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Distributed electric propulsion in aircraft design is a concept that involves placing multiple

electric motors across the aircraft’s airframe. Such a system has the potential to contribute

to sustainable aviation by significantly reducing greenhouse gas emissions, minimizing noise

pollution, improving fuel efficiency, and encouraging the use of cleaner energy sources. This

paper investigates the impact and relationship of turbo-electric propulsion component char-

acteristics with three performance quantities of interest: lift-to-drag ratio, operating empty

weight, and fuel burn. Using the small and medium-range "DRAGON" aircraft concept, we

performed design exploration enabled through the explainable surrogate model strategy. This

work uses Shapley Additive Explanations (SHAP) to illuminate the dependencies of these critical

performance metrics on specific turbo-electric propulsion component characteristics, offering

valuable insights to inform future advancements in electric propulsion technology. Through

global sensitivity analysis, the study reveals a significant impact of electrical power unit (EPU)

power density on lift-to-drag ratio, alongside notable roles played by EPU-specific power and

applied voltage. For operating empty weight, EPU-specific power and voltage are highlighted as

critical factors, while turboshaft power-specific fuel consumption notably influences fuel burn.

The analysis concludes by exploring the implications of the insights for the future development

of turbo-electric propulsion technology.
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I. Introduction
Distributed Electric Propulsion (DEP) for aircraft refers to the distribution of thrust generation electrical devices

such that mutual interactions between aerodynamics, propulsion and structure improve the overall efficiency of the

aircraft. In most DEP concepts for commercial aviation, a gas turbine generator is used for electrical power generation.

A redundant transmission system then routes the electrical power to the electric motors. Some concepts use DEP for

drag reduction through boundary layer ingestion with Blended Wing Body aircraft ([1] and [2]) or on the fuselage ([3]),

whereas other concepts use DEP to increase propulsive efficiency ([4], [5]). Such a new propulsion concept is studied at

a preliminary stage using a multi-disciplinary design process and simple models to explore the design space quickly.

One objective of this paper is to analyze the impact of turbo-electric component characteristics on the propulsive

performance of a DEP aircraft. The knowledge obtained from such endeavour will be particularly useful for further

development of electric components to understand the technological performance requirements for successful applications.

Usually, a global sensitivity analysis (GSA) is used to identify the most impacting variables, and optimization methods

can be used to quickly explore and locate the best region of the design space [6, 7]. Difficulties can arise when

the complexity of the design process increases with a growing number of design variables and interactions between

disciplines, as is the case for DEP. In such cases, design exploration can become expensive, and a surrogate model may

be used to reduce the exploration time.

Surrogate models are utilized to assist in deducing the design guideline. A surrogate model is an approximation

model that yields fast-to-evaluate prediction useful for design exploration. In this paper, the surrogate model captures

the relationship between the turbo-electric component characteristics with three quantities of interest (QOIs), namely,

lift-to-drag ratio (𝐿/𝐷), operating empty weight (OEW), and fuel burn. The input parameters correspond to the

characteristics of the electrical power unit (EPU), power generation, and power transmission, with a total of eight

variables. However, it is difficult to infer important design insight from a surrogate model due to its black-box nature.

To that end, we utilize the framework of an explainable surrogate model by extracting the dependency of the QOIs on

each input variable. The concept of explainability, emerging from the machine learning domain, pertains to the capacity

of the model to offer clear and interpretable explanations for its predictions, aiming to uncover insights from a surrogate

or machine learning model that might otherwise be challenging to interpret due to its black-box nature [8]. That is, a

surrogate model should not be perceived solely as a tool for making predictions; rather, it should also be seen as a means

to acquire physical or design insights [9]. The framework combines an interpolation/regression model with explainability

techniques to “dissect" a surrogate to understand the input-output relationship better. In this paper, we coupled the

polynomial chaos expansion (PCE) [10] surrogate model with Shapley additive explanations (SHAP) [11] and used

them for analyzing the turbo-electric component characteristics. SHAP is an explainability technique originating from

machine learning and game theory, which decomposes a black-box function’s prediction into the individual contribution

of each input by considering how much each input contributes to the prediction compared to its absence. SHAP offers
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the advantage of unifying various previous explainability methods, including partial dependence plots [12], individual

conditional expectations [13], locally interpretable model-agnostic explanations [14], and Shapley sampling values [15].

PCE was opted as a surrogate model due to its high accuracy for the problem considered in this paper. Besides,

the analytical technique to extract SHAP values from PCE is available [16], which enables swift computation of the

SHAP values. Most importantly, SHAP enables visualization of the function’s inner workings and presents design

insight. A few instances of how SHAP is applied in aerospace engineering include its use in understanding the influence

of shape deformation on aerodynamic design optimization [17] and assessing the strength of composite laminates

following multiple impacts [18]. Moreover, there is a growing interest in using SHAP to gain insights into constitutive

modelling, particularly in turbulence modelling within the framework of the Reynolds-Averaged Navier Stokes (RANS)

solver [19, 20]. In the context of this paper, SHAP enables easy and intuitive knowledge discovery of the relationship

between the turbo-electric component characteristics and the aircraft performance, which is essential for future design

endeavours. The Sobol indices [21], which can be analytically extracted for a PCE model [22], are also used in

conjunction with the averaged SHAP for GSA to assess the importance of each input from a different viewpoint.

The main objective of this paper is to analyze the impact of turbo-electric component characteristics on the overall

performance of a DEP aircraft. The knowledge obtained from such endeavour will be particularly useful for the further

development of electric components. Section II defines the DEP concept and its characteristics to address this objective.

Section III describes the surrogate models based on PCE and Shapley techniques. Results on the DEP concept are

provided in Section IV with different plot analyses and coefficient tables to explain the behaviour. Conclusions and

perspectives are drawn in Section V.

II. Problem definition

A. DRAGON configuration

The current study employs the "DRAGON" aircraft concept (see Fig. 1) as the baseline for investigating the

characteristics of turbo-electric components on performance. The concept was introduced to investigate the potential

adoption of a hybrid electric distributed propulsion system on a 150-passenger transport aircraft, operating at a cruise

Mach number of 0.78 and covering a distance of 2750 NM [23–25].

