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SUMMARY

Over the last decade, the composition of the gut microbiota has been found to correlate with the 

outcomes of cancer patients treated with immunotherapy. Accumulating evidence points to the 

various mechanisms by which intestinal bacteria act on distal tumors and how to harness this 

complex ecosystem to circumvent primary resistance to immune checkpoint inhibitors. Here, we 

review the state of the microbiota field in the context of melanoma, the recent breakthroughs in 

defining microbial modes of action, and how to modulate the microbiota to enhance response to 

cancer immunotherapy. The host-microbe interaction may be deciphered by the use of “omics” 

technologies, and will guide patient stratification and the development of microbiota-centered 

interventions. Efforts needed to advance the field and current gaps of knowledge are also 

discussed.

INTRODUCTION

Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of melanoma and 

other cancers, in early stages and advanced settings, by inducing durable and sometimes 

curative clinical responses in subsets of patients. However, most cancer patients do not 

benefit from ICIs, and strategies to enhance responses remain an unmet clinical need.1 Host 

microbiota plays an important role in immunotherapy response and resistance.

Several lines of evidence support the notion that the gut microbiota regulates immune 

and clinical responses to cancer. In mouse models, certain gut commensals mediate 

efficacy of anticancer therapies, including chemotherapy, radiotherapy, and immunotherapies 

such as adoptive T cell transfer, intratumoral CpG-oligonucleotides, and ICIs.2–7 In 

addition, broad-spectrum antibiotics (mainly beta-lactams) taken prior to immunotherapy 

markedly reduce the clinical benefit of ICIs, chimeric antigen receptor (CAR)-T cells, 

stem cell transplantation in patients, and immunogenic chemotherapy in preclinical tumor 

models.3,4,8–10 The microbiota influences the cancer-immune set point, which is the 

threshold beyond which an immune response can be elicited in a given individual.11 

This statement relies on several lines of epidemiological and experimental evidence. First, 

correlations have been drawn across cancer indications and geographical sites between 

the taxonomic composition of the gut (and to some degree tumor) microbiota, and 
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ICI responses in patients with melanoma and other cancers.10,12–19 Second, exposures 

including medications, especially antibiotics and proton pump inhibitors, and diet that 

shape the microbiota are associated with ICI responses in patient cohorts and preclinical 

models.5,10,13,18,20 Third, cancer patients can suffer from stress ileopathies that perturb 

the commensal community toward profiles found in chronic inflammatory processes.21–23 

Fourth, cause-effect relationships between the prevalence or relative abundance of particular 

taxa, and clinical regression or progression, have been shown in animal models.21,24–

27 Finally, pioneering clinical studies in patients with melanoma showed that fecal 

microbiota transplant (FMT) could circumvent primary and secondary ICI resistance,28,29 or 

ameliorate ICI response rates.30 Furthermore, sufficient dietary fiber intake was associated 

with improved progression-free survival (PFS) with ICIs, while untargeted probiotic 

exposure was associated with worse outcomes, and preclinical melanoma models supported 

microbiota as mediators between these exposures and ICI outcomes.13,20 However, many 

questions remain regarding mechanisms of host-microbiota-immune interactions, as well as 

optimal strategies of microbiota modulation to improve patient outcomes. This article is 

focused on melanoma, but given that the data in this field are still emerging, we have also 

included data from other populations/models and recognize that observations made in other 

cancers need to be validated in melanoma.

In March 2023, the Melanoma Research Alliance in partnership with the Seerave Foundation 

convened a workshop entitled “Melanoma and the Microbiome”. Experts in microbiology, 

immunology, computational biology, and oncology met and discussed the current state 

of the field, unanswered questions, and how to move the field forward. Based on these 

discussions, we provide a conceptual framework underpinning the interplay between 

microbiota and the host’s immune system in melanoma (and other cancers) alongside 

multi-omic characterization approaches and rational strategies to exploit or manipulate these 

mechanisms for patient benefit.

EFFECTS OF MICROBIOTA ON INNATE AND ADAPTIVE IMMUNITY: 

MECHANISMS OF ACTION

Various mechanisms for the bidirectional interactions between the microbiota and human 

immunity have been elucidated, involving innate and adaptive immune components 

(Figure 1).20,27,31 Regarding innate immunity, gut commensals provide ligands for 

pattern recognition receptors—including toll-like receptors (TLR)2-TLR4, TLR5, nucleotide 

oligomerization domain (NOD)2, and cGAS-stimulator of interferon genes (STING)—that 

modulate the functional status of professional antigen-presenting cells, including dendritic 

cells (DCs) and macrophages. Under the control of intestinal microbiota, type I interferons 

(IFN-I) are expressed by plasmacytoid DCs to prime the host against pathogens.31 

Microbiota-derived STING agonists such as c-di-AMP (derived from Akkermansia spp. 

or fiber-enriched diets) induce IFN-I release by monocytes present within tumors 

that, in turn, contribute to intratumoral natural killer (NK) cell activation.20 STING 

also mediates the immunostimulatory capacity of macrophages in pancreatic tumors 

following exposure to trimethylamine-N-oxide (TMAO), dietary choline, or indirectly by 

CutC-containing fecal bacteria, which generate TMAO precursors.32 Bacterial products, 

Routy et al. Page 4

Cancer Cell. Author manuscript; available in PMC 2024 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



partly through TLR4 activation, condition tumor-associated myeloid cells to respond to 

CpG-oligodeoxynucleotide TLR9 agonists in melanoma and colorectal cancer preclinical 

models.4 In parallel, preclinical experiments demonstrated a direct impact of the gut 

microbiota on colon cancer. For example, Escherichia coli strains may express polyketide 

synthase, a microbial genotoxin that causes DNA damage in epithelial cells.33 In 

addition, Fusobacterium nucleatum directly activates beta-catenin signaling via TLR4,34 

and Peptostreptococcus anaerobius activates integrin α2/β1 signaling, resulting in trophic, 

pro-inflammatory and immunosuppressive signals.35 Whether the gut microbiota may affect 

oncogenic pathways in non-gastrointestinal cancers through similar direct interactions 

remains to be studied. During CTLA-4 blockade in various cancers, Bacteroides fragilis 
triggers TLR2–4-dependent interleukin (IL)-12 release that is associated with anticancer 

effects.5 In contrast, the natural immunosurveillance of cancers can be negatively impacted 

by gut commensals through TLR5- and IL-6-dependent inflammation.36 Thus, microbial-

derived ligands directly modulate innate antitumor immunity.

With regard to adaptive immunity, distinct gut microbial genera and species are associated 

with CD8+ T cell infiltration and survival in patients with melanoma.16 The gut biomass 

encodes microbial antigens that are molecular mimics of tumor antigens. For example, 

upon exposure to cyclophosphamide, Enterococcus hirae translocation leads to the activation 

of CD8+ T cells that recognize a latent bacteriophage encoded by the E. hirae genome 

and cross-react with tumor antigens, hence attenuating tumor progression.37 Moreover, the 

detection of HLA-bound bacterial peptides has been associated with an inflamed tumor 

microenvironment. Intracellular bacteria contained in metastatic melanoma cells enable the 

binding of bacterial peptides to major histocompatibility complex class I and II molecules, 

thereby facilitating tumor recognition and killing by tumor-infiltrating lymphocytes.38,39

In other malignancies, distinct bacteria can induce follicular T helper cell and B cell 

priming, as well as tertiary lymphoid structure formation in tumor beds,40 as shown in 

mice.41 Conversely, mucosal commensalism can compromise cancer immunosurveillance. 

