allows the mosaicking of surface reflectance images. There 
are several major reasons to rethink MVC (Viovy et al., 2007; Zeng et al., 
2020), as it is still in use (Dierckx et al., 2014). The bottom panel of 
Fig. 11 shows the MVC synthesis of Sentinel-3 atmospherically corrected 
surface reflectance for a geographic region comprising Europe. Since the 
MVC procedure retains clear pixels with the maximum NDVI values, 
MVC daily composites combine the different Sentinel-3 A and Sentinel- 
3B overpasses during the day. The combination of Sentinel-3 overpasses 
with different Sun-sensor acquisition geometry becomes conspicuous as 
sharp changes in daily MVC surface reflectance, as seen from the bottom 
panel of Fig. 11. If a BRDF adjustment (BRDF-correction) successfully 
quenches the directional dependence of the land surface reflectance, 
then the mosaicking pattern (i.e. sharp discontinuities across the image) 
introduced by MVC should not be present in a BRDF-adjusted mosaic. As 
shown in the top panel of Fig. 11, no discontinuity in the ReBeLS BRDF- 
adjusted surface reflectance image is seen across the orbital segment 
direction. 

4.2.2. Comparison with VIIRS VNP43IA4 
Fig. 12 shows the temporal evolution of surface reflectance acquired 

by the Sentinel-3 constellation in spectral band Oa17 for a pixel near 
Grosseto, Italy, where cultivated areas dominate the land cover. The 
distinctive large variations shown by the surface reflectance between 

consecutive acquisitions are to do with changes in the view/illumination 
geometries, and the underlying anisotropy of the surface (Bréon and 
Vermote, 2012; Bréon et al., 2015; Roujean et al., 1992b; Vermote et al., 
2009). In the same figure (Fig. 12), we have plotted the ReBeLS nor
malised nadir BRDF for band Oa17, as well as the equivalent estimate 
from the VNP43A4 product for band I2. We can see a striking similarity 
between the two normalised products, even ignoring the difference in 
spectral, spatial and temporal integration used in the different products. 

To investigate whether the level of agreement between Sentinel-3 
and VIIRS BRDF-adjusted surface reflectance holds at a larger scale, in 
the top left panel of Fig. 13, we show the VIIRS VNP43IA4 mosaic in 
spectral band I2 for a day during the winter of 2019 (day of year 43). The 
right panel of Fig. 13 shows the ReBeLS Sentinel-3 BRDF-adjusted sur
face reflectance in the Oa17 band for the same geographical region as 
the left panel. Following the quality layer information of the VIIRS 
VNP43IA4 product, we have retained only good-quality pixels as 
described in section 2.2. A visual inspection of the top panels in Fig. 13 
reveals that most Scandinavia and North-East Europe pixels are flagged 
out in the VIIRS (left panel) and Sentinel-3 (right panel) BRDF-adjusted 
reflectance products. The lack of clear observations due to persistent 
cloud coverage combined with periods of natural darkness at northern 
latitudes during the winter has noticeably impacted the completeness of 
both sensors' BRDF-adjusted surface reflectances products. 

Despite the spectral mismatch between Sentinel-3 Oa17 and VIIRS I2 
spectral bands, our goal is to compare both BRDF-adjusted reflectance 
levels directly. For this purpose, the bottom panel in Fig. 13 shows the 
relationship between BRDF-adjusted surface reflectance for all pixels in 
the mosaics and the best-fitted bisector line modelling the VIIRS NBAR – 
Sentinel-3 BAR relation is shown in the bottom panel of Fig. 13 as a 
dashed green line. The corresponding slope and offset are α = 0.957 ±

2.307 × 10− 4 and β = 0.016 ± 9.488× 10− 5, respectively. The non- 
parametric Spearman (r) and Kendall (τ) correlation coefficients of 
0.95 and 0.83, respectively, suggest a statistically significant (p≪0.05) 
tight relation between VIIIRS and Sentinel-3 NBAR. Note that the best- 
fitted relation is close to the identity relation represented in the bot
tom panel of Fig. 13 with a solid white line. 

