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Abstract

In an increasingly competitive and digital industrial environment, the
optimization of structures is a key point not only to reduce costs but
also to reduce the consumption of natural resources. To this end, dif-
ferent approaches have emerged throughout history based on the tools
available at the time. With the current rise of artificial intelligence
and the concept of Machine Learning, revolutionary ideas are emerging
that allow an optimal dimensioning of structures in record time. This
work presents the use of Variational Autoencoders and mixed variable
solvers as a proposal for structural optimization and material selec-
tion. It has expanded upon previous research by advancing in three
directions: (1) Incorporating more material attributes, particularly rel-
evant for environmental considerations. (2) Analyzing in more detail
aspects of VAEs such as the dimensionality of the latent space. (3)
A two-step hybrid approach to select the optimal candidate: prelim-
inary filtering with VAE and final design via mixed variable model.
Various examples demonstrate the applicability of the proposed method.
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1 Introduction

The design of structural systems involves selecting the most suitable material
and optimizing the geometry [1]. Traditionally, structural designers either
choose a material before optimizing the geometry or select the best material
for an existing geometry [2], but these approaches do not yield the optimal
design of geometry and material selection. Therefore, it is essential to consider
both geometry optimization and material selection simultaneously.

The basic problem to understand how both optimization processes are
linked is that of, given the configuration of a truss, choosing the area of each
of its members while deciding which material to use in order to minimize a
function such as the total weight of the structure. This problem can be posed
mathematically as [3]:

min
Ai∈A,m∈M

ψ(A1, . . . , AN , ζm)

subject to K(A1, . . . , AN , Em)u = f

g(A1, . . . , AN , ζm) ≤ 0

Amin ≤ Ai ≤ Amax

(1)

where ψ is the chosen objective function such as structure mass, cost or
CO2 emissions. The set of constraints (such as yield stress or buckling reserve
factor) are denoted by g, f is the set of forces applied to the truss, K is the
truss stiffness matrix, and u are the nodal displacements. The design degrees
of freedom are each of the truss members areas A = {A1, A2 . . . AN}, and the
material of choice m picked from a database M . Each material m would have
associated a set of relevant properties denoted as ζm such as Young’s Modulus
Em. The relevant material properties are listed in Table 1. These properties
of the material m are collected inside the variable denoted ζm.

It is important to note that the two sets of design variables are closely
interconnected, meaning that it is not optimal to just select a material and
then optimize cross-sectional areas or vice versa. Simply following either of
these approaches does not guarantee the optimal combination of geometry
and material [4]. In addition, while cross-sectional areas continuously vary,
material selection is a discrete process, which makes it difficult to solve
using traditional gradient-based optimization methods. Various non-gradient
approaches have been proposed for the purpose of material selection, as
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Name Property Units

Em Young’s modulus Pa
Cm Cost per unit mass $/kg
ρm Mass density kg/m3

Ym Yield strength Pa
Pm CO2 produced per unit mass kg/kg
Vm Energy required per unit mass J/kg
Wm Water required per unit mass L/kg

Table 1: Material properties

evidenced by the literature [5],[6],[7]. However, the incorporation of these
methods into gradient-based optimization is precluded.

Mathematically, the problem of material selection and area optimiza-
tion can be formulated as mixed-discrete nonlinear programming problems
(MDNLPs) [8], which are common in engineering. Several methods have been
proposed to solve these problems, but they require repeated solutions of a
sequence of nonlinear programming problems with relaxations and approxi-
mations, making them sensitive to assumptions and underlying models.

A recent study [3] was carried out and can be viewed as a pioneering work
in this field. In it, the use of Variational Autoencoders (VAEs) was proposed
to solve this type of problems. VAEs are a special form of neural networks
that can convert discrete data, such as a material database, into a continu-
ous differentiable space, allowing gradient-based optimization operations to be
performed. Other related problems have been already solved:

• with geometry and categorical variables [9, 10]
• with topology and discrete material variables for eco-design for optimal
digital manufacturing [11, 12]

• with mixed continuous and discrete variables for HALE design [13].

A very recent paper [14] also tackle the problem of truss topology
optimization of timber–steel structures for reduced embodied carbon design.

This work presents the use of Variational Autoencoders and mixed vari-
able models as a proposal for structural optimization and material selection.
The hybrid approach is accomplished by means of the open source framework
for multi-objective optimization in Python pymoo [15] to obtain with greater
accuracy the optimal solution by means of a mixed use of the VAE and an
optimization algorithm using integer variables [16].

The work will be focused mainly in two test cases; mass versus cost and
cost versus CO2, but the available open-source code on GitHub [17] can easily
treat any other interesting Pareto front such as mass versus compliance, CO2
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versus energy, etc. See Table B2 for the list of objective functions available by
default.

1.1 Contributions of this paper

This paper is an extension of the authors’ previous work [3]. It has expanded
upon previous research by:

1. Incorporating more material attributes, particularly relevant for environ-
mental considerations.

2. Analyzing the dimensionality of the latent space, taking the three-
dimensional case as a sample. Likewise, delving into aspects such as the
number of neurons or the loss function.

3. Introducing the new confidence constraint on the optimizer to steer far from
vacant spaces in the latent space.

4. Analyzing different applications and putting more emphasis in the compari-
son of resolution times with a non-VAE method such as the mixed variables
model.

5. A two-step hybrid approach to select the optimal candidate: preliminary
filtering with VAE and final design via mixed variable model.

2 Theoretical background

This section will present a brief summary of how a variational autoencoder
can be used to obtain a continuous and differentiable representation of a
discrete material database.

2.1 Variational Autoencoders

A Variational Autoencoder (VAE) is a type of deep neural network that can
learn to represent high-dimensional data in a lower-dimensional latent space.
The VAE architecture is composed of two components: an encoder network
that maps input data to a lower-dimensional latent space, and a decoder net-
work that maps the latent space back to the original data space [18]. The key
innovation of VAEs is the use of variational inference to train the network,
which allows for the generation of new data samples by sampling from the
latent space.