Cancer immunotherapy focuses on only one of the PD-1 ligands, namely PD-L1 (CD274). 

However, a second PD-1 ligand, PD-L2 (CD273), has not yet been targeted in successful 

clinical trials. In mice, dysbiosis causes the upregulation of PD-L2 on DCs and increased 

expression of the PD-L2 receptor repulsive guidance molecule b (RGMb) on CD8+ T 

cells, hence explaining the resistance of cancers to PD-L1 blockade. In this context, 

simultaneous blockade of either PD-L1 or RGMb could restore the anticancer effects 

of PD-L1 blockade.42 Altogether, these results suggest that modulation of the PD-L2/

RGMb pathway may represent one mechanism used by gut microbiota to influence the 

clinical response to PD-1/PD-L1 blockade. Of note, Coprobacillus cateniformis has the 

capacity to downregulate the PD-L2/RGMb system in preclinical experiments, suggesting 

the possibility to develop immunostimulatory probiotics acting on this pathway.42

Certain microbes may release metabolites that directly activate T lymphocytes, act on 

epithelial or endothelial intestinal barriers, or act on the tumor cells themselves.17,43,44 

The microbial metabolite inosine promotes the anticancer effect of CpG. Inosine promotes 

the production of IL-12 by conventional DCs, thereby triggering IL-12Rb signaling in 

CD4+ T cells, as well as CD8+ Tc1 differentiation and effector functions.17 High levels of 
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microbiota-derived arginine are associated with improved PFS in patients receiving ICIs. 

In murine tumor models, boosting L-arginine levels enhances the antitumor effects of ICIs 

in a T cell-dependent manner.45,46 Microbial-derived TMAO produced by gut microbiota 

in patients with melanoma promoted antitumor CD8+ T cell activity in mouse tumor 

models.32,47 In addition, the microbiota-derived tryptophan metabolites, indole-3-acetic acid 

and indole-3-aldehyde (I3A), increased the efficacy of chemotherapy in mouse models of 

pancreatic cancer and are enriched in patients who respond to chemotherapy.48,49 Notably, 

Lactobacilli reuteri translocates from the intestines to tumor beds and produces I3A in 
situ, inducing aryl hydrocarbon receptor (AhR)-dependent CREB activity, which drives Tc1 

effector and tumoricidal functions. L. reuteri-derived I3A improved ICI efficacy in mice, 

and melanoma patients responding to ICIs harbored higher serum I3A levels compared with 

nonresponders.49

However, another study showed that dietary tryptophan metabolism to indoles by gut-

derived Lactobacillus spp. reduced anti-tumor CD8+ T cell quantity and increased 

pancreatic tumor cell growth.50 These conflicting results may indicate that the dose and 

scheduling of a tryptophan-enriched diet, or tryptophan-derived metabolites, can influence 

clinical outcomes. Microbes can interfere in the composition of fecal and plasma biliary 

acids. Biliary acids can regulate colonic T regulatory (Treg) cell homeostasis51 and the 

translocation of enterotropic IL-17-producing Treg cells to distal tumors,52 promoting 

immunoresistance, or alternatively participate in the recruitment of effector cells, keeping 

liver malignancies in check.53 The influence of short-chain fatty acids (SCFAs) produced 

by specific species on systemic immunity remains controversial. High serum levels of 

butyrate and propionate have been associated with resistance to anti-CTLA-4 antibodies 

and radiotherapy and increased Treg cell numbers in patients with melanoma.7,54 However, 

other studies have shown that butyrate can activate CD8+ T memory cells.55 In mice, 

butyrate and pentanoate induce mammalian target of rapamycin activation and histone 

deacetylase inhibition in adoptively transferred T cells, resulting in enhanced CAR-T 

antitumor activity.56 In cancer patients treated with anti-PD-1 antibodies, stool SCFAs 

are associated with favorable clinical outcomes.57 In addition, a diet rich in fiber results 

in enrichment of fiber-fermenting, SCFA-producing bacteria, such as Faecalibacterium 
prausnitizii, which have been associated with ICI response. Habitual consumption of a 

high-fiber diet has also been associated with improved PFS in ICI-treated patients with 

melanoma.13 In mice, dietary fiber deprivation was further shown to abrogate response to 

ICIs and decrease stool propionate.13 However, the functional links among dietary fibers, 

serum- and fecal-derived SCFAs, and antitumor immunity remain to be determined. Pending 

further confirmation, these results suggest that SCFAs display context-dependent immune 

effects that range from the differentiation of Treg cells to the enhancement of effector T cell 

functions.56,58,59

Data increasingly suggest that intestinal commensals can emigrate from the gut to distal 

tumor lesions and reprogram the tumor microenvironment (TME). Cancer progression 

is associated with β2-adrenergic receptor signaling-dependent stress ileopathy, causing 

transient intestinal permeability.21 High-salt diet-induced gut permeability also enables 

translocation of Bifidobacterium to tumors, improving the function of NK cells and 

decreasing tumor size.60,61 The combination of two ICIs promotes mucosal inflammation 
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and induces the migration of commensal-harboring DCs to mesenteric lymph nodes 

(LNs), thereby enabling microbes to reach distal lymphoid organs and tumor beds.62,63 

Likewise, immunosuppressive T cells can migrate from the gut to tumor beds. This T cell 

trafficking is in part controlled by a gut immune checkpoint called mucosal addressing cell 

adhesion molecule-1 (MAdCAM-1). The interaction between MAdCAM-1 expressed by 

high endothelial venules in Peyer patches and its ligand integrin α4β7 expressed on T cells 

plays a key role in the homing of T cells to the gut-associated lymphoid tissue (GALT). 

Antibiotics and more specifically, a relative over-dominance of gram-positive bacteria of the 

Enter-ocloster genus (such as E. clostridioformis or E. bolteae) can cause MAdCAM-1 

loss. Upon MAdCAM-1 downregulation, immunosuppressive α4β7-expressing FoxP3+, 

RORγT+ regulatory (Tr17) cells are no longer retained in the GALT and hence migrate 

to tumor-draining LNs and into tumor beds, where they compromise the outcome of PD-1 

blockade.52 Cohort studies unveiled that low serum levels of soluble MAdCAM-1 identified 

patients with poor survival following anti-PD-1 treatment across several malignancies.52

Of note, recent reports suggest that specific pathogenic bacteria such as Helicobacter 
pylori, which causes gastric cancer, can be associated with ICI resistance. Cytotoxin-

associated gene A encoded by H. pylori triggers activation of the ERK/MAPK pathway in 

gastric epithelial cells, thereby stimulating the development of mucosa-associated lymphoid 

tissue lymphoma.64 In the context of ICIs, three retrospective studies demonstrated that 

the presence of circulating anti-H. pylori antibodies is associated with resistance to 

immunotherapy in patients with non-small cell lung cancer (NSCLC), melanoma, and 

gastric cancer.65–67 In mice, H. pylori infection decreases the activation of CD8+ T cells 

by reducing the cross-presentation activity of DCs. These results indicate that colonization 

by certain pathogens can lead to ICI resistance.

