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Introductory Tutorial on Nonlinear Modal Analysis Through

an Academic Vibro-Impact Oscillator

Mathias Legrand

Structural Dynamics and Vibration Laboratory
Department of Mechanical Engineering

McGill University

Abstract This chapter is devoted to the nonlinear modal analysis of a nonsmooth academic
vibro-impact oscillator. The aim is to introduce the classical ingredients of nonlinear modal
analysis in a quasi-exact fashion. Periodic solutions, backbone curves in Frequency-Energy
Plots, invariant manifolds, (grazing) bifurcation mechanisms, internal resonances, model-order
reduction considerations and superabundance of nonlinear modes naturally emerge when
solving the governing equations. Spectral stability analysis of (some) periodic orbits and
time-domain solutions in their vicinity are also provided.

1 Introduction

Predicting the vibratory responses and dynamics of structures containing nonlinearities is an
increasingly important research topic with potentially strong impact in the industrial sphere mainly
because modal information is a crucial property of mechanical systems. This is the consequence
of the recent development of new materials, the implementation of new efficient and lightweight
designs along with the increasing computational capabilities of modern workstations. In effect,
systems involving less damping and more structural flexibility are more susceptible to nonlinear
mechanisms such as large deflections, unilateral contact and friction with neighbouring components
and alike. The presence of such nonlinear and/or nonsmooth terms can give rise to a variety of
behaviors such as frequency-energy dependence, internal resonances, and bifurcations to name a
few.

Nonlinear modes of vibration are used in the study of nonlinear dynamical systems to describe
the periodic motion of the system under the influence of nonlinear forces. In a linear system,
a mode of vibration corresponds to a particular pattern of motion, characterized by a specific
frequency and shape. In contrast, nonlinear systems can exhibit more complex vibratory behaviors,
and the concept of mode needs to be extended to account for this complexity. In the present
chapter, nonlinear modes are defined as one-parameter continuous families of periodic solutions of
the system.

Studying nonlinear modes can provide insights into the behavior of nonlinear systems, including
the existence of multiple possibly stable solutions, the influence of nonlinearities on the dynamical
response, and the occurrence of mode coupling and energy transfer between modes. The literature
on nonlinear modal analysis is always growing and this chapter is not designed to provide a thorough
review in this area. Interested readers are referred to the other chapters of the present book, for
instance (Touzé and Vizzaccaro, 2024; Thomas, 2024) or (Touzé et al., 2021; Renson et al., 2016)
among others.

Instead, the present chapter briefly discusses recent developments on the modal analysis of
structural systems subject to localized nonlinearities in the form of unilateral contact constraints
and attendant impact laws. The main motivation is to provide closed-form expressions to the
reader who is not familiar with the topic of nonlinear modal analysis. The contribution revisits
existing works in this area (Legrand et al., 2017; Thorin et al., 2017) and exploits the welcome
closed-form solutions to the dynamics in view of illustrating common features of nonlinear modes
of vibration such as solution multiplicity (number of nonlinear modes is higher than the number of
degrees-of-freedom, also called modal superabundance), bifurcation mechanisms, invariant manifolds
and their parameterization, energy-frequency dependency, internal resonances and stability analysis.
It also offers numerical insights into the intricate dynamics of systems with contact nonlinearities
using a dedicated time-marching procedure. The chapter can be read as an introductory tutorial
on nonlinear modal analysis without any prior knowledge and familiarity with the topic. Many
features of nonlinear modes of vibration arise naturally and the proposed results can be reproduced
without the use of advanced methodologies (serial expansions, multiple scale techniques, numerical
time marching solutions, Ritz-Galerkin projections and alike).
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Vibro-impact oscillators are mechanical systems that exhibit both oscillatory and impulsive
responses. They commonly involve a system of connected oscillating masses, one of which being
typically constrained to collide with a rigid wall. The impact results in a sudden change in
momentum and energy transfer, leading to complex dynamic behaviors such as period doubling,
chaos, and hysteresis loops in response to varying excitation frequencies or amplitudes. Considering
such a system as an introductory example might seem counter-intuitive since unilateral contact
constraints are commonly recognized to form a challenging class of nonlinearity, on both theoretical
and numerical aspects. However, for the considered oscillator, the derivations dramatically simplify
up to a point where quasi-exact solutions are available. This comes with a cost. The considered
system is rather an academic toy without much physical relevance.

In order to efficiently distinguish between linear and nonlinear vibratory systems, an abuse of
language is adopted in the form of nonlinear natural frequency versus linear natural frequency. It is
surely understood that a natural frequency is neither nonlinear or linear, both terms referring to
the underlying investigated system instead.

2 Simple one-degree-of-freedom impact oscillator

2.1 Governing equations

The very simple oscillator illustrated in Figure 1 is considered as an introductory example. It
does not strictly comply with the aim of the present chapter in the sense that there is no notion
of mode of vibration in the system. However, it embeds interesting nonlinear features that are
classically reported in the field of nonlinear modal analysis. The two unknowns of the problem are

k m
d

u(t)

Figure 1. A generic 1-degree-of-freedom vibratory system with spring stiffness k and mass m,
subject to a unilateral contact constraint.

the displacement u(t) of the mass m and the reaction force λ(t) induced by the presence of a rigid
wall initially located at a distance d. The equations of motion read (Legrand et al., 2017)

mü+ ku+ λ = 0 (1a)

d− u ≥ 0, λ ≥ 0, (d− u)λ = 0 (1b)

u(t) = d =⇒ u̇+(t) = −u̇−(t). (1c)

The classical initial conditions which commonly arise in such formulations are here omitted on
purpose as they are not central to modal analysis. When contact closes, that is when u(t) = d, the
presence of the rigid wall generates discontinuities in the velocity u̇(t), and thus impulses in the
acceleration and the contact force. It is then required to define the pre- and post-impact velocities
respectively denoted u̇− and u̇+ in Equation (1c) and in the remainder of the present chapter.

