N
N

N

HAL

open science

PhaDOP: A Pharo Framework for Implementing
Software Product Lines using Delta-Oriented
Programming and Model-Based Engineering

Boubou Thiam Niang, Giacomo Kahn, Yacine Ouzrout, Mustapha Derras,

Jannik Laval

» To cite this version:

Boubou Thiam Niang, Giacomo Kahn, Yacine Ouzrout, Mustapha Derras, Jannik Laval. PhaDOP: A
Pharo Framework for Implementing Software Product Lines using Delta-Oriented Programming and

Model-Based Engineering. Journal of Computer Languages, 2024, pp.101283. hal-04599790v3

HAL Id: hal-04599790
https://hal.science/hal-04599790v3

Submitted on 1 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04599790v3
https://hal.archives-ouvertes.fr

Highlights

PhaDOP: A Pharo Framework for Implementing Software Product Lines using Delta-Oriented
Programming and Model-Based Engineering

Boubou Thiam Niang,Giacomo Kahn,Yacine Ouzrout,Mustapha Derras,Jannik Laval

Introduction of Pharo libraries tailored for Delta-Oriented Programming.

Combination of Model-Driven Engineering with Delta-Oriented Programming methodologies.

Development of a truth table-based methodology for identifying potential Delta modules at both entity and model
levels.

Creation of a metamodel designed to capture reusable artifacts associated with method implementation.

Provision of comprehensive functionalities and user-friendly graphical interfaces for efficient Delta project manage-
ment.

PhaDOP: A Pharo Framework for Implementing Software Product
Lines using Delta-Oriented Programming and Model-Based

Engineering

Boubou Thiam Niang®®*, Giacomo Kahn®, Yacine Ouzrout’, Mustapha Derras® and Jannik Laval?

“Berger-Levrault, 361 All. des Noisetiers, Limonest, 69760, France
b Université Lumiére Lyon 2, INSA Lyon, Universite Claude Bernard Lyon 1, Université Jean Monnet Saint-Etienne, DISP UR4570, Lyon, 69007, France

ARTICLE INFO

Keywords:

Code generation
Delta-Oriented Programming
Model-Based Engineering
Software Product Line

ABSTRACT

Delta-Oriented Programming is a modular, and flexible paradigm for implementing a Software
Product Line. Delta-Oriented Programming involves implementing a core software product alongside
acollection of Delta Modules, which encapsulate modifications that can be applied to the core software
to obtain the desired product. The applicable Delta modules are activated through product configura-
tion. The core product in Delta-Oriented Programming is mainly an object-oriented program. While
Delta-Oriented Programming has the potential to enhance productivity by reusing modifications, its
limited availability of tools poses a challenge in managing large-scale software systems, making it
difficult for non-experts to use. Model-based engineering offers a viable solution to this problem by
utilizing model artifacts instead of code snippets, simplifying product line management based on
Delta-Oriented Programming. This paper presents PhaDOP, a framework for implementing Delta-
Oriented Programming at the model level in the Pharo environment. The framework provides the
necessary structures to construct Software Product Line architecture, organize reusable artifacts, and
prepare the Delta Module through a graphical user interface. PhaDOP was evaluated through a case

study.

1. Introduction

Today, software development projects rarely start from
scratch. Instead, they often leverage legacy systems or start
with basic code structures. One example that relies on
foundational code structure is Spring Initializr ', a tool
that generates minimal code templates for the SpringBoot
projects [12]. Whether leveraging legacy systems or starting
from scratch, the overarching goal is accelerating devel-
opment productivity by building on existing foundations.
However, the need for productivity extends beyond initial
development to ongoing maintenance and evolution. To
address this, developers generally resort to the manual
Clone-and-Own approach. As described in [6], Clone-and-
Own (C&O) involves forking and adapting existing software
to create desired products. While initially expedient, the
C&O approach introduces long-term challenges. It results in
the proliferation of similar software versions, each requiring
separate maintenance efforts and testing resources. The
software products are tested individually and usually require
as many tests as there are available products. In addition to
this duplication, which is a bad practice, the case becomes
more critical when the product is distributed among different
teams.

The analysis effort during a software bug occurrence
is not shared. Each software instance demands dedicated
analysis, tailored bug correction, and separate testing. While
this method might suffice for systems with rare alterations,

*Boubou Thiam Niang

%94 boubouthiam.niang@berger-levrault.com (B.T. Niang)
ORCID(S): 0000-0002-8618-1740 (B.T. Niang)
1ht‘cps://start.spring. io/

it becomes impractical for those undergoing constant evo-
lution. This poses a notable challenge today, with systems
swiftly adapting to emerging trends like migrating to new
languages or versions or transitioning from on-premise to
cloud solutions. Here is where methodologies like software
product line engineering prove invaluable.

Software Product Line Engineering (SPLE) [21] is a
methodology for developing a set of software products that
share a common basis. This approach allows adding specific
features to tailor software products for different use cases.
One advantage of SPLE is that shared functionalities are
developed once and can be reused across a wide range of
similar software products. The product line features are de-
veloped and tested before applying to the software products
for which they are required. Each software product includes
mandatory features, while optional features are included
based on the specifications.

Implementing a software product line involves several
stages, and several tools have been proposed to support these
stages of implementation for different approaches. These
tools include feature localization, feature analysis, or product
creation. However, there need to be more tools to implement
product lines, i.e., tools that cover product derivation for
industrial context, with frequent changes and large-scale
management. This is even more evident in the DOP [22]
paradigm as a recent paradigm. This paper presents a frame-
work for implementing a software product line using Model-
Driven Engineering (MDE) [23].

This paper extends the first idea about a model-based
SPL framework introduced in [19], with significant changes.
Unlike the previous version, which relied on calculating
model differences from different versions suggested by an

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 1 of 18

https://start.spring.io/

PhaDOP Smalltalk-based Framework for MDE SPL DOP

expert to define the Delta modules, here we use a single
version of the software product model. Users can now di-
rectly create and apply Delta modules to derive the desired
product, simplifying the process. The possible Delta mod-
ules are stored in a database. The paper also explains how
reusable software artifacts at different granularity levels,
namely classes, methods, and attributes, are organized. A
metamodel for organizing the reusable artifact is proposed
to consider the implementation function that can not be
captured by the core product model represented by a UML
class diagram [26]. In addition, this paper addresses the
generation of Java code from the resulting model through
the common use case used in related work, which is the
Expression product Line (EPL) [14, 20].

The paper is organized as follows: First, we provide back-
ground information on Delta-Oriented Programming (DOP)
in section 2. Section 3 introduces the proposed framework.
The case study is presented in section 4. In section 5, we
propose several methods to facilitate delta module identifi-
cation. Implementation details of the framework are given
in section 6. Section 7 evaluates the framework through a
use case. Related work is discussed in section 8. Threats to
validity are listed in section 9. The framework’s source code
is available on GitHub?. In addition, a demonstration video
of the framework is available in the shared repository>.

2. Background

This section aims to introduce the main concept around
the software product line.

2.1. Software Product Line Engineering

A software product line is a set of software with common
functionalities present in each product and is customized
using variable functionalities that are reusable if needed. The
methodology for developing an SPL is called software prod-
uct line engineering. SPLE approach comprises two sub-
processes [21]: domain engineering (DE) and application
engineering (AE). DE focuses on analysis, modeling func-
tionality, defining reusable artifacts, and creating a generic
SPL architecture. In AE, the product line is configured to
create a specific product. Figure 1 gives an overview of
SPLE steps.

Both DE and AE are divided into two spaces. The
problem space focuses on analysis and modeling, while the
solution space takes on concrete aspects: implementation
and product creation. The PhaDOP framework proposed in
this document focuses on realizing the solution space.

However, the solution space shown in figure 1 is a
general representation. The implementation in the solution
space depends on the paradigm chosen. Let us go into more
detail about DOP, which is the paradigm taken into account
by the PhaDOP framework.

2ht‘cps ://github.com/boubouthiamniang/tool-spl-dop-mde/tree/master
3https ://drive.google.com/drive/folders/
TuiCPWTqINOFBJJqKOUIRZ2kGDIEBCt jI?usp=sharing

2.2. Paradigms for Implementing Software
Product Lines

Software product line engineering offers various ap-
proaches for implementing a product line. Therefore, se-
lecting the implementation paradigms that dictate how we
will execute and structure the product line implementation
is essential as a preliminary step.

The literature proposes several approaches for imple-
menting a software product line. These fall into two cate-
gories: annotative and compositional approaches. Annota-
tive approaches are based on conditional compilation [16],
one of the earliest ideas for implementing a software product
line, as it is based on the well-known preprocessor tech-
nique. Compositional approaches include feature-oriented
programming (FOP) [8], aspect-oriented programming [13],
Delta -oriented programming [22], the most recent approach
known today, the Trait-oriented approach (TOP) [4]. Al-
though these two classifications are the most widely used
in the literature, we propose to move away from this tradi-
tional classification by adding a third, transformation-based
approach that includes DOP and TOP.

FOP is a programming paradigm focusing on code or-
ganization around features rather than classes or objects.
It involves using a feature model, which is a high-level
representation of the desired features of a software system.
AOP is a programming paradigm that aims to increase mod-
ularity by enabling the separation of concerns. It identifies
behavior common to several program parts and extracts it
into reusable modules called aspects. These aspects can
then be integrated into the application to add behavior in
the appropriate places. The AOP is not deliberately cre-
ated to implement SPL. This is especially true of the DOP
approach, which is one of the most recent. DOP is con-
sidered an extension of FOP, as the latter concentrates on
feature combinations and cannot modify existing products.
DOP is a programming paradigm that enables incremental,
modular modification of software systems. DOP is based
on modifying a system by expressing changes in the form
of deltas. Trait-Oriented Approach (TOP) [4] is a principle
that combines methods independent of any class hierarchy
to create a specific product.