The following topics remain open conundrums. First, the regulatory events controlling the 

seesaw-like balance between beneficial versus harmful bacteria and/or keeping bacterial 

translocation in check are still unknown. This question needs to be addressed not only in the 

context of natural or therapy-induced immunosurveillance but also for drug-associated side 

effects that are dependent on the microbiota. Doing so may further improve understanding 

of enterofecal compatibility during FMT and its links with systemic inflammation and 

immune activation. Second, whether and how individual components of the extended 

repertoire of commensals—bacteria, fungi, viruses, archaea, and candida phyla—target 

innate and/or cognate immune responses remains largely elusive. Current studies focus 

mostly on the bacterial gut flora, and there is little knowledge on how other phyla including 

the virome and mycobiome influence immunotherapy responses. Internal transcribed spacer 

sequencing revealed that the interplay between fungi and bacteria profoundly influences 

the development of various diseases such as inflammatory bowel disease, as well as the 

efficacy of FMT against Clostridium difficile infection.68–70 In the realm of oncology, it 

appears that an intestinal expansion of Candida albicans triggers macrophage activation, 

which in turn, promotes the development of colon cancer.71 With respect to archaea, 

Methanobrevibacter smithii was found enriched in patients with melanoma (Wang, Abstract 

e21512, presented at ASCO 2023), and patients with NSCLC who responded to ICIs 

harbored Akkermansia muciniphila.15 This observation was validated in two other studies 

on patients with NSCLC.72,73 However, the mechanistic underpinning of this correlation 
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remains unexplored. Third, adequate experimental models are urgently required beyond 

specific pathogen-free or gnotobiotic mice orally gavaged with monoclonal bacteria, or 

consortia, to better translate findings to humans. Indeed, wild mice harbor an immune 

system closer to humans than vendor-derived specific pathogen-free mice.74,75

Lastly, the skin possesses a distinctive microbiome dominated by gram-positive bacteria 

including Staphylococcus and Veillonella, which play an important role in wound 

healing, and various potentially pathogenic microorganisms such as Cutibacterium acnes 
in acne vulgaris and Staphylococcus aureus in psoriasis, diabetic foot ulcers, and lupus 

erythematosus. For non-melanoma skin cancer, one study compared the local microbiota of 

premalignant actinic keratosis lesions to cutaneous squamous cell carcinoma (SCC). Several 

S. aureus species were more abundant in SCC than in keratosis.76 This observation has 

been validated, and an SCC cell line cocultured with S. aureus exhibited upregulation of 

the potentially oncogenic beta defensin-2.77 Regarding melanoma, a culture-based analysis 

of skin swabs of 27 acral melanoma patients revealed a stage-associated increase in 

Corynebacterium. Patients that harbored Corynebacterium had a higher frequency of Th17 

cells, which produce IL-17 that can promote melanoma growth.78,79 This latter observation 

was validated in mice, in which topical application of Corynebacterium accolens resulted 

in the dermal recruitment of IL-17A-producing γδ T cells.80 These findings suggest that 

Corynebacterium species may stimulate melanoma progression through an IL-17-dependent 

pathway. These findings underscore the potential impact of the skin microbiota on local 

cancers.

INFLAMMATION AND “OMICS”

Spatial and temporal control of inflammation is central for maintaining human health81 and 

fails as aging advances.82 Thus, failure to limit inflammatory processes to transient and 

localized phenomena underlies pathology. This phenomenon also applies to cancer control, 

as unrestrained inflammation contributes to (often age-related) oncogenesis as well as tumor 

progression, in part due to impaired immunosurveillance.83 Leukocytes, especially myeloid 

cells, can contribute bidirectionally to procarcinogenic inflammation and tumor-suppressive 

immune responses, depending on their precise phenotype, functional state, and interactions 

with other immune cells (such as B, NK, and T lymphocytes), adding complexity.84 Thus, 

the relationship between neoplastic cells and inflammation-modulating immune cells should 

be conceptualized and characterized at local and systemic levels.

This systemic or “ecological” dimension85 offers the possibility to investigate the 

composition of cancer-related, body-wide, and ideally, easily accessible analytes related 

to inflammation, such as circulating immune cells and the fecal microbiota, rather than the 

tumor itself (Figure 2). Systemic pro-inflammatory states with enhanced gut permeability 

are characterized by a relative reduction of anti-inflammatory bacteria (including those 

producing SCFAs) and an expansion of pro-inflammatory species such as Streptococcaceae 
family and Veillonella.22 These species are often associated with poor prognosis and lack of 

responses to cancer immunotherapy.15,19
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Recent advances in “omics” technologies provide the opportunity to identify clinically 

actionable, inflammation-related, circulating and fecal-derived biomarkers for preemptive 

diagnosis, primary prevention, or interception of early melanoma lesions, as well as 

prognosis, ranging from patient survival to predicted, personalized therapeutic responses 

(Figure 2). Biomarker identification that considers and exploits host-microbial interactions, 

such as the relationship between serum MAdCAM-1 loss (due to dysbiotic gut microbiota) 

and poor ICI response, can provide insights otherwise missed when focusing on host or 

microbial constituents alone.52 Elucidating specific metabolites, immune cell subsets, and/or 

microbial strains associated with a low risk of cancer or progression during treatment can 

suggest future preventive or therapeutic interventions.86–88 Although correlative diagnostic 

markers are important, identification of “mechanistic” biomarkers is essential for prognostic 

and therapeutic design and could change the medical oncology landscape.89

Besides metagenomics and intestinal barrier-related markers (such as sCD14, sST2, LPS-

binding protein, and calprotectin), multiple other “omics” technologies provide proxies of 

systemic inflammation and range in cost from relatively affordable technologies, such as 

plasma mass spectrometric metabolomics to more expensive methods including plasma 

proteomics, extensive immunophenotyping of circulating leukocytes (“immunomics”), 

deep bulk exome sequencing, and single-cell versions of these (such as scRNA-seq) 

(Figure 2). Microbiota are broadly characterized through genomic sequencing, either 

ampliconor shotgun-based methods; the decision is often a trade-off among biomass levels 

(e.g., sparse in tumors, abundant in feces), desired taxonomic resolution, and budget. 

Notably, gastrointestinal microbiota are incompletely sampled using feces, overrepresenting 

colorectal-resident species; whereas ileal microbiota may yield more functional insights.90 

Certain methods can simultaneously characterize host and microbial molecules (e.g., 

untargeted sequencing, metabolomics), increasing efficiency; additionally, when low 

biomass and/or contamination must be accounted for, taxonomic characterization can 

rationally guide subsequent multi-omic analyses (e.g., proteomic spectra matching).38 

Prospective population studies usually prioritize affordability over breadth, and methods 

that simultaneously interrogate inflammation-relevant human molecules plus microbes may 

be particularly advantageous for characterizing ICI response mechanisms.