The analysis is performed in terms of the value of (signed) initial gap d. The possible solutions
are illustrated in Figure 2. It can be shown without difficulty that the solutions in the presence of

linear d > 0 d = 0 d < 0

u

u̇

Figure 2. Phase diagrams for a simple one-degree-of-freedom vibro-impact oscillator with various
initial gaps d.

the rigid are simply truncated versions of the solutions of the fully linear system, for all values of
d. Trivially, the (linear) natural frequency of the (linear) oscillator (when the unilateral contact
conditions are dismissed) is ω =

√

k/m. Away from contact when u(t) ≤ d and λ = 0, it is
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clear that u(t) = A cosωt + B sinωt and u̇(t) = ω(B cosωt − A sinωt). The rest of the analysis
is developed below. It is essentially much easier than the analysis of the system for which the
unilateral contact law is regularized, see for instance (Karkar et al., 2014) where appropriate
approximations are detailed.

2.2 Comments on the impact law

For the unfamiliar reader, Equations (10a) and (10b) might seem to be sufficient to dictate the
dynamics of the considered system, since two “equations” correspond to two unknowns (u and
λ). However, it is well known that the multiple admissible solutions exist immediately after the
time of contact closure, when u(t) = d. For instance, the second mass could immediately bounce
back from the rigid foundation or remain on the rigid foundation for a certain amount of time,
see Figure 3. In other words, contact closure can be seen as a mechanism which resets the initial

ttimp

u(t)

λ(t)

ttimp

u(t)

λ(t)

Figure 3. Two possible displacements of the contacting mass with respect to time, and corre-
sponding contact forces, in the close vicinity of contact closure occurring at t = timp. The contact
force has a Dirac impulse to enforce the mandatory discontinuity in the velocity (not shown). It
also has a continuous component which is identically zero on the left but non-zero on the right
after the contact closure when the mass rests on the rigid wall. Without a specified impact law,
commonly in the form u̇+ = −eu̇− where e is the coefficient of restitution, multiple admissible
solutions satisfying the Signorini unilateral contact condition exist. In the present chapter, e = 1
by assumption.

velocity of the contacting mass, or post-impact velocity u̇+(t) in Equation (10c), and infinitely
many distinct post-contact velocities would generate solutions satisfying Equations (10a) and (10b).
This non-uniqueness feature stems from the discrete nature of the considered oscillator, and more
importantly from the rigid nature of the second mass. The rigid-body assumption for m ignores
the constitutive law that would arise in the context of continuum mechanics where the body would
then be able to distort. The cost to pay is on the non-uniqueness of the solutions. Another way to
state the same is that in the context of continuum mechanics (the considered system would then
be a simple one-dimensional bar in traction-compression, for instance), no inertia is involved in the
boundary Signorini condition (10b). However, the semi-discretization procedure annihilates this
property and the formulation in Equations (10a) and (10b) is not well-posed without an additional
condition which enforced uniqueness. The latter commonly takes the form of an impact law, also
known as a Newton impact law, Equation (10c) being one possible incarnation which preserves
the kinetic energy of the system at all times. The undesired non-uniqueness issue arises in all
semi-discretization schemes artificially “creating” mass on the contact boundary. The classical finite
element procedure bears this deficiency, hence the envelopment of various dedicated methodologies
(Khenous et al., 2008). However, the boundary element Method does not (Gimperlein et al., 2018).
With all the above ingredients in mind, the nonlinear nature of the considered oscillator solely
stems from the unilateral condition and more importantly here the time of contact closure which
will be seen as the main unknown of the problem.

As indicated in Equation (10a), the contact force λ bears the same functional smoothness as the
acceleration term ü. Since the unilateral condition along with the impact law in Equations (10b)
and (10c) directly act on the velocity u̇ with a sudden change of sign, by a time-differentiation
argument, it is clear that ü embeds the participation of a Dirac generalized function (or distribution)
at the time of contact closure. Accordingly, it is expected to find a solution where u is at most a
continuous function of time not everywhere differentiable in the classical sense, u̇ is a piecewise
continuous function of time with discontinuities at the times of contact closure and ü and λ are
piecewise continuous functions of time with Dirac contributions.

2.3 Analysis in terms of the initial gap

In this subsection, a quantity of importance is the period T of an oscillation of (angular and
nonlinear) frequency Ω with ΩT = 2π.
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Strictly positive initial gap A strictly positive initial gap d > 0 is assumed. From the general
solution, we decide to choose the initial time t = 0 such that u(0) = d = A and from the velocity
jump assumed to occur at t = T , u̇−(T ) = −u̇+(0) which implies −ωd sinωT + ωB cosωT = −ωB.
This results into

B =
d sinωT

cosωT + 1
(2)

and thus, for t ∈ ]0 ;T [

u(t) = d
(

cosωt+
sinωT

cosωT + 1
sinωt

)

,

u̇(t) = ωd
( sinωT

cosωT + 1
cosωt− sinωt

)

.