2.3. Delta-Oriented Programming principle
Implementing a software product line following the DOP
principle implies implementing a core product and set of
changes called Delta modules that can be activated for
a given configuration and applied to create a customized
product. Figure 2 gives the overview of the DOP principle.
Implementing a software product line implies several
terminologies. The following notions are redundant for SPL:

Feature and feature model feature is a configurable el-
ement of a product line. A feature model is a model that
represents a set of valid feature combinations to create a
product from a product line.

Artifacts are tangible or intangible elements of software.
Artifacts include documents, diagrams, code, executables,

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 2 of 18

https://github.com/boubouthiamniang/tool-spl-dop-mde/tree/master
https://drive.google.com/drive/folders/1uiCPWTq9N0FBJJqK0u9RZ2kGD9E8CtjI?usp=sharing
https://drive.google.com/drive/folders/1uiCPWTq9N0FBJJqK0u9RZ2kGD9E8CtjI?usp=sharing

PhaDOP Smalltalk-based Framework for MDE SPL DOP

I Problem Space |

Solution Space |

m -
= s,
53 [T
£ES iabili i iabili ; Delta core in UML Q=
§ _é Variability analysis » Variability modeling |———>» class diagran + I s _é
: — . | OF
Importing Enabling
Configuration ~|changing to be Deriving connector product
constraints applied
sel [D
?3 § Specification of the Configuration forthe | | Product derivation —3> Model-toText Source code of the
§ 5 expected software expected software transformation software variant
<0

Figure 1: Overview of the Software Product Line Engineering (SPLE) methodology

; Apply

Delta 5 Delta 4 Apply

Delta set

Delta core Derived product

Figure 2: Overview of the Delta-Oriented Programming (DOP) principle

tests, databases, and others, depending on our positioning.
Furthermore, classes, methods, and attributes can be re-
garded as code artifacts.

Specifically to DOP programming, we have several
terms related to the notions of delta [20]:

Delta action is a set of one or more modification actions
applicable to an original product to have a resulting product.

Delta module is a container of modification that can be
applied to a product version to have another. The Delta
module contains a set of Delta actions.

Delta set is a group of available delta modules. It outlines
the dependencies between Delta modules and establishes
potential sequences for their application when needed. For
example, it can specify that one Delta module must be
applied after another. The arrangement of Delta modules
within the Delta set makes it easier to create new Delta
modules and allows for more complex modifications that
may not have been anticipated through the creation of ded-
icated Delta modules. This is accomplished by combining
and reusing existing Delta modules.

Delta core The delta core is the initial product representing
the SPL following the DOP paradigm. The Delta module is
applied to the Delta core to create a software product variant.

Delta core implementation strategies Two strategies are
applicable for implementing a Delta Core [22]: starting
from a Complex Core and starting from a Simple Core. The
Complex Core strategy involves creating product variants
from complete products, primarily by removing features.
The Simple Core strategy involves creating product variants
from the most basic products, with only mandatory features
present.

3. Overview of the PhaDOP framework

Despite its potential benefits, Software Product Line
(SPL) adoption remains limited [24], primarily due to the
lack of adequate technological support for its concrete im-
plementation. This implementation involves articulating re-
quirements for the product line, deriving product variants,
and obtaining source code for resulting software variants.
Consequently, many projects stall at the product line model-
ing stage, where experts use features to create specifications
and configuration guides, and stakeholders rarely progress

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 3 of 18

PhaDOP Smalltalk-based Framework for MDE SPL DOP

Delta Manager Model Repository Manager Model Derivator
Reusable Artefacts
@ repository (JSON
Data model File)
Delta database
Import reusable
A artefact
Apply change to G De:ta I\R/Iodel it Product Delt; Corgtmodel Instantiate
the generator enerator Repository derivation epository model
Model to code
> generator
Action Delta Service

L Model to text
Control action transformation

GUI Delta Operator Java source code

Delta creation, upade and delete sub-flow —=———————3p

Product derivation sub-flow

Figure 3: Overview of the PhaDOP framework

beyond domain engineering. Even though Delta-Oriented
Programming (DOP) represents a promising approach to
SPL, it faces similar technological support challenges.

This section provides an overview of prominent tools
categorized by their primary focus. The literature introduces
two main tools for implementing DOP in software product
lines: DeltaJ [14] and SiPL [20]. Deltal supports essential
DOP actions such as adding, removing, and updating classes
and methods. However, users often find themselves man-
ually writing substantial amounts of code for Delta opera-
tions, especially in large systems. SiPL takes a step towards
automation by implementing SPL at the model level. With
SiPL, Delta actions are automatically generated by analyzing
differences between different versions of the core model.
Nevertheless, users must manually create various versions of
the model from which Delta actions are derived. This manual
process can become cumbersome as it may be challenging to
anticipate and create all possible versions of the core model
in advance, potentially resulting in gaps in Delta module
coverage.

This section introduces the PhaDOP framework for
Delta-Oriented Programming at the model level. PhaDOP
aims to address the shortcomings identified in existing so-
lutions, providing a more straightforward approach to man-
aging projects involving DOP and Delta modules, thereby
enabling the use of DOP for large-scale systems. PhaDOP
simplifies Delta module management by utilizing models at
high levels of abstraction. This approach facilitates handling
models, such as UML class diagrams, at high levels of
abstraction, thereby sparing users from directly managing
extensive source code. Delta operations are abstracted from
users, who only need to provide information through a set
of GUISs to execute fundamental DOP operations. Figure 3
provides an overview of the main components of the frame-
work.

The PhaDOP framework consists of three primary com-
ponents: the Delta Manager, the Model Repository Manager,
and the Model Derivator. Each component plays a crucial

role in facilitating different aspects of Delta-Oriented Pro-
gramming.

3.1. Delta Manager

The Delta Manager consists of modules responsible for
managing delta projects and delta modules, encompassing
tasks such as creating, updating, and deleting delta modules.

The PhaDOP Graphical User Interfaces (GUIs) Man-
aging delta projects and Delta modules can be complex
when dealing with large amounts of source code or many
Delta modules. The main challenge is maintaining usabil-
ity when working with Delta modules. It is important to
hide potentially tedious tasks such as program execution or
source code manipulation. This is one of the limitations we
pointed out with Deltal] [14]. To overcome this challenge,
the PhaDOP framework introduces a set of GUIs that allow
users to interact with Delta projects and modules. These
interactions include creating, updating, and deleting Delta
modules or delta projects, creating model variants, and gen-
erating source code from the model.

Figure 4 depicts the initial presenter of the PhaDOP
framework. The presenter on the left side of the image acts
as the gateway to the framework, providing users with a
sub-menu of seven GUIS, each offering different options for
navigating to the desired presenter. These GUIs enable users
to perform various operations for Delta-Oriented Program-
ming at the model level. These operations involve initializing
a new Delta project, creating and executing Delta modules,
modifying a Delta Module, generating a model variant, gen-
erating Java code from the model, and canceling operations
when necessary. On the right side is an example of a GUI
to which we are redirected after selecting an option. This
graphical user interface demonstrates code generation from
amodel variant and displays the necessary input information
for the model-to-text (M2T) transformation required by the
PhaDOP framework.

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 4 of 18

PhaDOP Smalltalk-based Framework for MDE SPL DOP

x = O Welcome tothe SPL DOP MDE Tool v x -0 Model to code transformation

Root entity name: EPLVIEntity
Prefix: EPLVL
::> Artifact JSON location: p:\users|firstname.namelartifacts.json

Root folder:

D:\Users\firstname.name\generated\src

Choose an operation

+ New delta project
+ Create a delta module

5 Apply a deltamodule

(C Update a delta module

+ Generate model variant

<+ Generate code from model
4= Cancel

Figure 4: Example of graphical user interfaces in PhaDOP. The
interface on the left displays all available tool options, while
the code generation interface appears on the right when the
corresponding option is selected.

Action controller sub-component is activated by user ac-
tions within the graphical user interface (GUI). It receives
requests from the GUI and directs tasks to specific Delta
services or Delta actions. Delta services handle tasks related
to database access, while Delta actions manage code modi-
fications.

Delta service sub-component is invoked by the Action
Controller sub-component to manage data access. They uti-
lize data transfer objects to insert data into the internal
database and retrieve information from it [18]. The retrieved
data is then passed to the Delta Operator sub-component for
code modification.

Delta operator sub-component enables the manipulation
and application of created Delta modules for product deriva-
tion. Whenever a user initiates an action in the GUI to use
a Delta module, this sub-component retrieves the relevant
Delta modules and applies them to the target model genera-
tor. To ensure data integrity, the Delta Manager operates on
a copy of the original model generator, meaning the original
Delta Core remains unchanged.

Delta Database is a repository for storing essential data
within the framework. The database facilitates the storage
and retrieval of information for the purposes of creation,
update, deletion, and application. The database contains
tables designated for Delta Project, Delta Module, model
generator, Entity, and their respective links. These tables
offer insights into the interdependencies of project informa-
tion. The Delta database reflects the Delta data model, as
shown in figure 5.

A delta project comprises a set of delta modules, each of
which can be applied to one or more entities. Indeed, creating
a delta module implies that at least one entity is affected by
an addition, update, or deletion. An entity can be influenced
by zero or more delta modules. Mandatory feature entities
are always present in the system and cannot be affected by
any delta module except for updates. Each delta module can
have one and only one operation for each entity. For example,
adelta module cannot add or delete an entity. A variant of the
model generator can be obtained by applying zero or more
delta modules. A typical example of zero delta modules is

DeltaProject

name

feature_list

artifact_uri

|

DeltaModule

name
Entit ModelGenerator
Y [0.N] [1.N] apply_condion i

name name

[0.N] [0..N]
package
$[1...1] id_delta_core

prefix

OperationEnum addon_entities

suffix

name removable_entities

Figure 5: Delta data model depicting the organization of
artifacts within a delta project

the initial model generator, which has not yet been modified
by any delta module. Conversely, a delta module can be used
in zero or more model generator variants. Indeed, a delta
module may not have been used for any product derivation.

3.2. Model Repository Manager

The Model Repository Manager component stores vari-
ous versions of the model generator and the resulting mod-
els. Notably, the model version obtained after derivation,
facilitated by applying delta modules, serves as a model that
can be utilized for further derivations.