The idea behind the DRAGON concept is to take advantage of DEP to maximize propulsive efficiency. One

possibility to do so is by increasing the amount of air being accelerated by the fan or the so-called By-Pass Ratio (BPR).

On traditional turbofan engines, this calls for an ever larger fan, to the point where the integration of the turbofan on the

aircraft is becoming problematic (increased nacelle drag, insufficient ground clearance, higher mass, centre of gravity

shift, etc). The idea for DRAGON is to replace a large turbofan with many small electric fans positioned at the wing

trailing edge and powered by a gas turbine generator. Such a configuration allows to reach BPR of the order of 40
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Fig. 1 The DRAGON aircraft concept

compared to 11 for the current state-of-the-art [26]. A very high propulsive efficiency can be achieved, although it comes

at the cost of additional power transmission losses, added propulsion weight and additional aerodynamic interactions. To

evaluate the overall impact of turbo-electric propulsion, the aircraft is studied in a multi-disciplinary analysis framework

called FAST-OAD [27]. It is based on a combination of low-fidelity and semi-empirical models. The design process is

illustrated in Fig. 2 with six components considered and the number of coupling variables involved.

The aircraft is sized based on Top Level Requirements such as the number of passengers and the range. The first

component geometry computes the size of the fuselage and wing based on the number of passengers and an initial

weight estimation. The component propulsion_hep calculates the nominal power of all the propulsive components

according to thrust and power requirements evaluated during the mission evaluation. The weight component then

computes the weight of the airframe and the propulsion system. The tail and wing surface area are updated in the

component tail_sizing and after evaluation of the aerodynamics performance the fuel consumption is evaluated by time

simulation in the component performance. The process loops over the take-off weight until convergence.

As turbo-electric propulsion is a new topic for commercial aviation, the evaluation of electric component performance

is subject to uncertainty. Even more so are the technological improvements one can expect in the horizon of 2035 or 2050.

In this context, the IMOTHEP project [28] was initiated to significantly improve hybrid-electric propulsion performance

prediction. The IMOTHEP project gathers specialists from every field of hybrid-electric propulsion, allowing direct

exchanges between aircraft designers and components designers. One of the challenges faced in IMOTHEP was that

technology improvement was expected by the component designers, but the direction for improvements was to be given

by aircraft designers. Depending on the requirements set by the aircraft designer, the component designer would select

one solution and provide performance estimations for state-of-the-art and future available technology. In this situation,

one of the goals of preliminary aircraft analysis is to identify minimum technology levels, making the configuration

4



Fig. 2 DRAGON design process.

viable or profitable compared to a reference aircraft. These minima are then communicated to component designers and

may be set as targets for future research. The aircraft designer is hence particularly interested in the design sensitivities

to set targets and priorities in the development of new technologies.

In the particular case of the DRAGON concept, discussions within the multi-disciplinary design team of the

IMOTHEP project led to the following questions:

• For each electrical component, specific power (kW/kg), power density (kW/L) and efficiency are the result of a

trade-off. For example, a very dense motor is more difficult to cool down, so heavier cooling equipments are

required and the efficiency is negatively impacted. In the development of components dedicated to commercial

aviation, which parameter should be prioritized?

• Employing high voltage levels (more than 1kV) is a challenge for an aircraft flying at a high altitude. It is usually

viewed as a long-term technology improvement. How does this parameter compare with respect to the other,

more easily achievable technology improvements?

• Finally, what is the relative impact of electric components improvements versus an increase in gas turbine

efficiency?

B. Turbo-electric component characteristic

The input variables of interest correspond to the characteristics of turbo-electric components, including the Electrical

Power Unit (EPU), which consists of the electric motor and power electronics, as well as power generation and power

transmission. Specifically, the characteristics consist of the specific power, power density, and efficiency of the EPU

and power generation, along with the turboshaft Power Specific Fuel Consumption (PSFC) and the voltage for power

transmission. The fan is designed considering a fixed fan pressure ratio of 1.2. It is not part of the input variables as no
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activity was planned for detailed fan design of the SMR-CON concept within the IMOTHEP project. Table 1 shows

the definition of the input variables and the associated bounds for the propulsive components studied in this paper.

The bounds were selected based on component design exercises but also account for future technology developments

(see [25] for details about EPU designs and [29] for details about generator designs). From the point of view of aircraft

performance, it is of interest to have compact, light and efficient components. Therefore one would aim at: (i) increasing

specific power, power density and efficiency, (ii) increasing the voltage level, which reduces the size and number of

parallel cables, (iii) decreasing the turboshaft PSFC, expressed in fuel mass flow rate per output power [kg/kWs], it is

inversely proportional to the turboshaft thermal efficiency.

Table 1 Variables and associated bounds for the propulsive components used in this study.

Component Characteristics Nominal Min. Max.
EPU Specific power (kW/kg) 9.2 4.6 15
(Electric motor + inverter) Power density (kW/L) 5 3.8 20

Efficiency 0.967 0.96 0.99
Power generation Specific power (kW/kg) 6.55 6 10
(Generator + converter) Power density (kW/L) 11 3.8 15

Efficiency 0.97 0.96 0.99
Turboshaft PSFC Multiplier 1 0.885 1.04
Power transmission Voltage (V) 3000 1000 3000

A Design Of Experiments comprising 200 points sampled by Latin Hypercube Sampling [30] was generated. For

each of the 200 points, an aircraft is sized with a multi-disciplinary design framework (refer to Fig. 1). So, each point

represents a different aircraft sized with a different set of input variables listed in Table 1. Three quantities of interest

are then extracted: the maximum lift-to-drag ratio (𝐿/𝐷)∗, the operating empty weight (OEW) and the fuel burn (FB).

The primary objective is to minimize the FB, so this quantity will tell in which direction the research should go. The

OEW can be regarded as a secondary objective as it reflects the acquisition cost of the aircraft and the 𝐿/𝐷 ratio will

capture the couplings between propulsion and aerodynamics. Both the OEW and the 𝐿/𝐷 impact the FB and will help

understand the motivations behind the research direction. For the purpose of design exploration, surrogate models

need to be constructed to capture the relationship between the propulsive component characteristics and the three QOIs.