(3)

Once the system is specified (k, m and d are known along with ω =
√

k/m which should not be
confused with Ω), the solution is solely parameterized in terms of the period T , remembering that
the unilateral condition of non-penetration (1b) should also be satisfied, here a posteriori. The
total energy of the system averaged on one period reads

Eav(T ) =
1

T

∫ T

0

(1

2
mu̇(t)2 +

1

2
ku(t)2

)

dt =
d2k

1 + cosωT
(4)

and dictates the geometry of the backbone curve of the system of interest. Since the total energy is
preserved in this conservative system, we can check that Eav(T ) is also the total energy at any
time of the period and in particular at t = 0.

The backbone curve defines how the (natural) frequency Ω of the (nonlinear) oscillator is a
function of the total energy Eav(T (Ω)) of the response when neither damping nor forcing are present.
Such backbone curves are conventionally shown in Frequency-Energy Plots, see Figure 4 where it is
here chosen to indicate Ω on the horizontal axis and Eav on the vertical axis. From Equation (4), it

ω 2ω

li
n
ea
r

d
=

0

d
>
0

d < 0

Ω = 2π/T

E
a
v
(T

)

Figure 4. Backbone curve of the one-degree-of-freedom oscillator with k = m = 1 for various d
values (d = −1, 0 and 1). For d > 0, the vertical portion of the branch shows linear solution before
contact is initiated. The curved part indicates the Frequency-Energy dependence of the solutions
satisfying the unilateral contact condition. Other parameterizations of the curve are possible, for
instance using the initial velocity instead of the total energy.

is immediately clear that the backbone curve exhibits infinitely many branches separated by vertical
asymptotes. However, only one of these branches with ωT ∈ [π, 2π] corresponds to admissible
solutions located on the appropriate side (here, left) of the rigid wall. As a consequence, a stiffening
behavior is experienced by the oscillator since the (natural) non-linear frequency increases with the
averaged energy.

In a strictly equivalent fashion, it is also possible to rewrite the above by parameterizing the
solution in terms of the initial velocity u̇+(0) and enforcing the condition u(0) = d at the very end.
Using the requirement on the periodicity of the sough solution yields

(

u(T )
u̇−(T )

)

=

[

cosωT sinωT/ω
−ω sinωT cosωT

](

u(0)
u̇+(0)

)

=

(

u(0)
−u̇+(0)

)

(5)

which translates into solving the generalized eigenvalue problem
[

cosωT − 1 sinωT/ω
−ω sinωT cosωT + 1

](

u(0)
u̇+(0)

)

=

(

0
0

)

(6)
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where the above matrix is always singular for all values of T and its kernel is thus non-empty and
spanned by the vector





sinωT

ω(1− cosωT )
1



 . (7)

Its magnitude is thus dictated by the condition u(0) = d. These derivations are similar to their
counterparts for the two-degree-of-freedom system described in later sections.

Vanishing initial gap The case of an initially vanishing gap d = 0 is interesting because it shows
how nonlinear systems may not be linearized in the classical way. We then speak of essentially
nonlinear systems. Such systems also exist, at least mathematically, with smooth polynomial
nonlinearities. We can think of a purely cubic spring for instance where the equation of motion
would then read ü+ ϵu3 = 0.

Using the above derivations with d = 0 leads to A = 0 and thus u(t) = B sinωt. The jump
condition on the velocity u̇−(T ) = −u̇+(0) implies ωB(cosωT + 1) = 0 with the condition B ̸= 0
since the identically vanishing solution is not of interest. We should then solve the equation
cosωT + 1 = 0 which yields ωT = (2k + 1)π, k = 0, 1, 2, . . . and the general solution is thus

u(t) = Bk sin(ωt), t ∈ ]0 ;Tk[, Tk = (2k + 1)π/ω, k = 0, 1, 2 . . . (8)

However, it is straightforward to check that only k = 0 yields an admissible solution as soon as
B0 < 0. The initially grazing one-degree-of-freedom impact oscillator features a unique nonlinear
natural frequency Ω = 2ω which is independent of the energy of the motion. In the Frequency-
Energy Plot, the backbone curve is just a vertical line located at Ω = 2ω, see Figure 4 with
corresponding orbits shown in Figure 2.

Negative initial gap A “negative” gap d < 0 means that the system is initially in a pre-stressed
configuration possibly far from the configuration at rest. This case is also instructive. The equations
are identical to the case d > 0 and Equation (4) is recovered. However, unilateral contact condition
generates another unique admissible backbone curve branch, as shown in Figure 4. The backbone
curve is unbounded when Ω → ∞.

This example shows in a very simple and natural manner how frequency and energy of an
autonomous nonlinear oscillation are interrelated. It also illustrates the variety of possible periodic
solutions experienced by a simple one-degree-of-freedom nonlinear impact oscillator.

3 Academic two-degree-of-freedom model

The dynamics of a two-degree-of-freedom vibro-impact system is much more intricate than that of
the one-degree-of-freedom exposed above. Even more, there is no fundamental difference with a
N -degree-of-freedom vibro-impact system. This is essentially a new world with many new dynamical
features and open questions.