VAEs share similarities with principal component analysis (PCA) as they
both extract relevant information from data. However, VAEs’ nonlinear char-
acteristics enable them to generalize much better than PCA, as stated in [19].
VAEs have been used as generative models in various scientific applications
such as material design [? ] [? ], microstructure [? ] and process-property
relationships [? ]. In this paper, we do not leverage the generative property of
the latent space to synthesize new data. Instead, we leverage the two main
concepts of nonlinear dimensionality reduction and continuity of the latent
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space [19] to represent each material, along with its associated properties, in
a continuous and differentiable latent space as first demonstrated in [3].

Specifically, assuming a default two-dimensional latent space (z0, z1) and

a seven-dimensional feature space ζm, we will construct a function ζ̂ =
[Ê, Ĉ, ρ̂, Ŷ , P̂ , Ĵ , Ŵ ] = D(z0, z1) that maps each point in the latent space to a
set of properties. Note that the symbol ˆ over the properties is used to state
that it is a decoded property. The main objective of the VAE is to make that
each point in the latent space associated with the materials introduced into
the encoder produce properties as close as possible to the input when decoded
in the decoder. Figure 1 depicts the VAE architecture proposed for capturing
material properties, which comprises the following components:

1. A seven-dimensional input corresponding to the seven properties listed in
Table 1.

2. An encoder consisting of a fully-connected 250 neurons network
3. A two-dimensional latent space, denoted by z0, z1, where materials are

distributed following a Gaussian distribution z ∼ N (µ = 0, σ = 1).
4. A decoder, with a structure similar to the encoder, consisting of a fully-

connected network of 250 neurons.
5. A seven-dimensional output corresponding to the original seven properties.

Fig. 1: Architecture of the Variational Autoencoder

It should be noted that the number of neurons has been chosen based
on the size and variety of the database. A higher number of neurons would
have forced a more complex and input-adjusted composition of the latent
space, reducing the generative capacity. A comparison of the composition of
the latent space can be seen in Figures A1a and A1b, showing a less smooth
gradient but better grouping of materials. In any case, the influence of this



Springer Nature 2021 LATEX template

6 A Hybrid Machine Learning and Evolutionary Approach to Material Selection and Design Optimization for Eco-Friendly Structures

parameter is minimal.

The training of the neural network is done by minimizing the difference
between the input and output, denoted as ∥ζ̂ − ζm∥, and imposing a KL
divergence loss to ensure that the latent space follows a standard Gaussian
distribution z ∼ N (µ = 0, σ = 1) [20]. The total loss function is given by the
following equation:

L = ∥ζ̂ − ζm∥+ β ·KL(z∥∥N ) (2)

where β is set to a recommended value of 5e-5. Therefore, although we
would like to keep the original value of the properties as much as possible by
minimizing the difference between the input and output, it is necessary to not
take a too low value of β in order not to obtain an unbalanced distribution.
A comparison of the composition for different values of β is shown in Figures
A2a and A2b, and the error is summarized in Table B1.

To ensure that all material properties are weighted equally, the input is
scaled between (0, 1), and the output is re-scaled back after training. The
structure of the VAE was modeled using the library PyTorch [21] and the
minimization of Equation (2) was carried out by the gradient-based Adam
optimizer [22].

Figure 2 shows the result for a two-dimensional latent space considering
the 7 properties presented previously. The training was set to 50000 iterations
based on convergence evolution and took 186 seconds to complete in a Ryzen
2500U CPU.

The latent space contains a coherent distribution of the materials resem-
bling a normal distribution centered at the origin of coordinates. Each of
the coordinates, z0 and z1, represent a position within the latent space, but
have no physical meaning as such. For example, A286 Iron is associated with
coordinates (1.4,-0.4), and 2219-T62 with coordinates (0.4,0.3), being this
representation unique and unambiguous. In a conceptual sense, it resembles
an Ashby chart [2]. The main difference with respect to a material chart is
that, firstly, the coordinates do not represent a specific physical quantity but
rather dimensionless parameters, and secondly, not only are the materials
arranged on a map, but any point on the map is associated with the set of
properties ζ̂ = [Ê, Ĉ, ρ̂, Ŷ , P̂ , Ĵ , Ŵ ] = D(z0, z1).

To better identify each group of materials, a convex hull was drawn around
the material points for each of the associated material types.

It should be noted that there is the possibility of generating a higher dimen-
sional latent space, which can be interesting in certain situations. However,
the dimensionality of the latent space will be discussed later.
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Fig. 2: Material representation in a two-dimensional latent space (7 properties
considered)

At intermediate points in the latent space, mixed properties will be
obtained that are a blend of nearby materials based on their proximity.
By using VAEs to learn this mapping, we can achieve a powerful tool for
materials discovery and property prediction. The latent space can be used
to explore the relationships between different materials and their properties,
and to generate new materials with desired properties by sampling from it.
This framework has the potential to greatly accelerate the discovery of new
materials with desired properties, particularly in applications where experi-
mentation is expensive or time-consuming.

2.2 Application to material selection

The continuity and differentiability of the latent space are crucial aspects.
Through the decoder, analytic activation functions represent each output
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material property. For example, the output of the yield strength for a set of
coordinates in the latent space is given by Ŷ = D∗

Y (z0, z1). Hence, one can
back propagate through the decoder to compute analytical sensitivities such

as ∂Ŷ
∂z0

so that a gradient-based optimizer can be employed.

Figures 3 and 4 show the latent space (figure 2) with a colormap of the
values of CO2 and cost per kilogram at each point in the latent space, illus-
trating the continuous and coherent gradients along the space.

Fig. 3: CO2 per kilogram colormap over the latent space

Another important feature of this space is that it is possible to measure
distance between points. In this way, materials with the most diverse proper-
ties will have large distances from each other, and the most similar ones will
appear closer together. Note that the coordinates solution in the latent space
chosen by the optimizer to minimize a given function will not correspond in
general to any particular material. In this case, this distance will be used to
determine the real material closest to that point and thus take it as the real
optimal solution.