In the following section, we provide an explanation of the surrogate model methodology employed, along with the

accompanying explainability technique used to conduct design exploration.
∗Note that a climbing cruise at the maximum lift-to-drag ratio is performed during the mission simulation.
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III. Explainable Surrogate Model

A. Polynomial Chaos Expansion

The non-intrusive PCE surrogate model is employed to approximate the relationship between the eight input variables

and the three outputs corresponding to the performance.

Let us first define 𝒙 = {𝑥1, 𝑥2, . . . , 𝑥𝑚}𝑇 as the vector of input variables, where 𝑚 is the input dimensionality.

Specifically, we are interested in cases with 𝑚 > 1. The objective is to approximate 𝑦 = 𝑓 (𝒙) with a surrogate model

𝑓 (𝒙), that is, 𝑓 (𝒙) ≈ 𝑓 (𝒙). The input domain is assumed to be on the 𝑚-dimensional hyperbox 𝛀 =
∏𝑚

𝑖=1 Ω𝑖 , where

Ω𝑖 = [0, 1]. It is worth noting that any hyperbox with arbitrary bounds can be normalized to [0, 1]𝑚. The PCE

represents 𝑓 (𝒙) with a sum of orthogonal polynomials, which are truncated to a certain number of bases:

𝑓 (𝒙) =
∞∑︁
𝑖=0

𝛼𝑖Ψ𝑖 (𝒙) ≈ 𝑓 (𝒙) =
𝑃∑︁
𝑖=0

𝛼𝑖Ψ𝑖 (𝒙), (1)

where Ψ𝑖 is the 𝑖-th multi-dimensional orthogonal polynomial basis and 𝑃 + 1 is the size of polynomial bases set. It

is necessary first to collect the experimental design X = {𝒙 (1) , 𝒙 (2) , . . . , 𝒙 (𝑛) }𝑇 , where 𝑛 is the number of sampling

points, and the responses 𝒚 = { 𝑓 (𝒙 (1) ), . . . , 𝑓 (𝒙 (𝑛) )}𝑇 . Let us also define the set I𝑝 with cardinality 𝑃 + 1 comprising

the index set for the polynomial bases. We can then use the following notations to denote the PCE approximation:

𝑓 (𝒙) ≈ 𝑓 (𝒙) =
∑︁
𝝑∈I𝑝

𝛼𝝑Ψ𝝑 (𝒙), (2)

where 𝝑 = {𝜗1, 𝜗2, . . . , 𝜗𝑚}, 𝜗 ≥ 0 is an individual index, and 𝜶 = {𝛼0, ...., 𝛼𝑃} is the corresponding PCE coefficients.

Using this notation, a multi-dimensional polynomial basis can be defined as follows:

Ψ𝝑 =

𝑚∏
𝑗=1

𝜓𝜗 𝑗
(𝑥 𝑗 ), (3)

where 𝜓𝜗 𝑗
(𝑥) is a one-dimensional orthogonal polynomial. Assuming that 𝒙 lives on an 𝑚-dimensional unit hypercube

with uniform distribution (i.e., 𝑥𝑖 ∼ U(−1, 1)) and independency between all input variables, the orthogonal polynomials

that suit the purpose are multivariate Legendre polynomials, which are orthogonal with respect to the uniform distribution.

For non-uniform standard distributions, other orthogonal polynomials derived from the Askey Scheme should be

used [31]. To generate the index set I𝑝, where 𝑝 ≥ 0 is the polynomial order (in practice, 𝑝 > 0 is always used), the

hyperbolic truncation is utilized, defined as follows:

I𝑝 ≡ {𝝑 ∈ N𝑚 : ∥𝝑∥𝑞 ≤ 𝑝}, (4)
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where 𝑞 is the coefficient that allows further truncation of the polynomial basis set, reads as

∥𝝑∥𝑞 =

( 𝑚∑︁
𝑖=1

𝜗
𝑞

𝑖

)1/𝑞
, 0 < 𝑞 ≤ 1. (5)

Using I𝑝 and the pair of experimental design D = {X, 𝒚}, the 𝑛 × 𝑃 information matrix F, where 𝐹𝑖 𝑗 = Ψ 𝑗 (𝒙 (𝑖) ), 𝑖 =

1, 2, . . . 𝑛 and 𝑗 = 1, 2, . . . , 𝑃, can be constructed. Solving F𝜶 = 𝒚 would yield the PCE coefficients. The standard least

square solver requires 𝑛 > 𝑃 to ensure stable computation. In this paper, we employ the least angle regression (LARS)

algorithm [10, 32] from the UQLab package [33] to find the sparse representation of the function so that it is possible to

set 𝑃 > 𝑛.

The model’s accuracy was assessed using the leave-one-out cross-validation (LOOCV) error, reads as

𝜀𝐿𝑂𝑂 =

∑𝑛
𝑖=1

(
𝑓 (𝒙 (𝑖) ) − 𝑓−𝑖 (𝒙 (𝑖) )

)2∑𝑛
𝑖=1 ( 𝑓 (𝒙 (𝑖) ) − �̂� 𝑓 )2 (6)

where 𝑓−𝑖 (𝒙 (𝑖) ) refers to the PCE model constructed using all data points in D excluding the 𝑖-th data point (i.e., 𝒙 (𝑖) ),

and �̂� 𝑓 =
1
𝑛

∑𝑛
𝑖=1 𝑓 (𝒙 (𝑖) ) denotes the sample mean of the responses at D. The denominator in Eq. (6) corresponds to

the squared differences between the actual response and the mean response across all samples. Consequently, 𝜀𝐿𝑂𝑂

serves as the normalized version of the LOOCV error, ensuring that it remains unaffected by the scale of the response

variable.

B. Shapley Additive Explanations for a PCE model

In this paper, we refer to the explanations of SHAP outlined in Palar et al [16], which is specific to a PCE model. First,

we establish the following notations: Let [1 : 𝑚] : 1, 2, . . . , 𝑚, and we define a subset as 𝑢 such that 𝑢 ⊆ [1, 2, . . . , 𝑚].