3.1 Governing equations

The periodic responses of a generic and academic, initially unstressed, autonomous and conser-
vative two-degree-of-freedom vibro-impact oscillator illustrated in Figure 5 is investigated. The

k1 k2m1 m2

d

u1(t) u2(t)

Figure 5. Generic two-degree-of-freedom vibratory system subject to a unilateral contact constraint.

two masses m1 and m2 and corresponding stiffnesses k1 and k2 are associated to the two physical
displacements u1(t) and u2(t). The displacement u2(t) is subject to an impenetrability condition
due to the presence of a rigid foundation located at a distance d from its equilibrium, here assumed
to be strictly positive even though other configurations could also be considered, as suggested in
the previous section.
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The mass and stiffness matrices, stemming from a finite-element-based semi-discretization in
space, are assumed to be

K =

[

4 −2
−2 2

]

and M =

[

1/2 0
0 1/2

]

(9)

and the problem of interest reads: Find the displacement u(t) ≡ [u1(t), u2(t)]
⊤ and the contact

force λ(t) satisfying
[

1/2 0
0 1/2

](

ü1

ü2

)

+

[

4 −2
−2 2

](

u1

u2

)

+

[

0
1

]

λ =

(

0
0

)

(10a)

d− u2 ≥ 0, λ ≥ 0, (d− u2)λ = 0 (10b)

u2(t) = d ⇒ u̇+
2 (t) = −u̇−

2 (t). (10c)

3.2 Periodic solutions with a single impact per period

Simplified formulation Given the above governing equations, where dissipative terms are
omitted by choice, it seems quite natural to search for periodic autonomous solutions. However, the
contact conditions might be challenging to satisfy. It is thus decided to simplify the formulation
by targeting T -periodic solutions featuring only one impact per period. Such solutions might not
exist, but as shown below, they actually do exist and have simple expressions. The main advantage
of this simplification of one impact per period is the possibility to remove the quantity λ from the
set of unknowns. The cost is that only a very small subset of all possible periodic solutions shall
be captured and admissibility of the solutions will have to be (numerically) checked a posteriori.
Accordingly, Problem (10) shall be reformulated and simplified as follows: Find T and u(t) such
that:

Mü+Ku = 0, ∀t ∈ ]0 ;T [ (11a)

u(T ) = u(0) (11b)

u2(0) = d (11c)

u̇−(T ) = Su̇+(0) (11d)

where the jump matrix

S =

[

1 0
0 −1

]

(12)

enforces the impact law on the contacting mass and guarantees velocity continuity on the other
mass. In Equation (11), the unilateral Signorini condition (10b) is discarded by choice but solutions
to Equation (11) might violate Equation (10b), in which case they would be deemed inadmissible

solutions. In short, System (11) says the following:
• Without loss of generality, contact closure is assumed to occur at t = T so that Equations (11b)
and (11c) hold.

• Away from a contact closure, the system is free and its dynamics is governed by Equation (11a).
• The displacement is a continuous and periodic function of time.
• The period T is an unknown of the problem.
• The velocity of mass 2 is discontinuous at t = T where it satisfies u̇+

2 (T ) = −u̇−

2 (T ).
Of interest are one-parameter continuous families of periodic solutions. If such families exist, they
will be organized on two-dimensional invariant manifolds which usually characterize modes of
vibration for nonlinear mechanical systems.

Quasi-exact solutions In order to exhibit an almost closed-form expression of the solution
displacement, Equation (11a) is projected onto the linear modal space through the transformation
u = Pq, and thus u̇ = Pq̇, to become

Iq̈+Ω2q = 0 (13)

where

q(t) ≡
(

q1(t)
q2(t)

)

, I =

[

1 0
0 1

]

and Ω =

[

ω1 0
0 ω2

]

(14)

with ω1 =
√
2
√

3−
√
5 ≈ 1.236 and ω2 =

√
2
√

3 +
√
5 ≈ 3.236. The matrix of M-normalized

eigenvectors stored columnwise reads

P =
1

√

5−
√
5

[

1−
√
5 −2

−2
√
5− 1

]

(15)
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and the change of basis expressed in the state-space is

(

u

u̇

)

=

[

P 0

0 P

](

q

q̇

)

(16)

as classically known for the system of interest which features no velocity terms in the governing
equations (for instance, no viscous damping or gyroscopic terms). The matrix of eigenvectors is
such that P−1 = P⊤M = PM = 1

2
P. From Equation (13), it is straightforward to map the state

of system at t = 0+ to its state at t = T− through

q−(T ) = cos(TΩ)q+(0) +Ω−1 sin(TΩ)q̇+(0) (17a)

q̇−(T ) = −Ωsin(TΩ)q+(0) + cos(TΩ)q̇+(0) (17b)

where

cos(tΩ) ≡
[

cosω1t 0
0 cosω2t

]

and sin(tΩ) ≡
[

sinω1t 0
0 sinω2t

]

(18)

are used as notations. In modal coordinates, the expression of the jump matrix is

SS = P−1SP = 1
2
PSP =

1√
5

[

−1 2
2 1

]

(19)

and the continuity of both displacements and the velocity of the non-contacting mass along with
the velocity jump of the impacting mass occurring at t = T collectively read

q+(T ) = q−(T ) (20a)

q̇+(T ) = SSq̇−(T ). (20b)

When T is known and by inserting Equation (17) into Equation (20), a 4× 4 matrix R(T ) mapping
the system from t = 0+ to t = T+ can be built in modal coordinates. It includes the free flight as
well as one impact at t = T :