The absence of universal standardization among sampling, ali-quoting, cryopreservation, 

extraction, and bioinformatic approaches in host-microbe biomarker discovery complicates 

comparisons and reproducibility.91 Although computational batch correction methods and/or 

uniform re-analyses can reconcile disparate results,12 they are not a panacea.92 This is 

further aggravated by the fact that bioinformatics-driven data interpretation suffers from 

the absence of universal guidelines for data quality control, normalization strategies, and 

the utilization of artificial intelligence tools. Because many methodological choices are 

still being optimized, especially for microbiota sampling, a realistic strategy for improving 

inter-laboratory comparisons of datasets may involve providing external standards (such 

as spike-in controls93)—benefitting both host and microbial data—rather than enforcing 

non-optimized standard operating procedures. The comparison of intra-dataset correlations 

appears to be more robust than attempts to normalize raw data collected by distinct 

operators. External standards would not remove variation caused by controls (such as 
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healthy volunteers or untreated patients), which are often truly distinct in different 

geographic locations.12,19,94

“Omic” data annotation comprises another challenge. Careful annotation of bacterial 

data is a prerequisite for successful identification of the species responsible for a given 

phenotype. One reason that different bacterial species identified in different parts of the 

US or Europe are linked to given phenotypes may be the accuracy of annotation, a 

point that deserves careful attention. Moreover, fecal DNA analyses typically exclude 

host-derived DNA and include DNA only from microbial taxa that are assignable to 

distinct genera, species, subspecies, or strains before the results are used to compare 

intra- and inter-individual microbiota differences. Similarly, metabolomics datasets often 

contain few annotatable mass spectrometric peaks (i.e., defined metabolites), with many 

more peaks that lack chemical assignments, and usually rely on known molecules for 

downstream analyses. Both approaches discard data on the basis of incomplete databases 

and/or inadequate annotation methods. However, alternative strategies exist. For instance, 

one can agnostically assign object identifier codes to each microbial sequence and compute 

intra- and inter-individual differences without taxonomic assignment; this procedure 

has been used to identify microbial “guilds.” These guilds are functional clusters of 

distinct microorganisms exhibiting cooperative relationships and co-abundance patterns; 

they interconnect to form co-occurrence networks, highlighting the interplay of unique 

microorganisms within the larger ecosystem. By correlating variations at the guild level with 

specific phenotypes or mechanistic markers, one can infer their health-related functions, 

including when lower resolution taxa-based analyses would miss them.95 Analogously, 

unannotated metabolomics peaks can still be used to construct co-occurrence networks 

in the search for inflammation-relevant biomarkers indicative of pathogenic processes.96 

As future research improves underlying databases, currently unannotated metabolites, or 

microbes, may become interpretable, but it is unnecessary to wait to associate their data 

with pathophysiology. Furthermore, identification of microbial guilds, metabolites, or other 

molecular entities (such as plasma proteins, although the accuracy of currently available 

proteome platforms remains a challenge)97 may generate new composite biomarkers that are 

multi-omic and/or multi-species in nature.

A spectrum of sampling strategies exists for “omics”-based biomarker discovery. On one 

end, samples may be drawn and banked from a large, still-healthy population subjected 

to regular lifestyle evaluations and health checkups for decades to prospectively identify 

individuals who develop disease and follow their molecular trajectories. Here, a maximum 

number of participants should be enrolled, and their samples preferentially subjected to 

low-cost “omics” studies, with sufficient quantities kept for post hoc confirmation and/or 

later profiling using advanced methods that decrease in cost. On the other end, samples 

could be obtained only in the context of carefully executed clinical interventions (such 

as administration of drugs, chemically defined food supplements, or genetically defined 

microbial communities) to evaluate hypotheses and/or modes of action. In this case, the 

enrolled sample size would be limited, but the depth of the “omics” analyses increased. 

However, in both scenarios, obtaining longitudinal samples from patients is critical, and both 

designs should further consider discovery and validation cohorts if attempting to confirm 

biomarker(s) utility to reduce the risk of reporting spurious correlations.

Routy et al. Page 10

Cancer Cell. Author manuscript; available in PMC 2024 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Overall, contingent on strategic resource allocation and careful trial design, there are 

strong prospects for identifying a new generation of multi-omics, multi-species biomarkers 

that identify inflammation- and immunity-relevant biomarkers, providing information for 

stratification of patients with melanoma, personalization of prophylactic or therapeutic 

interventions, and, ultimately, identification of novel drug targets.

TRANSLATING BIOMARKER DISCOVERIES INTO CLINICAL PRACTICE

Before “omics”-based biomarkers can make a real impact on patient outcomes, biomarkers 

need to be adapted to methods that can readily be implemented into clinical practice. For 

broad adaptation and compliance of the use of biomarkers in clinical practice, aspects such 

as patient comfort and compliance, high reproducibility and precision, cost, turnaround time, 

and actionable results for physicians need to be considered. Regulatory authorities have also 

established mandatory guidelines and standards that require compliance.

Among many factors to be considered, we highlight the following considerations.

Collection of biological samples from the colon. Although collection of samples or 

biopsies from the small intestine may be optimal, invasive methods will add risks for 

patients, costs, and reproducibility challenges.98 Therefore, in a routine clinical setting, 

non-invasive methods such as collection of fecal samples with commercially available kits 

may be preferred. A second consideration related to the collection of fecal samples is the 

observed day-to-day variance in the microbial composition of fecal samples,99 which may 

be circumvented by three or more collection time points at baseline.

DNA extraction is a key step. Several methods and kits exist for DNA extraction, 

each with certain biases. However, when repeatedly using the same kit, improved 

reproducibility can be obtained.100 Other steps to improve precision and reproducibility 

include automation, simplification, targeting, and statistical robustness. Establishing highly 

automated procedures reduces the person-to-person and day-to-day variation that is observed 

in microbiota analyses.101 Greater reproducibility can be achieved by reducing excessive 

steps that introduce variability. An optimal biomarker diagnostic test to be implemented 

in the clinic would benefit from a method that utilizes a predefined set of targets, such 

as various PCR approaches (e.g., qPCR, dPCR, RT-PCR) because they have precedent for 

regulatory approval. The evolution of bioinformatic approaches, databases, and tools will 

shape the interpretation of the raw data from DNA sequencing of microbiota samples.

INTRATUMORAL MICROBES AND MECHANISMS

A growing body of evidence has demonstrated the presence of intratumoral 

microbes, with studies using either metagenomics or culturomics suggesting 

the presence of intracellular,14,38,102,103 cancer type-specific,14,104–106 spatially 

heterogeneous,14,103,107 metabolically active,14,38,49,108,109 pro-metastatic,102,103,110,111 and 

immunoreactive38,60,112–115 communities of tumor-resident bacteria, fungi, and viruses,116 

including in melanoma.14,38,49,104,105 While murine experiments can be well controlled, 

the methodology used to detect intracellular bacteria in human tumors is vulnerable to 
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contamination (especially with culturomics) and poor curation of microbial-specific DNA 

sequence databases (with metagenomics), as discussed in the following section.

