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Abstract. MHD activity in fusion devices is typically analyzed by examining
time-frequency spectrograms obtained from various diagnostics. MHD modes
often co-exist with various types of noise and complex patterns generated by
other events like pellet injection or active diagnostics. Traditionally, identifying
MHD modes has been a manual task, making it labor-intensive. To overcome this
issue, this study proposes the use of computer vision algorithms for noise removal
and automatic feature extraction. First, the automatic detection of straight-
line patterns is achieved by applying the Hough transform. Then, the discrete
wavelet transform is proposed to break down spectrograms into sub-images of
different scales, removing broadband noise and pellet injection signatures. The
multiscale decomposition is subsequently extended to multiple directions using
either 2D Fourier transforms or curvelets, achieving a high signal-to-noise ratio in
spectrograms and eliminating undesired frequency sweeps of TAE antenna. Once
MHD activity is successfully enhanced, a pipeline of algorithms for ridge detection,
thresholding and labelling perform a segmentation of the image, automatically
labelling individual modes. This study demonstrates the effectiveness of computer
vision algorithms for the identification of MHD modes. The use of such algorithms
may potentially help in the analysis process and the creation of large databases
of modes.
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1. Introduction

Achieving nuclear fusion requires specific plasma properties
(confinement time, density and temperature) and a
steady operation: free of disruptions, and instabilities.
Particularly, the presence of instabilities can cause
disruptions and major particle losses that can damage
the plasma-facing components of magnetic fusion devices.
Therefore, the detection, prevention, or control of
plasma instabilities are paramount to increasing plasma
performance and avoiding machine damage. Consequently,
these problems are very active research topics in fusion
physics and engineering.

Magnetohydrodynamic (MHD) activity, like energetic
particles (EP) driven Alfvén eigenmodes [1, 2], can be
observed with different diagnostic systems: magnetic
sensors [3] (Mirnov coils [4]), electron cyclotron emission
(ECE) [5, 6], soft X-ray measurements [7], or Far infrared
interferometry (FIR) [8]. Frequently, the end product of
the diagnostic analysis is a spectrogram: a time-frequency
representation of the plasma oscillations.

Given magnetic fluctuations spectrograms, different
finite frequency oscillations (modes) can be identified in
the image. More information is needed to fully characterize
these modes: radial amplitude (location), mode numbers,
growth rate, and the causing drive (source of free energy).
Different diagnostics complement each other to obtain all
this information, and additional analysis with theory and
simulation needs to be carried out to identify the cause
of the observed time-frequency pattern. However, for
detection purposes, a first identification of the modes need
to be done with the spectrograms information.

The identification of modes is often complicated by the
presence of noise and other artifacts in the spectrograms.
The sources of noise can be variate and the object of
study for each diagnostic system and experimental device.
Sometimes, the noise can have its origin in the diagnostic
system itself, external sources (like active diagnostics or
heating systems), or it can be an artifact of the signal
processing algorithms. In addition, noise can have different
patterns: it can be broadband noise, or located ridges in
time-frequency, which are indistinguishable to the actual
MHD modes. These sources of noise and time-frequency
structures need to be acknowledged to detect true mode
patterns.

In the later years, a data-driven culture and the use
of artificial intelligence have extended all over business
and industry. Since the appearance of these disruptive
technologies, a research effort has been carried out to apply
these innovations to the detection of plasma instabilities.
Several works aimed to detect EP driven Alfén eigenmodes
using manually labeled datasets: in COMPASS [9],
NSTX [10], DIIID [11–14]. Particularly, deep learning

segmentation was investigated in TJ-II [15]. Because
the spectrograms of plasma diagnostics are images, the
application of computer vision algorithms (CV) or deep
learning algorithms (DL) is straightforward.

The classic computer vision approach differs from
the deep learning approach in several aspects. In a
classic CV, the image features are extracted by designing
a workflow of algorithms and mathematical models, for
example: a composition of wavelet filters can remove grain
noise in a photograph. Wavelet transforms are part of
the CV algorithms and they are a whole field on its own,
and they are extensively used for image compression and
manipulation.