The complement of 𝑢 is denoted as −𝑢 and is defined as the set [1 : 𝑚] with all elements of 𝑢 removed. The size of the

subset 𝑢 is represented as |𝑢 |. We can then define 𝛀𝑢 to indicate the subset of 𝛀 that corresponds to the index set 𝑢; that

is, 𝛀𝑢 =
∏

𝑖∈𝑢 Ω𝑖 . Using the above notation, we can represent the PCE model as follows:

𝑓 (𝒙) =
∑︁

𝑢⊆[1:𝑚]
𝑓𝑢 (𝒙𝑢), (7)

where 𝑓∅ = E[ 𝑓 (𝒙)], where E(.) is the expectation operator, and, obviously, 𝑓[1:𝑚] = 𝑓 (𝒙). The SHAP decomposition

works as follows:

𝑓 (𝒙) = 𝑓∅ +
𝑚∑︁
𝑗=1

𝜙 𝑗 (𝒙), (8)
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where 𝜙 𝑗 is the input attribution (i.e., SHAP values) for the 𝑗-th input variable. Let us define 𝑓
𝑢
(𝒙𝑢) which comprises

all subset variables in 𝑢:

𝑓
𝑢
(𝒙𝑢) =

∑︁
𝑣⊆𝑢

𝑓𝑣 (𝒙𝑣), (9)

For 𝑗 = 1, 2, . . . 𝑚, the SHAP input variable at a specific input point 𝒙∗ can be computed as follows:

𝜙 𝑗 (𝒙∗) =
1
𝑚

∑︁
𝑢⊆{− 𝑗 }

(
𝑚 − 1
|𝑢 |

)−1 (
𝑓
𝑢∪{ 𝑗 }

(𝒙∗) − 𝑓
𝑢
(𝒙∗)

)
, (10)

where {− 𝑗} = [1 : 𝑚] \ 𝑗 , representing the set containing all input variables excluding the 𝑗-th input variable. The

Shapley value for the 𝑗-th input variable represents the average marginal contribution of the 𝑗-th input to the difference

in predictions of the surrogate model when adding it to different subsets of input variables. In essence, Eq.(10) quantifies

the importance of the 𝑗-th input variable in the surrogate model’s prediction considering all possible combinations.

Using the SHAP decomposition shown in Eq. (8), it has been shown that the SHAP values from a PCE model can be

computed analytically without any approximation technique. The expression reads as

𝜙 𝑗 (𝒙∗) =
1
𝑚

∑︁
𝑢⊆{− 𝑗 }

(
𝑚 − 1
|𝑢 |

)−1 ( ∑︁
𝜗∈K𝑢, 𝑗

𝜶𝝑𝚿𝝑 (𝒙∗)
)
, (11)

where K𝑢, 𝑗 is the set of 𝝑 tuples such that

K𝑢, 𝑗 =

∥𝝑∥0 ≤ |𝑢 ∪ { 𝑗}|, 𝝑 :
𝜗 𝑗 > 0

𝜗𝑘 = 0 ∀𝑘 = 1, . . . , 𝑚 𝑘 ∉ (𝑢 ∪ { 𝑗})

 . (12)

Finally, the averaged SHAP values can be computed as follows:

𝜙 𝑗 = E( |𝜙 𝑗 (𝒙) |) ≈
1
𝑛𝑚

𝑛𝑚∑︁
𝑖=1

|𝜙 𝑗 (𝒙 (𝑖) ) |, (13)

where the averaging is performed across 𝑛𝑚 samples generated in the input space 𝛀. The averaged SHAP values act as

a GSA metric that quantifies the average contribution of input variables on the prediction of a surrogate model. In some

plots, we also show the normalized average SHAP values, which are obtained by dividing the averaged SHAP value by

the maximum 𝜙 for the corresponding quantity of interest.

The SHAP values obtained from a PCE model serve multiple purposes. Firstly, they are mainly used to assess

the influence of each input variable concerning the trend. This information proves valuable in exploring potential

interactions between variables and nonlinearity, which can be visually represented using the SHAP dependence plot. It

is essential to note that Sobol indices cannot reveal such insights, as they do not offer information about the specific
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shape or behaviour of the underlying function. Secondly, the averaged SHAP values offer insights into the significance

of each input on the output, similar to Sobol indices.

In conjunction with SHAP, we also computed the Sobol indices to be compared with the averaged SHAP values.

Additionally, the Sobol indices are used to assess potential interactions between input variables concerning their impact

on the QOIs. The first and total Sobol indices are denoted as 𝑆𝐹 and 𝑆𝑇 , respectively. In this paper, we refrain from

going into the intricate details of Sobol indices to maintain conciseness and avoid making the paper overly lengthy.

More details on Sobol indices can be found in dedicated literature [21].

C. Correlation coefficients

Another useful information we can derive from SHAP is the correlation between various quantities. Such information

is useful to help understand the relationship between two variables of interest in terms, that is, whether they move

together (positive correlation), in opposite directions (negative correlation), or not correlated at all. Analyzing the

correlation between sample values and their corresponding SHAP values for a specific QOI provides insights into how

changes in input variables influence the QOI’s direction. On the other hand, the correlation between SHAP values of

two distinct QOIs, both functions of a particular input variable, reveals whether changes in that input variable cause the

two QOIs to move together or in opposite directions.

Let us denote arbitrary variables 𝜉 and 𝜁 , which can represent the sample values or SHAP values; the Pearson

correlation coefficient between the two variables (i.e., 𝜌𝜉 ,𝜁 ) is calculated as:

𝜌𝜉 ,𝜁 =

∑𝑛𝑠
𝑖=1

[
(𝜉 (𝑖) − 𝜉) (𝜁 (𝑖) − 𝜁)

]√︃∑𝑛𝑠
𝑖=1 (𝜉 (𝑖) − 𝜉)2 ∑𝑛𝑠

𝑖=1 (𝜁 (𝑖) − 𝜁)2
, (14)

where 𝑛𝑠 is the sample size, 𝜉 is the mean of the 𝜉-variable, and 𝜁 is the mean of the 𝜁 -variable . The Pearson correlation

coefficient measures the linear dependency between 𝜉 and 𝜁 . Thus, it can be used to check whether the change in 𝜉

affects 𝜁 linearly. Perfect Pearson coefficient (i.e., |𝜌𝜉 ,𝜁 | = 1) indicates that the relationship is perfectly linear. If

|𝜌𝜉 ,𝜁 | < 1, the relationship departs from linearity.