Microbes can translocate into solid tumors via various routes.49,110,114,115,117,118 Several 

reports indicate that for gastrointestinal tumors, such as pancreas and colon carcinoma, 

direct interaction between bacteria and healthy cells can trigger genetic alterations 

and inflammation leading to cancer.119 For example, orally administered fluorescent 

Enterococcus faecalis can be identified in pancreatic cells from normal mice.117 Conversely, 

another group demonstrated that following FMT from feces of patients with pancreatic 

cancer, only a minority of bacteria found in orthotopic mouse pancreatic carcinomas were 

of donor origin, although FMT did influence the composition of the recipient-derived 

intratumoral microbiota.114 Intravenous injection of F. nucleatum caused its enrichment 

in rectal cancer from mice, suggesting that bacteria can travel to various organs via the 

bloodstream.120 Accordingly, in mice, L. reuteri trespasses the colon epithelial barrier 

and then colonizes subcutaneous melanoma cells to locally produce I3A and enhance 

the efficacy of ICIs.49 In melanoma, more complex mechanisms for translocation have 

arisen when considering therapeutic-induced epithelial damage and/or the host immune 

response, such as immunotherapy-mediated (CD47-based or ICI) translocation of gut 

bacteria to tumors.60,62 However, the mere presence of a melanoma tumor may trigger gut 

translocation via β-adrenergic-mediated stress ileopathy that increases gut permeability.21 

Major interest exists to delineate the synchroneity, or lack thereof, of metastatic processes 

and microbial translocation, with preliminary data suggesting both can happen.102,118 It 

also remains unclear whether metastasis-seeding microbes can translocate back to primary 

tumors or between multiple metastases, with only anecdotal evidence suggesting similarities 

between multiple melanoma metastases within the same patient.38 Systematic decoupling 

of microbial origins, seeding preferences, and timelines will require dense, longitudinal, 

multi-regional sampling in murine models, and, when possible, tumors from patients.

Intratumoral bacteria can impact cancer progression and response to cancer therapy via 

multiple mechanisms of action. At the level of the cancer cell, microbes can potentially 

modify every aspect of cellular fitness: genomic integrity,121 transcriptional states,122 

proteomes,38,112 and metabolism.14,108 Single-cell data of infected cancer cells indicate 

higher expression of pathways related to epithelial-to-mesenchymal transition and p53 

signaling than non-infected cells.103 At the level of the TME, intratumoral microbes may 

modulate immune tone through innate115,123 and adaptive38,41,112 pathways, or both,117 as 

well as through immunoactive metabolites.49 A few studies have suggested that intratumoral 

microbiota compositions are predictive of ICI responses,14,105,124,125 which remain to be 

confirmed. The exact distribution of which microbes are passengers versus complicit actors 

or drivers remains unclear.126

Controversies persist with respect to the methods used for evaluating the presence 

of intratumoral microbes, their quantitative estimation, as well as their biological and 

clinical relevance in situ. Quantitative PCR has estimated that among seven cancer types, 

approximately 0.68% (95% CI: 0.75, 1.46%) of the tumor cellular content is bacterial, 

with melanoma-specific density estimates at ~33 bacteria/mm2 or ~6.3×106 bacteria/cm3 on 

average (using bootstrapped values).14,127 Fungal abundance estimates are one-to-two orders 
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of magnitude lower than bacteria,105 but the abundances of other domains (e.g., viruses, 

phages, archaea) remain unexplored. Theoretically, more than one bacterial cell can infect a 

single cancer cell,38,103 but the total number of unique species per tumor, bacterial or fungal, 

drops (<50) when decontamination strategies are applied.14,38,105 Three studies claimed 

the uniqueness of intratumoral microbiota and the possibility to diagnose cancers based on 

metagenomic deep sequencing of circulating DNA,14,104,106 but concerns have been raised 

based on strikingly high numbers of intratumoral bacteria128 and methodological disputes, 

including the separation of bacterial and human DNA (e.g., bacterial DNA sequences 

deposited in official databanks can be contaminated by human DNA) and batch correction 

algorithms generating spurious artificial intelligence-based classifications.129 Overall, we 

will need to develop more robust microbiological and molecular methods to exclude 

contaminant sequences (either human or contaminating microbes) for more precise and 

reliable characterization of intratumoral microbiota. Such an effort could be developed at the 

consortium level, analogous to The Cancer Genome Atlas (TCGA),130 even if solely focused 

on melanoma (Figure 3) and would require biobanking of multiple specimen types (feces, 

saliva, blood, urine, primary tumor, metastatic tumors) with experimental contamination 

controls over time, including before, during, and after treatment when possible. Multi-

omic and multi-domain (e.g., bacteria, fungi, viral) assessments would guide hypothesis 

generation that could be subsequently tested in validation subsets, external cohorts, and/or 

mouse models. Such an endeavor will facilitate the application of new technologies that 

study host-microbe interactions at the single-cell and spatial levels, providing critical 

information on microbial proximity to tertiary lymphoid structures, metastatic clones, and 

spatial patterns directly related to response or resistance to ICIs.

DIET AND PREBIOTICS AS MICROBIOTA MODULATORS

Gut microbiota are largely determined by environmental exposure, especially what we 

ingest, i.e., diet and medications.12,18,131 Many bacteria associated with ICI response have 

known dietary associations, such that specific dietary patterns (e.g., plant-based versus 

western diet) are associated with increased or decreased relative abundances of these 

candidate taxa.131–135 Thus, there has been a strong interest and rationale in microbiota-

centered interventions (MCIs) and to conjunctively examine diet and microbiota in cohorts 

of ICI-treated melanoma patients.

Recent observational studies in melanoma patients have demonstrated, in the context of ICI 

administration, that sufficient dietary fiber intake is associated with improved PFS compared 

to insufficient fiber intake.13 Consumption of a Mediterraneanstyle diet or higher omega-3s 

is also associated with an increased likelihood of ICI response in melanoma patients.18,136 

These observational studies are potentially limited by confounding factors, but the biological 

plausibility of this diet-microbiota-immune axis rests on the idea that microbial breakdown 

of dietary fiber and other prebiotic foods results in the production of immunomodulatory 

metabolites.13,137,138

Importantly, causality is supported by preclinical studies in which dietary fiber manipulation 

in murine models rapidly shifts the microbiota and can potentiate the effect of ICIs in 

specific pathogen-free, tumor-bearing mice.13,20 Notably, this phenomenon is not seen in 
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germ-free mice, suggesting that ICI response augmentation is microbiota dependent.13 

The effects of more specific/restrictive dietary interventions on antitumor immunity and 

ICI response, including ketogenic diet and caloric restriction, have also been verified in 

mice.139,140 In humans, a fasting-mimicking diet decreases immunosuppressive myeloid 

cells while increasing CD8+ T cells and NK cells.141 Although prior studies of 

macronutrients or caloric restriction focused on altering tumor metabolism, these findings 

suggest that dietary interventions may also exert immunomodulatory effects via microbiota, 

or microbial or host metabolite effects, on immunocytes. They also set the stage for dietary 

intervention studies to improve outcomes in ICI-treated patients with cancer, but several 

issues remain to be addressed. Moreover, standardization of the definition of each diet, 

as well as consideration of cultural and geographic distribution, will be important when 

performing homogeneous studies.