These algorithms were developed over years of
research, nowadays they require very few computational
resources, and they do not require a dataset of images.
Their effectiveness relies on assumptions about the image
properties, so the mathematical manipulation of the image
is deterministic and highly interpretable. For instance, the
wavelet strength relies on the acknowledgment of multiscale
features in signals and images. However, it is necessary to
experiment with different algorithms and their parameters
for each image.

In contrast, feature extraction is done automatically
in DL models. For instance, using convolutional neural
networks (CNNs). In this case, the features are learned
using inductive bias, so deep neural networks need to be
trained using labeled datasets. Roughly speaking, a CNN
can be understood as a concatenation of image filters,
in which the parameters are learned using statistics of
a given dataset to solve a specific problem. Overall,
the fundamental difference between classic CV and DL
approaches is the following: in classic CV image features
are calculated, and in DL the image features are inferred.

If the amount of data is enough, deep learning can
outperform classic CV. However, big image datasets are
needed to achieve this advantage, and the performance
of DL collapses [16] when the patterns to detect are not
present in the training dataset. In addition, computational
resources often require multiple GPUs, and the datasets
need to be carefully curated before they can be used.
For instance, images are down-sampled, centered, and
cropped so objects to classify occupy the most image area.
Moreover, labeling images is still a highly time-consuming
task necessary before DL models can be trained. Therefore,
CV and signal processing find their utility when data is
scarce or computational resources are constrained, CV is
still used in preparing data for deep learning algorithms
[17] often enhancing DL performance.

The research on the application of classic CV and
wavelet for image processing in Fusion applications is
limited. To our knowledge, only previous work [13] from
DIIID uses computer vision algorithms, morphological
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filters specifically, to prepare data for using machine
learning. For automatic identification of MHD modes:
Ridge detection and multi-wavelet convolutional neural
networks have been explored in two master theses [18,
19] respectively. This gap in knowledge regarding the use
of CV to extract information from plasma spectrograms
motivated the research presented in this paper.

This paper is organized as follows. In section 2, the
algorithms used in the paper are introduced. The removal
of broadband noise and vertical lines from spectrograms is
discussed in section 3. Then, we introduce Hough transform
to detect straight lines patterns in arbitrary directions in
section 4. Following the detection of these objects, sections
5 and 6 are devoted to discussing two methods to remove
them in, using 2D-FFT and curvelets respectively. Once,
we have explored methods for removing noise, we proceed
in section 7 with the segmentation of the spectrogram
modes. Finally, section 8 is devoted to the conclusions
of the reported work and perspectives beyond the present
paper.

2. Spectral algorithms and computer vision

The goal of the presented work is to design a pipeline of
algorithms for the segmentation of spectrogram images,
identifying the MHD activity in time and frequency
separately from noise and other image features. Given
an image, the segmentation problem can be defined as the
determination of regions of pixels corresponding to different
objects. The algorithms used have two differentiated
objectives: feature extraction and object detection.

Extracting the features of interest is a previous
requisite for the segmentation pipeline to work properly,
the steps are: detection of straight lines, removal of straight
lines and broadband noise. Once the features are extracted
(noise removed), the basic steps for segmentation are ridge
detection, automatic thresholding and labelling.

This work uses free and open source software. We
have used the PyWavelets implementation [20] for the
discrete wavelet transform DWT. The CV algorithms used
are available in the Scikit-Image library [21]. Rather
than aiming for the tunning of hyperparameters, we
compared different algorithm performances with the default
parameters, looking for the ones that best adapt to our
data features. In addition, this work uses CurveLab
implementation, copyrighted by the authors [22], and it is
available for academic use. The Python library Curvelops
allows Curvelab integration with the rest of the Python
workflow.