The Spearman correlation coefficient (𝑠𝜉 ,𝜁 ), on the other hand, checks the monotonous relationship between two

variables. To calculate this coefficient (𝑠𝜉 ,𝜁 ), the variables 𝜉 and 𝜁 are first converted to ranks 𝑅(𝜉 (𝑖) ) and 𝑅(𝜁 (𝑖) ) for

each sample, respectively. The Spearman correlation coefficient is then computed as

𝑠𝜉 ,𝜁 = 1 −
6
∑𝑛𝑠

𝑖=1 𝑑
2
𝑖

𝑛𝑠 (𝑛2
𝑠 − 1)

, (15)

where 𝑑𝑖 = 𝑅(𝜉 (𝑖) ) − 𝑅(𝜁 (𝑖) ) represents the difference between the ranks of each sample. Perfect Spearman correlation

(i.e., |𝑠𝜉 ,𝜁 | = 1) indicates a monotonic relationship, whether it is a linear dependency or not. Conversely, |𝑠𝜉 ,𝜁 | < 1
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shows departure from monotonicity.

IV. Results and Discussions
In this section, we detail the analysis of the constructed surrogate models, GSA, and detailed SHAP analysis. For

ease of reading in the figure results, Table 2 displays the shortened names of the variables.

Table 2 Notations for the eight input variables for the propulsive components used in this study.

Component Characteristics Notation
EPU Specific power (kW/kg) EPU spe. pow.
(Electric motor + inverter) Power density (kW/L) EPU pow. dens.

Efficiency EPU eff.
Power generation Specific power (kW/kg) POW spe. pow.
(Generator + converter) Power density (kW/L) POW pow. dens.

Efficiency POW eff.
Turboshaft Multiplier Turbo SFC
Power transmission Voltage (V) Voltage

A. Surrogate model building

We sought the best polynomial bases by applying LARS to the index set from I𝑝=1 to I𝑝=8. Setting a high maximum

polynomial order intentionally considers the possibility of strong nonlinearity. The results from the PCE models,

including the leave-one-out cross-validation error, maximum polynomial order retained, polynomial order for each

input, the sum of first-order indices, and the number of non-zero (NNZ) coefficients, are shown in Table 3.

The results show that the PCE models yielded low normalized LOOCV errors, see Eq. (6), for all three outputs (in

the order of 10−3). The high level of accuracy indicates that the PCE models are well-suited for knowledge extraction

using SHAP analysis. Furthermore, the results show that the LARS algorithm retains the maximum polynomial order of

4 with non-zero coefficients for some variables, indicating nonlinearity in the input-output relationship. However, it is

worth noting the coefficients of the retained higher polynomial orders (i.e., higher than the second order) are relatively

small compared to the lower orders, as shown in Fig. 3. It can also be seen that the input-output relationships are

"compressed", where the magnitude of low-order polynomials tends to surpass that of higher-order polynomials. While

the coefficients provide some information, comprehending the mechanisms governing the relationships between each

input and output remains challenging; such intricacy is further revealed through SHAP analysis. Furthermore, the sum

of the first-order Sobol indices in Table 3, which is close to one, suggests that the interactions between variables are

weak. This essentially means that the three QOIs are close to purely additive functions. In other words, the impact of

each propulsive component characteristic is almost independent of each other regarding its effect on all QOIs. This

makes sense from the point of view of turbo-electric propulsion, considering the simple modelling used for electric
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components. Each input has a direct and main effect on one of the QOIs. The specific power directly impacts OEW, the

power density mainly the wetted area and through it the 𝐿/𝐷 ratio, the efficiencies directly impact the fuel burn. With

the current physical models, varying the specific power or the power density of electric components has no effect on

their efficiencies. More discussions on the GSA results are shown in the next section.

Table 3 Description of the constructed PCE models for the three QOIs.

Output 𝜀𝐿𝑂𝑂 𝑝𝑚𝑎𝑥 Poly. order
∑
𝑆𝐹𝑖

NNZ
𝐿/𝐷 4 × 10−3 4 [3, 4, 2, 2, 2, 3, 2, 4] 0.996 43
OEW 5.7 × 10−3 4 [3, 3, 2, 2, 2, 2, 2, 4] 0.993 43
Fuel burn 2.5 × 10−3 4 [3, 3, 2, 2, 2, 1, 2, 3] 0.995 48

(a) 𝐿/𝐷 (b) OEW

(c) Fuel burn

Fig. 3 Magnitude of the PCE coefficients for the three outputs (NNZ stands for number of non-zero coefficients).

B. Global sensitivity analysis

Before delving further into the dependency of the QOIs on the input variables, we conducted an analysis of the GSA

metrics to determine the significance of each input variable. Two GSA metrics are used, namely, Sobol indices and
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averaged SHAP values. The Sobol indices and the averaged SHAP values computed from the PCE models are shown in

Figs. 4 and 5, respectively. First, it can be seen that the relative magnitude of Sobol indices appears larger than averaged

SHAP values. The reason is that Sobol indices are squared quantities, which is not the case for averaged SHAP values.

In the context of this problem, we think that the averaged SHAP values make more sense since the input variables are

deterministic and not random, although uniform distributions are assumed for all inputs since it is necessary for PCE

construction. Moreover, while Sobol indices might seem intuitive at first glance, they lack clarity in terms of quantifying

the actual change produced when the input variables are altered (given the allowable range of the inputs). The averaged

SHAP values offer greater intuitiveness in the context of design exploration as they provide a clearer understanding of

how individual input variables, on average, contribute to and impact the model’s output. Besides, the averaged SHAP

values maintain the same unit as the original quantity of interest. In general, for all QOIs, both GSA metrics agree on

(a) 𝐿/𝐷 (b) OEW

(c) Fuel burn

Fig. 4 Total Sobol indices extracted from PCE for the three QOIs.

the ranking of input variables in terms of their importance. There is only one slight disagreement on how averaged

SHAP and Sobol index perceive the importance of EPU-specific power and POW-efficiency on fuel burn. However, the
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(a) 𝐿/𝐷 (b) OEW

(c) Fuel burn

Fig. 5 Averaged SHAP values extracted from PCE for the three QOIs.