Behavioral changes including following and maintaining a specific diet over months are 

challenging, particularly in patients who are physically and emotionally overwhelmed by 

an active malignancy and treatment-related gastrointestinal complications.131,142 Sustaining 

beneficial dietary changes may also be important, as changes to the metabolome/microbiota 

are reversed after an individual reverts to their habitual diet.131,142 However, the critical 

time for dietary microbiota modulation may only be at the priming phase prior to ICI 

initiation.131 In addition, the microbial response to dietary intervention varies among 

individuals, complicating straightforward prediction of results.131,143 In this sense, the value 

of a personalized diet warrants further exploration, specifically considering predictors of 

antitumor response to diet143,144 in relation to habitual diet and the person’s microbiota.131

An alternative to full-scale dietary changes is to identify specific nutrients or metabolites 

that mediate the desired antitumor effects from dietary studies. These compounds, in turn, 

could be used directly as “drugs” while obviating challenging behavioral modifications. For 

example, one could therapeutically administer 3-hydroxybutyrate to mediate effects of the 

ketogenic diet in mouse ICI models.140 Similarly, the prebiotic berry camucamu, which is 

rich in polyphenols including castalagin, favorably alters the gut microbiota composition and 

the TME, and is now being clinically investigated.145 A recent preclinical study discovered 

that L. reuteri converts dietary tryptophan into the AhR agonist indole-3-carbaldehyde, 

which was necessary and sufficient to enhance ICI efficacy in preclinical melanoma via 

activation of AhR in CD8+ T cells and driving Tc1 immunity.49 Although a tryptophan-

enriched diet further enhanced the antitumor effect of L. reuteri, increasing dietary 

tryptophan in the presence of complex microbiota and in the absence of exogenous L. 
reuteri administration also enhanced ICI efficacy in preclinical melanoma. This observation 

implies that other tryptophan-catabolizing bacteria besides L. reuteri contribute to antitumor 

immunity; this hypothesis should be further evaluated.

The prebiotics inulin and mucin produce antitumor immune responses in melanoma-

implanted mice, but not in germ-free mice.146 However, a different study showed that 

soluble fiber such as inulin may induce liver cancer in mice with a disrupted gut microbiota, 

highlighting that specific fiber sources and context may matter; moreover, it suggests that 

we need to be careful when deciding which fiber to use in cancer patients, as their gut 

microbiota has been significantly disrupted and may not respond the same as healthy 
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gut microbiota.147 It is possible that some dietary fiber may promote pathogens when no 

competing beneficial bacteria exist. It is also plausible that with a reductionist approach (i.e., 

only compounds), we will overlook some of the potential beneficial immunomodulatory 

effects of whole food, given that fiber in the human diet is not consumed in isolation. 

Overall, though, the Mediterranean and plant-rich diets associated with ICI response in 

patients are rich in polyphenols and other compounds that can modulate both microbiota and 

immunity.13,28,140,145,148–151

It remains challenging to fully replicate diet-microbiota interactions in preclinical models 

due to the relative complexity of the diets of free-living humans versus laboratory mice. 

This limitation can obscure or compound the impact of complex diets on microbiota and 

their concomitant clinical implications. We thus need to better understand how dietary 

interventions that are successful in preclinical models can be recapitulated in the human 

diet. Moreover, it remains unclear what the endpoint of such dietary interventions should be 

(e.g., microbiota composition, metabolic output, bacterial species, taxa, or “guilds”). Indeed, 

gut bacteria respond to a high-fiber diet as guilds rather than taxa, suggesting that guilds 

may mediate the beneficial effects of dietary fiber on immunotherapy.152 Sole reliance on 

tumor shrinkage as an endpoint may make some studies unfeasible.152 The ultimate goal is 

improving ICI response, and establishment of a surrogate biomarker for an optimal response 

to ICIs following dietary intervention for use in early phase clinical trials will be critical.

Adding dietary modification or recommendations to official guidelines will require more 

data, and there is currently no strong recommendation from international associations such 

as ASCO or ESMO (Cancer Prevention Recommendations).153 We do not fully understand 

how and if changing the diet the same way for all patients will provide a better cancer 

outcome or whether an intervention should involve a whole dietary change, prebiotics, 

or synbiotics.131 Several clinical trials are underway to answer important questions 

about diet and response to cancer immunotherapies (e.g., NCT03950635, NCT04645680, 

NCT05303493, and NCT04866810). It is likely that patient cohorts will need to be 

identified for select interventions based on a unique marker set, allowing better monitoring 

of possible changes upon altered diet-microbiota composition. Clinical trials of dietary 

interventions remain challenging, including exact measurement of dietary intake data 

from patients, diet/nutrient “dose,” intervention provision (controlled feeding study versus 

behavioral intervention), cultural differences around particular food types, and participant 

preferences and willingness to comply.144 However, despite these challenges, ultimately 

demonstrating that diet or specific nutrients can impact ICI response has the potential to be 

widely scalable, cost-effective, and impactful for patients globally.

MCIs IN CANCER: LIVE BIOTHERAPEUTIC PRODUCTS, CONSORTIA, FMT, 

AND GENETICALLY MODIFIED BACTERIA

Before gut-based microbial therapy of cancer can be widely used, several key issues 

need to be addressed (Figure 4). First, the field needs consensus on what constitutes 

“beneficial” microbiota. Criteria may be treatment dependent, disease dependent, context/

host dependent,154 or agnostic, and functional considerations may be more important than 
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taxonomic ones. Conversely, knowing what constitutes “adverse” microbiota would also 

be valuable, as some microbial signatures are associated with poor outcomes and specific 

adverse events (e.g., Streptococcus spp.).12 In other words, the concept of “dysbiosis” needs 

to be clearly defined, and an optimal definition may need to consider microbe-microbe 

interactions in addition to host-microbe interactions.

In that direction, this group of experts recently described Gut OncoMicrobiome Signatures 

(GOMS) across different cohorts of patients with cancer, histotypes, and geographical sites, 

and showed that GOMS are shared among individuals with seemingly unrelated disorders 

and characterized by an imbalance between health-related and chronic inflammatory 

disease-related commensals.22 A meta- and mega-analysis of stools obtained from patients 

with cancer treated with ICIs showed that GOMS associated with ICI resistance comprised 

microorganisms affiliated with chronic inflammation and immunosuppression and oral 

genera, and were shared across various pathological disorders.22,155 Conversely, GOMS 

associated with ICI response encompassed genera enriched in health-related states. 

Moreover, several organisms involved in fermentation of dietary fibers, immunogenic 

commensals, and Prevotella copri SGB1626 were associated with cancer-free status. 

Responder GOMS for patients with lung and kidney cancer had higher predictive values 

than melanoma responder GOMS.22 In addition to GOMS, we constructed a co-abundance 

network depicting relative abundance interrelationships correlated with patient survival 

using shotgun metagenomic stool samples at baseline, enabling calculation of an individual 

ICI response probability score (Derosa, Abstract 259MO, presented at ESMO Asia Congress 

2022).

Mapping metagenomic data obtained from published melanoma patient cohorts onto a 

microbiota map derived from an American Gut Project database of more than 10,000 fecal 

samples from across the US led to the identification of distinct gut enteric signatures or 

microbiotypes of different geographical areas, which accounted for most of the between-

cohort differences.12 Therefore, enteric microbiotypes can be identified in large datasets 

despite being not entirely discrete and still variable by taxonomic, functional, and ecological 

properties. Such classifiers may be useful in the context of microbiota-based diagnostics and 

therapeutic interventions.