The main disadvantage of passing through the latent space is that the
output properties do not exactly match the ones of the input. That is, being
Y the original value of Yield strength of a given material, and Ŷ the decoded

value, we define the Yield strength error as ∆Y% = 100 · ∥Y − Ŷ ∥
Y

. See Table

1 for the complete list of properties.
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Fig. 4: Cost per kilogram per kilogram colormap over the latent space

Table 2 summarizes the error of all the properties of some materials as well
as the maximum and average error present among all materials.

Material ∆E% ∆ρ% ∆C% ∆Y% ∆P% ∆V% ∆W%

A286 Iron 7.7 2.3 1.4 2.5 0.1 2.6 4.0
1060 0.4 1.2 0.3 2.2 0.2 0.0 0.3
ABS 1.4 1.0 0.2 0.7 0.6 0.3 0.9
Ti-8Al-1Mo-1V 0.0 0.4 1.2 3.1 0.5 0.5 0.1
Copper 0.6 1.3 2.8 7.8 0.4 0.3 0.9
CFRP 1.2 2.3 0.4 3.6 2.1 2.6 0.2
Max Error 7.7 6.3 3.3 7.8 2.1 2.6 4.0
Avg Error 1.6 1.6 0.7 2.2 0.3 0.3 0.6

Table 2: Percentage error between actual and decoded data for a two-
dimensional latent space with 7 material properties

It should be noted that the discrepancy at decoding is not the only prob-
lem with this representation. How the materials are distributed in the space
greatly influences the stability and convergence of the solution. Thus, an
appropriate latent space will present a continuous and smooth gradient in its
domain, while a less appropriate one will present abrupt changes and big gaps
among the materials. In fact, increasing the dimension of the latent space,
as shown in Figures 5a and 5b, allows a more effective distribution of the
materials. This is the reason why, in case of considering many properties and
materials, it is interesting to increase the dimensionality of the latent space.
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(a) Three-dimensional latent space (iso-
metric view)

(b) Three-dimensional latent space
(z0 − z1)

Fig. 5: Projections of the three-dimensional latent space

Note that, as the disparity between materials increases, the composition
of the latent space becomes more difficult as there are larger differences
between them. Table 3 shows a summary of the average and maximum error
when training the VAE with a database reduced to a subset of the materials,
as well as when the encoding is made in a three-dimensional latent space.
An important conclusion therefore is that if the material type to be used is
known in advance, it is much more efficient to eliminate unsuitable materials
from the database.

Subset Error type ∆E% ∆ρ% ∆C% ∆Y% ∆P% ∆V% ∆W%

All (93)
Max Error 7.7 6.3 3.3 7.8 2.1 2.6 4.0
Avg Error 1.6 1.6 0.7 2.2 0.3 0.3 0.6

All [3D] (93)
Max Error 8.4 11.4 5.6 7.5 2.6 2.9 4.3
Avg Error 1.6 2.2 0.8 1.8 0.5 0.4 0.4

Steel (14)
Max Error 1.1 2.7 0.1 2.1 0.5 0.1 0.9
Avg Error 0.2 0.6 0.0 0.6 0.1 0.1 0.2

Aluminium (53)
Max Error 0.1 0.2 0.1 2.8 0.0 0.0 0.0
Avg Error 0.0 0.1 0.0 1.1 0.0 0.0 0.0

Plastic (12)
Max Error 4.0 0.6 0.3 2.1 0.0 0.0 0.0
Avg Error 0.8 0.2 0.2 0.5 0.0 0.0 0.0

Table 3: Comparison of decoding error for different dimensions and subsets
of materials
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In our particular case, increasing the dimensionality of the latent space
didn’t show a reduction in the decoding discrepancy nor improved the con-
vergence of the solution. In fact, it added one degree of freedom, making the
convergence less stable. For this reason, a two-dimensional latent space will
be used in this paper with coordinates z0 and z1.

2.3 Geometry optimization

Once a continuous and differentiable representation of the physical prop-
erties of the materials is available, it becomes possible to reformulate the
optimization problem mentioned initially to use gradient-based optimization
algorithms. In this problem, the variables involved A = {A1 . . . AN}, z0, z1
are the continuous design variables. Therefore, Equation (1) is turned into
Equation (3):

min
Ai∈A,z0,z1

ψ(A1, . . . , AN , z0, z1)

subject to K(A1, . . . , AN , z0, z1)u = f

g(A1, . . . , AN , z0, z1) ≤ 0

Amin ≤ Ai ≤ Amax

z0min
≤ z0 ≤ z0max

z1min ≤ z1 ≤ z1max

(3)

It is important to establish appropriate limits on the values of the vari-
ables in order to limit the solution, avoiding absurd or undesired solutions,
as well as to facilitate the work of the solver. The complete list of available
objective functions and constraints implemented in the code is summarized in
Tables B2 and B3.

2.4 Optimizer

The problem described above is a constrained optimization problem. In the
case of multi-objective optimization problem, finding the optimal solution is
not straightforward as there may be multiple trade-offs between the objectives
considered. The solution is expressed not by a single optimal value but by a
set of values known as Pareto front, that represents the set of solutions where
no other solution exists that is better in both objectives simultaneously.

As stated before, pymoo will be used to solve the constrained optimization
problem (single or multi-objective). Regarding the algorithm, NSGA-II will
be used. NSGA-II (Non-dominated Sorting Genetic Algorithm II) is a widely
used optimization algorithm for multi-objective problems [23]. The NSGA-II
algorithm achieves the solution by using a non-dominated sorting procedure,
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where the solutions are sorted into different levels of non-domination, with
the first level being the set of non-dominated solutions. The algorithm then
assigns a fitness value to each solution, based on its level of non-domination
and its distance from the other solutions in the same level. This ensures that
the solutions on the Pareto front are well-distributed and cover a wide range
of trade-offs between the different objectives. NSGA-II is a good choice for
both single and multi-objective optimization problems, and therefore it will
be the default algorithm used in both cases.