First, the spectrograms of diagnostic signals are
calculated using the discrete version of the short-time
Fourier transform (STFFT) given by Scipy implementation.
The length of the FFT windows is 2048 samples, the
spectral amplitude is given in dB scale. The window
function used is the Tukey window. The colormap used
is “turbo”, a rainbow colormap similar to “jet”, which
was proposed by Google AI research, enhancing value
dissimilarities and perceptual uniformity. The rest of
parameters are the default library parameters. The images
are then resized to 1024 by 1024 pixels before applying the

pipeline.
The discrete wavelet transform is used to remove

broadband noise and vertical lines from the spectrograms
(section 3): discrete wavelets can be seen as pyramids of
multiscale and multidirection filters that decompose and
image in filtered sub-images, they are extensively used in
image processing to remove noise and extract features. By
using discrete wavelet transform (DWT), each image can
be decomposed in 4 sub-images: an approximation image,
vertical details, horizontal details, and diagonal details.
The approximation images are used iteratively to continue
the decomposition in the next level as shown in Fig.1.
An example of spectrogram decomposition is shown in
Fig.2. The approximation image is equivalent to applying
a low-pass filter to the columns and a low-pass filter to
the rows. That is why the approximation is noted as LL
in many sources and it is the notation that we follow in
the present paper. Similarly, the vertical details image is
equivalent to applying a low-pass filter in the rows and a
high-pass filter in the columns (hence the LH notation).
The horizontal details image (HL) and diagonal details
image (HH) complement the decomposition. In this work,
we use the Haar wavelet.

Figure 1. Schematic representation of the wavelet cascade of
filters at different levels. Each level includes an approximation
image together with vertical, horizontal and diagnoal details

The utility of DWT is raised from the fact that the
MHD instabilities that can be observed in spectrograms
have low spatial frequencies, in other words: low repetition
rates across the spectrogram image. While signal noise has
high spatial frequencies.

In this paper, we used the Hough transform [23, 24]
to detect straight lines y = mx + b in images (section 4).
Without entering in all the details: for each pixel point,
multiple straight lines represented by x cos(θ)+y sin(θ) = ρ
are considered. Each one is situated at a distance ρ from
the origin and the perpendicular to each candidate line
forms a θ angle with x-axis. The image is then transformed
into a 2D space (Hough space) in which all straight lines
are transformed into sine curves. The accumulation of
sinusoids in a point of Hough space indicates the presence
of a straight line characterized by ρ and θ (Fig.5). It is
important to mention that some edge detection (or ridge
detection) is needed before running the Hough transform.
Otherwise, accumulation points are not clear and the
straight line detection might not be efficient enough. For
this reason, the Canny edge detector [25] has been used in
this case.
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Figure 2. Example of a JET’ spectrogram (top) and its
third level wavelet decomposition (bottom) composed of the
approximation and the horizontal, vertical and diagonal details.

The frequency content of an image can be also studied
by extending the definition of the discrete Fourier transform
to two dimensions. Many periodic patterns can be detected
in the frequency space. For instance, 2D-FFT is used to
study crystal structures by X-ray diffraction. The main
application of the two-dimensional Fourier transform in
computer vision is the manipulation of the image in the
frequency space using masks. In this paper, 2D-FFT is
employed for filtering spectral components in a desired
direction (section 5). The implementation of the 2D Fourier
transform can be found in Python’s Numpy library.

The discrete wavelet decomposition of images is a
powerful tool for denoising and extracting features [26–
31]. However, the number of directions might be too
coarse in some scenarios. For instance, a vertical and
horizontal multiscale pattern could not be enough to
describe curved ridges filling the image space. Likewise
can happen with MHD activity on spectrograms. The lack
of directionality of DWT motivated the development of
the curvelet transform [22, 32], which are employed in the
present work to extent the results with DWT (section 3) to
many directions (section 6)

The fast Curvelet transform [22] is based on
partitioning the Fourier space: A tesselation of windows
(wedges) applied to the Fourier space creates a multi-scale,
multi-directional filter bank. The fast Curvelet transform
of an image f(x1, x2) can be defined as

Curvelet transform{f(x1, x2)}

=
∑

scales

∑
angles

⟨f, ϕscale,angle⟩ϕscale,angle,
(1)

where ⟨f, ϕscale,angle⟩ is the weight corresponding to the
wedge ϕscale,angle in Fourier space [22].

Finally, the algorithms used to perform the segmenta-
tion (section 7) are: the ridge Sato’s filter [33] with scales
σscales = [1, 2] to detect mode ridges in the spectrograms;
the Yen’s automatic thresholding algorithm [34] which is
used to separate signal from noise and binarize the spec-
trogram images. Finally, a pixel connectivity filter [35, 36]
is used to label separated elements in the binary images.
The algorithm parameters are the Scikit-Image library de-
fault ones [21].