Ideally, a user-friendly test for dysbiosis would consist of PCR or accelerated shotgun 

metagenomic sequencing using routine tests compatible with clinical management 

constraints.156 Current clinical proxies for dysbiosis include MAdCAM-1, REG3, 

calprotectin, and lipocalin-2 in fecal samples.52,157,158 However, some discrepancies 

between microbial signatures associated with ICI response may be due to geographically 

distributed enterotypes of ecologically balanced commensal communities that are not fully 

characterized.12 Once the “good” and “bad” poles of the gut microbiota are defined, the field 

can more precisely modulate microbiota in a way that is expected to be favorable, followed 

by understanding of how subsequent treatments or diet will influence those microbiota.

Despite preliminary findings of encouraging clinical outcomes of FMT in patients 

with refractory or first-line melanoma, questions with respect to safety, scalability, and 

reproducibility of FMT remain; evaluation in large randomized trials is needed. Donor 
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selection based on specific criteria and extensive microbial testing to ensure safety are 

limitations for large-scale implementation. As a result, standardized microbial consortia 

composed of defined bacterial populations should be tested in future trials.159 Nevertheless, 

ongoing FMT trials (NCT04951583 and NCT0498884) will provide the opportunity to 

understand the determinants of patient-donor compatibility and to unravel the mechanisms 

through which the microbiota modulates the desirable and deleterious effects of ICIs.

For FMT, selection of the donor and/or recipient requires careful consideration, including 

with regard to the emergence of viral infections.160 Regarding the recipient, we need 

to develop technologies to rapidly (within 2 weeks) identify patients who already carry 

a favorable microbiota (and hence do not require FMT) as well as those affected by 

dysbiosis (and hence may benefit from FMT),15 knowing that some bacterial species may 

interfere with FMT engraftment.160 Regarding the donor, multiple microbial signatures are 

associated with a clinical response to ICIs, and the response may be context dependent and 

hence be influenced by the type of cancer. FMT from healthy donor(s) may establish a 

healthy ecological network and minimize or eliminate harmful bacteria in the recipient.30 

The composition of the optimal gut microbiota obtained from healthy donors remains to 

be elucidated. At this point, it is not clear whether “universal donors” exist or whether 

each recipient requires a different donor for the best possible outcome. At this level, the 

(considerable) cost of identifying suitable FMT donors is being evaluated in phase II clinical 

trials (NCT04951583 and NCT0498884).161 Moreover, whether all harmful microbiota need 

to be removed remains an open question, as long as restoration of a gut microbiota “balance” 

can be achieved in the recipient; nonetheless, we acknowledge that in immunocompromised 

individuals, transmission of any harmful microbiota can cause mortality, and exclusion of 

donor-derived drug-resistant bacteria carriage appears mandatory.162 Moreover, cultivation 

of microbes in bioreactors may generate spontaneous mutations, and gene flipping may 

potentially change their function.163

To identify the best possible “lead strains” for live biotherapeutic product (LBP) drug 

development, ecological competence, compatibility, and dominance must be considered. 

Optimization of culture conditions may produce a stable, reproducible consortium 

with desired characteristics.164,165 A number of consortium-level approaches have been 

or are currently under investigation (NCT03817125, NCT04208958, NCT03686202, 

NCT04988841, and NCT04107168). In metastatic melanoma resistant to PD-1 blockade, a 

Phase Ib clinical trial is being prepared for the multi-strain LBP MB097 that initially showed 

antitumor efficacy in vitro and in vivo (Robinson, Abstract P074, presented at AACR Virtual 

Special Conference 2021). Whether the LBPs generated with these approaches produce 

clinical responses in patients with cancer remains to be demonstrated.

Alternatively, monoclonal bacterial strains of high potency in conjunction with PD-1 and/or 

CTLA-4 blockade in solid tumors are currently being studied in Phase I/IIa trials. Two 

clinical studies in patients with metastatic renal cell carcinoma reported that CBM588, 

a strain of Clostridium butyricum, in combination with either nivolumab/ipilimumab 

or cabozantinib/nivolumab provided superior clinical benefits compared with nivolumab/

ipilimumab or cabozantinib/nivolumab alone (Ebrahimi, Abstract LBA104, presented at 

ASCO 2023).166 However, interestingly, the studies did not reach their primary endpoint of 
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increasing abundance of the probiotic bacteria. Given the small sample size of both studies, 

the results will require further validation in larger randomized trials. In addition, patients 

devoid of Akkermansia spp. are being treated with this LBP (NCT05865730) because avatar 

mice transferred with Akkermansia spp.-negative stools failed to respond to PD-1 blockade 

unless supplemented with oral Akkermansia spp.15

The role of antibiotic pretreatment for both FMT and LBP remains unclear, as well as 

the precise definitions of engraftment success or failure. Notably, antibiotics may increase 

engraftment but have been associated with reduced ICI efficacy in patients not undergoing 

microbiota modulation.167–169 Even with engraftment success, certain factors can prevent 

response, including immune resistance due to tumor-intrinsic factors, lack of necessary 

taxa in the donor sample, and failure to mount an efficient immune response regardless of 

microbiota.170 The many tests that need to be performed in a timely fashion represent a 

significant limitation to the development of FMT trials in immunooncology.

Careful clinical trial design for these interventions requires not only a clear definition of 

dysbiosis, but also demonstration that nonresponse or resistance to treatment is in fact due to 

dysbiosis. Appropriately, the primary outcome for initial studies is safety and engraftment. 

This would include alternate administration, e.g., single versus repeat dosing of microbiota 

modulation and design variations (e.g., classical FMT via colonoscopy vs. stool pills) to 

determine the optimal administration schedule. Second, randomized, large trials stratified 

by measures of dysbiosis will be needed. For example, patients who are nonresponders to 

ICIs due to dysbiosis could be randomized to microbiota modulation (via FMT, single LBP, 

or consortia LBP) with re-introduction of ICIs, or to the physician’s choice treatment. One 

might anticipate that nonresponse due to low tumor mutational burden, low pre-existing 

T cell-mediated immune responses, or a cold TME may overlap with nonresponse due to 

dysbiosis.171,172 Patients who are nonresponders for reasons other than dysbiosis should be 

treated according to physician’s choice. Caution is needed, as FMT or LBPs will likely have 

consequences on the tumor microbiota that, to date, have not been well characterized. As 

an alternative design, investigators may consider targeting the treatment-naive population, 

for instance randomizing ICI plus FMT versus ICI plus placebo in advanced melanoma 

(NCT04988841). Importantly, MCIs should be accompanied by robust pharmacodynamic 

studies (see Inflammation and “omics” section) to identify which physiological pillar 

or combination of pillars—immune, metabolic, epithelial barrier fitness, taxonomic, or 

functional—best correlate with clinical benefit for each MCI-based strategy.

Recent studies point to the potential utility of genetically engineered probiotics with a 

defined mode of action.173–175 For example, an E. coli Nissle 1917 strain engineered to 

secrete immune checkpoint blockade nanobodies and cytokines can boost the antitumor 

responses in mouse models.176 Moreover, E. coli Nissle 1917 can be programmed to 

target tumor microenvironments and deliver CAR antigens and enhance CAR-T cell 

tumor cell killing.177 E. coli Nissle 1917 has also been engineered to generate higher 

levels of L-arginine, which metabolically reprograms TMEs and enhances the efficacy of 

ICI antitumor activity.45 Staphylococcus epidermidis can be genetically manipulated to 

express tumor antigens and to prevent or treat cancers expressing such antigens, including 

melanoma.178 However, whether this anti-melanoma effect obtained by skin painting with S. 
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epidermidis is mediated by local cutaneous or distant gastrointestinal effects is not yet clear. 