The same exercise is repeated for mosaics of VIIRS NBAR and 
Sentinel-3 BRDF-adjusted products for a day during the summer. 
Following the same layout as in Fig. 13, the results for day 154 of 2019 
are shown in Fig. 14. We notice that the number of good-quality pixels in 
both BRDF-adjusted surface reflectance products is significantly higher 
for the summer mosaic than for the winter one. Such an increase in the 
population of good-quality pixels is expected due to the reduction of 
cloud coverage, being most noticeable in the northern regions. The 
modelled linear relation between VIIRS NBAR and Sentinel-3 TOCR 
mosaics in the NIR spectral range for the selected day in the summer 
shows a relation (α = 1.017 ± 2.94× 10− 4, β = − 0.005 ± 1.257×

10− 4) that is fairly tight (r = 0.93, τ = 0.79 with p≪0.05) close to the 

Fig. 10. BRDF-adjusted surface reflectance temporal evolution for a pixel near Gandia, Spain. 
This site was affected by a wildfire in the summer of 2018. The ReBeLS BRDF-adjusted surface reflectance (Oa17), NBAR MODIS (Band2) and MCD43P predicted 
surface reflectance time series are colour and symbol encoded as shown in the legend. 
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Fig. 11. Top panel: ReBeLS Sentinel-3 BRDF-adjusted surface reflectance for OLCI band OA17. 
Bottom panel: MVC mosaic of Sentinel-3 OLCI Oa17 surface reflectance for the 3rd of June 2019 . MVC mosaicking patterns, introduced by merging orbital segments 
with different acquisition geometries, are evident. 
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identity line. Given that the computation of NBAR is obtained via the 
retrieved BRDF descriptors and assuming a normalisation acquisition 
geometry – see section 3.2, the statistically significant correlation be
tween VIIRS and Sentinel-3 NBAR can be taken as evidence that both 
BRDF models, despite being retrieved via distinct sensors and algo
rithmic approaches, are able to reproduce the land surface intrinsic 
directional signature. Although a slight tendency towards over
estimation of NBAR for ReBeLS can be noticed in cases of high surface 
reflectances, this could be associated with differences in spectral bands 
and atmospheric processing methodologies across datasets. Therefore, 
the tests described above give us additional confidence in the reliability 
of our BRDF-descriptors retrieval and BRDF-adjustment algorithms 
implemented in the ReBeLS processor to normalise Sentinel-3 surface 
reflectance data into a common Sun-sensor geometry. 

4.3. Caveats 

The prior of the BRDF descriptors is central to the ReBeLS method
ology for retrieving Sentinel-3 BRDF descriptors. Hence it is worth 
noticing that the resampling (from 500 m to 333 m) and reprojection 
(from sinusoidal to Plate-Carré projection) of the MCD43A1 and 
MCD43A2 products to match the Sentinel-3 OLCI data grid may have 
resulted in some intrinsic modification. However, a visual examination 
of the MCD43P dataset did not reveal any artefact associated with the 
MCD43P preprocessing stages. The MCD43P dataset has a weekly 
cadence, albeit the suite of MCD43A products is generated for a daily 
time grid. Nevertheless, storing daily MCD43A1 and MCD43A2 global 
products over six years would rapidly result in a sizeable storage ca
pacity that was not accessible when designing the ReBeLS processor. 
Thus, a weekly cadence for the MCD43P dataset emerged as a reasonable 
trade-off between the high temporal resolution of the MCD43A products 
and the dekadal (10 days) frequency requested for the operational 
products derived from ReBeLS (i.e. Copernicus Global Land Service's 
BRDF corrected NDVI and Copernicus Climate Change Service's surface 
albedo (Sánchez-Zapero et al., 2023)). The adoption of Mondays follows 
the approach used in the operational University of Natural Resources 
and Applied Life Sciences (BOKU) NDVI product – based on MODIS 
(Klisch and Atzberger, 2016) and successfully exploited for operational 
timely critical vegetation assessment purposes (Meroni et al., 2019). 

It should also be noted that while assembling the MCD43P dataset, 
no attempt was made to address the spectral harmonisation between 
Sentinel-3 OLCI and MODIS. The spectral band mismatch between these 
sensors introduces uncertainty into the BRDF descriptor retrieval pro
cedure, albeit to a lesser extent than the uncertainties associated with 
the MCD43P prior kernel weights. Therefore, a spectral band adjustment 
is unlikely to have a great effect on the current BRDF retrievals or their 
uncertainty. Nevertheless, a spectral band mismatch exercise might be 

instructive, and future developments of the ReBeLS processor should 
consider such spectral harmonisation between Sentinel-3 and MODIS, 
VIIRS, etc. 