difference is slight, and it is acceptable to say that both variables are equal in terms of importance. The EPU-power

density is the most important variable affecting 𝐿/𝐷, followed by EPU-specific power and voltage, which are roughly

equal in importance. The Sobol indices perceive that the EPU-specific power and voltage are approximately four times

less important than EPU-power density. However, the importance magnitude of both variables is perceived to be half

that of EPU-power density according to the averaged SHAP values. The rest of the variables are much less influential

than others in how they affect 𝐿/𝐷. Regarding OEW, the two most critical variables are EPU-specific power and voltage,

with POW-specific power ranking closely behind. The influence of EPU-power density, EPU efficiency, and turbo SFC

on OEW can be deemed comparable. The impact of POW-efficiency is small but not negligible, especially from the

viewpoint of its averaged SHAP value. Finally, POW-power density does not significantly impact OEW; in fact, its

impact is not significant for any of the QOIs. This may come as a surprise compared to the high impact of EPU power

density. It is explained by the fact that the nacelle of the turbo-generator has a much larger diameter than the hub of the

electric fans (where the EPU are located). Consequently, the ratio of wet area over volume is much more favourable to
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the turbo-generator, to the point that the power density has a very small impact on drag. Among the variables examined,

Turbo SFC stands out as the most influential factor affecting fuel burn, displaying a notably stronger effect than the

others. While the impact of the remaining variables on fuel burn is relatively similar, the EPU power and voltage are

considered more influential than the rest. The only exception is the effect of POW-power density on fuel burn, which is

deemed non-significant. Once more, there is a distinct contrast in how both GSA metrics perceive the relative influence

of Turbo SFC on fuel burn. However, it is worth noting again that the current problem is not random (hence, there is no

randomness associated with the input variable). Consequently, utilizing averaged SHAP to evaluate the importance of

inputs in the current problem is more sensible than relying on Sobol indices.

The GSA metrics provide useful information on the global importance of input variables; however, they do not reveal

the individual dependency of how each input affects the QOIs; this is the subject of the discussion in the next section.

C. SHAP summary plot analysis

Figure 6 displays the distribution of the 200 sampling points in the projected two-dimensional output space (i.e.,

𝐿/𝐷 vs fuel burn, 𝐿/𝐷 vs OEW, and OEW vs fuel burn), along with the corresponding linear correlation coefficient.

The figure illustrates the challenge of extracting trends and insights directly from visualizing the output space. A slight

positive correlation can be observed between 𝐿/𝐷 and OEW, while the correlation between 𝐿/𝐷 and fuel burn appears

to be close to zero. Furthermore, although there exists a general trend of reducing OEW leads to reduced fuel burn

(as evidenced by the moderate positive correlation of 𝜌 = 0.64), analyzing how each input affects the QOIs remains

difficult. The drawback of this plotting technique is that it may potentially create a misleading impression, such as

suggesting that there is no correlation between 𝐿/𝐷 and fuel burn. As demonstrated in the following explanations,

decomposing each relationship through SHAP decomposition offers a meaningful way to deduce these relationships.

(a) 𝐿/𝐷 vs OEW (𝜌 = 0.48) (b) 𝐿/𝐷 vs fuel burn (𝜌 = 0.08) (c) OEW vs fuel burn (𝜌 = 0.64)

Fig. 6 Two-dimensional scatter plots of the 200 sampling in the output space

The SHAP summary plots for the three QOIs are shown in Fig. 7. The direction of how each input affects 𝐿/𝐷,

OEW, and FB is more pronounced in this plot. One important insight obtained is that each input variable strongly
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Colored by input values
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(a) 𝐿/𝐷

Colored by input values

Low

High

(b) OEW
Colored by input values

Low

High

(c) Fuel burn

Fig. 7 SHAP summary plots for the three QOIs.

correlated with the QOIs. Moreover, the arrangement of the colour gradation further suggests that the interaction

is weak; a disorganized gradation, on the other hand, indicates strong interaction, non-monotonous relationship, or

nonlinearity. Nevertheless, as demonstrated in the subsequent individual SHAP dependence plot, it becomes evident

that the impact is nonlinear for certain variables, yet the dependency remains monotonic. The SHAP summary plot

facilitates understanding the correlation between the impact of individual variables on multiple QOIs. Specifically,

Table 4 presents the linear correlation coefficient between the SHAP values of two QOIs concerning a specific input

variable. It is essential to note that this correlation coefficient pertains to the SHAP values of two QOIs, not the

correlation between the input variable and the SHAP value for a single quantity of interest, which will be discussed in

the next section. When discussing this correlation, it is important to reiterate the magnitude of the input variables again.

This is because the correlation measures the dependency without referring to the input importance.

To appreciate the correlations shown in Table 4, Fig. 8 shows the SHAP values of two representative variables,

namely EPU specific power and EPU power density, concerning two QOIs (𝐿/𝐷 and OEW). The SHAP values of

EPU specific power for 𝐿/𝐷 and 𝑂𝐸𝑊 exhibit a positive linear correlation (as indicated by the corresponding positive

Spearman and Pearson correlation coefficient); in other words, the two QOIs move in the same direction when the
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EPU specific power changes. The plot is also more specific, showing that the reduction in EPU specific power would

simultaneously increase the 𝐿/𝐷 and OEW (noting that the other variables are kept fixed). Conversely, as the function

of solely EPU power density, the 𝐿/𝐷 and OEW move in the opposite direction: increasing EPU power density would

reduce OEW, but the 𝐿/𝐷 is increased, and vice versa. The complete plots for all variables are not shown in this

paper; however, it should be sufficient to understand the correlation since the absolute values are generally large (i.e.,

either strong positive or negative correlation). This example also explains the misleading impression that 𝐿/𝐷 does not

correlate with FB. When the OEW and 𝐿/𝐷 simultaneously increase, the added weight cancels any benefit brought by

better 𝐿/𝐷. This behaviour takes its origin in the way the aircraft is sized: the wing surface area is calculated using the

aircraft weight to satisfy a prescribed approach speed. In turn, a large wing leads to slightly improved aerodynamics.

Overall, as the weight increase is more important, the FB seems penalized when 𝐿/𝐷 improves, but the real cause is the

weight increase. The correlations between how the input variables affect 𝐿/𝐷 and OEW (see 𝜌(𝜙𝐿/𝐷 , 𝜙OEW)) and also

fuel burn (see 𝜌(𝜙𝐿/𝐷 , 𝜙Fuel Burn) ) are generally positive, except for the EPU power density (with negative correlation)

and power generation power density (with near-zero correlation). The limited correlation attributed to the power density

of the power generation arises from its negligible influence on all QOIs. As a result, the SHAP values appear scattered

due to their lack of significant impact. The results indicate that an increase in 𝐿/𝐷 due to the individual impact of all

variables except EPU power density (with negative correlation) and power generation power density (with near-zero

correlation) leads to a simultaneous increase in OEW and fuel burn, and vice versa.