Delta model generator repository contains each model
generator, which is a Pharo class with a set of methods facil-
itating the generation of concrete models in the form of class
diagrams when needed. The initial model generator is manu-
ally created by the user within the tool. Subsequent versions
of the model generator are derived from the existing model
generator by applying Delta modules to the initial model
generation or another variant. Each model generator variant
can be the basis for creating another variant. However, the
user must manually create a copy of the desired version
before the derivation to prevent overwriting versions. The
name of each version is stored in the delta database to track
every Model generator, as depicted in Figure 5. For further
details on the process of generating a model from a model
generator, please refer to the link provided in footnote *.

Delta Core model repository stores the UML class di-
agram models of concrete software product variants gen-
erated using model generator versions. Instead of directly
modifying the model, our approach focuses on the genera-
tor, facilitating the generation of corresponding models as
needed. The model generators maintain uniform structures,
incorporating packages, classes, properties, and methods.
This uniformity allows for the development and application
of common methods, with specific functions utilized for
delta management on a case-by-case basis. For example, it
may be necessary to iterate over a model before removing an
entity or its properties.

4https ://modularmoose.org/posts/2021-02-04-coasters

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 5 of 18

https://modularmoose.org/posts/2021-02-04-coasters

PhaDOP Smalltalk-based Framework for MDE SPL DOP

3.3. Model Derivator
The model derivation component enables the creation of
concrete-derived models.

Reusable artifacts repository This repository consists of
a JSON file containing reusable artifacts related to method
implementation. It establishes links between model entities
and methods and their reusable source code. While the
Delta Core captures the structural aspects of the system
through a class diagram, it does not include behavioral
details, limiting reusability to architectural commonalities.
Consequently, derived products can only generate source
code based on the project’s structure, such as classes, at-
tributes, inheritance, interfaces, and method signatures. The
absence of behavioral commonalities necessitates manual
code rewriting. By linking the core and reusable classes to
the source code of reusable artifacts via JSON, the source
code of reusable methods is centralized, facilitating their
utilization across multiple products. In this study, reusable
artifacts are manually collected from the source codes of
existing projects. However, automated techniques for feature
location, such as using relational concept analysis proposed
in [11], can also be employed.

Figure 6 illustrates the interaction among the Delta cores,
represented as a class diagram, the available Delta modules,
and the JSON file representing reusable method implemen-
tations.*

! Link between delta |
>, || modules and the

| implementation of |

| Application of changes H
H % sable methods_!
| based on selected delta Delta module

modules

Connector /
ex
EntityA EntityB

+ propertyA: int [<[—Extends
+ propertyA2: String

+ propertyB1: int

methodA

1.0 . methodE
EntityD EntityC L——>{methodD)
N

- ’ / methodC /
+ propertyD1: int * + propertyC1: boolean
+ propertyD2: Strin + propertyC2: String Reusable methods
3 ey

Figure 6: lllustrates the interaction among the Delta cores,
depicted as a class diagram, and the available Delta modules.

The Model-to-Code generator The Model-to-Code Gen-
erator facilitates the instantiation of the product variant,
which represents a model obtained through a model gen-
erator resulting from derivation. Instantiation involves as-
signing values to the model properties. The core method is
extracted from the Reusable Artifact JSON. Additionally,
we need to store the property values in the JSON file.
The organization of reusable artifacts is outlined by the
metamodel proposed in Figure 8. Once the connector model
is instantiated, the software product’s source code can be
generated. The code generation from the instantiated model
relies on the Famix2Java project > for code generation.

5https ://github.com/moosetechnology/FAMIX2Java

4. Case Study

This section serves as a case study to evaluate the practi-
cality and usability of the PhaDOP framework. The aim is to
demonstrate the framework’s effectiveness through a well-
known use case, the Expression Product Line (EPL). The
EPL has been previously studied in related research, notably
in works such as DeltaJ [14] and SiPL [20], providing a solid
foundation for comparison and analysis.

Figure 7 depicts the feature model of the EPL. This
model represents all possible combinations of features that
can be used to create different EPL variants. The model
comprises two principal features, Data, and Operations.
Data has three features Lit, Add, and Neg. Lit is mandatory,
while Add and Neg are optional features. The Operations
feature has two child features. Print feature is mandatory
where Eval feature is optional.

EFL Legend:
. ¥ Mandatary
P E S o Optional
Q ?Ta OPEV_?“':'HS Abstract Feature

Concrete Feature

Lit || Add | | Meg || Frint || Eval

Figure 7: Feature Model showing the configuration capabilities
of the Expression Product Line (EPL)

In this case study, we assume the product line is con-
structed using a reactive approach, leveraging the existing
EPL legacy system implemented in Java. Segments of this
implementation are presented in Listings 1, 2, 3, and 4.

Listing 1: Java implementation of the Exp class within the
EPL legacy system

public class Exp {
void print(){ }
int eval){
return 0;
)
}

Listing 2: Java implementation of the Lit class within the
EPL legacy system

public class Lit extends Exp {
int value;
Lit(int n){
this.value = n;
¥
void print(){
System.out.println(this.value);
X
int eval (){
return this.value;
3
}

Listing 3: Java implementation of the Add class within the
EPL legacy system

public class Add extends Exp {
Exp expri;
Exp expr2;

Add (Exp expri

this.exprl = expri;

, Exp expr2){

this.expr2 = expr2;

void print(){
this.exprl.print();

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 6 of 18

https://github.com/moosetechnology/FAMIX2Java

PhaDOP Smalltalk-based Framework for MDE SPL DOP

System.out.print(" + ");
this.expr2.print();

3
int eval(){

return this.exprl.eval() + this.expr2.eval();
}

Listing 4: Java implementation of the Neg class within the
EPL legacy system

public class Neg extends Exp {

Exp expr;

Neg (Exp expr){
this.expr=expr;

¥

void print(){
System.out.print (" (- ");
this.expr.print();
System.out.println (") ");

3}

int eval(){
return (-1) *

3

this.expr.eval();

>

This study aims to comprehensively evaluate the PhaDOP
framework in practical software engineering contexts, cov-
ering various topics, including product line construction and
code generation.

5. Methodologies for Improving the
Identification and Management of Delta
Modules

Managing Delta modules in large systems is a significant
challenge when adopting the Delta-Oriented Programming
(DOP) paradigm, as highlighted in the related work dis-
cussed in this article. In Pietsch et al. [20], Delta actions
are automatically generated by computing the differences
between different versions of the core model. However,
users must manually create different versions of the model
from which Delta actions are derived. This manual process
becomes cumbersome because it can be difficult to anticipate
and create all possible versions of the core model in advance,
resulting in potential gaps in Delta module coverage.

Similarly, DeltaJ [14] supports essential DOP actions
such as removing, adding, and updating classes and methods.
However, users are burdened with manually writing signifi-
cant amounts of code for Delta operations, especially in large
systems.

This section presents a methodology that utilizes truth
tables to identify Delta modules at the entity and method
granularity levels.

Additionally, using a class diagram representation of the
model allows for capturing features, attributes, and method
signatures but not implementation details. The PhaDOP
framework addresses the aforementioned limitation by in-
troducing reusable artifacts at the method implementation
level, referred to as model-level granularity reusable arti-
facts. To capture these artifacts, we adopt a JSON repre-
sentation. Additionally, we propose a metamodel to outline
the organization of the JSON file repository for model-level
reusable artifacts.

,_
&
3
El

>
-1
a

|4+ E
0o
+

o+
+

L]

[+ |+ [+ [+ |2

S S S R o

Table 1

Truth table illustrates the presence or absence of all EPL
features. A '+’ indicates the feature is present, while a -’
indicates its absence.

5.1. Truth tables for Identifying Delta Modules at
Entity and Method-Level Granularity

Delta Modules at the entity and method-level granularity
refer to changes made at the class level, such as adding
or removing classes and attributes. A Delta Core and a
list of features and reusable artifacts are required to ini-
tialize the Delta Project. The next step involves preparing
Delta Modules that apply to the Delta Core. Predicting
future additions, such as new entities or methods, can be
challenging, so forecasting all potential Delta Modules in
advance requires effort. Identifying foreseeable changes can
improve the overall process, especially when using model-
based engineering. This increases productivity and makes
the task more accessible to non-experts.

We propose a methodology for identifying Delta Mod-
ules that apply to a Delta Core according to the feature
model. This process relies on a known truth table, where
each feature has two possible states for a valid target software
product: present or absent. Each feature presence test results
in a true or false value. If the corresponding artifact does
not exist, a Delta Module that performs an ’Add’ operation
indicates a feature’s presence. Conversely, if the entity ex-
ists, the Delta Module that executes the removal operation
indicates the absence of features. This truth table proposition
does not consider the granularity of features at the properties
level. It is important to note that the Delta Core, represented
by a UML class diagram, only captures reusable artifacts at
the entity and attribute level. At the same time, methods are
managed directly from the reusable artifacts repository.

For a truth table with n inputs, where n is the number,
there are 2" possible outputs. This can be applied to our con-
text by designating features as inputs and valid combinations
to create products as outputs.

Table 1 displays the truth table for the EPL. The "+’ sign
indicates the presence of a feature for a given combination
of table truth inputs, while the ’-’ sign indicates its absence.
The table shows all possible configurations related to entities
and methods.

It is important to note that there are mandatory features
that are always present and do not change. These features are
not considered variable inputs in our methodology. There-
fore, the total number of inputs equals the number of optional
features. The optional features include optional, group, and
alternative group features since each element is occasionally
optional. For ’b,” representing the number of optional fea-
tures, there are a total of 2% possible Delta modules. The

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 7 of 18

Table 2

Truth table illustrating potential Delta modules for adding and

PhaDOP Smalltalk-based Framework for MDE SPL DOP

Print Add Neg Eval
Delta 1 + + +
Delta 2 + + -
Delta 3 + +
Delta 4 + - -
Delta 5 - + +
Delta 6 - + -
Delta 7 - - +
Delta 8 -

removing entities and methods in the EPL.