3. Broadband noise removal using discrete
wavelet transforms

Figure 3. Example of broadband spectral noise removal on
JET’s shot 48863. Clips caused by pellets injections are removed
from the spectrogram, leaving only MHD activity in the image.
TAEs and EAEs are then easily observed.

In JET shot in Fig.3 we can see various toroidal Alfvén
eigenmodes (TAE) over 200 kHz at the between 0 and 0.5
s approximately. Then 15 periodic pellet injections fuel
the plasma (they can be distinguished by the vertical lines
in the spectrogram). The pellet injections fundamentally
increase plasma density and reduce its temperature. It
can be seen in the first pellet injection just after 0.5 (s),
how they affect the TAE modes. As the density increases
abruptly, the TAE frequency fTAE ∝ 1/

√
n decreases,

and then the TAE disappears soon afterward. A similar
effect can be observed on an elliptical Alfvén eigenmode
(EAE) at ≈420 kHz and ≈0.9s. More deeply, the effect of
pellet injection is a modification of the Alfvén continuum
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spectrum, which is studied in [37] whit shots similar to the
one showed in Fig.3.

The time series signals from JET magnetic diagnostics
have abundant spikes and discontinuities. It is well known
that the Fourier transform has difficulties in representing
non-differentiable or non-stationary time series, producing
Gibbs artifacts in the signal’s reconstruction and spectral
leakage in the frequency space. The classic example is
the Fourier transform of a square signal in which ripples
are present at the edges of the square reconstruction, the
decomposition of sines and cosines used by FFT struggles
to recreate this type of signal. A dramatic example is the
Fourier transform of a unit impulse (dirac’s delta δ(τ = 0)),
which requires infinite frequencies to reconstruct the pulsed
signal. Because these patterns are present in diagnostics
signals, JET’s time-frequency spectrograms have abundant
broadband noise.

The character of spectrograms noise is highly
anisotropic, due to the spectral leakage of the STFFT on
each time window. This broadband noise is located mostly
in the vertical details sub-image. Therefore removing
the vertical details of the image allows us to clean the
spectrograms. When vertical details pixels (all levels
of vertical sub-images, as indicated in Fig.1) are set to
zero and the inverse DWT is applied, broadband spectral
noise is significantly reduced. An example is shown in
Fig.3 (including pellet injection events of this particular
example). The steps are summarized in the algorithm (1).

Approximation and horizontal details subimages are
left unchanged. In addition, some high-frequency noise
is present in the diagonal subimages, so they have a soft
thresholding (all pixel values in diagonal subimages are
multiplied by αD = 0.5).

Algorithm 1: Remove broadband noise,
clics and pops from spectrogram

Input: Time series s
Parameters: Levels deep: N=8
Vertical threshold: αV = 0,
diagonal threshold: αD = 0.5
Output: Reassigned spectrogram Sxx(mod)

Steps:
1 Obtain spectrogram matrix Sxx using

STFFT(s).
2 Workout DWT tree.
3 Set αV = 0 in all vertical details images in

levels 1:N (hard thresholding).
4 Set αD = 0.5 in all diagonal details images in

level 1:N (soft thresholding).
5 Use inverse DWT to generate a filtered

spectrogram.

It is worth mentioning that keeping one of the first
approximation sub-images can also result in a spectrogram
with an improved signal-to-noise ratio, though omitting
details sub-images could produce modes with coarser
details.

The maximum number of levels that can be calculated

depends on the number of pixels in the image, the more
pixels, the more levels can be calculated. Given an optimal
time-frequency uncertainty, determined by the window size
in the STFFT. One way of increasing the number of
pixels in the spectrogram is allowing more overlapping of
time windows. The maximum number of levels can be
determined by the appearance of border effects, and we
calculate all levels possible.

4. Straight line pattern detection

Figure 4. Spectrogram of JET shot 92416.