Although the MCD43A2 product offers information on the snow pixel 
classification, we have not considered it while assembling the MCD43P 
dataset. The latter is driven by the presumption that accounting for the 
mean and variance of a dataset made up of pixels with and without snow 
must account for the significant variation in kernel weights. Therefore, a 
large variance associated with the prior BRDF descriptors can drastically 
loosen the inversion constraints, enabling the temporal development of 
the BRDF descriptors to change according to the true surface state. 
Unfortunately, due to the significant limitations on the cloud mask 
identification18 of the Sentinel-3 atmospherically corrected surface 
reflectance input data, the above assumption has not been confirmed in 
the present version of the ReBeLS processor. 

The MCD43 suite of products version was V006 when the MCD43P 
dataset was assembled. However, an updated version, V006.1, has been 
made available since 2021, and any future updates of the ReBeLS pro
cessor must update the MCD43P dataset with the most recent version of 
MCD43A products or using a BRDF prior derived from Sentinel-3. 

It is important to acknowledge that the smoothness in ReBeLS BRDF 
descriptors and BRDF-adjusted surface reflectance trajectories is ach
ieved by imposing a first-order difference to the cost function solved in 
the BRDF inversion problem. Further, we assume a constant regular
isation parameter (which can be understood as how much we trust the 
first-order difference) across time and space. As such, the results of the 
cross-validation exercise described in Appendix A are pivotal to 
achieving the appropriate balance between smoothing and accuracy, 
allowing us to ensure that the chosen regularisation parameter value 
creates a reasonable trade-off between smoothing and goodness of fit. 
Nonetheless, treating the regularisation parameter as a constant may 
lead to the omission of genuine high-frequency variations in the tem
poral trajectories of the BRDF descriptors, a negligible issue if these 
variations are covered by the uncertainty envelope. On the other hand, 
significant and rapid changes on the land surface, such as a transitory 
snowfall – snowmelt event, can potentially be missed by the algorithm. 
Conversely, abrupt non-transient changes like those associated with the 
remote sensing signal of a large wild fire will be detected by ReBeLS as 
shown in Fig. 10, although a small degree of temporal blurring and 
increased uncertainty may occur. 

Thus, while the regularisation approach implemented in RebeLS can 
have an impact on the shape of the BRDF-descriptor trajectories, the 

Fig. 12. Observed (black circles) and BRDF-adjusted (blue circles) surface reflectance in the Sentinel-3 Oa17 spectral band for a pixel near Grosseto. 
The ReBeLS BRDF-adjusted surface reflectance is overplotted with blue circles. The nadir BRDF-adjusted surface reflectance from the VIIRS product VNP43IA4 in 
spectral channel I2 is shown as red triangles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

18 Snow pixels are mistakenly identified as clouds even in geographic areas where snow is a constant 

feature in the landscape. For details see https://land.copernicus.eu/global/sites/cgls.vito.be/files/prod 

ucts/CGLOPS1_QAR_S3-CloudMask_I1.10.pdf. 
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cross-validation exercises, together with the dynamic prior, ensure that 
the resulting BRDF-descriptors trajectories are physically plausible and 
can predict the Sentinel-3 reflectance observations within their uncer
tainty, as shown in the bottom-left panels of Figs. 4 to 7. Moreover, 
dedicated investigations evaluating the ReBeLS-derived products have 
demonstrated favourable temporal consistency with datasets obtained 
from other satellites and in-situ data. For instance, in the study con
ducted by Sánchez-Zapero et al. (2023), the Sentinel-3 broad-band 
surface albedo product, computed from the ReBeLS BRDF descriptors, 
exhibited spatial and temporal consistency comparable to surface albedo 

products derived from MODIS and PROBA-V. Direct comparison with 
broad-band surface albedo in-situ data showed an accuracy of 0.005, a 
precision of 0.016, and an uncertainty of 0.032 (Sánchez-Zapero et al., 
2023), in line with in-situ validation metrics for the MODIS surface al
bedo product MCD43 A3 C6. 

The ReBeLS algorithm offers an option to split the region of interest 
into small chunks to be processed in parallel within a Hadoop cluster.19 

Fig. 13. Left top panel: VIIRS VNP43AI4 mosaic in spectral band I2 for day 43 of 2019 (winter). 
Right top panel: Sentinel-3 ReBeLS BRDF-adjusted mosaic in Oa17 spectral band for the same day. Bottom panel: Scatter plot between VNP43IA4 and ReBeLS BRDF- 
adjusted surface reflectance. The identity line is shown as a solid white line, while the best linear model fit is displayed with a green dashed line. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

19 https://hadoop.apache.org/ 
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The parallelised mode of ReBeLS has been successfully integrated into 
the operational processing chain of the Copernicus Global Land and 
Climate Change Services, which generates operational Sentinel-3-based 
BRDF-adjusted surface reflectances – further used to compute an NDVI 
product – and surface albedo products, respectively (León-Tavares, 
2022; Sánchez-Zapero et al., 2023). 