Delta Mod-
ule

Possible Delta Action

Possible Delta Action for Complex
Core strategy

Delta 1

add Add entity, add Neg entity, add
Eval method

N.C.

Delta 2

add Add entity, add Neg entity,
remove Eval method

remove Eval method

Delta 3

add Add entity, remove Neg entity,
add Eval method

remove Neg entity

Delta 4

add Add entity, remove Neg entity,
remove Eval method

remove Neg entity, remove Eval
method

Delta 5

remove Add entity, add Neg entity,
add Eval method

remove Add entity

Delta 6

remove Add entity, add Neg entity,
removeEval method

remove Add entity, remove Eval
method

Delta 7

remove Add entity, remove Neg en-
tity, add Eval method

remove Add entity, remove Neg en-
tity

Delta 8

remove Add entity, remove Neg en-
tity, Remove Eval method

remove Add entity, remove Neg en-
tity, remove Eval method

Table 3
Truth table depicting potential entity-level Delta modules Add
and Remove operation that are applicable to the EPL.

set of possible Delta modules has different granularities:
entity and function. In this context, we focus on the entity
granularity.

Table 2 depicts the truth table of the EPL, which focuses
on variable features. Each row in the truth table represents a
valid configuration to create an EPL variant. This enables us
to identify Delta Modules.

We have chosen the implementation of DOP following
the Complex Core strategy, focusing primarily on removal
operations. This simplifies both the number and size of the
Delta Modules. Table 3 illustrates the list of possible Delta
actions.

We note a simplification using the Complex Core. In-
deed, the Delta Module size is reduced, i.e., the number of
possible Delta Action, because we do not have operations
related to mandatory features. For example, Delta has just
one operation, removing the Eval method instead of three,
as presented in Table 3. Once identified, all we have to do is
implement the Delta Modules we want.

Table 2 is insufficient to show the impact of operation
embedded in Delta action and difficulties caused by the
number of combinations related to the Delta module. Indeed,
when a configuration output gives several Delta Modules
with zero or more Delta Action, this does not mean all these
Delta Action operations must be applied. Remove actions are
accomplished if the entity or method does not already exist.
Converting the Add operations is performed if the feature is
absent. This means each Delta module is itself a set of Delta
Action combinations. We can see that the Delta Module
itself is a truth table where the Delta Action is input. So,
a Delta Module was evaluated thanks to the possible entity-
level add and remove Delta Module truth table, Table 4.

Delta Mod-
ule

Delta 2-1
Delta 2-2
Delta 2-3
Delta 2-4
Delta 2-5
Delta 2-6

Possible Delta Action

add Add entity

add Neg entity

remove Eval method

add Add entity, add Neg entity
add Add entity, remove Eval method
add Neg entity, remove Eval method
add Add entity, add Neg entity,
remove Eval method

Delta 2-8 N.C

Delta 2-7

Table 4
Example of possible entity-level Add and Remove for a single
Delta Module example applicable to the EPL.

If we zoom in on a Delta Module in Table 4, for example,
Delta 2, the possible Delta Actions in the second column
give 2" — 1 versions of the Delta module, where # is the
number of Delta actions. For Delta 2, n = 3 because we
have three Delta actions. The —1 is included because a
combination remains unused. For example, the composition
of Delta Actionsadd Add entity, add Neg entity, and remove
Eval method corresponds to the configuration of the feature
model in where entities Add and Neg are present, and method
Eval is absent.

5.2. A Metamodel for Managing Repositories of
Reusable Artifacts

Method-level reusable artifacts are crucial in Delta-
Oriented Programming (DOP) at the model level. Without
these artifacts, the generated code resulting from Model-to-
Text transformations would be limited to the class structure,
attribute declaration, and method signature. We can generate
method implementation by considering reusable artifacts at
the method level. To maintain consistency within entities
and Delta modules, it is essential to establish a connection
between the UML class diagram representing the delta core
and the actual method implementations.

To improve the management of reusable artifacts at the
method level, we propose a metamodel structured as a JSON
file containing an array of JSON objects. This metamodel
helps to organize and link method-level reusable artifacts
with the delta core entities, ensuring coherence within the
system.

Figure 8 illustrates the proposed metamodel for organiz-
ing method-level reusable artifacts.

Parent

DeltaModule 11
1,1 Oo,N Class 2 Interfacce
name: String - 11 -
name: String I {name: String
1,1
1,N
Parameters 1N 11 Method
name: String name: String
type: String sourceAnchor: String

Figure 8: Metamodel structuring the repository for capturing
reusable artifacts related to method implementation.

The JSON structure for a Delta module includes a
unique identifier, referred to as the name, and a field called
predecessors. The name serves as a distinct label for the

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 8 of 18

PhaDOP Smalltalk-based Framework for MDE SPL DOP

Delta module. In contrast, the predecessors field contains
a comma-separated list of other Delta module names that
must be applied before the current one. This list determines
the order in which the modules should be applied. Each
Delta module may have zero or multiple predecessor Delta
modules. A Delta module comprises one or more classes cor-
responding to the core Delta module entity. Each class has
a name and includes multiple methods. The methods within
a class have their name and a source anchor that represents
the source code of the methods and pertains to the reusable
artifacts. If a method is present in multiple predecessor Delta
modules, it will inherit the method from the last predecessor
Delta module in the order. The method is redefined if a Delta
module contains existing methods in any of its predecessor
Delta modules. The method implementation of the Delta
module itself is considered.

6. Implementation

The PhaDOP functionalities were realized using the
Pharo language®. Moose [1], an open-source software and
data analysis platform within Pharo, facilitated model man-
agement, aligning with the framework’s utilization of Model-
Driven Engineering principles. Following the precepts of
Model-Driven Engineering [5], the product line was imple-
mented utilizing platform-independent models. Delta mod-
ules are utilized to apply changes to abstract models, pro-
ducing different versions through a derivation process. The
source code is then generated from these derived models us-
ing model-to-model (M2M) transformation techniques [15].
The graphical user interface (GUI) development was facil-
itated by Spec2 [7], a specialized framework designed for
GUI construction in Pharo. The framework encompasses a
set of functionalities that are precisely defined. All of the
code that has been implemented for PhaDOP is accessible
on the project’s Github repository ’.

6.1. Initializing the Delta Project

During the initiation of the Delta Project, the first step
is to gather all necessary prerequisites for the project. This
includes creating the Delta database and configuring the
required tables based on the data structure according to the
delta data model presented in Figure 5. During this phase,
detailed specifications for the Delta Core must be completed.
This includes the name of the initial Delta Core, the list
of features for configuration inclusion or exclusion, and the
location of method-level reusable granular artifacts that store
method implementation crucial to the project. To provide
this essential information, a graphical user interface is used
to create the Delta Project. The GUI can be accessed by
launching the tool from the starting presenter shown in Fig-
ure 4, right side and selecting the New Delta Project option
from the sub-menu, as illustrated in Figure 9. This action
guides users to the project initialization interface, called the
SpCreateDeltaProjectPresenter. Here, users can enter the

6https ://pharo.org/
7https ://github.com/boubouthiamniang/tool-spl-dop-mde/tree/master

required information, such as the database name, Delta Core
name, and feature list, into the presented input text fields.
Separating each string value with a comma is important
to ensure proper persistence in the delta database. Note
that, for the Delta Project initialization, the tool provides
all technical details, and the user only needs to fill in the
required information in the GUL

Figure 9 provides a visual depiction of the GUI for
initializing the Delta Project with User-Provided Data.

x -0 Init delta project -

Database name: ysecasedelta.db

Delta core name:

epl_core
Feature list: Lit,Add,Neg,Print,Eval
Artifact uri: D:\Users\firstname.name\epl\artifactsjson

Figure 9: Graphical User Interface (GUI) displaying an example
of User-Provided Data for initializing the Delta Project in
PhaDOP.

The initialization stage concludes with creating the Delta
Project database, encompassing all necessary tables storing
project information. The framework utilizes SQLite as the
local relational database [9]. Various functions have been
implemented to store relevant Delta Core information in
corresponding tables. This is made possible through invoked
actions and associated services.

Figure 10 presents the sequence diagram of the initializa-
tion of a new Delta Project. The corresponding source code
for

i Init delta Action

User
Provide
information

|——nformation |

project
interface

Handle clic
action

Controller

Redirect to

Init delta
service

service
Create
required tables

persist in
delta_core table

Show creation
message

Figure 10: Sequence diagram depicting the interactions among

PhaDOP internal components during the Delta project initial-
ization process.

6.2. Creating Delta Modules

Delta Modules are modifications that can be applied to
a Core Delta Module to generate valid products. The Delta
Core is the initial product without modification and contains
all required attributes. The entities are initially present in
the Delta Core following the Complex Core strategy, and
the cardinality between entities is defined using the feature

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 9 of 18

https://pharo.org/
https://github.com/boubouthiamniang/tool-spl-dop-mde/tree/master

PhaDOP Smalltalk-based Framework for MDE SPL DOP

model. Entities with mandatory features must have a mini-
mum cardinality of 1, while entities with optional features
may have zero.

Reusable artifacts related to method implementation are
organized using JSON objects. When applying the Delta
Module, method implementations are linked to the corre-
sponding entities, allowing for the addition and removal of
methods as specified. Class source codes are grouped as key-
value pairs.

An extract of the reusable artifacts repository for the EPL
use case is presented in Listing 5. The JSON file structure
adheres to the metamodel depicted in Figure 8.

Listing 5: Illustrative example of a JSON file serving as a
Delta repository for managing reusable method implemen-
tations.