There is a clear trade-off between how increasing 𝐿/𝐷 also tends to increase the OEW. In other words, achieving

enhanced aerodynamic efficiency comes at the cost of increased system weight. This statement is valid with the

considered input variables only and shows again the underlying sizing rule of the wing. Since it is obvious that reducing

OEW leads to reduced fuel burn, the direction of how all input variables, except for the power density of the power

generation, change OEW positively correlates with the fuel burn (see 𝜌(𝜙OEW, 𝜙fuel burn) in Table 4).

Table 4 Linear correlation coefficient between SHAP values of different QOIs as a function of individual input
variable

Variable 𝜌(𝜙𝐿/𝐷 , 𝜙OEW) 𝜌(𝜙𝐿/𝐷 , 𝜙Fuel burn) 𝜌(𝜙OEW, 𝜙fuel burn)
EPU spe. pow. 0.9972 0.9953 0.9969
EPU pow. dens. -0.9939 -0.9978 0.9939
EPU eff. 0.9930 0.9951 0.9950
POW spe. pow. 0.9967 0.9929 0.9945
POW pow. dens. 0.0480 0.0896 0.0041
POW eff. 0.9881 0.9906 0.9910
Turbo SFC 0.9597 0.9639 0.9967
Voltage 0.9987 0.9962 0.9981
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Fig. 8 Scatter plots of SHAP values for 𝐿/𝐷 and OEW as a function of specific variables

D. SHAP dependence plot analysis

The individual SHAP dependence plots illustrate the individual tendencies of the input variables and their impact on

the QOIs. To be precise, the individual plot provides additional insights into the level of nonlinearity and, if present, the

interaction mechanisms. The analysis should be performed while referring to the input importance.

Figure 9 shows all single-variable SHAP dependence plots in a single figure, where the input variables are normalized

into [0, 1]. The normalized and combined plots better show the relative tendency of all input variables simultaneously.

Additionally, the zero SHAP value refers to the zero deviation from the mean of the function. The individual SHAP

dependence plots are shown in Appendix B, providing a detailed visual representation of how each input variable

influences the model’s predictions. First, we observe that the eight input variables affect all QOIs monotonously, i.e.,

strictly increase or decrease. The results show that some variables exhibit nonlinear tendencies. For all QOIs, it can

be seen that the EPU-power density affects 𝐿/𝐷 in a nonlinear fashion, where it can be seen that the gradient of the

corresponding SHAP values changes as the input is changed. The voltage and EPU-specific power also change all QOIs

nonlinearly, in which the gradient becomes steeper when the respective values are small. Conversely, as voltage and

EPU-specific power reach moderate to high values, their effects tend to approximate linearity. Some variables have

traces of small interaction, such as POW-power density and turbo PSFC (see Appendix B for more detailed plots).

E. Consequences for turbo-electric propulsion

The SHAP analysis is particularly useful to set design objectives for each of the component considered in this study.

In this section, we will focus on the information provided by SHAP that cannot be obtained with the Sobol analysis.

It has already been seen in Fig. 4 and Fig. 5 that the averaged SHAP values give the same information as the Sobol

indices, that is the relative importance of the inputs on the variability of the output. This information can be used to give

design priorities; for example, one should put EPU power density improvement as a top priority before EPU-specific

power and efficiency improvement. However, this information is only general and does not tell how much improvement
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(a) 𝐿/𝐷 (b) OEW

(c) Fuel burn

Fig. 9 Combined SHAP dependence plots for all QOIs with normalized input values.

is desirable. Figure 9 provides the information allowing to set precise design goals and the expected improvement in the

aircraft performance. The non-linearity observed in the figures shows where the improvements most impact aircraft

performance. Specifically, one can deduce a tipping point from the figures, where the gradient becomes minimum:

• Improving the EPU power density from a minimum 3.8 kW/L up to 10 kW/L allows a fuel burn reduction of

200 kg. Pursuing the improvement effort up to 20 kW/L only brings an additional fuel saving of 100 kg.

• Improving the EPU specific power from the minimum 4.6 kW/kg up to 10 kW/kg allows a fuel saving of 150 kg

while going from 10 kW/kg to 15 kW/kg allows only 25-50 kg additional fuel savings.

• Increasing the voltage up to 2 kV allows 150 kg of fuel savings while increasing up to 3 kV brings an additional

fuel saving of ∼ 50 kg.

When a linear behaviour is observed over the whole range of variation, then sensitivity can be expressed very simply:
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• A 1% efficiency gain on EPU translates in ∼ 50 kg fuel saving.

• A 1% efficiency gain in Power generation translates in ∼ 70 kg of fuel saving.

• A 1% turboshaft PSFC increase translates in ∼ 40 kg fuel burn increase.

• Finally, an increase of power generation specific power of 1 kW/kg translates as a ∼ 40 kg fuel saving.

We can observe a difference in how the component efficiencies affect the overall performance of the aircraft; this may

sound strange as the final performance of the propulsion is obtained by the multiplication of all efficiencies. However, the

reader should keep in mind that the aircraft is always resized for each set of inputs. Therefore, the so-called “snowball"

effect is taken into account through these different sensitivities. Such quantitative information cannot be obtained with

GSA and allows to write precise requirements for component design such as, for the EPU:

• Specific power ≥ 10 kW/kg,

• Power density ≥ 15 kW/L,

• Efficiency: best achievable while ensuring the two previous requirements.

Because the interaction between input variables is very small, the expected impact of the previous requirements can be

estimated by the addition of the effect of a single variable. Therefore, the expected fuel burn reduction of combined

EPU-specific power and power density improvement (starting from their lower bound) is around 400 kg, and each percent

increase in EPU efficiency will add approximately 50 kg. In previous studies, some of the information could be deduced

only qualitatively from 2D plots if the sensitivity was large enough (for example, the EPU power density). However,

dominant input variables, such as the turboshaft SFC here, could hide the effect of other less sensitive variables.