2.5 Solving process and post-processing

Being the material database the input training data, the procedure begins
with training the VAE as described in Algorithm 1. The encoder F takes
in the set of material data ζ and encodes the seven-dimensional data to the
two-dimensional latent space denoted by z0, z1 through a probabilistic latent
distribution governed by µ, σ. The loss function (2) is then used to drive the
training. Once finished, the decoder D is retained for material selection taking
the latent space coordinates as input and returning the expected material
properties ζ̂.

The next part of the procedure is to optimize the structure, described in
Algorithm 2. Once the distribution of truss nodes, connectivity and boundary
conditions in terms of displacements and forces are loaded, the first task is to
compute the global stiffness matrix based on the areas and material properties
(previously decoded from a sample from the latent space) provided by the
variables involved. Then, the multiple objectives and constraints are computed,
and based on them, several iterations provide the optimal set of solutions.

Algorithm 1 Encode Materials

1: procedure MatEncode(ζ , F , D) ▷ Input: Training data, encoder and
decoder

2: epoch = 0 ▷ iteration counter
3: repeat ▷ VAE training
4: F (ζ)→ {µ, σ} ▷ Forward prop. encoder
5: {µ, σ} → z ▷ Reparameterization [20]
6: {µ, σ} → KL(zN ) ▷ KL loss

7: D(z)→ ζ̂ ▷ Forward prop. decoder

8: {ζ, ζ̂,KL} → L ▷ VAE Loss
9: w +∆w(∇L)→ w ▷ Update VAE weights

10: epoch + +
11: until error is acceptable ▷ Iterate
12: return D ▷ Trained decoder
13: end procedure
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Algorithm 2 Truss Optimization

1: procedure TrussOpt(truss, loads, restraints, D∗, . . .) ▷ Input: Truss,
trained decoder, constraints

2: k = 0 ▷ iteration counter
3: repeat ▷ Optimization
4: NN(w)→ {A,z} ▷ Fwd prop Neural Network NN ; compute truss

areas and latent coordinates
5: D∗(z)→ ζ̂ ▷ Fwd prop D∗; compute material properties

6: {A, Ê} → [K] ▷ compute stiffness matrix
7: {[K],f} → u ▷ State Equation FEA

8: {ζ̂,A,u,f} → {ψ, g} ▷ Objective function and constraints
9: AD(ψ ← w , g ← w)→ ∆w ▷ Auto diff. for sens. w.r.t. NN

10: w +∆w → w ▷ Update weights
11: k + +
12: until ∆w < ϵ∗ ▷ Check for convergence
13: return {z,A}
14: Find nearest material and optimize for area ▷ Post processing
15: end procedure

Note that this solution will involve a set of coordinates z∗ in the latent space
not corresponding to any real material zm in particular. It is then necessary
to choose a material and recalculate the areas to get the real optimal solution.

For this purpose, a confidence metric is defined. This value is defined as a
scale from 0 to 100 considering a ratio between the Euclidean distance with
respect to each of the materials and the largest existing distance (4).

γm(z∗, zm) = 1− ∥z∗ − zm∥
max
∀k∈M

(∥z∗ − zk∥)
(4)

However, this method is not entirely appropriate. In most cases, and even
more so when there are many properties involved and the gradients take on
irregular shapes, the solution coordinates will be quite far away from a real
material, with the chosen material having a confidence lower than 80. It is in
these cases where there is a very high risk of not obtaining the right optimal
material as any nearby material could be chosen as optimal by pure chance.

As a solution to this problem we chose to include an additional confidence
constraint, described in Equation (5):

γmin = 1−

1− ∥z∗ − zm∥
max
∀k∈M

(∥z∗ − zk∥)


γ∗

(5)
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With this constraint, those solutions that may be feasible but are too far
away from real materials are discarded, thus forcing the solver to choose a
coherent point in the latent space.

3 Single objective application

An application with a single objective is now discussed before entering the
multi-objective approach. By default, besides the confidence constraint, only
two constraints will be imposed: the one due to buckling and the one due to
yield stress. For this purpose, a conservative safety factor of 4 will be imposed
on both. For more information on how these constraints are defined, see Table
B3.

This section contains the results obtained using the proposed method. It
should be noted that the same truss will be used in all the simulations. This is
illustrated in Figure 6 and consists in a two-dimensional mid-cantilever truss
composed by 6 truss members. It is embedded at the left part and a force
fy = −12.5kN is applied at the rightmost end.

Fig. 6: 6 bar mid-cantilever truss

3.1 Single-objective constrained optimization problem

The first step involves running the solver to obtain a solution that minimizes
a specific value while respecting the two default constraints. To this end,
the total cost of the structure is decided as the objective to be minimized.
The search took 10.56 seconds, and the preliminary results are summarized
in Table 4. Hence, the optimal material would be the one placed in the
coordinates [0.9, -1.56], which is the point that provides the best material
properties for this problem. However, as those coordinates don’t correspond
to any real material, it is necessary to pick the closest one. Figure 7 illustrates
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the optimal point in the latent space, and the closest real materials with their
confidence level are summarized in Table 5.

Cost z0 z1 A1 A2 A3 A4 A5 A6

5.92$ 0.9 -1.56 1.5e-4 m2 1.2e-4 m2 4.5e-4 m2 4.3e-4 m2 4.2e-5 m2 3.3e-4 m2

Table 4: Preliminary results for minimizing the cost

Material Confidence (γm)

AISI 1045 CD 95.44
AISI 4130 88.99
AISI 4130 norm 86.93

Table 5: Closest material list for minimizing the cost

Fig. 7: Solution in the latent space for minimizing the cost of the structure

Hence, AISI 1045 CD is chosen as the optimal material. Its original prop-
erties are introduced into the solver, and another calculation is performed,
now only varying the areas of the truss members. The calculation took only
2.97 seconds and the results are summarized in Table 6. Therefore, the great
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usefulness of this tool and its speed in finding the optimal in the single-
objective problem is evident.