Some signals observed in spectrograms are straight
lines with certain orientations. In many cases, these signals
are not caused by plasma instabilities. For instance, the
TAE antenna creates the frequency sweeping pattern that
can be observed in Fig.4. The shot 92416 is an afterglow
experiment studied in detail [38]. To remove the straight
line patterns shown in this shot, we need to generalize the
result obtained with the pellet signals to other directions
different than the vertical.

It is to be expected that the pellet’s injections time
or requested TAE antenna frequencies are available in the
shot database. However, side lobes (harmonics) of the TAE
antenna signal can appear.

Before applying the Hough transform, it is necessary
to enhance the edges in the spectrogram image. The
Canny edge detector is used for this purpose. Then, the
Hough transform expresses the image in its own space.
The accumulation of overlapping sinusoids over a point
creates bright regions in Fig.5, providing evidence of a
straight line. Note how some curves converge to points at
±90 degrees (horizontal lines in images), and around ±10
degrees (antenna sweep).

The result of the straight-line detection is shown in
Fig.6. The angles detected are centered around 0.39 ±
1.63, 77.59± 2.63, 83.1± 1.63, 95.97± 2.01, 103.32± 2.61,
and 179.61 ± 1.65 (in degrees). In addition, it is worth
mentioning that probabilistic Hough transform [24] can be
used to add priors like line length, angular orientation, or
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Figure 5. Result of Hough transform. The accumulation of
sinusoids passing through a point indicates the presence of a
straight line in the image space.

separation between lines. The result is shown in Fig.7. This
extends further applications of the Hough transform.

Figure 6. Result of Hugh transform analysis showing the
straight lines detected.

5. Removal of oriented patterns using 2D FFT

To proceed with the removal of oriented patterns, we start
with the straight lines detected using Hough transform
(corresponding to the TAE antenna sweep). Our first
approach would be to transform the spectrogram’s image
f(x1, x2) to the Fourier space F (k1, k2). The steps are
summarized in the algorithm (2).

The Fourier space contains the image information
expressed as spatial frequencies along the two image
directions. Then a mask over the magnitude spectrum
can be designed to remove all frequencies along the

Figure 7. Result of probabilistic Hugh transform. Prior length
is 12 pixels.

desired directions. Note that the FFT2D rotates the
straight line angles π/2 or 90o detected with the Hough
transform, for instance lines detected at 77.59o generate
features at 77.59o-90o = 12.4oin the Fourier space. The
supplementary angles of ±12o are 12.4o+180o=192.4o and
-12o.4+180o=167.6o.

Therefore, the mask angles used in this example
are θ = [θ1, θ2, θ3, θ4] = [12.4o,−12.4o, 192.4o, 167.6o].
Then, the angular mask widths are set to ∆θ =
[∆θ1,∆θ2,∆θ3,∆θ4] = [8o, 8o, 8o, 8o]. In addition, the
radial mask is set so it reaches the end of the Fourier
2D space, so the mask cut-off is δ = [δ1, δ2, δ3, δ4] =
[1024, 1024, 1024, 1024].

The inverse Fourier transform applied to the masked
spectra generates an image free from features along these
angles. The result of the inverse 2D FFT is given in a
complex number matrix, so the real part (or the absolute
value) of this matrix needs to be taken in order to plot the
spectrogram. Taking the real part preserves the original
dynamic range of the spectrogram (colors) removing the
TAE antenna signal as shown in in Fig.8. It is to be
noted that the amplitude values are modified (observe the
colorbars scale in Fig.8). Taking the absolute value gives
a similar result, but it might return a negative image,
therefore changing the color range of Fig.8).

To summarize, Fig.8 shows the original spectra, the
2D FFT magnitude spectrum white a filter mask, the
resulting spectrogram, and the features removed from the
images: the TAE antenna signal is successfully removed
from the spectrogram. It is to be noted that removing
these directions keeps most information of the original
signal (sawteeth or MHD activity can not be observed in
the removed features). However, modes aligned with these
directions can be attenuated or disappear.

If algorithms (1) and (2) are combined, the resulting
image offers an improved contrast highlighting MHD
features of the signal. In Fig.9 most of broadband noise and
the complete TAE antenna signal are removed. However,
this approach is not without limitations. If the MHD
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Figure 8. Use of 2D FFT to remove TAE antenna sweeps:
Original image, Mask over 2D FFT, Filtered image, and noise
removed.