V. Conclusions and future works
This study aims to perform a design exploration of the impact of propulsive component parameters on the performance

of distributed propulsion. Specifically, our research investigates intricate relationships between the input variables

associated with turbo-electric component characteristics and three essential quantities of interest: lift-to-drag ratio,

operating empty weight, and fuel burn. The input turbo-electric components included in the analysis encompass specific

power, power density, and efficiency of the EPU and power generation, as well as the Turboshaft PSFC and the voltage

utilized for power transmission.

The design exploration is made possible through the framework of an explainable PCE surrogate model, which

gives essential information on the input-output relationship of a distributed propulsion system. In particular, the SHAP

values offer insights into the global input importance, nonlinearity, and correlations between multiple quantities in

a manner that conventional exploration methods cannot achieve. First, the averaged SHAP values provide guidance
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on the prioritization of input variables concerning the three quantities of interest. The study finds that EPU power

density significantly influences L/D, with EPU-specific power and voltage also playing important roles. However, in

terms of OEW, EPU-specific power and voltage emerge as critical factors, while turboshaft PSFC notably affects fuel

burn. The powerful aspect of SHAP lies in how it quantifies and visualizes the individual impact of each turbo-electric

component’s characteristics on the three QOIs. Most notably, SHAP identifies the nonlinearity in the quantities of

interest, attributed to the impact of EPU-specific power, EPU power density, and voltage. Further, we observe that the

impact of each turbo-electric component characteristic on the three quantities of interest remains largely independent,

enabling an easy understanding of their respective contributions to the overall performance of the DEP system.

Future research endeavours should focus on several areas. Firstly, there is a need to optimize turbo-electric component

characteristics to enhance DEP system efficiency further. The current design exploration can also be readily deployed to

investigate advanced propulsion systems, such as hydrogen-powered aircraft. Finally, evaluating the environmental

impact is also important and should be included in the design exploration pipeline.
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A. Pedagogical example on the six-variable OTL circuit function
To illustrate how the combination of SHAP and PCE can be useful for knowledge extraction, we applied the

framework to the six-variable output transformerless (OTL) push-pull circuit function [34]. The function is written as:

𝑉𝑚 (x) =
(𝑉𝑏1 + 0.74) 𝛽 (𝑅𝑐2 + 9)

𝛽 (𝑅𝑐2 + 9) + 𝑅 𝑓

+
11.35𝑅 𝑓

𝛽 (𝑅𝑐2 + 9) + 𝑅 𝑓

+
0.74𝑅 𝑓 𝛽 (𝑅𝑐2 + 9)(
𝛽 (𝑅𝑐2 + 9) + 𝑅 𝑓

)
𝑅𝑐1

, (16)

where 𝑉𝑏1 = (12𝑅𝑏2)/(𝑅𝑏1 + 𝑅𝑏2). Table 5 shows the definition of the input variables and the corresponding range

for the demonstration, with the output of interest being the midpoint voltage 𝑉𝑚. As seen from Eq. (16), it is hard to

decipher the individual impact of each input variable on the output.

In this pedagogical example, we show the six SHAP dependence plots (one for each variable) in a single plot (see

Fig. 10). However, it is possible to present the SHAP dependence plot individually if one desires to assess each input in

isolation. The minimal dispersion of the SHAP values suggests limited interaction among the variables. Consequently,

the function closely resembles an additive function, a characteristic that may not be readily apparent solely from

examining the equation. The plot shows the presence of two dominant variables (i.e., 𝑅𝑏1 and 𝑅𝑏2), followed by 𝑅 𝑓
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Table 5 Input variables and the range for the six-variable OTL circuit function.

Range Input variables
𝑅𝑏1 ∈ [50, 150] Resistance b1 [K-Ohms]
𝑅𝑏2 ∈ [25, 70] Resistance b2 [K-Ohms]
𝑅 𝑓 ∈ [0.5, 3] Resistance 𝑓 [K-Ohms]

𝑅𝑐1 ∈ [1.2, 2.5] Resistance c1 [K-Ohms]
𝑅𝑐2 ∈ [0.25, 1.2] Resistance c2 [K-Ohms]
𝛽 ∈ [50, 300] Current gain [Amperes]

Fig. 10 Combined SHAP dependence plots for the six-dimensional OTL circuit function extracted from the
PCE model

(a) Averaged SHAP (b) Total Sobol indices

Fig. 11 Averaged SHAP and Sobol indices computed from the PCE model applied on the six-dimensional OTL
circuit function.

and 𝑅𝑐1. On the other hand, the plot also shows that the impact of 𝑅𝑐2 and 𝛽 is insignificant and can be neglected for

practical purposes. The correlation between the input variables and 𝑉𝑚 can also be clearly seen. The change in 𝑅𝑏1

and 𝑅𝑐1 negatively correlates with 𝑉𝑚 (by keeping other variables fixed). Put differently, if 𝑅𝑏1 and 𝑅𝑐1 decrease, it

would result in an increase in 𝑉𝑚. The slight nonlinearity due to 𝑅𝑏1 and 𝑅𝑏2 can also be observed from the figure.
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Conversely, increasing 𝑅 𝑓 and 𝑅𝑏2 would lead to increased 𝑉𝑚 (i.e., positive correlation). It is important to note that

there is a positive correlation between 𝑅𝑐2 and 𝑉𝑚, whereas the correlation between 𝑅𝑐1 and 𝑉𝑚 is nearly negligible.

The averaged SHAP and the Sobol indices, are depicted in Fig. 11. Both GSA metrics agree in terms of the importance

ranking of the input variables.

B. Results for individual SHAP dependence plots
Figures 12, 13, and 14 show the individual SHAP dependence plots for 𝐿/𝐷, OEW, and fuel burn, respectively.

Please note that the scales are adjusted based on the minimum and maximum of the single-variable SHAP values to

ensure the trends are visible. The input variables are shown in their original units.

Fig. 12 Single-variable SHAP dependence plots for 𝐿/𝐷 extracted from the PCE model.
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Fig. 13 Single-variable SHAP dependence plots for OEW extracted from the PCE model.
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Fig. 14 Single-variable SHAP dependence plots for the fuel burn extracted from the PCE model.
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