At the time of writing this article, ReBeLS remains confined to pro
prietary access, thereby granting the scientific community access to 
ReBeLS-derived products encompassing NDVI and surface albedo via the 
Copernicus Global Land and Copernicus Climate change services, 
respectively. It is important to acknowledge that the quality of ReBeLS 
outcomes is intimately linked to the quality and temporal extent of the 
surface reflectance time series Nonetheless, we acknowledge that the 
computational processing of long-term time series, such as those span
ning multiple years, could potentially introduce technical challenges 
with respect to memory allocation and computation. Consequently, the 

discretion to designate the accumulation period is delegated to the user, 
enabling the accommodation of data availability and constraints 
imposed by computational resources. In any case, the robustness of all 
ReBeLS-derived products is amenable to quantitative evaluation 
through an analysis of the associated uncertainties. Thus, providing an 
objective assessment of the quality and reliability of ReBeLS-derived 
products. 

5. Conclusions 

This paper describes the ReBeLS algorithm designed and imple
mented in response to the Copernicus programme's (through its Global 
Land Service, Climate Change Service and the COPA project) need for a 
state-of-the-art algorithm to retrieve the land surface BRDF from 
Sentinel-3 A and Sentinel-3B surface reflectance observations. 

We show that ReBeLS overcomes various shortcomings present in the 

Fig. 14. The layout is the same as Fig. 13 but for day 154 of 2019 (summer).  
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current global BRDF products, namely, the need for a backup algorithm 
that dominates the frequency of BRDF inversion solutions at northern 
latitudes, the lack of uncertainty quantification and the accumulation of 
surface reflectance observations over a fixed period. These advantages 
are at the cost of ReBeLS requiring a dynamic prior BRDF database – 
currently built from 7 years of MODIS MCD43 product, but any other 
sensor and period could be used – and assuming a temporal regular
isation parameter. 

We found that for a region comprising Europe, the BRDF model 
retrieved with ReBeLS can reproduce within uncertainties (∣zsc∣ < 1σ), 
the directional effects in the VIIRS bidirectional reflectance dataset 
VNP09GA. ReBeLS generates BRDF-adjusted reflectance images where 
the directional effects visible in daily MVC mosaics are efficiently 
removed. Additionally, the levels of BRDF-adjusted reflectance are 
consistent – fitted slopes approaching one with statistically significant 
(p≪0.05) and high correlations coefficients (r > 0.9) – with the nadir 
BRDF-adjusted reflectance product from VIIRS (VNP43IA4). 

Since Sentinel-3's radiometers are foreseen to operate for more than a 
decade, the ReBeLS algorithm within Copernicus Global Land and 
Climate Change services operational chains appears as a reliable meth
odology to generate BRDF descriptors at a global scale. It allows the 
generation of BRDF-corrected vegetation (León-Tavares, 2022; León- 
Tavares et al., 2021) and phenological (Jin and Eklundh, 2014) indices 
along with surface albedo products (Sánchez-Zapero et al., 2023). The 
asset of ReBeLS is that it provides BRDF-descriptors with an associated 
uncertainty. This seems particularly relevant to state-of-the-art meth
odologies for atmospheric correction (Yin et al., 2022) and retrievals 
(Lorente et al., 2018; Qin et al., 2019; Tilstra et al., 2021). Moreover, the 
uncertainty quantification exercised within ReBeLS is in line with the 
current ESA's calibration and validation strategy to enhance Earth 
observation products traceability (Gorroño et al., 2017; Niro et al., 
2021) where the upcoming TRUTHS mission (Fox and Green, 2020) is 
expected to play a pivotal role. 