"Add": |
"targetSourceLocation":"D:\\ project\\src",
"methods":
[
{
"name": "Add",
"sourceEnchor": "{ this.exprl = a : this.expr2 =b ; }",
"parameters": [
"name": "exprl",
"type":"Exp"
},
{
"name": "expr2",
"type":"Exp"
)
1
I
{
"name": "print",
"sourceEnchor": "{ this.exprl.print();System.out.print(\" + \");
this.expr2.print(); }"
"parameters": [
)
1
}
1.
“parent”: {

"name": "Exp"
}

"interface": [

1

x -0 Delta medule creation -

Delta db name usecasedelta.db

Deltaname DEvalLitAdd
Application condition | it,add, INeg,Print, Eval
Predecessors DLitAdd

Id delta core 1

Add-on entities List of entities to add

Removable entities Neg

Figure 11: Graphical User Interface (GUI) displaying an ex-
ample of User-Provided Data for creating a Delta module in
PhaDOP.

tasks already implemented in the tool’s source code. The
code for the SaveDeltaModule action is provided in List-
ing 6.

Listing 6: Code implemented in PhaDOP for creating a Delta
module using user-provided data from the GUL

The reusable artifacts for this Delta module are stored in the
artifacts repository, as shown in Figure 5.

The Delta project is initially established by initializing
the Delta Core module in conjunction with reusable artifacts.
Subsequently, a Delta module is created to implement the
changes made to the Delta Core module, generating a soft-
ware variant.

The process involves multiple steps, including creating
a Delta Module using the SpCreateDeltaModulePresenter.
This can be done by selecting the Create new Delta Module
option from the sub-menu on the left side of the starting
presenter, as shown in Figure 4. Users provide details about
the relevant database and the name of the Delta Module
while specifying its application condition based on the fea-
ture list within the Delta Core table. Additionally, users
specify the list of entities to be added or removed. The
Delta Core ID precisely identifies the involved Delta Project.
Please refer to Figure 11 for a visual representation of the
textitDEvalLitAdd Delta Module creation interface.

Creating a Delta Module involves adding user-provided
information to the corresponding table in the embedded
Delta database. Users are relieved of technically demanding

saveDeltaModule

| connection dbName name applyCondition predecessors idDeltaCore addonEntities removableEntities
idDeltaModule tabAddonEntities tabRemovableEntities|

"Field values will become dto”

dbName := fieldDbName text.

name := fieldDeltaName text.

applyCondition := fieldApplyCondition text

predecessors := fieldPredecessors text.

idDeltaCore := fieldIdDeltaCore text.

addonEntities := fieldAddonEntities text.

removableEntities := fieldRemovableEntities text.

SCEEREEE
connection := SQLite3Connection memory.
connection := SQLite3Connection on:

(smalltalk imageDirectory / dbName) fullName.

connection open.

connection
execute:
"INSERT INTO delta_module(name, apply_condition, predecessors, id_delta_core,
addon_entities, removable_entities) VALUES (21, 22, ?3, 24, 2?5, 26);'
with: {
nane..
applyCondition.
predecessors.
idDeltaCore.
addonEntities
removableEntities

3.
"Create entity and delta link”

idDeltaModule := ((connection execute: 'Select id from delta_module where name=?' with: {name})
next) at:'id'.
Todo create function for the o case duplication”
tabAddonEntities := addonEntities splitOn: ', '
tabAddonEntities do: [:each |
lentity|

entity := (connection execute: 'Select name_entity from entity where name_entity=?' with: {
each}) next.
entit not redy exist”
entity ifNil: [
each ifNotEmpty: [
connection
execute:
INSERT INTO entity(name_entity) VALUES (21);'
with: {
each
3.
]

I
"Create link between Delta Module and entity
each ifNotEmpty: [
connection
execute:
*INSERT INTO delta_entity_link(id_delta, name_entity, operation) VALUES (?1, 22, 23
)it
with: {
idDeltaModule.
each.
"ADD
3.
1

o create function for the two case duplication
tabRemovableEntities := removableEntities splitOn: ', '
tabRemovableEntities do: [:each |

lentity|

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 10 of 18

PhaDOP Smalltalk-based Framework for MDE SPL DOP

entity := (connection execute: 'Select name_entity from entity where name_entity=?' with: {
each}) next.
if entity no alred
entity ifNil: [
each ifNotEmpty: [
connection
execute:
'INSERT INTO entity(name_entity) VALUES (21);'
with: {
each
3.
1

1.

re ink between Delta Module and entity”
each ifNotEmpty: [
connection
execute:
"INSERT INTO delta_entity_ link(id_delta, name_entity, operation) VALUES (21, ?2, 23
)
with: {
idDeltaModule .
each
" REMOVE '
3.
1

connection close.

self inform: 'Delta Module ', name, ' succefully created’

Figure 12 presents the sequence diagram depicting the
interactions among the pertinent components during the
creation of a Delta module.

:Create delta

:Delta
service database

‘ User ‘

: Create delta ‘Action
IHM controller

7 Provide]
information

Handle clic
action

Redirect to
service Insert in delta

module table

Get id of created

delta module

id delta module

Loop!) [Foreach addon and
removable entity name] { Get entity by name

Entity result set

alt
4) Insert link entity delta
[Result set>0]
felse] Insert entity
Insert link entity delta

Show creation

B= message H

Figure 12: Sequence diagram depicting the interactions among
PhaDOP internal components during the Delta module cre-
ation process.

6.3. Visualize Delta Modules

The number of Delta Modules in a large-scale sys-
tem could increase to hundreds. Table 2 presents the Delta
modules with only three optional features. It is important
to note that the number of delta-modules related to entity
and method can culminate at 2". However, using Model-
Driven engineering simplifies the handling of Delta Modules
compared to code-level implementation. However, manag-
ing at such a scale may require advanced functionalities,
particularly for users with limited expertise.

This section highlights the functionality available in
PhaDOP for visualizing Delta Modules, enabling us to elu-
cidate their inter-dependencies. Leveraging Roassal [3], a
Pharo library, the visualization feature facilitates a clear de-
piction of the Delta Module table, showcasing the execution
sequence between the Delta modules.

Figure 13 shows the visualization of the Delta Module
table, which depicts the execution sequence between the
Delta modules. In this fundamental example, each Delta
module is represented by a gray circle. An arrow between
two Delta modules indicates the order of execution, with the
source of the arrow indicating the Delta module that must
be applied first. The color of the arrow indicates the type of
operation associated with the Delta module corresponding
to the circle at the end of the arrow. Blue arrows represent
addition operations, while red arrows represent removal

N
/N

Figure 13: lllustrative example showcasing the visualization
functionality for the execution sequence of Delta modules in
PhaDOP.

6.4. Applying Delta Modules - Product derivation

To apply a Delta Module, users access the interface
SpApplyDeltaModulePresenter after selecting the option
Apply Delta Module from the sub-menu of the tool’s starting
GUI, as depicted in Figure 4 on the left side. Subsequently,
users input the required information, including the database
name, the name of the Delta Module to be applied, the
name of the target model generator to be modified, the
package name of the original model generator, the prefix for
distinguishing entity names, and the suffix appended to the
original package name. An overview of the delta application
user interface is provided in Figure 14.

x -0 Product derivation v
Delta database name: usecasedelta.db
Delta module name: DEvalLitNeg
Target generator name: EPLModelGeneratorCoreQrgnV1

Name of original package: EPL-Core-Orgn
Prefix of the orgine: EPLV1

Tag suffix: V1

Figure 14: Graphical User Interface (GUI) displaying an ex-
ample of User-Provided Data for applying a Delta module in
PhaDOP.

After the presenter submits the data, the system retrieves
information from the database and applies the necessary
modifications to the target model generator. It is crucial
to emphasize that users must ensure they have previously
created the target model generator where the name is indi-
cated when applying the Delta module. This model generator

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 11 of 18

PhaDOP Smalltalk-based Framework for MDE SPL DOP

is created by manually copying an existing version of the
model generator, refraining from modifying the original
version. The modifications are exclusively applied to the
duplicate copy, ensuring the original version remains un-
changed.

Listing 7 presents the method implemented in PhaDOP
for creating the variant of the Core Module. Users only need
to fill in the information in the dedicated GUI presented in
Figure 14.

Listing 7: Code implemented in PhaDOP for applying a
Delta module using user-provided data from the GUI.

applyDeltatodule

| connection dbName deltaName generatorName generatorClassName generatorClass entitiesOperationsLink
packageName prefix suffix deltaModule deltaActionManager sourceNameDico retrievedGenerator|

dbName := fieldDbName text.

deltaName := fieldDeltaName text.
generatorName := fieldGeneratorName text.
packageName := fieldPackageName text.

prefix := fieldPrefix text.
suffix := fieldSuffix text.
connection := SQLite3Connection memory.
connection := SQLite3Connection on:

(smalltalk imageDirectory / dbName) fullName.

connection open.

deltaModule := (connection execute: 'Select id from delta_module where name=?' with: {deltaName})
next.

entitiesOperationsLink := (connection execute: 'Select name_entity, operation from
delta_entity link where id_delta=?' with: {(deltaModule at:'id')})"next”

generatorClass := Smalltalk classNamed: generatorName
deltaActionManager := DeltaActionManager new.

Each entity delta link

(entitiesOperationsLink rows) do:[:row |
deltaActionManager modifyGeneratorInstanceSideForDelta: generatorClass entitiesOperationsLink: row.
1.

sourceNameDico := Dictionary new.
sourceNameDico at: 'packageName' put: packageName.
sourceNameDico at: ‘prefix' put: prefix.

deltaActionManager modifyGeneratorClassSideForDelta: generatorClass sourceNameDico: sourceNameDico
varianteSufixe: suffix.
fter applying the deltas modules, we save a link with the generator in db
connection
execute:
"INSERT INTO variant_generator(name, package, prefix,
with: {
generatorNane .

packageNane .
prefix.
suffix
3.
Create ink between the generator and Delta Module
retrievedGenerator := (connection execute: 'Select id from variant_generator where name=?' with:
{generatorName}) next.
connection
execute:
"INSERT INTO delta_variant_link(id_delta, id_variant) VALUES (2?1, ?2);'
with: {
(deltaModule at:'id').
(retrievedGenerator at:'id')

3.

connection close.

self inform: 'Delta Module', deltaName, ' successfully applied'.