Cost A1 A2 A3 A4 A5 A6

6.37$ 1.8e-4 m2 1.5e-4 m2 4.4e-4 m2 4.5e-4 m2 4.5e-5 m2 3.7e-4 m2

Table 6: Final results for minimizing the cost after choosing AISI 1045 CD
as material

After performing this operation for all the properties being considered,
a summary of the materials that provide the minimum metrics is found in
Table 7.

Objective Material Value

Cost AISI 1045 CD 6.371 $
Mass CFRP 3.45 kg
CO2 AISI 4340 norm 25.84 kg
Water AISI 1045 CD 727.38 L
Energy AISI 1045 CD 4.65e08 J
Compliance Plain Carbon St 0.37 Nm

Table 7: Solutions for the considered objective functions

4 Multi-objective constrained optimization

The general case of multi-objective minimization can be described as:

min fm(x) m = 1, ..,M

s.t. gj(x) ≤ 0 j = 1, .., J

hk(x) = 0 k = 1, ..,K

xLi ≤ xi ≤ xUi i = 1, .., N

x ∈ Ω

(6)

Where fm(x) can be each ψ(A, ζm) described in B3, gj(x) can be any set
of constraints (i.e. feasibility constraints such as yield strength and buckling
constraints), hj(x) can be the equilibrium K(A, Em)u = f and xi are bounds
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for both continuous and discrete variables A and ζm.

Our framework uses the state of the art in multi-objective optimization
pymoo [15] to solve Equation 6. It is worth noting the fact that most of the
objectives we are considering (CO2, cost...) are proportional to the mass by
the factor of the associated property (CO2 per kilogram, $ per kilogram...).
Then, for each material, there is only one optimal configuration that mini-
mizes the mass, and this one provides a minimum value of CO2, cost, water...
Therefore, the optimal value of each material in these targets translates into
a single point in the objective space.

The case of objectives such as compliance is different, since this value
decreases as mass increases and vice versa, thus existing a continuous range
of optimal values in terms of mass and compliance. There is a minimum
area configuration (limited by yield strength and buckling constraints) that
guarantees minimum mass but maximum compliance, and a maximum mass
configuration limited by the upper limit of the areas that will provide mini-
mum compliance.

In the following sections the solutions for typical bi-objective problems will
be analyzed: the problem of minimizing mass and cost (typical in industry),
and the problem of minimizing cost and CO2 (important for the green transi-
tion) under the two default structural constraints (yield stress and buckling).

4.1 Multi-objective optimization by brute-force

In order to have a valid and accurate solution with which to compare the
solutions obtained by other methods and their computation time, firstly a
solution to the problem by brute-force is obtained. This consists of fixing a
material and optimizing the structure to obtain the optimal solution. After
doing this with all the materials in the database, it is possible to find the
optimal solution for each material. This analysis guaranteed an almost exact
result for each material. However, it required a really long computational
time (on average 320 seconds) which would be higher the greater the number
of materials. Figure 8a shows the result of minimizing mass and cost, whereas
Figure 8b show the result of minimizing cost and CO2. Note the above; each
material has a single optimal point.

The interesting information about this distribution of solutions is what is
known as the Pareto front, that represents the set of solutions where no other
solution exists that is better in both objectives simultaneously. The Pareto
front of the objectives considered is shown in Figures 9a and 9b.
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(a) Mass and cost optimization solution
for each material in the database

(b) Cost and CO2 optimization solution
for each material in the database

Fig. 8: Bi-objective solutions obtained by brute-force

(a) Pareto front for mass and cost per-
formed by brute-force

(b) Pareto front for cost and CO2 per-
formed by brute-force

Fig. 9: Pareto fronts obtained by brute-force

In the following sections we will look for such a solution by using other
methods that allow us to obtain it without analyzing all the materials one by
one, that is, in much less time.

4.2 Multi-objective optimization with the VAE

This section will present the Pareto front results obtained considering the
mass, cost and CO2 objectives using the VAE. It should be noted that the
procedure will be identical, varying the continuous variables z0, z1 and the
areas, to find the optimum. The material with the greatest confidence value
will be taken as the solution and the Pareto front will be generated for the
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objectives considered.

Figure 10a shows the result for mass and cost optimization, and Figure
10b shows the result for cost and CO2 optimization, taking an average of 25
seconds to get the solution.

(a) Pareto front for cost and mass
obtained with the VAE

(b) Pareto front for cost and CO2 obtained
with the VAE

Fig. 10: Pareto fronts obtained with the VAE

The most remarkable aspect is that some materials appear multiple times.
This is due to the fact that, when exploring the latent space, the properties of
the materials in the near environment change so much that multiple versions
of the same material can appear and can serve as an optimum in different
situations.

Regarding the solution itself, the work carried out by the VAE was excep-
tional, achieving a really good approximation of the shape of the Pareto front
in a short time. However, even though the shape and material type of each
region are correct, not all the specific materials are present. Hence, an addi-
tional post-processing must be carried out to get the real optimal solution,
as the discrepancy in material properties as well as the existence of artificial
optimal regions makes impossible for the VAE to find the real optimal solu-
tion by itself.
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4.3 Multi-objective optimization with the mixed
variables model

A method similar to brute-force that allows us to obtain the real solution
but without having to deeply analyze each material one by one is the Multi-
objective Optimization With Mixed Variables model [16]. It involves using
a mixed-integer programming (MIP) formulation, where some variables are
continuous and others are discrete. In our particular case, the continuous
variables will be each of the areas of the truss members, and we will create
a new integer variable named material index associated with each of the
materials in the database. The NSGA-II algorithm will sweep through all the
materials (varying the discrete variable) obtaining the metrics for different
solutions of the structure. Thus, those materials that present worse metrics
and are farther away from the constraints will be eliminated from the sweep
and the solution of the areas of the structure will be refined for the remaining
materials, obtaining the Pareto front of the optimal materials in much less
time than by brute-force. This procedure is different from the original proce-
dure as the VAE is not involved at any time. The resolution procedure for the
mixed variables model is detailed in Algorithm 3.