(

q(T )
q̇+(T )

)

=

[

cos(TΩ) Ω−1 sin(TΩ)
−SSΩsin(TΩ) SS cos(TΩ)

](

q(0)
q̇+(0)

)

. (21)

which becomes, in physical coordinates

(

u(T )
u̇+(T )

)

=

[

Pcos(TΩ)P−1 PΩ−1 sin(TΩ)P−1

−SPΩsin(TΩ)P−1 SPcos(TΩ)P−1

](

u(0)
u̇+(0)

)

. (22)

A periodic one-impact-per-period is shown in Figure 6 as an example.

cos tsin t

u
1
(t
),
u
2
(t
)

Figure 6. One-impact-per-period periodic orbit at Ω ≈ ω2/4: u2(t) [solid line] and u1(t) [dashed
line].

3.3 Manifold parameterization

It is interesting to look at the dynamics through the concept of nonlinear normal modes. Since
the considered dynamics is undamped, a nonlinear mode of vibration is equivalently defined as an
invariant manifold or a family of periodic orbits (Thomas, 2024; Touzé and Vizzaccaro, 2024). The
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invariant manifold can be computed through dedicated parametrisation and change of variables
that work for smooth nonlinearities. However, the second definition (family of periodic orbits) can
be used to define and then compute invariant manifolds using various techniques, ranging from
analytical to numerical strategies. In the present work, such parameterizations are challenging, if
not impossible. However, a quasi-exact solution in terms of time t and period T can be achieved.
The question is to characterize the kernel of the operator

[

Pcos(TΩ)P−1 − I PΩ−1 sin(TΩ)P−1

−SPΩsin(TΩ)P−1 SPcos(TΩ)P−1 − I

]

. (23)

It can be shown that the following quantities are well defined (Legrand et al., 2017):

Φ(T ) = Ω−1(I− cos(TΩ))−1 sin(TΩ) (24a)

w(T ) = (PΦ(T )P−1)e2 (24b)

w2(T ) = e⊤2 w(T ) (24c)

where e2 ≡ [0 1]⊤, which then leads to

(

u(0)
u̇+(0)

)

=

[

P 0

0 P

](

q(0)
q̇+(0)

)

= c

(

w(T )
e2

)

. (25)

where c is uniquely specified by the condition u2(0) = d. The solution in Equation (25) can be seen
as the “shape” w(T ) of the mode (as commonly found for linear modes that are standing waves) to
which is added an initial velocity on the second degree-of-freedom.

For the system of interest, the different quantities are expanded as follows:

Φ(T ) =







sinω1T

ω1(1− cosω1T )
0

0
sinω2T

ω2(1− cosω2T )






(26)

and

w(T ) =









(
√
5− 1)(ω2 sinω1T (cosω2T − 1)− ω1(cosω1T − 1) sinω2T )

(
√
5− 5)ω1ω2(cosω1T − 1)(cosω2T − 1)

2(
√
5− 3)ω1 sin

2(Tω1/2) sinω2T − 4ω2 sinω1T sin2(Tω2/2)

(
√
5− 5)ω1ω2(cosω1T − 1)(cosω2T − 1)









(27)

which is proportional to the initial displacements of the oscillator initiating a periodic orbit with
one impact per period. Inserting the initial condition



















u1(0)

u2(0)

u̇1(0)

u̇+
2 (0)



















=
g

w2(T )





















(
√
5−1)(ω2 sinω1T (cosω2T − 1)−ω1(cosω1T − 1) sinω2T )

(
√
5− 5)ω1ω2(cosω1T − 1)(cosω2T − 1)

2(
√
5− 3)ω1 sin

2(Tω1/2) sinω2T − 4ω2 sinω1T sin2(Tω2/2)

(
√
5− 5)ω1ω2(cosω1T − 1)(cosω2T − 1)

0

1





















(28)

or equivalently



















u1(0)

u2(0)

u̇1(0)

u̇+
2 (0)



















= d





















(
√
5− 1)(ω2 sinω1T (cosω2T − 1)− ω1(cosω1T − 1) sinω2T )

2(
√
5− 3)ω1 sin

2(Tω1/2) sinω2T − 4ω2 sinω1T sin2(Tω2/2)

1

0

(
√
5− 5)ω1ω2(cosω1T − 1)(cosω2T − 1)

2(
√
5− 3)ω1 sin

2(Tω1/2) sinω2T − 4ω2 sinω1T sin2(Tω2/2)





















(29)

into Equation (22) provides one possible parameterization of the invariant manifold in (t, T ) with
t ∈ ]0 ;T [ which can be expressed as

(

u(t;T )
u̇+(t;T )

)

=
d

w2(T )

(

P(cos(tΩ)Φ(T ) +Ω−1 sin(tΩ))P−1

SP(cos(tΩ)−Ωsin(tΩ)Φ(T ))P−1

)

e2. (30)

In the expression “one-parameter continuous families of periodic solutions”, the period T in
Equation (30) plays the role of the parameter in question while t plays the role of the parameter