The program passes through several framework compo-
nents, as shown in the sequence diagram in Figure 15.

The Delta Module modifies the model generator meth-
ods that represent the Delta Core. The name of the vari-
ant of the model generator is stored in the database, and
a relationship between the Delta Module and the model
generator is established in the corresponding table. This
allows tracking which Delta Modules have been applied
to the model generator and which model generators are
impacted by a particular Delta Module. Effective system
management requires knowledge of the impact of removing
a Delta Module. In PhaDOP, a variant of the model generator

‘ :User ‘ : Ap:)'\-‘y’\:e\(a :Action controller ‘ :Azzlr\“/”gzna
Provide N
information Handle clic
¢‘H Redirect to Get delta module
service ! by name
Delta module

= Moee

Get linked entities and T
attached operations

Map of entity operation

Insert generator in table

Insert variant generator link in table

H= Show apply message

-‘ Modify class side methods
Modify instance side methods

Figure 15: Sequence diagram depicting the interactions among
PhaDOP internal components during the Delta module appli-
cation process.

is created instead of the generated model. This is because the
model generator always has the same structure, consisting of
modified Pharo methods. This approach avoids difficulties if
changes were made directly to the generated models, such
as adding or removing entities and their attributes. This may
require a more elaborate algorithm to be adapted to each
model structure.

After applying the Delta Module, the next step is to use
the dedicated GUI provided by the framework, the SpModel-
GeneratorPresenter, to generate the model from the model
generator variant. Figure 16 shows the GUI for generating a
model from a model generator.

x -0 Model generator -

Metamodel name: EF‘LModElGeneratorCoreOrgnVlI

Figure 16: Graphical User Interface (GUI) displaying an ex-
ample of User-Provided Data for generating a model from a
model generator in PhaDOP.

Listing 8 displays the source code executed by PhaDOP
when the user fills in the required information in the user
interface for generating the model from the model generator
variant and submits the data, as shown in Figure 16.

Listing 8: Code implemented in PhaDOP for generating a
variant model using user-provided data from the GUIL

generatetodel: modelName
|class|
class := (Smalltalk classNamed: modelName text).
class generate.
self inform: 'Model successfully generated'.

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 12 of 18

i Y | —

PhaDOP Smalltalk-based Framework for MDE SPL DOP

6.5. Generating of Product Source Code -
Model-to-Text transformation

This section describes instantiating the software vari-
ant model and generating source code using PhaDOP. The
tool offers Java code generation functionalities accessible
through the dedicated GUI called the SpModelToCodePre-
senter interface. This interface can be accessed after making
a selection in the starting interface. Figure 4 on the left side
presents an overview of the tool’s graphical user interface
(GUI) and provides the necessary information for generating
Java source code from the model variant.

The program uses data the user provides, such as the
entity name, location of reusable artifacts, and root folder
where the source code will be generated. It then iterates
through model entities and creates a class for each entity
based on the provided information. Please see 5 for more
information. The program utilizes a JSON file to capture
reusable artifacts associated with method implementation. It
is, however, important to note that the class diagram does not
encompass artifacts about method implementation. Its scope
is limited to depicting the static structure of the system. The
dictionary establishes connections between entities and their
corresponding artifacts using the metamodel presented in
Figure 8. An iterative process is employed to extract methods
for each class.

The program designates the root location for generating
the respective class in the source code for every class in the
model. It iterates through the methods, setting the method
parameters by further iterating through each method’s pa-
rameters. Each method contains a source code segment that
encapsulates the method’s body.

Listing 9 provides the function implemented in PhaDOP
that enables the generation of Java source code from the
software model expressed as a class diagram. Users have to
file the GUIs with the needed information.

Listing 9: Code implemented in PhaDOP for generating the
Java source code from a variant model using user-provided
data from the GUIL

iffalse: [OrderedCollection new.].
methodArray do:[:method |
|arrayParan paramTmp |

m := FamixJavaMethod new.
m name: (method at:'name’).
m sourceAnchor :
(FamixJavaSourceTextAnchor new source:
(method at: 'sourceEnchor')).
m parentType: c.
m declaredType: st.
arrayParam := OrderedCollection new
(method at:'parameters') do: [:p |
|param paramType |
1 hal
p ifNotEmpty: [
param := FamixJavaParameter new
paramType := FamixJavaClass new.
paranType name: (p at:'name').
param declaredType: paramType.
arrayParam add:param.
1
1
nnotation
getAnnotation := FamixJavaAnnotationType new name: 'MethodAnnotation'.
getAnnotationInstance := FamixJavaAnnotationInstance new annotationType: getAnnotation.

m annotationInstances add: getAnnotationInstance
c addMethod: m.

15
componentAnnotation := FamixJavaAnnotationType new name: 'ComponentAnnotation'.
componentAnnotationInstance := FamixJavaAnnotationInstance new annotationType: componentAnnotation.
¢ annotationInstances add: componentAnnotationInstance.

heritanc Parent class”

parentClass := FamixJavaClass new
name: 'ParentClass';
parentPackage: package;
yourself.

c
addSuperInheritance:
(FamixJavaInheritance new
subclass: c;
superclass: parentClass) .

targetSourcelocation := (artefactsDictionary at:c name) at:'targetSourcelocation'.

visitor := FAMIX2JavaVisitor new.

visitor rootFolder: 'D:\Users\boubouthiam.niang\workspace\epl_legacy_dop_tool_demo\
ExpressionProductLineGeneratedNew\src' asFileReference.

¢ accept: visitor.

1.

generateJavaFronDeltaCore
| rootEntityName prefix artifactslocaton rootFolder entitylist artefactsDictionary visitor|

rootEntityName := fieldRootEntityName text.
prefix := fieldPrefix text.

artifactslocaton := fieldArtifactslocaton text.
rootFolder := fieldRootFolder text.

entitylist := (Smalltalk classNamed: rootEntityName) allSubclasses.

artefactsDictionary:= artifactsLocaton asFileReference
readStreamDo: [:readStream |
(NeoJSONReader on: readStream) next 1.

Classes attribut’
entitylist do: [:class |
|st ¢ m package componentAnnotation componentAnnotationInstance getAnnotation getAnnotationInstance
parentClass methodArray targetSourcelocation|
st := FamixJavaClass new
st name: 'String'.
¢ := FamixJavaClass new.
c name: (class name copyFrom:prefix size + 1 to:class name size).

class instvarNames do: [:var |
| currentAttribut |
currentAttribut := FamixJavaAttribute new.
currentAttribut name: var.
currentAttribut declaredType: st.

c addAttribute: currentAttribut.
1

Method

m := FamixJavaMethod new.
Ge ked artefacts for current class
methodArray := (artefactsDictionary includesKey: c name) ifTrue: [(artefactsDictionary at: c name) at:'
methods ']

When generating code, we utilize Famix2Java 8, a visitor
designed to export FamixJava [25] models to Java code.
The functionality implemented in PhaDOP focuses on model
instantiation to generate Java source code.

7. Evaluation

This section assesses the feasibility of implementing
Software Product Lines using the Delta-Oriented Program-
ming paradigm with the PhaDOP framework. The evaluation
is based on the case study in Section 4. The following
research question has been formulated to assess the frame-
work.

RQ 1: what is the amount of effort done by users com-
paring the PhaDOP framework

RQ 2: Does the PhaDOP framework support all steps
of Solution Space implementation at the model level for a
concrete use case, from the software product line implemen-
tation to source code generation?

RQ 3: Does PhaDOP generate code quality sufficient for
direct use without rewriting?

RQ 4: Is the quantity of generated code sufficient to make
the framework worthwhile?

7.1. Creating the Delta core of the EPL use case
In our case study, the software product line is constructed
from the existing legacy system EPL using an approach

8https ://github.com/moosetechnology/FAMIX2Java

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 13 of 18

https://github.com/moosetechnology/FAMIX2Java

PhaDOP Smalltalk-based Framework for MDE SPL DOP

known as extractive strategy [2]. Specifically, we employ
a Complex Core strategy to implement the EPL, which
involves generating product variants from the most com-
prehensive and valid products. In particular, this strategy
emphasizes removal operations.

The PhaDOP framework uses Model-Driven Engineer-
ing to abstract the Delta Core at the model level. We create a
UML class diagram using the Moose platform in the Pharo
environment and language to represent the Delta Core of
EPL. Currently, our focus is on developing a model generator
to produce a model of the Delta Core, which is made possible
by the Moose platform.

Creating Delta Core in Pharo and Moose, a model The
creation of the Delta Core in Pharo and Moose, using a
model generator, involves implementing several methods. In
Pharo, there are class-side and instance-side methods. The
class side manages behaviors and states shared among all
class instances, while the instance side handles behaviors
and states specific to individual instances.

Class-side methods comprise two functions: package-
Name and prefix. The former returns the package name
where the model will be generated, while the latter provides
a string value to avoid ambiguity in entity names.

The Delta Core’s instance side includes the method
defineClasses for declaring entities. In the EPL use case, the
entities Exp, Lit, Add, and Neg are required. The method
defineHierarchy establishes inheritance relationships, with
Lit, Add, and Neg designated as subclasses of Exp. The
method defineProperties specifies the necessary properties
for each entity. For example, the entity Lit has the property
value, while the entity Add has the properties expr! and
expr2. The method defineRelations indicates the relations
between entities. However, in the EPL system, entities such
as Exp, Add, Lit, and Neg do not have multiplicity relations.
The complete source code of the use case Delta Core is
available on the provided Github repository °

Figure 17 shows the EPL Delta Core, which displays the
necessary entities, method signatures, and attributes.

Neg

expr: String

|————Extena:
print()
01

print()

value: int 11

print()

expr1: String

Extend:
expri: String

print()

Figure 17: Initial Delta core of the EPL.

9https ://github.com/boubouthiamniang/tool-spl-dop-mde/tree/master

7.2. Initialization the Delta Project and Delta
Modules Implementation for the EPL Use
Case

To begin the Delta Project for the EPL, we will use the
provided GUI interface, as shown in Figure 9.