Given that the methodology implemented in ReBeLS is sensor 
agnostic, a scenario wherein both Sentinel-3 satellites are compromised 
would not pose overwhelming challenges. This can be attributed to the 
structural design of the ReBeLS algorithm, which allows for a seamless 
transition to alternative wide imaging swath satellite data streams with 
minimal implementation complexities. The adaptable nature of ReBeLS 
ensures that integrating data from alternate sources would not necessi
tate a substantial investment of resources and effort, thereby effectively 
mitigating the potential for prolonged disruptions in the provision of 
near-real-time services. Future work may extend ReBeLS to a multi- 
sensor approach, where harmonised datasets can be used concomi
tantly to retrieve surface anisotropy. Additionally, a separate treatment 
for snow pixels will be integrated. Finally, the dynamic BRDF descriptors 

prior may be extended to comprise the full MODIS MCD43 V006.1 
archive. 
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Appendix A. Determination of the temporal regularisation parameter 

The smoothness of the BRDF descriptors' time evolution constraint is defined by the regularisation parameter, γ, representing our confidence in this 
smoothness constraint. If the regularisation parameter is too large, the variability of the BRDF descriptors' temporal trajectories will be over-smoothed. 
If, on the other hand, too little regularisation is imposed on the solution by adopting a small regularisation parameter value, then the fit will be good, 
and the improvement on conditioning reduced. The quality of the solution relies largely on the quality of the observations, with possible low model fit 
residuals but unstable trajectories (i.e. rapid and step temporal variations due to processing artefacts, depending on the BRDF descriptors retrievals). 

The approach adopted in ReBeLS to solve the BRDF inverse problem, as stated in Eq. (3), requires the knowledge of the temporal regularisation 
parameter. However, there is no consensus on determining the optimal value for the regularisation parameter (Quaife and Lewis, 2010; Samain et al., 
2008; Wang et al., 2007; Yin et al., 2022). Operational constraints hamper a suitable analytical approach (Zobitz et al., 2020). Nevertheless, estimating 
the regularisation parameter in an inverse problem can be guided using heuristics (Lewis et al., 2012a; Valentine and Sambridge, 2018). In ReBeLS, we 
determine the regularisation parameter using a cross-validation approach, leveraging on the BRDF descriptors' ability to predict the observations of an 
independent sensor. In other words, we sweep over a grid of regularisation parameter values and predict surface reflectance observations from another 
sensor acquired over the same area and time with a similar spectral configuration but differing in its view/illumination geometry. Finally, we select 
the value from the regularisation parameter grid that delivers the best predictive performance. 

We have selected PROBA-V as a reference sensor because one of its three different spatial resolutions (Dierckx et al., 2014; Wolters et al., 2018) 
matches the Sentinel-3 OLCI pixel size of 333 m. Hereafter, we simply refer to the PROBA-V 333 m observations as the PROBA-V dataset. We can 
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quantify the agreement between datasets by assuming a linear form of the relation between the original and predicted (from the retrieved Sentinel-3 
ReBeLS BRDF) PROBA-V surface reflectance time series (July 2018 to June 2019). Atmospherically corrected surface reflectances in the NIR and Oa17 
spectral channels – less sensitive to aerosol contamination and inadequate atmospheric correction than visible channels - from PROBA-V and Sentinel- 
3, respectively, are considered to perform the cross-validation exercise.

Fig. A1. Top panel: Relation between observed and predicted PROBA-V surface reflectances in the NIR spectral channel. 
The predicted reflectances are obtained by using the Sentinel-3 BRDF-descriptors retrieved using different values of γ. Bottom panel: The slope-γ relation obtained for 
the AERONET Harvard forest station. The different values of γ within the grid considered are colour coded. 

The top panel of Fig. A1 shows the relations between the original and predicted PROBA-V surface reflectance time series for different values of γ for 
a pixel near the AERONET Harvard forest station (lat = 42.532, lon = − 72.188). We assume a linear relationship of the form ρpredicted = slope ρobserved +

offset between the original and predicted surface reflectance datasets. The best model that fitted an orthogonal slope considering uncertainties in both 
datasets (Akritas and Bershady, 1996; Nemmen et al., 2012) is shown as a function of the regularisation parameter, γ, value in the bottom panel of 
Fig. A1. The closer a slope value approaches one, the better the correspondence between observed and predicted datasets. 

The slopes and predicted datasets associated with each regularisation parameter value in the grid are colour coded in Fig. A1, where the lowest and 
highest regularisation parameter values in the explored grid are displayed in dark blue and dark red colours, respectively. We find, for this situation, 
that the best-fit slope increases with the regularisation parameter until it reaches values close to one around γ ∼ 5 × 10− 3 and after that, the relation 
flattens, becoming proportionally inverse for γ ≥ 5e − 2 . For low values of the regularisation parameter, the estimated BRDF descriptors result in a 
poor model of the observed PROBA-V reflectance. The latter is due to the inversion resulting in unstable estimates of the BRDF parameters due to poor 
conditioning. Consequently, these overfitted BRDF descriptors cannot reproduce the directional effects in the PROBA-V dataset. For large 
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regularisation parameter values, the temporal dynamics are over-smoothed and eventually collapse into a horizontal line. 
As shown in Fig. A1, the low (flat) slope values obtained while using either too low or too high γ values can be taken as evidence that the derived 