Algorithm 3 Truss Optimization with mixed-variables model

1: procedure TrussOptMixed(truss, materials, loads, restraints, . . .) ▷ Input:
Truss, material database, constraints

2: k = 0 ▷ iteration counter
3: repeat ▷ Optimization
4: NSGA2(w)→ {A, i} ▷ Compute truss areas and material index
5: i→ ζ ▷ Extract material properties from the database
6: {A, E} → [K] ▷ compute stiffness matrix
7: {[K],f} → u ▷ State Equation FEA

8: {ζ̂,A,u,f} → {ψ, g} ▷ Objective function and constraints
9: AD(ψ ← w , g ← w)→ ∆w ▷ Auto diff. for sens.

10: w +∆w → w ▷ Update weights
11: k + +
12: until ∆w < ϵ∗ ▷ Check for convergence
13: return {A, i}
14: end procedure

Figure 11a shows the result for mass and cost optimization, and Figure
11b shows the result for cost and CO2 optimization. The calculation time was
41 and 39.2 seconds respectively.

It is remarkable how the solution is identical to the one obtained by brute-
force but in a much shorter time. However, the computation time is almost
twice as long as in the case of using the VAE. This is due to the fact that
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(a) Pareto front for cost and mass per-
formed with the mixed variables model

(b) Pareto front for cost and CO2 per-
formed with the mixed variables model

Fig. 11: Pareto fronts obtained with the mixed variables model

since gradient operations cannot be used and the materials are arbitrarily
distributed in the database, it is not possible a priori to focus on a series of
materials and all of them must be analyzed.

It was also decided to generate the Pareto front of compliance together with
the mass to observe how a continuous front is generated due to the multiplicity
of solutions. The result is shown in Figure 12.

Obviously, the material that guarantees the minimum in both properties
is the CFRP, and therefore it is the one that dominates the plot. However,
from a certain value of truss volume, if it is desired to continue reducing the
compliance, it is necessary to make a jump in the total mass of the system
and use a denser material such as Gray Carbon.

When the structure using the CFRP reaches the maximum value in
the section of the areas, the weight of the structure cannot continue to be
increased to continue decreasing the compliance. It is in this case that a
material with a higher density but also a higher Young’s modulus must be
used in order to reduce compliance even more. Note that the values of both
mass and compliance do not reach infinite values because they are limited by
the value of the areas.

4.4 Multi-objective Optimization with the hybrid model

It has been shown that if the VAE is used directly to obtain the Pareto front,
due to imprecision in the properties and lack of convergence, it is difficult
to obtain an accurate solution. However, by being able to apply gradient
optimization, in a short time, the optimizer is able to find a close solution.
On the other hand, if the problem is solved directly using an integer variable
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Fig. 12: Pareto front of mass vs compliance, depicting the geometry evolution

that encodes the properties of each material in the database, it is possible to
find the exact solution. In addition, the search time will depend very much on
the size of the database, which is not the case when using the VAE.

A hybrid method combining the advantages of each approach is proposed.
The idea is to use the VAE as a preliminary search for appropriate materials
(Algorithm 1 and 2), and after applying a filtering based on that solution,
perform the optimization with the mixed variables method (Algorithm 3)
with a proportionally reduced material database. Being conservative, the filter
used will be to discard all the materials whose material type is not present in
the preliminary solution.

The scheme of the proposed method is shown in Figure 13.
This method will be put into the test for the optimization of mass and

cost. First, the preliminary solution using exclusively the VAE was obtained.
It took 9.71 seconds and is shown in Figure 14a.

Hence, in this case, only steels, aluminum alloys and composites were kept
in the database, reducing it from 93 to 68 materials.
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Fig. 13: Scheme of the hybrid model

Once the database has been reduced, the mixed variable method is run,
and in this way the final accurate solution is obtained, shown in Figure 14b.
It took 19.17 seconds.

(a) Preliminary Pareto front for cost and
mass performed with the VAE

(b) Final Pareto front for cost and mass
with mixed variables model

Fig. 14: Cost and mass Pareto front using the hybrid model

This makes the total solution search time (28.88 seconds) equal to or
slightly lower than the one of the mixed variables model (41 seconds) with an
equally accurate solution.

The same procedure was conducted for CO2 and cost, obtaining the pre-
liminary solution shown in Figure 15a in 8.76 seconds.

After keeping only the steel in the database (14 materials), the mixed
variable method was run generating the solution show in Figure 15b in only
15.72 seconds.

This results in a total solution time of 24.48 seconds. In this last case, as
more materials were discarded, the solution time was lower. The calculation
times are summarized in Table 8. Note that other results such as the value of
the areas or the chosen materials are not compared since they are coincident.
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(a) Preliminary Pareto front for cost and
CO2 performed with the VAE

(b) Final Pareto front for cost and CO2

with mixed variables model

Fig. 15: Cost and CO2 Pareto front using the hybrid model

The chosen discriminator (material class) is the most conservative. Several
preliminary experiments were performed by choosing a different discriminator
such as keeping the N materials closest to the preliminary solution or materi-
als with a minimum confidence level. However, this required a more accurate
preliminary solution, which increased the time required, and on several occa-
sions some of the optimal materials were not preserved.

Time (s) Cost vs Mass Cost vs CO2

Mixed model 41 39.2
VAE 9.71 8.76

Hybrid model Mixed 19.17 15.72
Total 28.88 24.48

Table 8: Total resolution time for the considered cases with hybrid and mixed
variables models

4.4.1 Hybrid vs mixed variables model for a complex truss

To further test the model, a similar comparison was performed for a more
complex truss, depicted in Figure 16. It is composed by 22 nodes connected
by 47 bars, simply supported at the lower ends and subjected to a vertical
downward force of 10 kN at each of the higher tips.

The calculation times of each of the models are summarized in Table 9.
Figures 17a and 17b show the preliminary and final solution respectively
of the Pareto front of cost vs mass, whereas Figures 18a and 18b show the
preliminary and final solution respectively of the Pareto front of cost vs CO2.
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Fig. 16: Antenna truss

Although the structure is different, the resulting materials and their distri-
bution are alike to the previous case. This will be discussed in the following
section.