Algorithm 2: Remove straight line patter
using 2D FFT high pass directional filters

Input: Time series s
Parameters:
Mask angles: θ = [θ1, ...θN ].
Angle width: ∆θ = [∆θ1, ...∆θN ].
Mask cut-off: δ = [δ1, ...δN ]
Output: Reassigned spectrogram Sxx(mod)

Steps:
1 Obtain spectrogram matrix Sxx using

STFFT(s).
2 Resize image Sxx to have squared size: 1024

× 1024.
3 Transform resized image to frequency space.
4 Apply Mask to frequency space (truncated

circle sectors centered at θi, width ∆θi, and
maximum radius δi).

5 Inverse transform the masked image to obtain
the filtered image Sxx(mod).

6 Return Re
{
Sxx(mod)

}

activity aligns with the TAE antenna sweeps, we might lose
these modes. For instance, two elliptic alfvén eigenmodes
(EAE)s disappear, these small modes are situated at 51s
and 475 kHz approximately (decreasing in frequency).
Moreover, sawteeth signals are still crossing the MHD
modes.

The design of the mask might need some trial and
error in selecting the parameters. In the 2D FFT low
frequencies are situated in the center. In order to not cover
this region, the mask is a composition of radial circle sectors

centered at angles θ with respective apertures ∆θ. The
mask starts at a radial cut-off δ distance from the origin,
so low spatial-frequencies are not filtered. In addition, it
is been found useful to resize the spectrogram to a square
image in advance. This helps to design a symmetric mask
(the radial mask apertures ∆θ are centered around the
given angles θ).

Figure 9. Result of combining Algorithm 1 and 2. On the left
the original spectrogram is shown, in the right picture the result
of using both algorithms.

The manipulation of Fourier space is a key concept to
understanding curvelet transform as well. Given the success
of using discrete wavelets in the algorithm (1) we worked
on generalizing this approach by using curvelets.

6. Muliscale-multidirection pattern removal
using curvelets

The curvelet transform [22] is a multidirectional gener-
alization of the DWT, better suited when images have
curvy edges and multiple directional features, like the MHD
modes in our spectrograms. For removing noise and un-
desired components in a selected angular direction, corre-
sponding subimages are set 0 and then the inverse curvelet
transform is applied.

In Fig.10, a polar representation of the 2D Fourier
space is shown. The 2D Fourier space is divided in
a tesselation of “wedges” [22]. Each wedge has a
corresponding subimage with certain scale and directional
properties. The wedges closer to the center are subimages
with large scale (low-frequency) features. The colored
wedges are the ones selected to be removed before the
inverse Curvelet transform is applied. These directions
are vertical, horizontal, and the corresponding directions
of the antenna sweeping. The scales to be removed in these
directions are everyone but the corresponding to the two
larger scales (lower frequencies represented in the center
wedge, and the first concentric wedges).

The result of using the algorithm (3) steps 1-3 can
be seen in Fig.11, the noise removed is plotted on Fig.12.
Curvelets are able to remove anisotropic noise and improve
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Figure 10. Cartoon of curvelet’s wedges in polar coordinates.
Colored wedges are set to zero before doing the inverse Curvelet
transform

spectrogram contrast. Moreover, the TAE antenna signal
and the ICRH subharmonics are successfully removed from
the spectrogram, sawteeth are eliminated as well. The
wedge tesselation is configured by selecting the number of
scales and wedges corresponding to the angles detected with
the Hough transform. The interested reader can find more
details about the curvelet transform in Ma’s review paper
[32].

Figure 11. Result of applying curvelet transform algorithm to
remove TAE antenna: Algorithm (3), steps: 1-3.

It is worth mentioning that although the all examples
in this paper are originating from magnetic sensor signals,
these noise removal algorithms could be useful with

Figure 12. Noise extracted using curvelets

interferometers or LIDAR diagnostic signals as well, which
particularly can suffer from straight lines artifacts caused
by phase jumps.