The identification of bacterial immunomodulatory factors may provide new opportunities 

for commensal or probiotic engineering. Thus, the peptidoglycan hydrolase SagA from 

Enterococcus faecium can be transferred into Lactococcus lactis to generate a probiotic 

strain that stimulates innate immune responses via NOD2 activation and promotes ICI 

antitumor activity in mice.26 These examples highlight how engineered LBPs may improve 

ICI cancer therapy, if concerns about the safety of such genetically modified organisms 

(GMOs) can be solved. Importantly, additional genetic modifications (to modulate stress 

resistance, improve tissue/cell-type-specific targeting, and obtain inducible expression of 

transgenes) may improve the bioactivity and biocontainment of such GMOs. In this regard, 

advances in synthetic biology and CRISPR-Cas systems should offer novel opportunities for 

the optimization of probiotics.175,179

MOVING THE FIELD FORWARD

Four major areas will help advance the field: standardization, technology development, 

collaborative resourcing, and fieldwide definitions. Standardization in sample collection, 

sample sharing, storage, extraction methods, sequencing (depth and instrumentation), 

analysis methods, and data storage is urgently needed. In turn, clinically relevant metadata 

and primary unannotated data, as well as structured, multi-omic data, need to be deposited in 

publicly available databases, so that bioinformatics capabilities can be pooled for large-scale 

meta-analyses. Accomplishing this is difficult and costly but necessary to properly inform 

guidelines and ensure reproducibility.180 However, much can be learned from how cancer 

genomics accomplished a similar task with the TCGA and International Cancer Genome 

Consortium projects.

Technologically, efforts to improve sample biobanking, culturomics, microbial imaging 

(e.g., fate mapping/tracing), histology, and other systems that identify the presence of 

microbes, their function, and whether they are alive or dead will expedite progress. 

Technology will be key to move beyond descriptive science and into functional territory. 

Advances that facilitate data sharing across nations while ensuring data integrity and 

protection will also be essential for conducting meta-analyses. Developing preclinical 

model systems to determine the core principles underlying effective interventions and their 

mechanisms of action will expedite these efforts.

Collaboratively, researchers and clinicians need to engage other experts including 

biostatisticians, bioinformaticians, data managers and data scientists, and dieticians as part 

of the clinical trial design team. Mechanisms to retain contributions of trained individuals 

to the groups need to be identified. Support from nonprofits and foundations is needed 

to fund biobanking and cooperative group trials, increase sample sizes, and establish 

standard operating procedures for sample collection, storage, and data sharing. Sustained 

and coordinated efforts to define microbiota in relation to the disease, stage, treatment 

(e.g., longitudinal follow-up), and geography are mandatory. Additional challenges include 

the deployment of multi-omics, which is costly and may not be possible in large trials. 

Conversely, multi-omics in small cohorts is feasible, but sample size and statistical power 

can be challenging if validation cohorts and a collaborative spirit are not present. Continued 
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patient advocacy is critical to encourage patients to donate samples and participate in MCI 

trials, whether based on nutritional or microbial interventions.

Lastly, clear definitions are needed to explain new terminology in this field. Terms such as 

“responders/non-responders,” “dysbiosis,” “high-fiber diet,” “enterotypes/microbiotypes,” 

and “guilds” need to be unified across studies. As stated before, a surrogate marker 

of response to microbial therapy of cancer is needed and may practically be context 

dependent (e.g., tumor type, donor, treatment). Importantly, because a single therapy or 

introduction of a single microbial species or microbiota-related product is unlikely to 

work for every patient, biomarker stratification is critical to select the appropriate patient 

subset for the most suitable MCI at the right time of disease development (e.g., first-line 

treatment versus treatment when refractory to ICIs or CAR-T cell therapy). Steps toward 

translating biomarker discoveries to clinical utility will be paramount for success in this 

space. Development of model systems to determine the principles underlying effective 

interventions, and increased understanding of what mouse models tell us about human 

patients, are expected to expedite these efforts.

CONCLUSIONS

The impact of the gut microbiota on melanoma systemic and cancer immunosurveillance 

is well established and will continue to have major clinical consequences. However, 

delineating the full functional repertoire (or metabolites) of gut, skin, urine, and intratumoral 

microbes; having accurate tests for gut dysbiosis; and rationally designing microbiota-

centered interventions all represent significant challenges. Building international consortia, 

collaborations, and large, shareable databases will accelerate research and development 

on these topics. Collectively, a thorough understanding of melanoma microbiota has the 

potential to be harnessed to benefit patients worldwide.
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Figure 1. 
Potential mechanisms of the gut microbiota on innate and adaptive immunity

Intestinal microbes (center) act through at least three modes of action (on immunity, 

metabolism, and vascular, epithelial and/or endothelial barriers) involving host-microbe 

interactions, leading to exposure or secretion of various mediators that reshape the TME 

directly (after translocation to distal tumors) or indirectly via the intestinal tract. We have 

listed published mechanisms of action most often observed in preclinical mouse tumor 

models. The relevance of these mechanisms in human cancer immunotherapy still needs to 

be ascertained.

PV-1, marker of disurpted gut vascular barrier; MAdCAM-1, Mucosal vascular addressin 

cell adhesion molecule 1; RGMb: repulsive guidance molecule b
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Figure 2. 
Multi-omic collections for advancing microbiota science in melanoma

Diverse specimen types (e.g., tumor, blood, stool, and saliva) are densely and longitudinally 

collected before, during, and after treatment, followed by multi-omic data generation and 

analyses. These data are systematically annotated and deposited into secure, shareable 

databases and serve as the foundation for subsequent in vitro and in vivo studies, which 

in turn guide applications for novel diagnostics, prognostics, and therapeutics. Eventually, 

after clinical trials, these tests and interventions provide rationale for patient-specific 

interventions and stratifications.
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Figure 3. 
Systematic, multi-scale tumor microbiology

Fresh tumor biopsies are serially sectioned with contamination controls (e.g., operating 

room environment). Gathered tissue sections are then subjected to imaging and sequencing 

approaches, which are then combined to determine molecular networks, biomarkers, and 

putative drug targets. In parallel, microbial cultivation is performed using freshly resected 

tissue specimens, and the resultant isolates can be injected into organoids and/or enteroids to 

validate mechanistic hypotheses generated from the multi-scale, multi-omic data.
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Figure 4. 
Microbiota-centered interventions in cancer

Accumulating evidence over the last decade has enabled deconvolution of the taxonomic 

composition of stools from patients with cancer (at least in distinct malignancies), enabling 

better definitions of gut dysbiosis and identification of patterns associated with resistance to 

immunotherapy, independent of PD-L1 tumor expression. Coordinated efforts in biobanking 

and translational research across investigators, centers, and continents will allow expansion 

of this progress to other malignancies for better stratification of patient cohorts and 

personalization of microbiota-centered interventions.

LBP, liver biotherapeutic product; FMT, fecal microbiota transplant.
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