8



Figure 7. Invariant manifolds projected on (u1, u2, u̇2) and parameterized in (t, T ) for a positive
initial gap d (3D and front views). Only truncated versions are shown within the respective
admissible region. The blue and green manifolds share the same linear portion which is the second
linear mode shown as the green flat ellipse. The red manifold corresponds to the first linear mode.
A few orbits populating the manifolds are also shown. The green and blue manifolds emerge from
the same linear mode through a grazing bifurcation mechanism. The red and green ellipses show the
orientation of the linear modal subspaces of the unconstrained system. Their common center is the
rest configuration of the system. Note that manifolds also exist in the vicinity of the sub-harmonics
ω1/m and ω2/p, m and p being strictly positive integers.

for the periodic solutions. Note that, from Equation (29), u̇1 vanishes when the second mass hits
the wall. An example of such manifolds is illustrated in Figure 7. As explained in (Thomas, 2024;
Touzé and Vizzaccaro, 2024) (and attendant cited works), this type of parameterization is unusual.
It here has the crucial advantage of being exact within the admissibility interval. However, it is in
general more common to develop invariant manifold parameterizations that are independent of time
using the concept of master coordinates suggested above. It is here theoretically possible, at least
locally through the Implicit Function theorem, by inverting the relevant entries of Equation (30) in
order to express the pair (t, T ) in terms of the pair (u1, u̇1) subsequently inserted in the expressions
of (u2, u̇2). However, this is a really challenging if not an impossible task in practice. Locally, in the
vicinity of the grazing linear solutions, trigonometric functions cos and sin could be Taylor-expanded
using the identities ω1T ≈ 2π or ω2T ≈ 2π for modes 1 and 2, respectively, but this exercise has
not been attempted.

The manifolds shown in Figure 7 are the three-dimensional “shadows”, or projections, of two-
dimensional manifolds embedded in a four-dimensional state-space. In the plot, the fact that the
second linear mode bifurcates into the blue and green invariant manifolds (and actually many,
possibly countably infinitely many) is a sign of superabundance of nonlinear modes, which simply
says that the number of nonlinear modes can exceed the number of degrees-of-freedom which is
obviously impossible in a linear context.

Based on Equation (30) evaluated at t = 0, it is possible to get the expression of the corresponding
total energy of the motion for every T and then the corresponding backbone curves in the Frequency-
Energy plot, see Figure 8.

In order to estimate the participation of the modes in the computed nonlinear responses,
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Figure 8. Frequency-Energy Plot showing the three backbone curves of three admissible one-
impact-per-period solutions located in the vicinity of Ω = ω1, Ω = ω2/2 and Ω = ω2. The green
and blue backbone curves are not bounded in energy. However, the red backbone curve becomes
non-admissible at a point where a three-impact-per-period solution emerges (not shown).

normalized modal contributions are approximated as

q1n≡
q21(0) + q̇21(0)

q21(0) + q̇21(0) + q22(0) + q̇22(0)
and q2n≡

q22(0) + q̇22(0)

q21(0) + q̇21(0) + q22(0) + q̇22(0)
. (31)

and indicated in Figure 9. They reach one only when the corresponding linear mode is participating
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Figure 9. Normalized modal contributions in the periodic solutions within the admissibility domain:
[solid] q1n, [dashed] q2n.

in the solution, and vice-versa. As expected, the grazing nonlinear solution at ωjT ≈ 2π, j = 1, 2 is
dominated by the corresponding mode, that is mode 1 in the vicinity of Ω = ω1 and mode 2 in the
vicinity of Ω = ω2/2 or Ω = ω2. In case one of these coefficients reaches unity for a given Ω away
from the linear grazing solutions, the nonlinear solution is a sole linear mode seen on a truncated
period of time, similar to the one-degree-of-freedom case detailed in Section 2, see Figure 2.

3.4 Reduced-order modeling

Nonlinear modes of vibration are known to offer a well-established framework for reducing the
dynamics of nonlinear systems. In a linear context, in a particular operating range, the system is
assumed to operate with a few modal participations being active or dominant. Mathematically, the
system operates in flat (or linear) subspaces of small dimension in the state-space. This principle
readily extends to nonlinear systems at the cost of (1) a “distortion” of the subspaces in the form
of “curved” invariant manifolds and (2) having the Principle of Superposition no longer operational.
For the considered two-degree-of-freedom vibro-impact system with a state-space of dimension 4,
the dynamics realized on the manifolds is governed by two independent variables and thus model
reduction is achieved. However, as already discussed, the (t, T )-parameterization which naturally
emerges during the construction of the manifolds is not exactly adapted to the construction of
an explicit reduced-order model in the form of a single pair of first-order Ordinary Differential
Equations in the master coordinates, as it is commonly achieved for smooth nonlinear systems.
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3.5 Stability analysis

Although periodic orbits (and thus modes of vibration) of linear conservative systems are
known to be neutrally stable, the situation differs in nonlinear systems. Using the notation
Ut := (u(t), u̇+(t)), the stability analysis of a periodic orbit of initial conditions U0 of period T0

lying on the previously constructed manifolds can be assessed by measuring how a slightly perturbed
initial condition U0+ δU0 lying on the Poincaré section u2(t) = d is mapped back onto the Poincaré
section through UT = U0 + δUT after a time T = T0 + δT with the condition e⊤4 δUT = 0 and
notation ē4 ≡ [0 1 0 0]⊤. In equivalent terms, we want to quantify how a perturbation δU0

magnifies into δUT . If its amplitude is magnified, then the periodic orbit said to be unstable. This
spectral stability analysis relies on the smoothness of the mapping (22) as a function of the initial
conditions and the period (itself function of the initial conditions) but fails to be correct for grazing
orbits. In a compact matrix format, this mapping evaluated at a one-impact-per-period solution
reads