We will identify potential Delta modules using the
methodology outlined in Section 5.1. As the methodology
uses the EPL use case as an example, we will directly
select the Delta modules for implementation and define the
scenario accordingly.

Delta module - DLitAdd: In this scenario, the initial
product contains entities Lit and Add, each featuring a Print
method. We introduce the DLitAdd Delta module to modify
the core module. Following the Complex Core strategy,
this Delta Module evolves to remove optional features such
as Neg and Eval. Referring to Delta 4 in the truth table,
Table 2). Figure 18 depicts the expected, resulting model.

Lit

EPL Exp
value: int 11 11

print()

01
Add
expr1: String
[F——————Extends-

exprt: String

print()

print()

Figure 18: Expected variant model after applying the DLitAdd
Delta module to the EPL Delta core.

Delta module - DEvalLitAdd: The following version
aims to improve the modifications made by DLitAdd by
adding the Eval method to both Lit and Add entities. There-
fore, we introduce the DEvalLitAdd Delta Module, which
depends on DLitAdd. It is important to note that applying
DEvalLitAdd before DLitAdd would revert to the original
core model. Figure 19 illustrates the resulting model.

Lit

value: int 11 11

orint) print()

Eval()

Add
exprt: String
[————=Extends-

expr1: String

Eval()

print()
Eval()

Figure 19: Expected variant model after applying the DEval-
LitAdd Delta module to the EPL Core Module.

Regarding the initial Delta Modules, the reusable ar-
tifacts linked to the DEvalLitAdd Delta Module are also
archived in the artifacts repository, as depicted in 5.

A single Delta Module with dependencies can be utilized
to achieve the desired product. One of the Neg entities can be
removed while simultaneously introducing the Eval method
in both Lit and Add classes. This creates the DBigEvalLitAdd
Delta Module, which encompasses the changes introduced

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 14 of 18

https://github.com/boubouthiamniang/tool-spl-dop-mde/tree/master

PhaDOP Smalltalk-based Framework for MDE SPL DOP

by DLitAdd along with adding the Eval method. This empha-
sizes the reusability of Delta Modules. The management of
the Delta Module could be made more convenient by reusing
Delta. This highlights a potential area for improvement in
DeltaJ, where code-level management without MDE could
be time-consuming.

In summary, for the desired product, it is recommended
to use the second Delta Core and either the DBigEvalLi-
tAdd Delta Module or a combination of the DLitAdd Delta
Module with the smaller DEvalLitAdd Delta Module. It is
important to specify the delta relation as DLitAdd after DE-
val, even if the latter choice is preferred. The Delta Module
for the first case is presented. After initializing the Delta
Project with the Delta Core and reusable artifacts, we create
a Delta Module to modify the core model version for derived
product creation. The desired Delta Module is determined
using the scenario based on application conditions and their
application order.

Delta module - DLitNeg: The third Delta module aims
to construct a product that includes the Neg entity with both
the Print and Eval methods while excluding the Add entity.
Meanwhile, the Lit entity should retain both the Print and
Eval methods. To achieve this, we introduce the DLitNeg
Delta Module, which removes the Add entity from the Delta
Core.

While the original Delta Core module already includes
the Neg entity, additional adjustments are necessary to attain
the desired product. Removing the Add entity from the
original core generates a model variant with the Neg entity
but without the Add entity. However, this results in the loss
of the Eval method in the Lit entity. We propose applying the
DEvalLitAdd Delta Module before DEvalLitNeg to address
this. This sequence introduces the Eval method in both the
Add and Lit entities before removing the Add entity.

The challenge arises from the fact that the DEvalLitNeg
module does not contain a Neg entity, as it depends on the
DLitAdd module, which removes the Neg entity. Therefore,
the only viable solution is to transition from the DEvalLitAdd
module by adding the Neg entity. Preferring a Complex Core
strategy where removal takes precedence over addition, we
select a Delta Module that removes the Add entity from
the original core module while adding evaluation methods
to both the Lit and Neg entities. This module is named
DEvalLitNeg and is akin to DBigEvalLitAdd but with Add
replaced by Neg. Alternatively, another approach involves
first implementing a Delta Module that removes Add (DL-
itNeg) and subsequently introducing DEvalLitNeg, which
relies on DLitNeg and adds evaluation methods to the Lit
and Neg entities. Figure 20, the UML diagram of the EPL
Delta core after applying DEvalLitNeg Delta module.

Like the previous Delta module, the repository includes
reusable source code relevant to this Delta Module, as refer-
enced in 5.

The user can easily create the described Delta Module
through the dedicated user interface shown in Figure 11.

expr: String

print() f———Extend
eval()
01

EPL Exp

Lit

value: int 14

print() print()

eval()

\ A

eval()

Figure 20: The EPL Delta Module: DEvalLitNeg

User Effort .
Level (Low, Coding
Process steps User task " ' skills User profil
Medium, required
High) aut
De.lta core cre- Pha.ro/SmaHtaIk High Ves Expert
ation coding
rv:ei:a;e ntation: Create and
plementations understand Middle Yes Developper
of reusable N
JSON file
methods
Delta project ini- | g5, Guy Low No Any
tialization
Delta “module 1 gy, 5 Gui Low No Any
creation
Product -deriva- 1 gy 5 GuI Low No Any
tion
Fill in a GUI
M2T & Create a
transformation source code Low No Any
folder
Delta module se- .
A Input text in
quence visualiza- Gul Low No Any
tion

Table 5
Effort evaluation for User Tasks in implementing a Concrete
Use Case with PhaDOP.

Users create a JSON file containing reusable artifacts
for each Delta module, following the proposed metamodel
depicted in Figure 8. An example JSON file, mirroring the
structure shown in Listing 5, illustrates the organization of
reusable artifacts.

7.3. Product derivation and Java code generation

The product derivation process utilizes the user interface
on the left side, as illustrated in Figure 4. To apply the
Delta Module, users select the corresponding option from
the tool’s home interface sub-menu and enter the required
information in the user interface. After initiating the source
code generation for the product variant, users must input
the necessary details in the dedicated user interface for code
generation. Users must manually create the folder where the
source code will be generated and specify the folder location
in the user interface.

7.4. User effort experiment results

The preceding three subsections describe the tool pro-
cess used in our case study, from creating the Delta Core
to generating code. To evaluate the practicality of PhaDOP,
we have compiled Table 5, which outlines the steps the
framework can perform automatically and those that require
significant user effort.

Several characteristics have been identified to evaluate
the effort required by users when using PhaDOP to imple-
ment a product line. These characteristics cover all process
steps, from implementing the Core model to generating
code. For each step, we have identified the manual task

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 15 of 18

PhaDOP Smalltalk-based Framework for MDE SPL DOP

that the user must perform. Additionally, we aim to assess
user effort from low to high. High-level tasks require coding
skills, while medium-level tasks involve updating technical
files without coding skills. The table specifies if coding
skills are necessary for a task and if the user profile can
be completed. Based on Table 5, we can answer the first
research questions, RQ1 and RQ2.

Answer to RQ1 and RQ2: Implementing the selected
use case using PhaDOP demonstrates that it offers all the
necessary functionalities for developing a software product
line with reasonable effort. The only tasks that require
technical skills from users are the implementation of the
Delta Core and managing reusable method implementations.
However, these tasks are infrequent and primarily occur
at the beginning of the process. Users usually only need
to input information through the graphical user interface
(GUI). Specifically, 5 out of 7 steps, corresponding to 71%
of the process, can be completed by users of any profile.

7.5. Generated code evaluation
Now, we present the resulting code generated from the
model variant of the EPL system. For this purpose, we
partially use Famix2Java '°, a visitor designed to export
FamixJava [25] models to Java code. Specifically, it helps
with the transition from constructed classes to Java files.
Listings 10, 11, and 12 demonstrate the generated classes.

Listing 10: Generated class Exp

@ComponentAnnotation
public class Exp extends ParentClass {
@MethodAnnotation
String print() {
//Comment:nothing yet
}
X

Listing 11: Generated class Lit

@ComponentAnnotation
public class Lit extends Exp {
int value;
Lit(int n){
this.value = n;
¥
void print(){
System.out.println(this.value);
3
//0ptional - added
int evalO{
return this.value;

DLitEval - Modifies Lit by introducing eval

3
¥

Listing 12: Generated class Add

@ComponentAnnotation
public class Add extends ParentClass {
String expri;
String expr2;

@MethodAnnotation
String Add() {
this.exprl = a ;
3}

this.expr2 = b ;

@MethodAnnotation

String print() {

{ this.exprl.print();System.out.print(" + "
¥

); this.expr2.print();

1Ohttps ://github.com/moosetechnology/FAMIX2Java

Generated artifact Missing code
Class Yes -
Method signature Yes -
Method parameters - Yes
Method implementation Yes -
Class annotation Yes
Method annotation Yes -
Package import - Yes
Implement interface - Yes

Table 6

Table summarizing the artifacts that can be generated au-
tomatically and those that require manual intervention when
working with PhaDOP

The code generated closely resembles the legacy source
code presented in Section 4. It successfully creates classes,
attributes, methods, constructors, and annotations similar
to existing systems. However, improvements are needed in
method parameter generation, and importing classes remains
pending. Table 6 summarizes the artifacts that can be gen-
erated or completed manually using the current version of
the tool. This observation allow us to answer the research
questions RQ3 and RQ4.

Table 6 demonstrates the similarity between the gener-
ated code and the original legacy codebase used as the basis
for implementing the EPL product line. To validate this, we
can directly compare the corresponding source code pairs:
Listing 10 with Listing I, Listing 11 with Listing 2, and
Listing 12 with Listing 3.

Answer to RQ1 and RQ2: After analyzing the generated
code, it adheres to the expected Java structure and formatting
standards. The code generated from the presented use case is
directly compilable without encountering errors. However,
it is important to note that when classes rely on meth-
ods imported from other classes, the current tool does not
support importing, which could lead to compilation errors.
While the generated code is of high quality and allows error-
free execution, it may have limitations when dealing with
dependencies between classes.