Time (s) Cost vs Mass Cost vs CO2

Mixed model 112.3 117.41
VAE 14.32 19

Hybrid model Mixed 75.7 46.4
Total 90.02 65.4

Table 9: Total resolution time for the considered cases with hybrid and mixed
variables models (antenna)

Due to the complexity of the structure, the total calculation time increases.
However, it stands out that the preliminary calculation time performed with
the VAE remains low despite the complexity of the structure. In addition, the
reduction in the total calculation time of the hybrid method for cost vs CO2

is more evident for this case as the huge reduction of the material database
involves a greater impact for complex problems like this one.
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(a) Preliminary Pareto front for cost and
mass performed with the VAE (antenna)

(b) Final Pareto front for cost and mass
with mixed variables model (antenna)

Fig. 17: Cost and mass Pareto front using the hybrid model for the complex
antenna truss

(a) Preliminary Pareto front for cost and
CO2 performed with the VAE (antenna)

(b) Final Pareto front for cost and CO2

with mixed variables model (antenna)

Fig. 18: Cost and CO2 Pareto front using the hybrid model for the complex
antenna truss

5 Practical case: Environmentally friendly
three-dimensional truss

In this last section, the hybrid model will be put to the test in a three-
dimensional structure with the aim of reducing the impact on the environment.
On the one hand it will serve to demonstrate that the method is equally
applicable to any structure independently of its complexity, and on the other
hand it will demonstrate its usefulness in a real example.
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The structure to be analyzed is a three-dimensional 20 bar mid-noded can-
tilever truss. The geometry is depicted in Figure 19. Regarding the boundary
conditions, the truss is simply supported at the left side and a downward force
of 20kN is applied to the rightmost node. It must be designed in such a way
to reduce the impact on the environment. Therefore, the focus will be mainly
on the values of CO2 produced, as well as energy and water consumed. There
is no a priori limit in terms of cost or mass. Therefore, we only maintain as
usual the buckling and yield stress constraints.

Fig. 19: 20 bar mid-noded cantilever truss

Hence, the first step is to apply the quick search of the solution. It took
26.02 seconds and the results are presented in Figure 20a.

Note that multiple versions of the same material (AISI 4340 norm) appear
as solution. This gives some information regarding the final result: this mate-
rial will be probably one of the best minimizing at the same time all the
properties considered, and as a consequence, similar materials (steel alloys)
are the only candidates suitable for this problem.

Likewise, the database is filtered to only consider steel alloys and the integer
optimization algorithm is run. It took 26.41 seconds and the result is presented
in Figure 20b.

As expected, steel AISI 4340 norm is practically the material with less
water consumption and CO2 produced. However, note that AISI 1010 has
half of the energy required. In this scenario, it is difficult to decide which
material to use to manufacture the structure. To be rigorous, an environmen-
tal consumption index will be defined. This index will try to fairly weight the
properties so that the most balanced material can be chosen.

Being Pmin, Wmin and Vmin the minimum value of CO2, water and energy
achievable respectively, the index is defined as:

H =
1

3

P − Pmin

Pmin
+

1

3

W −Wmin

Wmin
+

1

3

V − Vmin

Vmin
(7)
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(a) Preliminary Pareto front for minimiz-
ing environmental impact

(b) Final Pareto front for minimizing
environmental impact

Fig. 20: Pareto fronts of the problem of minimizing environmental impact

In such a way that the perfect material with minimum consumption would
yield H = 0. To take into account the cost of the structure as well, both values
were calculated for each solution and presented in Table 10.

Material Cost Env. Consumption

AISI 1045 CD 18.63 $ 9.60 [-]
Cast Carbon St 28.68 $ 7.85 [-]
AISI 4340 norm 31.91 $ 2.28 [-]
AISI 1010 24.04 $ 1.73 [-]

Table 10: Cost and environmental consumption values

Hence, the structure with less environmental consumption would be made
of AISI 1010. As it is also one of the cheapest solutions, it should be the mate-
rial chosen. Note that this index wasn’t defined by pure chance; by specifying
a given weight for each property, one can get a Pareto front balancing this
index with another metric (cost, mass) in order to make the selection based
on the specific needs.

Finally, one aspect to consider is whether there are major differences
between a two-dimensional and a three-dimensional truss when the material
database, boundary conditions and shape of the structure are very similar. For
this purpose, a mass versus compliance balance analysis was performed as we
did for the two-dimensional truss. The results are shown in Figure 21.
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Fig. 21: Pareto front of mass vs compliance, depicting the geometry evolution
(three-dimensional case)

Although the result is completely different in terms of values since the
problem itself is not the same, it is obvious that the resulting materials and
their distribution is very alike to the two-dimensional case. Therefore, we
could say that similar problems have similar materials as optimal solution.

6 Conclusions

Throughout this paper, an existing idea of using neural networks to optimize
structures has been developed and improved. As introduced at the beginning,
the optimization of structures is not at all a new topic, but in recent years
new revolutionary ideas such as the one presented in this work related to
artificial intelligence are emerging showing promising results.

Although the VAE has proved to be very useful and fast in obtaining the
solution, the impossibility of avoiding errors associated with the encoding
and the difficulty of having a fully regular map has been a significant enough
drawback to require an additional procedure.
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At the expense of achieving an accurate solution by means of VAEs, an
alternative approach was proposed that combined the velocity of VAEs with
the accuracy of the mixed variables model. For our particular case, this was
a good trade-off. It was proposed to simply filter by material type, but much
more advanced filtering could have been applied to reduce even more the
database.

However, this is only a stopgap in order to obtain a solution to this sim-
ple problem. Nowadays, with more than 150,000 materials available [2] and
increasing in number due to new discoveries it is completely unrealistic to
pretend to use a mixed variables model to solve the problem. While the pro-
posal to use VAEs to discriminate materials is viable, efforts should be made
to improve the encoding and decoding of materials to directly obtain a fast
and accurate solution without relying on methods involving integer variables.
The idea of a dynamic encoding, in which only the properties to be used in
the problem are encoded in each case, would be a first step to simplify the
process and therefore reduce errors.