U0 = Γ(T0)U0. (32)

An admissible perturbed orbit thus satisfies

U0 + δUT = Γ(T0 + δT )(U0 + δU0). (33)

Neglecting higher-order terms and using Equation (32), Equation (33) simplifies to

δUT = Γ(T0)δU0 + δT Γ̇(T0)U0 (34)

where Γ̇ denotes the derivative of Γ with respect to its argument and has the expanded form

Γ̇(T ) =

[

−PΩsin(TΩ)P−1 Pcos(TΩ)P−1

−SPΩ2 cos(TΩ)P−1−SPΩsin(TΩ)P−1

]

. (35)

Using the fact that e⊤2 δu(T ) = e⊤2 δu(T0) = 0, it is possible to write (Legrand et al., 2017)

δT = −e⊤4 Γ(T0)δU0

e⊤4 Γ̇(T0)U0

(36)

and System (34) thus simplifies to

δUT =
(

Γ(T0)−
Γ̇(T0)U0e

⊤

4 Γ(T0)

e⊤4 Γ̇(T0)U0

)

δU0. (37)

For a given periodic response, a sufficient condition for instability is that at least one of the
eigenvalues in modulus, of the matrix arising in Equation (37), lies outside the unit circle in the
complex plane. Perturbations of an unstable periodic orbit deviate from it in the state-space but
remain on the ellipsoid of constant energy specified by the initial conditions. In contrast, stable
periodic orbits will see their perturbations stay in their vicinity at all times.

In order to quickly observe the dynamics in the vicinity of an orbit lying on a nonlinear mode
invariant manifold, a basic Moreau-Jean type time-stepping scheme (Acary and Brogliato, 2008)
adapted from (Kern, 2019) is implemented, see Algorithm 1. In all simulations, d = 1, the time-step
is h = 10−6 s, the total number of iterations is N = 2 · 1010 and the beginning to the end is
indicated from red to black points. The initial conditions are those of the investigated periodic
orbit up to machine precision without any additional perturbation. Instability, if any, is initiated
by machine round-off errors.

A chaotic-like solution in the vicinity of the linear grazing orbit of mode 1 is shown in Figure 11.
The dynamics in the vicinity of a neutrally stable orbit is shown in Figure 12 and the dynamics
in the vicinity of an unstable orbit is shown in Figure 13. These time-domain results come as a
complement of the spectral stability analysis indicated in Figure 10. The energy is well preserved
by the time-marching algorithm since all points lie on the ellipsoid of constant energy. However,
even though a convergence analysis was conducted with h = 10−5 s and h = 10−7 s to confirm the
correctness of the provided plots, these results should be considered with care as a full investigation
will various time-stepping strategies would be required to conclude.

3.6 Internal resonances

Internal resonances are typical of nonlinear vibratory systems and correspond to a transfer of
energy between various modes. They have no counterparts in linear dynamics. The literature is vast
on the topic and the reader is again referred to (Thomas, 2024) for more information. The truly
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Require 2× 2 Mass and stiffness matrices M and K; m←M22

Require Time-step size: h; Total number of time steps: N
Require Initial gap: d← 1; Restitution coefficient: e← 1
Require Initial displacement u0 and velocity v0

1 for k from 1 to N do

2 uk ← uk−1 + hvk−1 ▷ Displacement update through Forward Euler
3 f ← −hKuk ▷ Corresponding internal force
4 vk ← vk−1 +M

−1
f ▷ Velocity update through Backward Euler assuming no contact

5 if u2;k ≥ d then ▷ Penetration detected then solve LCP in velocity
6 dv ← −(1 + e)v2;k ▷ Velocity jump
7 if m dv < f2;k then ▷ Contact force has the correct sign
8 v2;k ← v2;k−1 + dv ▷ Velocity Correction for the contacting mass
9 end if

10 end if

11 end for

Algorithm 1: Simplified Moreau-Jean type time-marching solution method for two-degree-of-freedom
vibro-impact oscillator. Vector notation at time iteration k: ak ≡ [a1;k a2;k]

⊤.
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Figure 10. Spectral stability analysis along the backbone curve of mode 1. An eigenvalue modulus
larger than unity indicates instability of the periodic orbit. Note that the two other eigenvalues 0
and 1 are discarded, see (Legrand et al., 2017).
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Figure 11. Post-impact Poincaré section at t+imp in the vicinity of the linear grazing orbit at
Ω = 1.2361. Initial condition indicated as a blue dot. In agreement with Figure 10, the grazing orbit
seems to be unstable (although the question is still open theoretically for that specific solution)
and surrounded by chaotic responses.

nonlinear mechanism arises when (linear and/or nonlinear) frequencies of vibration are multiples
of each other, that is when mω1 = pω2, for some strictly positive integers m, p for the system of
interest. Although it is not necessarily straightforward to design a chain-like two-degree-of-freedom
oscillator with internal resonances, it is possible to think about two distinct one-degree-of-freedom
oscillators interacting with each other through a unilateral condition, as illustrated in Figure 14.
The stiffness and mass matrices are diagonal:
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Figure 12. Post-impact Poincaré section at t+imp in the vicinity of the linear orbit at Ω = 1.43. In
agreement with Figure 10, the considered orbit is neutrally stable as most points on the Poincaré
section are confined to a very small domain which includes the initial condition.
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Figure 13. Post-impact Poincaré section at t+imp in the vicinity of the linear orbit at Ω = 1.51.
Initial condition indicated as a blue dot. In agreement with Figure 10, the considered orbit is
unstable and surrounded by a chaotic-like response most probably.

k1 m1 m2 k2
d

u1(t) u2(t)

Figure 14. Two 1-degree-of-freedom oscillators interacting through unilateral contact.