The amount of generated code is sufficient for the considered
use case. It is important to note that the tool currently
supports 63% (5 out of 8) types of artifact generation.

8. Related work

Few tools exist for implementing Software Product lines
using Delta-Oriented Programming paradigms.

At the code level, Deltal [14] is a groundbreaking tool
for the concrete implementation of DOP. It is based on
Java syntax and supports adding, modifying, and deleting
methods and class fields. ParametricDeltal] [27] extends
Deltal 1.5 to consider attributes as parameters. PYDOP [17]
is a Python3 !! library that implements DOP and provides
transformation operations for Python modules and classes.

At the architectural level, Delta-MontiArc [10] is a delta-
oriented variability modeling language designed to represent
architectural variability. It provides statements for modifying
architectural models defined in MontiArc. SiPL [20] is a tool

11 https://www.python.org/

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 16 of 18

https://github.com/moosetechnology/FAMIX2Java
https://www.python.org/

PhaDOP Smalltalk-based Framework for MDE SPL DOP

suite for implementing SPLs using the DOP paradigm at
the model level. It operates at a higher level of abstraction
than DeltalJ and generates code in multiple languages using
model-to-text transformation.

PhaDOP addresses many challenges by relying on Model-
Driven Engineering to be platform-independent and provide
a set of functionalities and a user-friendly GUI. It handles
the refinement from high-level abstract models to concrete
code and offers a comprehensive solution for implementing
SPLs using DOP paradigms.

9. Threats to Validity

The potential threats to the validity of our study in-
clude several aspects that could affect the interpretation
and generalization of our findings. Firstly, while our tool
simplifies delta management by operating at the model level,
transitioning from models to code after derivation is impos-
sible for several languages. Currently, our tool only supports
code generation in Java, relying on Famix2Java for parsing.
Extending this support to other languages would require
the development of additional parsers. Furthermore, the
emphasis on removing entities during the derivation process
may limit flexibility, particularly in scenarios that require
frequent addition of entities.

Secondly, the current inability of our tool to handle the
sequential application of dependent Delta Modules poses a
limitation. Although we have outlined how this functionality
should work, it requires further refinement and experimen-
tation. Furthermore, although we have provided configu-
rations to activate Delta Modules, it may be necessary to
exercise more stringent control during their application to
ensure accurate derivation.

Thirdly, managing reusable artifacts via JSON files could
also impact scalability and maintenance, potentially neces-
sitating more efficient management solutions.

Lastly, our tool effectively handles Complex Core strate-
gies, but challenges may arise in scenarios requiring support
for adding entities. This limitation may be more noticeable
in large-scale systems, where detecting all possible Delta
Modules may be impractical.

Despite addressing the gap in related work, PhaDOP still
has its limitations. These limitations highlight the impor-
tance of further refining and improving our tool to enhance
its usability, flexibility, and scalability.

10. Conclusions

The PhaDOP framework presents a transformation-
centric approach to Software Product Lines tailored for
implementing SPLs using the Delta-Oriented Programming
paradigm and Model-Driven Engineering. It primarily fo-
cuses on generating Object-Oriented code with an emphasis
on entity removal. However, ongoing efforts are dedicated
to expanding its capabilities to cover a wider spectrum of
operations, including entity addition. We validate the frame-
work’s functionality by demonstrating an end-to-end process

with a simple use case. We are committed to continuously
improving and enhancing the PhaDOP framework.

References

[1] Nicolas Anquetil, Anne Etien, Mahugnon H Houekpetodji, Benoit

Verhaeghe, Stéphane Ducasse, Clotilde Toullec, Fatiha Djareddir,

Jerome Sudich, and Moustapha Derras. Modular moose: a new gener-

ation of software reverse engineering platform. In Reuse in Emerging

Software Engineering Practices: 19th International Conference on

Software and Systems Reuse, ICSR 2020, Hammamet, Tunisia, De-

cember 2—4, 2020, Proceedings 19, pages 119-134. Springer, 2020.

Wesley KG Assuncdo, Roberto E Lopez-Herrejon, Lukas Linsbauer,

Silvia R Vergilio, and Alexander Egyed. Reengineering legacy appli-

cations into software product lines: a systematic mapping. Empirical

Software Engineering, 22(6):2972-3016, 2017.

Alexandre Bergel. Agile Visualization with Pharo: Crafting Interac-

tive Visual Support Using Roassal. Springer, 2022.

Lorenzo Bettini and Ferruccio Damiani. Xtraitj: Traits for the java

platform. Journal of Systems and Software, 131:419-441, 2017.

Alan W Brown. Model driven architecture: Principles and practice.

Software and systems modeling, 3:314-327, 2004.

Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski,

Martin Becker, and Krzysztof Czarnecki. An exploratory study of

cloning in industrial software product lines. In 2013 17th European

Conference on Software Maintenance and Reengineering, pages 25—

34.1EEE, 2013.

Clement Dutriez, Benoit Verhaeghe, and Mustapha Derras. Switching

of gui framework: the case from spec to spec 2. International

Workshop on Smalltalk Technologies, 2019.

Gabriel Coutinho Sousa Ferreira, Felipe Nunes Gaia, Eduardo

Figueiredo, and Marcelo de Almeida Maia. On the use of feature-

oriented programming for evolving software product lines—a com-

parative study. Science of Computer programming, 93:65-85, 2014.

Kevin P Gaffney, Martin Prammer, Larry Brasfield, D Richard Hipp,

Dan Kennedy, and Jignesh M Patel. Sqlite: past, present, and future.

Proceedings of the VLDB Endowment, 15(12):3535-3547, 2022.

[10] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina
Schaefer. Delta-oriented architectural variability using monticore. In
Proceedings of the 5th European Conference on Software Architec-
ture: Companion Volume, pages 1-10, 2011.

[11] Nicolas Hlad, Bérénice Lemoine, Marianne Huchard, and Abdelhak-
Djamel Seriai. Leveraging relational concept analysis for automated
feature location in software product lines. In Proceedings of the 20th
ACM SIGPLAN International Conference on Generative Program-
ming: Concepts and Experiences, pages 170-183, 2021.

[12] Siva Prasad Reddy Katamreddy and Sai Subramanyam Upadhyayula.
Getting started with spring boot. In Beginning Spring Boot 3: Build
Dynamic Cloud-Native Java Applications and Microservices, pages
29-45. Springer, 2022.

[13] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In European conference on object-oriented program-
ming, pages 220-242. Springer, 1997.

[14] Jonathan Koscielny, Sonke Holthusen, Ina Schaefer, Sandro Schulze,
Lorenzo Bettini, and Ferruccio Damiani. Deltaj 1.5: delta-oriented
programming for java 1.5. In Proceedings of the 2014 International
Conference on Principles and Practices of Programming on the Java
platform: Virtual machines, Languages, and Tools, pages 63-74,
2014.

[15] Philip Langer, Manuel Wimmer, and Gerti Kappel. Model-to-model
transformations by demonstration. In International Conference on
Theory and Practice of Model Transformations, pages 153-167.
Springer, 2010.

[16] Jorg Liebig, Sven Apel, Christian Lengauer, Christian Késtner, and
Michael Schulze. An analysis of the variability in forty preprocessor-
based software product lines. In Proceedings of the 32nd ACM/IEEE

[2

—

[3

—_

[4

=

[5

—_

[6

[}

[7

—

[8

—_

[9

—

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 17 of 18

(17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

(26]

(27]

PhaDOP Smalltalk-based Framework for MDE SPL DOP

International Conference on Software Engineering-Volume 1, pages
105-114, Cape Town, South Africa, 2010. ACM Press.

Michael Lienhardt. Pydop: A generic python library for delta-oriented
programming. In Proceedings of the 27th ACM International Systems
and Software Product Line Conference-Volume B, pages 30-33, 2023.
Paul B Monday. Implementing the data transfer object pattern. In
Web Services Patterns: Java™ Platform Edition, pages 279-295.
Springer, 2003.

Boubou T Niang, Giacomo Kahn, Nawel Amokrane, Yacine Ouzrout,
Mustapha Derras, and Jannik Laval. Using moose platform for the
implementation of a software product line according to model-based
delta-oriented programming. In IWST22—International Workshop on
Smalltalk Technologies, 2022.

Christopher Pietsch, Timo Kehrer, Udo Kelter, Dennis Reuling, and
Manuel Ohrndorf. Sipl-a delta-based modeling framework for soft-
ware product line engineering. In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 852—
857. IEEE, 2015.

Klaus Pohl, Giinter Bockle, and Frank Van Der Linden. Software
product line engineering: foundations, principles, and techniques,
volume 1. Springer, 2005.

Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and
Nico Tanzarella. Delta-oriented programming of software product
lines. In Software Product Lines: Going Beyond: 14th International
Conference, SPLC 2010, Jeju Island, South Korea, September 13-17,
2010. Proceedings 14, pages 77-91. Springer, 2010.

Douglas C Schmidt. Model-driven engineering. Computer-IEEE
Computer Society-, 39(2):25, 2006.

Maya RA Setyautami, Rafiano R Rubiantoro, and Ade Azurat. Model-
driven engineering for delta-oriented software product lines. In 2079
26th Asia-Pacific Software Engineering Conference (APSEC), pages
371-377. IEEE, 2019.

Sander Tichelaar. Famix java language plug-in 1.0. Technical Report,
1999.

Thomas von der MaBen and Horst Lichter. Modeling variability
by uml use case diagrams. In Proceedings of the International
Workshop on Requirements Engineering for product lines, pages 19—
25. Citeseer, 2002.

Tim Winkelmann, Jonathan Koscielny, Christoph Seidl, Sven Schus-
ter, Ferruccio Damiani, Ina Schaefer, et al. Parametric deltaj 1.5:
propagating feature attributes into implementation artifacts. In CEUR
WORKSHOP PROCEEDINGS, volume 1559, pages 40-54. CEUR-
WS, 2016.

Boubou Thiam Niang et al.: Preprint accepted to Elsevier

Page 18 of 18