7. Automatic identification of MHD modes

Algorithm 3: Complete pipeline for auto-
matic labeling of MHD activity

Input: Time series s
Parameters: σ = 1, σscales = [1, 2],

θ = [θ1, ...θN ], ς=9 (optional)
Output: Reassigned spectrogram Sxx(mod)

Steps:
1 Calculate the spectrogram STFFT(s);
2 Detect straight line patterns or specify angles

manually.
3 Apply curvelet transform (or use Algorithm 2

and skip steps 4 and 5).
4 Set to 0 (hard thresholding) wedges

corresponding to directions θ
5 Apply inverse curvelet transform, take the

absolute value and invert the image.
6 Apply Sato’s ridge operator with

σscales = [1, 2]. (Or Meijering’s)
7 Smoothing: Gaussian(σ=1).
8 Yen’s automatic thresholding (binarize the

image).
9 Mark up pixel-connected areas (for labelling

MHD activity), using a full-connectivity
filter

10 Removed noisy labels: modes with less than
ς=9 pixels. (Optional)

After improving contrast and having removed other
undesired signal components, classic CV algorithms can
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perform optimally labeling the MHD activity, using all the
steps indicated in the algorithm (3).

Given the result of Fig.11: Sato’s ridge operator can
be applied to detect the mode pixels. It is worth mentioning
that the Meijering’s ridge filter [39] can perform as well or
better than Sato’s. Afterwards, a Gaussian smoothing of 1
pixel width is applied to remove some background smearing
texture left by the Ridge operator. Finally, Yen’s automatic
thresholding is used to binarize the image: the pixel values
are 0 or 1.

Then, it is easy to detect connected areas by using
a connectivity filter. When two pixels are next to each
other and have the same value, they are linked. In
a 2-connectivity filter (full), diagonal linking is allowed,
whereas in a 1-connectivity filter, only vertical and
horizontal-vertical linking is permitted. To give some
examples, in a 3×3 image, among all combinations, 5
connected pixels variation on a binarized image can be1 0 0

1 0 0
1 1 1

 ,

0 1 0
1 1 1
0 1 0

 ,

1 0 1
0 1 0
1 0 1

 .

Next step is optional (remove noisy labels). We can
considered noisy modes: those with less than 9 pixels
connected. In other words, a labelled mode is noisy if a
mode is a pixel not fully linked with surroundings. This
criteria can vary depending on the number of pixels in the
spectrogram and the size of the modes.

Algorithm (3) result in Fig.13. We conclude that
individual modes are successfully labeled with minor errors
like a few modes missed and only three false positives out
of 45 regions of pixels detected. In addition, some modes of
very low signal-to-noise ratio and mostly aligned with the
removed directions are missed.

It is to be noted that an application with a graphical
user interface could be used to discard these minor labeling
errors. For instance, a tool called Wavystar with a GUI
has been implemented, available under request in JET.
This application implements algorithms discussed in this
work, and other analysis capabilities of transitory signals
not treated in this paper.

We conclude by mentioning that the computational
resources needed to run these algorithms are very low. A
common laptop (11th Gen Intel(R) Core(TM) i7-1185G7,
3.00GHz) can run these algorithms in a few seconds without
special memory requirements (16-32 GB RAM). Also, the
presented algorithms have few hyper-parameters. These
facts make them suitable for mining big databases.

8. Conclusion and future work

The main innovation introduced in this work is the use of
wavelets and curvelets along with simple CV algorithms to
filter (reassign) the spectrograms of magnetic sensors. The
complete pipeline successfully removes noise and undesired
patterns in a fully interpretable way, in other words the
addition of removed noise and filtered spectrogram returns
the original signal.

The main concepts that allowed these results are two:
(1) noise present in spectrograms is highly anisotropic,

Figure 13. Result of automatic labelling over original
spectrogram. In total, 43 modes are segmented correctly. After
53 s, part of the TAE antenna signal produces 3 false positives.

Figure 14. Detail of the result of automatic labeling

and (2) the plasma phenomena observed in spectrograms
are multi-scale. Therefore, removing features in a certain
scale and direction maintains a high fraction of the original
information containing the MHD modes.