M =

[

m1 0
0 m2

]

and K =

[

k1 0
0 k2

]

(38)

and the linear modes read u1 = [1 0]⊤ and u2 = [0 1]⊤. Then, through the change of variables

(

v1
v2

)

=

[

1 1
1 −1

](

u1

u2

)

(39)

the governing equations exposed in the preceding sections are recovered with the new matrices

Mnew =
1

2

[

m1 +m2 m1 −m2

m1 −m2 m1 +m2

]

and Knew =
1

2

[

k1 + k2 k1 − k2
k1 − k2 k1 + k2

]

(40)

and the unilateral contact condition acts on v2 = u1 − u2 ≤ d.

By properly choosing the stiffnesses k1, k2 and masses m1,m2, it is possible to achieve ω2 = ω1
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(with k1 = k2 and m1 = m2) with the following consequences:

Φ(T ) =







sinω1T

ω1(1− cosω1T )
0

0
sinω1T

ω1(1− cosω1T )






(41)

and

w(T ) =





0
sinω1T

ω1(1− cosω1T )



 (42)

that is












v1(0)

v2(0)

v̇1(0)

v̇+2 (0)













= d













0

1

0

ω1(1− cosω1T )

sinω1T













(43)

and the results exposed in Section 2 for the one-degree-of-freedom oscillator are recovered. The
nonlinear system features a single backbone curve and the classical superabundance of modes is
thus destroyed by the internal resonance condition even though the two linear modes really interact
together since v1 = u1 + u2 = 0, that is u1 = −u2, as expected due to the symmetry in the chosen
system.

The condition ω2 = 2ω1 can be achieved with k2 = 4k1 and m1 = m2 with the consequences
that

Φ(T ) =







sinω1T

ω1(1− cosω1T )
0

0
sin 2ω1T

2ω1(1− cos 2ω1T )






(44)

and

w(T ) =









−cosω1T + 2

4ω1 sinω1T

3 cosω1T + 2

4ω1 sinω1T









(45)

that is














v1(0)

v2(0)

v̇1(0)

v̇+2 (0)















= d

















− cosω1T + 2

3 cosω1T + 2
1

0

4ω1 sinω1T

3 cosω1T + 2

















. (46)

Since ω2 = 2ω1, the sub-harmonic 2 of the second mode (green curve in Figure 8) disappears and
overlaps with the backbone curve of the first mode (red curve in Figure 8) and it can be shown
numerically that only the two backbone curves corresponding to modes 1 and 2 exist. Also, at
ω1T = 2π, we have ω2T = 2ω1T = 4π and it is possible to show that the kernel of the operator (23)
has dimension higher than 1, in contrast to the preceding configurations. The consequence is that
the connection of the nonlinear backbone curve with its linear counterpart (the purely vertical
portion located at ω1) is no longer clearly defined and the investigation should be dealt with in
more details. Also, such internal resonances do not manifest themselves in the above manner for
smooth nonlinear systems.

4 Conclusion and Perspectives

To conclude this short chapter, we would like to state again the existence of a zoology of interesting
phenomena in nonlinear dynamics, and more specifically in the field of nonlinear modal analysis,
that have commonly no counterparts in the linear framework, among which: frequency-energy
dependence in modal motions, curved invariant manifolds of periodic orbits in the state-space,
superabundance of modes, bifurcation mechanisms, and internal resonances. Each of these topics
was briefly discussed through simple vibro-impact autonomous oscillators which enjoy quasi-exact
solutions. The chapter did not cover periodic solutions with multiple impacts per period (Thorin
et al., 2017), which a topic in itself. Finally, the classical questions about the relationships between
backbone curves and periodically forced responses were not addressed. Many aspects are still
open, notably concerning grazing solutions around which intricate bifurcation mechanisms arise
and internal resonances.
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Heiko Gimperlein, Fabian Meyer, Özdemir Ceyhun, and Ernst Stephan. Time domain boundary elements
for dynamic contact problems. Computer Methods in Applied Mechanics and Engineering, 333:147–175,
2018. doi:10.1016/j.cma.2018.01.025. URL https://hal.science/hal-01509452.

Sami Karkar, Bruno Cochelin, and Christophe Vergez. A comparative study of the harmonic balance method
and the orthogonal collocation method on stiff nonlinear systems. Journal of Sound and Vibration, 333
(12):2554–2567, 2014. doi:10.1016/j.jsv.2014.01.019. URL https://hal.science/hal-01065672.

Dominik Kern. A simple time-stepping scheme for the bouncing ball example. 2019. Unpublished,
doi:10.5281/zenodo.13968927.

Houari Boumediène Khenous, Patrick Laborde, and Yves Renard. Mass redistribution method for finite
element contact problems in elastodynamics. European Journal of Mechanics - A/Solids, 27(5):918–932,
2008. doi:10.1016/j.euromechsol.2008.01.001. URL https://hal.science/hal-00582045.
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