BRDF retrievals trajectories do not adequately represent the intrinsic anisotropy of the land surface reflectance; hence a disagreement with PROBA-V 
observations arises. On the other hand, from the bottom panel of Fig. A1, it is noticeable that a range of γ values spanning approximately from 5 × 10− 3 

to 5× 10− 2 deliver predicted datasets for which the slopes are steeper (approaching one) and do not change significantly. This range of regularisation 
parameters corresponds to a trade-off region, and selecting the lowest γ value within this range is a conservative choice that minimises the amount of 
regularisation while still having an adequate predictive capability.

Fig. A2. The slope-γ distribution for a subset of 879 stations from the AERONET sample. Individual profiles are shown as solid lines. 
The mode of the slope distribution and the 68% (±1σ) range are displayed as filled circles error bars, respectively. 

Fig. A2 shows the slope-γ relation derived by repeating the cross-validation exercise performed on the Harvard forest station to an ensemble of 879 
stations drawn from the AERONET sample. The slope-γ profiles for each station in the sample are shown as solid lines, while the slope distribution 
mode is displayed as a filled circle where the error bars represent the 16% and 84% percentiles – region defining 68% (±1σ) of all slopes. Fig. A2 shows 
that most of the stations in our sample follow the slope-γ relation obtained for the Harvard forest station shown in Fig. A1, namely that the lowest 
values for slopes are obtained when either γ is too low or too high and that a well-defined range of slopes close to one can be found approximately in 
the range γ =

[
5 × 10− 3, 1 × 10− 1]. Based on these experiments, we find statistical evidence that adding a regularisation parameter higher than 5 ×

10− 3 does not significantly modify favourably the slope between the observed and predicted PROBA-V datasets. We select a regularisation parameter 
γ = 5× 10− 3, based on the observations made above. 

Appendix B. ReBeLS inversion implementation details 

The steps that ReBeLS carries out within the Inversion stage (see Fig. 1) can be summarised as listed below (all symbols are defined in Eq. (3)): 
Step A. Input is a surface reflectance (atmospherically corrected) time series along with associated uncertainties, acquisition geometries (Ωsensor,

ΩSun) and quality layers. There is no constraint on the extent of the input time series; for the examples presented in section 4, only one year (July 2018 
to June 2019) is used. Similar to any EO land surface processor, the algorithm begins by excluding pixels identified as cloud, shadow, or of poor quality 
based on the spectral band quality layers. Despite the aforementioned filtering, certain outliers, often linked to undetected shadows or clouds, may 
persist. These outliers are discarded from subsequent processing via an outlier detection step. A comprehensive description of the filtering an outlier 
identification can be found in the CGLS ReBeLS ATBD.20 ReBeLS thus rearranges the selected surface reflectance dataset data to build vector R and 
matrix C− 1

obs. Further, the RossThickLiSparseReciprocal angular functions are computed to populate the operator matrix H allowing to assemble the 
Jobs(x) term. 

Step B1. ReBeLS loads the MCD43P BRDF descriptors (xprior,C− 1
prior) corresponding to the week(s) of the year comprised in the surface reflectance 

time series to build the Jprior(x) component.  

1. Step B2. According to the temporal extent of the surface reflectance time series, ReBeLS assembles the B matrix, where the number of rows is 
defined by the number of days in the surface reflectance time series. Together with the static regularisation parameter γ, the Jmodel(x) term is 
assembled.  

2. Step B3. Once the three components of the cost functions are assembled, the maximum a posteriori solution which is the value of x that yields the 
maximum of P(x|R), or equivalently the minimum of the cost function J(x) is obtained by solving 

(
HT C− 1

obsH+C− 1
prior + γBTB

)
x =

(
HT C− 1

obsR+C− 1
priorxprior

)
(8)  

where the covariance matrix Cx is given by 

20 https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_ATBD_BRDFCorrection300m-V1_I1.10.pdf 
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Cx =
(

HT C− 1
obsH + C− 1

prior + γBTB
)− 1

(9) 

Solving Eq. 8 for x yields a vector comprising the BRDF descriptors for each day of the surface reflectance time series extent. The variances 
associated to the BRDF descriptors retrievals are obtained from the diagonal elements of the covariance matrix Cx. 
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