Nowadays, the state of the art in computer vision
algorithms is the use of deep CNNs and other neural
network architectures. However, they require huge amounts
of curated data. The application of classic computer vision
algorithms has not been extensively researched in Fusion
applications, which constitutes a gap of knowledge that this
work aims to fill. The application of these classic algorithms
is a necessary step for creating curated datasets, improving
the performance of future deep learning algorithms.

Data contained in spectrograms, like frequencies,
duration, and amplitudes of the MHD modes, can be
extracted, stored and further studied. A straightforward
application of the algorithms introduced in this paper is
the creation and curation of a database of modes. Finally,
the database obtained can be used to train DL networks
for real-time mode prediction.



Automatic identification of MHD modes using Fourier transform, wavelets and computer vision algorithms 10

Acknowledgments

All CurveLab commercial rights are reserved to [22]
authors, though it is freely available for academic use. The
algorithms presented here only call CurveLab functions
through the open-sourced Python library curvelops.

This work has been carried out within the framework
of the EUROfusion Consortium, funded by the European
Union via the Euratom Research and Training Programme
(Grant Agreement No 101052200-EUROfusion). Views and
opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union
or the European Commission. Neither the European Union
nor the European Commission can be held responsible for
them.

This work has received financial support from the
AIM4EP project (ANR-21-CE30-0018), funded by the
French National Research Agency (ANR) and from the
Aix-Marseille University Initiative of Excellence - A*Midex,
Investissements d’Avenir programme AMX-19-IET-013.

This work has received funding under the Implement-
ing Agreement No. 2 to the Agreement on Academic and
Scientific Cooperation (REF. : AMUDRVCP09052019-1 /
4300002670) between the ITER International Fusion En-
ergy Organization and Aix-Marseille University. The views
and opinions expressed herein do not necessarily reflect
those of the ITER Organization.

References

1. Heidbrink, W. W. Basic physics of Alfvén
instabilities driven by energetic particles in
toroidally confined plasmas. en. Physics of
Plasmas 15, 055501. issn: 1070-664X, 1089-7674.
doi:10.1063/1.2838239 (May 2008).

2. Gorelenkov, N., Pinches, S. & Toi, K. Energetic
particle physics in fusion research in preparation
for burning plasma experiments. en. Nuclear
Fusion 54, 125001. issn: 0029-5515, 1741-4326.
doi:10.1088/0029-5515/54/12/125001 (Dec.
2014).

3. Sharapov, S. et al. Energetic particle instabilities
in fusion plasmas. en. Nuclear Fusion 53, 104022.
issn: 0029-5515, 1741-4326. doi:10.1088/0029-
5515/53/10/104022 (Oct. 2013).

4. Mirnov, S. V. & Semenov, B. THE NATURE OF
THE LARGE-SCALE INSTABILITIES IN THE
TOKAMAK. en. Soviet Physics JETP 33, 1134
(1974).

5. Van Zeeland, M. A. et al. Radial Structure
of Alfvén Eigenmodes in the DIII-D Tokamak
through Electron-Cyclotron-Emission Measure-
ments. en. Physical Review Letters 97, 135001.
issn: 0031-9007, 1079-7114. doi:10 . 1103 /

PhysRevLett.97.135001 (Sept. 2006).

6. Freethy, S. J. et al. Measurement of turbulent
electron temperature fluctuations on the ASDEX
Upgrade tokamak using correlated electron cy-
clotron emission. en. Review of Scientific Instru-
ments 87, 11E102. issn: 0034-6748, 1089-7623.
doi:10.1063/1.4958908 (Nov. 2016).

7. Nazikian, R. et al.Alpha-Particle-Driven Toroidal
Alfvén Eigenmodes in the Tokamak Fusion Test
Reactor. en. Physical Review Letters 78, 2976–
2979. issn: 0031-9007, 1079-7114. doi:10.1103/
PhysRevLett.78.2976 (Apr. 1997).

8. Sharapov, S. et al. Alfvén cascades in JET
discharges with NBI-heating. en. Nuclear Fusion
46, S868–S879. issn: 0029-5515, 1741-4326.
doi:10.1088/0029-5515/46/10/S02 (Oct. 2006).
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