On the other hand, it would also be interesting to apply a first filter to
the encoding of the materials themselves. That is, once the problem is set,
discard those materials that a priori are not going to be a solution, and start
the encoding process only with the remaining materials. In any case, these
are proposals whose objective is to simplify the information to be encoded as
much as possible, since inevitably the greater the complexity, the greater the
associated error.

Replication of Results

https://github.com/mid2SUPAERO/HybML-EvoMatDesEco
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Morlier. An outer approximation bi-level framework for mixed categor-
ical structural optimization problems. Structural and Multidisciplinary
Optimization 65 (8), 214 (2022) .

[11] Edouard Duriez, Joseph Morlier, Catherine Azzaro-Pantel &Miguel Char-
lotte. Ecodesign with topology optimization. Procedia CIRP 109,
454–459 (2022) .

[12] Edouard Duriez, Catherine Azzaro-Pantel, Joseph Morlier &Miguel Char-
lotte. A fast method of material, design and process eco-selection via
topology optimization, for additive manufactured structures. Cleaner
Environmental Systems 9, 100114 (2023) .

[13] Edouard Duriez, Vı́ctor Manuel Guadaño Mart́ın & Morlier Joseph. Co2
footprint minimization of solar-powered hale using mdo and eco-material
selection. Scientific Reports 13 (1), 11994 (2023) .

[14] Ernest Ching & Josephine V Carstensen. Truss topology optimization of
timber–steel structures for reduced embodied carbon design. Engineering
Structures 252, 113540 (2022) .

[15] Julian Blank & Kalyanmoy Deb. Pymoo: Multi-objective optimization in
python. IEEE Access 8, 89497–89509 (2020) .



Springer Nature 2021 LATEX template

32 A Hybrid Machine Learning and Evolutionary Approach to Material Selection and Design Optimization for Eco-Friendly Structures

[16] Jamie A Manson, Thomas W Chamberlain & Richard A Bourne. Mvmoo:
Mixed variable multi-objective optimisation. Journal of Global Optimiza-
tion 80 (4), 865–886 (2021) .

[17] Github code: Structural material selection using deep learning. https:
//github.com/mid2SUPAERO/HybML-EvoMatDesEco. Accessed: 2023-
08-16.

[18] Yuri Burda, Roger Grosse & Ruslan Salakhutdinov. Importance weighted
autoencoders. arXiv preprint arXiv:1509.00519 (2015) .

[19] Ian Goodfellow, Yoshua Bengio & Aaron Courville. Deep learning (MIT
press, 2016).

[20] Diederik P Kingma, Max Welling et al. An introduction to variational
autoencoders. Foundations and Trends® in Machine Learning 12 (4),
307–392 (2019) .

[21] Adam Paszke et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems 32
(2019) .

[22] Diederik P. Kingma & Jimmy Lei Ba. Adam: A method for stochastic
optimization. ICLR 2015 - Conference Track Proceedings. International
Conference on Learning Representations (2015) .

[23] Nsga-ii: Non-dominated sorting genetic algorithm. https://pymoo.org/
algorithms/moo/nsga2.html. Accessed: 2023-07-29.

Acknowledgements

The authors would like to acknowledge the assistance from Associate Pro-
fessor Israel G. Garćıa, Departamento de Mecánica de Medios Continuos y
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Appendix A Annexed figures

(a) Yield strength colormap for 100
neurons

(b) Yield strength colormap for 1000
neurons

Fig. A1: Comparison in the distribution of Yield Strength values in the latent
space for different numbers of neurons

(a) Material representation in a two-
dimensional latent space for β = 5e− 6

(b) Material representation in a two-
dimensional latent space for β = 5e−4

Fig. A2: Material representation in a two-dimensional latent space comparison
for different values of β parameter. Note that the map enlarges
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Appendix B Annexed tables

β value Error type ∆E% ∆ρ% ∆C% ∆Y% ∆P% ∆V% ∆W%

5e-6
Max Error 6.1 3.2 3.7 7.8 1.1 1.3 1.1
Avg Error 1.1 0.7 0.5 1.0 0.2 0.3 0.2

5e-5
Max Error 7.7 6.3 3.3 7.8 2.1 2.6 4.0
Avg Error 1.6 1.6 0.7 2.2 0.3 0.3 0.6

5e-4
Max Error 16.8 17.7 5.8 18.4 5.6 6.8 5.8
Avg Error 2.4 4.1 1.2 5.1 0.7 1.0 0.8

Table B1: Comparison of error for different values of the β parameter

Objective Equation

Compliance f⊺u(A, Ê)

Mass ρ̂
∑N

k=1 AkLk

Cost ρ̂Ĉ
∑N

k=1 AkLk

CO2 ρ̂P̂
∑N

k=1 AkLk

Energy ρ̂V̂
∑N

k=1 AkLk

Water ρ̂Ŵ
∑N

k=1 AkLk

Table B2: Available objective functions
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Constraint Equation

Compliance

(
f⊺u(A, Ê)

J∗

)
− 1

Mass

(
ρ̂

M∗
∑N

k=1 AkLk

)
− 1

Cost

(
ρ̂Ĉ

C∗
∑N

k=1 AkLk

)
− 1

Yield max
k

(
Pk

Ŷ Ak

)
−

1

Fs

Buckling max
k

(
−4PkL

2
k

π2ÊA2
k

)
−

1

Fs

CO2

(
ρ̂P̂

C∗
∑N

k=1 AkLk

)
− 1

Energy

(
ρ̂V̂

V ∗
∑N

k=1 AkLk

)
− 1

Water

(
ρ̂Ŵ

W∗
∑N

k=1 AkLk

)
− 1

Confidence 1−

1−
∥z∗ − zm∥

max
∀k∈M

(∥z∗ − zk∥)


γ∗

Table B3: Available constraints
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